Lecture 7

November 21, 2025

1. TANGENT VECTORS ON MANIFOLDS

We now extend the concept of derivative from Euclidean spaces to smooth manifolds. In
previous sections, we have studied the local and global properties of manifolds—their topology,
compactness, partitions of unity, and approximation of continuous functions. Now we turn to
studying the infinitesimal properties of manifolds, which will provide us with deeper insight
into the local behavior of manifolds and smooth maps.

The key insight comes from observing how tangent vectors act in Euclidean space: given a
vector v at a point p € R", we can define the directional derivative of any smooth function f
in the direction v. This directional derivative operator f — D, f(p) is linear and satisfies the
product rule (Leibniz rule).

This suggests that on manifolds, we can define tangent vectors as operators on smooth func-
tions that capture this "directional derivative" behavior.

Definition 1.1. Let p € M. Aderivation at p is a linear map v : C*°(M) — R satisfying
v(fg)=f(pv(g +gp)v(f) forall f,geC®M).

The tangent space T, M is the vector space of all derivations at p, and its elements are called
tangent vectors.
Lemma 1.2. Let M be a smooth manifold, pe M, ve T,M, and f,g € C*(M).

(1) If f is constant, then v(f) =0

@) Iff(p)=g(p)=0, thenv(fg) =0

Proof. (1) For f =1, we have v(1) = v(1-1) =2v(1), so v(1) = 0. Then v(c) = cv(1) =1 for
YceR.
(2) Direct computation: v(fg) = f(p)v(g) +g(p)v(f) =0.
O

Example 1.3 (Tangent Space of Euclidean Space). We verify that the abstract definition of tan-
gent vectors as derivations recovers the familiar notion in Euclidean space.
Let M =R" and fix p e R". ForveR", define D, : C*(R") — R by:

Dy()=Vf(p)-v.
This is a derivation since it is linear and satisfies the Leibniz rule:
Dy(f8)=8g(p)Du(f)+ f(P)Dy(g).
Define®:R" — T,R" by ®(v) = D,.
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Injectivity: If®(v) = ®(w), then for coordinate functions x':
V' =Dy(x") =Dy (x) = W',
sov=uw.

Surjectivity: For X € T,R", let v = (X(x'),...,X(x")). For any f € C®R"), use the integral
representation:

no. -t
f(x) :f(p)+2(x’—p‘)/ —fi(p+ t(x—p)dt.
=1 0 0x

=
Define gi(x) = fol %(p + t(x—p))dt, with g;(p) = %(p). Then:
n . noa .
X(H=) gpXxH=) —f.(p)vl = Dy(f).
i=1 iz 0x'
Thus X = D, proving surjectivity.
Therefore, T,R" =R", with e; € R" corresponding to % |p € T,R".

Definition 1.4. For a smooth map F : M — N and p € M, the differential dF, : T,M — T, N is
defined by
dF,()(f)=v(foF) forfeC®(N),veT,M.

This is well-defined since f o F € C*°(M), and dF)(v) is a derivation:
dF,(v)(fg)=v((fg)oF)=v((foF)(goF))
= f(F(p)v(goF)+gF(p)v(foF)
= f(F(p)dF,(v)(g) + g(F(p)dF,)(f).

Proposition 1.5 (Properties of the differential). Let M, N, P be smooth manifolds, F: M — N and
G: N — P smooth maps, and p € M.

(1) d(GoF)p=dGppodF,
@) dAm)p=11,m
(3) IfF is a diffeomorphism, then dF), is an isomorphism with (chp)_1 = d(F_l)p(p)

Proof. Properties (2) follow directly from definitions. For (1), given v € T, M and f € C*(P):
A(GoF)p()(f) =v(foGoF)=dF,(v)(foG)=dGpg)(dF,()(f).
For (3), apply (1) and (2) to FoF~! =1y and F o F=1y,. O

2. THE LOCAL NATURE OF TANGENT SPACES

Intuitively, tangent vectors should be infinitesimal objects, and thus inherently local in na-
ture. The following proposition confirms this intuition:

Proposition 2.1 (tangent vectors act locally). If f, g € C*°(M) agree near p € M, then v(f) = v(g)
foranyve T,M.

Proof. Let h = f — g, which vanishes in a neighborhood U of p. Choose a bump function 7
supported in U with n(p) = 1. Thennh =0, so

0=v(nh)=n(p)v(h)+h(p)v(n) =vh),
hence v(f) = v(g). O
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This local property allows us to naturally identify tangent spaces of open submanifolds with
those of the ambient manifold:

Theorem 2.2 (Tangent Space of Open Submanifolds). Let M be a smooth manifold and U c M
an open subset. For any p € U, the inclusion map 1: U — M induces a natural isomorphism:

di,: T,U = T, M.

Proof. Define ®: T,U — T, M by ®(v)(f) = v(fly) for ve T, U, f € C*(M).

For injectivity: If ®(v) = 0, then for any g € C*°(U), extend g to § € C*°(M) agreeing with g
near p. Then v(g) = ®(v)(g) =0,s0 v =0.

For surjectivity: Given w € T, M, define v € T, U by v(g) = w(g) where g is any smooth exten-
sion of g € C*°(U) to M. This is well-defined by the local nature of tangent vectors, and satisfies
D(v) =

Linearity and the derivation property are immediate, so ® is an isomorphism with ® = du,.

0J

Remark 2.3. From our earlier example, we know that the tangent space of R" is isomorphic toR"
hence has dimension n. Combined with this theorem, we conclude that the tangent space at any
point of an n-dimensional manifold also has dimension n.

In this course, we frequently encounter maps that are essentially identities, but writing them
out explicitly can be quite cumbersome and technical. Therefore, we often introduce certain
conventions to simplify the notation and make the underlying ideas more readable. Here are
two such conventions:

Convention 2.4 (Extension of the Differential). Let M be a smooth manifold and U c M an open
subset containing p. Although strictly speaking the differential dg, maps T,U to Ty (U), we
will abuse notation and also denote by d¢,, the composition:

~ d(pp n
TpM: TpU—> T(p(p)(p(U) — (p(p)R ,
where the first isomorphism is the canonical identification T,U = T, M, and the last map is the

natural inclusion. With this convention, we regard d,, as an isomorphism from T, M to Ty, R".

Convention 2.5 (Coordinate Vectors). Let (U, = (x!,x2,...,x™) be a coordinate chart on a

smooth manifold M. For each point p € U, we define the coordinate vectors 6 7€ Ty M as:

2) e (2]
oxily, PP oxi o

where the right-hand szde ; denotes the standard basis vectors of Ty, R".
This definition implies thatfor any feC>®\M):

|(f) (f ‘p ¢ ) ).

The coordinate vector fields form a natural basis for T, M and satisfy 5 5 0 (xf )= 6]

That they form a basis. Since ¢ : U — ¢@(U) is a diffeomorphism, its d1fferent1al dgyp: TyM —
TymR" is an isomorphism (under the identification convention above). The vectors % form a

basis for Ty,»R", so their preimages % p= (dpp)™? (%) form a basis for T, M. U
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Proposition 2.6 (Transformation Rule for Coordinate Vectors). Under a coordinate change (x*) —
(¥7), the coordinate vectors transform according to:

0 Zox' o
oyl {5 0yl oxt’

Proof. Consider two coordinate charts (U, ¢ = (x},...,x™) and Vy = (yl, Y WithUnV #
@. For any smooth function f € C*°(M) and any point p € U NV, we have:
On one hand, by definition:

1
= Of ey ) y”’ ) w(p)).

On the other hand, we can express f o~ !in terms of the x-coordinates. Note that:
foy i =(fogp Nolpoy™),
where oyl :yw(UNV)— @(UnV)is the transition map between coordinate charts.
Now apply the chain rule:
Ofoy™) &L A(fop™) 5(9001!/_1)’
0y’ = ox! 0y

Here, ((poq/_l)i is the i-th component of the transition map, which is exactly the function that
gives x' in terms of the y-coordinates. Therefore:
d(poy™h)! 3 ox’
ay/ ~ayl’

ox'
ayl
Substituting back, we get:

The Jacobian matrix ( ) appears naturally as the derivative of the coordinate transition map.

a(fou/ 1 i 0x' 8(fop!
oy)  oxt

0(fcp)

Evaluating at p and recognizing that (p(p)) =57 | (f), we obtain:

\ (= 10 ](p)—( (.

Since this holds for all f € C°°(M), we conclude:

O

Remark 2.7 (Physicist’s Definition of Tangent Vectors). Physicists define tangent vectors opera-
tionally by their transformation properties under coordinate changes. A tangent vector is charac-

terized by its components transforming contravariantly:
ox'*

V//,l — VV
oxV
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This matches our geometric construction: for v = v' (% = wl2, the components transform as:
x? oyl
. oyl .
w =3 i
i-1 0x'
while the basis vectors transform complementarily:
0 & dx' 0
oyl iz 0yl ox

This inverse relationship between component and basis transformations defines contravariant
vectors in physics.

3. THE TANGENT BUNDLE

3.0. From Coordinate Transformations to the Tangent Bundle. We have understood tangent
spaces in local coordinate charts and the transformation rules between different charts. When
describing an object through local coordinate charts, our previous experience with manifolds
tells us that there should be a manifold structure underlying it. This leads naturally to the fol-
lowing object:

Definition 3.1 (Tangent Bundle). Let M be a smooth n-manifold. The tangent bundle of M is
defined as the disjoint union of all tangent spaces:

TM= || T,M={(p,v):pe M,ve T,M}.
pEM

We define the projectionmap n: TM — M by n(p,v) = p.

The contravariant transformation rule for coordinate vector fields provides the transition
maps for constructing the manifold structure on 7M.
To make T M into a smooth manifold, we construct an atlas from the coordinate charts on M:

Theorem 3.2 (Manifold Structure on T M). The tangent bundle T M has a natural structure of a
smooth 2n-dimensional manifold.

Proof. For each coordinate chart (U, ¢ = (x},...,x™) on M, define a chart (7~} (U), @) on T M by:

o(p,v)= (' (p),... x"(p),v,...,v") e R,
i 0
oxilp*
Given two such charts (7~ (U),®) and ("1 (V),) with Un V # @, the transition function
Wod ! acts as:

where v=Y1" v

noa yi .
ey wh L wh = o (), Y. ==/ |,
iZ10xJ
which is smooth because 1 o ¢! is smooth and the partial derivatives depend smoothly on x.
These charts give T M the structure of a smooth 2n-dimensional manifold. 0

1

(y

Remark 3.3 (The Tangent Bundle as a Vector Bundle). The tangent bundle T M possesses a spe-
cial structure beyond being merely a smooth manifold. For each coordinate chart (U, ) on M,
the induced chart (n~*(U), §) on T M satisfies compatibility with projections (pr, oy = pomn), lin-
ear fiber structure (¢, is a linear isomorphism), and smooth linear transitions. This defines a
vector bundle—-a smooth family of vector spaces parameterized by M.
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This structure enables the geometric extension of linear algebra constructions such as dual bun-
dles, tensor bundles, Whitney sums, and exterior algebras. Each construction yields new mani-
folds from existing ones.
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