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1. TANGENT VECTORS ON MANIFOLDS

We now extend the concept of derivative from Euclidean spaces to smooth manifolds. In
previous sections, we have studied the local and global properties of manifolds–their topology,
compactness, partitions of unity, and approximation of continuous functions. Now we turn to
studying the infinitesimal properties of manifolds, which will provide us with deeper insight
into the local behavior of manifolds and smooth maps.

The key insight comes from observing how tangent vectors act in Euclidean space: given a
vector v at a point p ∈ Rn , we can define the directional derivative of any smooth function f
in the direction v . This directional derivative operator f 7→ Dv f (p) is linear and satisfies the
product rule (Leibniz rule).

This suggests that on manifolds, we can define tangent vectors as operators on smooth func-
tions that capture this "directional derivative" behavior.

Definition 1.1. Let p ∈ M. A derivation at p is a linear map v : C∞(M) → R satisfying

v( f g ) = f (p)v(g )+ g (p)v( f ) for all f , g ∈C∞(M).

The tangent space Tp M is the vector space of all derivations at p, and its elements are called
tangent vectors.

Lemma 1.2. Let M be a smooth manifold, p ∈ M, v ∈ Tp M, and f , g ∈C∞(M).

(1) If f is constant, then v( f ) = 0
(2) If f (p) = g (p) = 0, then v( f g ) = 0

Proof. (1) For f ≡ 1, we have v(1) = v(1 · 1) = 2v(1), so v(1) = 0. Then v(c) = cv(1) = 1 for
∀c ∈ R.

(2) Direct computation: v( f g ) = f (p)v(g )+ g (p)v( f ) = 0.
□

Example 1.3 (Tangent Space of Euclidean Space). We verify that the abstract definition of tan-
gent vectors as derivations recovers the familiar notion in Euclidean space.

Let M = Rn and fix p ∈ Rn . For v ∈ Rn , define Dv : C∞(Rn) → R by:

Dv ( f ) =∇ f (p) · v.

This is a derivation since it is linear and satisfies the Leibniz rule:

Dv ( f g ) = g (p)Dv ( f )+ f (p)Dv (g ).

Define Φ : Rn → Tp Rn by Φ(v) = Dv .
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Injectivity: If Φ(v) =Φ(w), then for coordinate functions xi :

v i = Dv (xi ) = Dw (xi ) = w i ,

so v = w.
Surjectivity: For X ∈ Tp Rn , let v = (X (x1), . . . , X (xn)). For any f ∈ C∞(Rn), use the integral

representation:

f (x) = f (p)+
n∑

i=1
(xi −p i )

ˆ 1

0

∂ f

∂xi
(p + t (x −p))d t .

Define gi (x) = ´ 1
0

∂ f
∂xi (p + t (x −p))d t, with gi (p) = ∂ f

∂xi (p). Then:

X ( f ) =
n∑

i=1
gi (p)X (xi ) =

n∑
i=1

∂ f

∂xi
(p)v i = Dv ( f ).

Thus X = Dv , proving surjectivity.
Therefore, Tp Rn ∼= Rn , with ei ∈ Rn corresponding to ∂

∂xi

∣∣
p ∈ Tp Rn .

Definition 1.4. For a smooth map F : M → N and p ∈ M, the differential dFp : Tp M → TF (p)N is
defined by

dFp (v)( f ) = v( f ◦F ) for f ∈C∞(N ), v ∈ Tp M .

This is well-defined since f ◦F ∈C∞(M), and dFp (v) is a derivation:

dFp (v)( f g ) = v(( f g )◦F ) = v(( f ◦F )(g ◦F ))

= f (F (p))v(g ◦F )+ g (F (p))v( f ◦F )

= f (F (p))dFp (v)(g )+ g (F (p))dFp (v)( f ).

Proposition 1.5 (Properties of the differential). Let M , N ,P be smooth manifolds, F : M → N and
G : N → P smooth maps, and p ∈ M.

(1) d(G ◦F )p = dGF (p) ◦dFp

(2) d(1M )p = 1Tp M

(3) If F is a diffeomorphism, then dFp is an isomorphism with (dFp )−1 = d(F−1)F (p)

Proof. Properties (2) follow directly from definitions. For (1), given v ∈ Tp M and f ∈C∞(P ):

d(G ◦F )p (v)( f ) = v( f ◦G ◦F ) = dFp (v)( f ◦G) = dGF (p)(dFp (v))( f ).

For (3), apply (1) and (2) to F ◦F−1 = 1N and F−1 ◦F = 1M . □

2. THE LOCAL NATURE OF TANGENT SPACES

Intuitively, tangent vectors should be infinitesimal objects, and thus inherently local in na-
ture. The following proposition confirms this intuition:

Proposition 2.1 (tangent vectors act locally). If f , g ∈C∞(M) agree near p ∈ M, then v( f ) = v(g )
for any v ∈ Tp M.

Proof. Let h = f − g , which vanishes in a neighborhood U of p. Choose a bump function η

supported in U with η(p) = 1. Then ηh ≡ 0, so

0 = v(ηh) = η(p)v(h)+h(p)v(η) = v(h),

hence v( f ) = v(g ). □
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This local property allows us to naturally identify tangent spaces of open submanifolds with
those of the ambient manifold:

Theorem 2.2 (Tangent Space of Open Submanifolds). Let M be a smooth manifold and U ⊂ M
an open subset. For any p ∈U , the inclusion map ι : U ,→ M induces a natural isomorphism:

d ιp : TpU
∼=−→ Tp M .

Proof. Define Φ : TpU → Tp M by Φ(v)( f ) = v( f |U ) for v ∈ TpU , f ∈C∞(M).
For injectivity: If Φ(v) = 0, then for any g ∈ C∞(U ), extend g to g̃ ∈ C∞(M) agreeing with g

near p. Then v(g ) =Φ(v)(g̃ ) = 0, so v = 0.
For surjectivity: Given w ∈ Tp M , define v ∈ TpU by v(g ) = w(g̃ ) where g̃ is any smooth exten-

sion of g ∈C∞(U ) to M . This is well-defined by the local nature of tangent vectors, and satisfies
Φ(v) = w .

Linearity and the derivation property are immediate, so Φ is an isomorphism with Φ = d ιp .
□

Remark 2.3. From our earlier example, we know that the tangent space of Rn is isomorphic to Rn

hence has dimension n. Combined with this theorem, we conclude that the tangent space at any
point of an n-dimensional manifold also has dimension n.

In this course, we frequently encounter maps that are essentially identities, but writing them
out explicitly can be quite cumbersome and technical. Therefore, we often introduce certain
conventions to simplify the notation and make the underlying ideas more readable. Here are
two such conventions:

Convention 2.4 (Extension of the Differential). Let M be a smooth manifold and U ⊂ M an open
subset containing p. Although strictly speaking the differential dϕp maps TpU to Tϕ(p)ϕ(U ), we
will abuse notation and also denote by dϕp the composition:

Tp M ∼= TpU
dϕp−−−→ Tϕ(p)ϕ(U ) ,→ Tϕ(p)Rn ,

where the first isomorphism is the canonical identification TpU ∼= Tp M, and the last map is the
natural inclusion. With this convention, we regard dϕp as an isomorphism from Tp M to Tϕ(p)Rn .

Convention 2.5 (Coordinate Vectors). Let (U ,ϕ = (x1, x2, . . . , xn)) be a coordinate chart on a
smooth manifold M. For each point p ∈U , we define the coordinate vectors ∂

∂xi

∣∣
p ∈ Tp M as:

∂

∂xi

∣∣∣
p
= (dϕp )−1

(
∂

∂xi

∣∣∣
ϕ(p)

)
,

where the right-hand side ∂
∂xi denotes the standard basis vectors of Tϕ(p)Rn .

This definition implies that for any f ∈C∞(M):

∂

∂xi

∣∣∣
p

( f ) = ∂( f ◦ϕ−1)

∂xi
(ϕ(p)).

The coordinate vector fields form a natural basis for Tp M and satisfy ∂
∂xi (x j ) = δ j

i .

That they form a basis. Since ϕ : U → ϕ(U ) is a diffeomorphism, its differential dϕp : Tp M →
Tϕ(p)Rn is an isomorphism (under the identification convention above). The vectors ∂

∂xi form a

basis for Tϕ(p)Rn , so their preimages ∂
∂xi

∣∣
p = (dϕp )−1( ∂

∂xi ) form a basis for Tp M . □
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Proposition 2.6 (Transformation Rule for Coordinate Vectors). Under a coordinate change (xi ) →
(y j ), the coordinate vectors transform according to:

∂

∂y j
=

n∑
i=1

∂xi

∂y j

∂

∂xi
.

Proof. Consider two coordinate charts (U ,ϕ= (x1, . . . , xn)) and (V ,ψ= (y1, . . . , yn)) with U ∩V ̸=
;. For any smooth function f ∈C∞(M) and any point p ∈U ∩V , we have:

On one hand, by definition:

∂

∂y j

∣∣∣
p

( f ) = ∂( f ◦ψ−1)

∂y j
(ψ(p)).

On the other hand, we can express f ◦ψ−1 in terms of the x-coordinates. Note that:

f ◦ψ−1 = ( f ◦ϕ−1)◦ (ϕ◦ψ−1),

where ϕ◦ψ−1 :ψ(U ∩V ) →ϕ(U ∩V ) is the transition map between coordinate charts.
Now apply the chain rule:

∂( f ◦ψ−1)

∂y j
=

n∑
i=1

∂( f ◦ϕ−1)

∂xi
· ∂(ϕ◦ψ−1)i

∂y j
.

Here, (ϕ◦ψ−1)i is the i -th component of the transition map, which is exactly the function that
gives xi in terms of the y-coordinates. Therefore:

∂(ϕ◦ψ−1)i

∂y j
= ∂xi

∂y j
.

The Jacobian matrix
(
∂xi

∂y j

)
appears naturally as the derivative of the coordinate transition map.

Substituting back, we get:

∂( f ◦ψ−1)

∂y j
=

n∑
i=1

∂xi

∂y j

∂( f ◦ϕ−1)

∂xi
.

Evaluating at p and recognizing that ∂( f ◦ϕ−1)
∂xi (ϕ(p)) = ∂

∂xi

∣∣
p ( f ), we obtain:

∂

∂y j

∣∣∣
p

( f ) =
n∑

i=1

∂xi

∂y j
(p)

∂

∂xi

∣∣∣
p

( f ).

Since this holds for all f ∈C∞(M), we conclude:

∂

∂y j
=

n∑
i=1

∂xi

∂y j

∂

∂xi
.

□

Remark 2.7 (Physicist’s Definition of Tangent Vectors). Physicists define tangent vectors opera-
tionally by their transformation properties under coordinate changes. A tangent vector is charac-
terized by its components transforming contravariantly:

V ′µ = ∂x ′µ

∂xν
V ν
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This matches our geometric construction: for v = v i ∂
∂xi = w j ∂

∂y j , the components transform as:

w j =
n∑

i=1

∂y j

∂xi
v i

while the basis vectors transform complementarily:

∂

∂y j
=

n∑
i=1

∂xi

∂y j

∂

∂xi

This inverse relationship between component and basis transformations defines contravariant
vectors in physics.

3. THE TANGENT BUNDLE

3.0. From Coordinate Transformations to the Tangent Bundle. We have understood tangent
spaces in local coordinate charts and the transformation rules between different charts. When
describing an object through local coordinate charts, our previous experience with manifolds
tells us that there should be a manifold structure underlying it. This leads naturally to the fol-
lowing object:

Definition 3.1 (Tangent Bundle). Let M be a smooth n-manifold. The tangent bundle of M is
defined as the disjoint union of all tangent spaces:

T M = ⊔
p∈M

Tp M = {(p, v) : p ∈ M , v ∈ Tp M }.

We define the projection map π : T M → M by π(p, v) = p.

The contravariant transformation rule for coordinate vector fields provides the transition
maps for constructing the manifold structure on T M .

To make T M into a smooth manifold, we construct an atlas from the coordinate charts on M :

Theorem 3.2 (Manifold Structure on T M). The tangent bundle T M has a natural structure of a
smooth 2n-dimensional manifold.

Proof. For each coordinate chart (U ,ϕ= (x1, . . . , xn)) on M , define a chart (π−1(U ),ϕ̃) on T M by:

ϕ̃(p, v) = (x1(p), . . . , xn(p), v1, . . . , vn) ∈ R2n ,

where v =∑n
i=1 v i ∂

∂xi

∣∣
p .

Given two such charts (π−1(U ),ϕ̃) and (π−1(V ),ψ̃) with U ∩V ̸= ;, the transition function
ψ̃◦ ϕ̃−1 acts as:

(y1, . . . , yn , w 1, . . . , w n) =
(
ψ◦ϕ−1(x),

n∑
j=1

∂y i

∂x j
(x)v j

)
,

which is smooth because ψ◦ϕ−1 is smooth and the partial derivatives depend smoothly on x.
These charts give T M the structure of a smooth 2n-dimensional manifold. □

Remark 3.3 (The Tangent Bundle as a Vector Bundle). The tangent bundle T M possesses a spe-
cial structure beyond being merely a smooth manifold. For each coordinate chart (U ,ϕ) on M,
the induced chart (π−1(U ),ϕ̃) on T M satisfies compatibility with projections (pr1 ◦ϕ̃=ϕ◦π), lin-
ear fiber structure (ϕ̃|Tp M is a linear isomorphism), and smooth linear transitions. This defines a
vector bundle–a smooth family of vector spaces parameterized by M.
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This structure enables the geometric extension of linear algebra constructions such as dual bun-
dles, tensor bundles, Whitney sums, and exterior algebras. Each construction yields new mani-
folds from existing ones.
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