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1. ALTERNATIVE DEFINITION: TANGENT VECTORS AS CURVE EQUIVALENCE CLASSES

There is another intuitive and geometric approach to defining tangent vectors, which views
them as equivalence classes of curves through a point. This definition essentially captures the
classical notion of velocity vectors–the instantaneous direction and speed of motion along a
curve.

Definition 1.1 (Tangent Vectors as Curve Equivalence Classes). Let M be a smooth manifold and
p ∈ M. Consider the set of all smooth curves γ : (−ϵ,ϵ) → M with γ(0) = p. Define an equivalence
relation on these curves by:

γ1 ∼ γ2 ⇐⇒ for some coordinate chart (U ,ϕ) around p, (ϕ◦γ1)′(0) = (ϕ◦γ2)′(0).

A tangent vector at p is defined as an equivalence class [γ] under this relation. The tangent space
T curve

p M is the set of all such equivalence classes.

Remark 1.2. The equivalence relation is well-defined because if two curves have the same deriv-
ative in one coordinate chart, they have the same derivative in any other chart by the chain rule.
This makes the definition chart-independent.

We can define a vector space structure on T curve
p M using coordinates: given [γ1], [γ2] ∈ T curve

p M
and a ∈ R, define

[γ1]+ [γ2] = [γ] where ϕ◦γ(t ) =ϕ◦γ1(t )+ϕ◦γ2(t )−ϕ(p),

a[γ1] = [γa] where ϕ◦γa(t ) =ϕ(p)+a(ϕ◦γ1(t )−ϕ(p)).

[Think this through why this make sense, i.e. why it is independent of the choice of representa-
tive of curve and of the chart.]

Now we establish the equivalence with our previous definition:

Theorem 1.3 (Equivalence of Definitions). There is a natural isomorphism between the tangent
space defined via derivations and the tangent space defined via curve equivalence classes:

Tp M ∼= T curve
p M .

Proof. We construct mutually inverse maps between the two spaces.
From curves to derivations: DefineΦ : T curve

p M → Tp M by

Φ([γ])( f ) = ( f ◦γ)′(0) for f ∈C∞(M).

This is well-defined and preserves the derivation structure.
From derivations to curves: DefineΨ : Tp M → T curve

p M as follows. Given v ∈ Tp M , choose a

coordinate chart (U ,ϕ) withϕ(p) = 0 and let v i = v(xi ). Define the curveγv (t ) =ϕ−1(t v1, . . . , t vn)
and setΨ(v) = [γv ]. This is independent of the coordinate choice.
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A straightforward verification shows that Φ ◦Ψ = id and Ψ ◦Φ = id, establishing the isomor-
phism. □

2. PARAMETERIZED CONTRACTION PRINCIPLE AND THE INVERSE FUNCTION THEOREM

Theorem 2.1 (Parameterized Contraction Mapping Principle). Let X be a complete metric space
and Y a metric space. Let Φ : X ×Y → X be a continuous map such that for some 0 É ρ < 1 and
all y ∈ Y :

d(Φ(x1, y),Φ(x2, y)) É ρd(x1, x2) for all x1, x2 ∈ X .

Then for each y ∈ Y there exists a unique x ∈ X with Φ(x, y) = x. If we denote this fixed point by
x = S(y), then the map S : Y → X is continuous.

Proof. Fix x0 ∈ X and define the sequence {xn(y)} by x0(y) = x0, xn+1(y) =Φ(xn(y), y).
By the contraction property, d(xn+1(y), xn(y)) É ρnd(x1(y), x0(y)). For m > n, the triangle

inequality gives:

d(xm(y), xn(y)) É
m−1∑
k=n

ρk d(x1(y), x0(y)) É ρn

1−ρd(x1(y), x0(y))

Since ρ < 1, {xn(y)} is Cauchy and converges to some x(y) ∈ X , which satisfies Φ(x(y), y) = x(y)
by continuity. Uniqueness follows from the contraction property.

For continuity of S(y) = x(y), given ϵ > 0, choose N so that d(xN (y),S(y)) < ϵ/3 for all y . By
continuity of Φ, xN (y) is continuous in y , so there exists δ > 0 such that d(y, y0) < δ implies
d(xN (y), xN (y0)) < ϵ/3. Then:

d(S(y),S(y0)) É d(S(y), xN (y))+d(xN (y), xN (y0))+d(xN (y0),S(y0)) < ϵ
□

Let p ∈ M and let x1, . . . , xm be differentiable functions on a neighborhood U of p. Let ϕ(q) =
(x1(q), . . . , xm(q)) for q ∈U . We say that {xi }1ÉiÉm defines a coordinate system at p if there exists
an open neighborhood U ′ of p, contained in U , such that (U ′,ϕ|U ′ ,m) is a chart on M .

Theorem 2.2. The following are equivalent:

(1) {xi } defines a coordinate system at p.
(2) ∂

∂xi form a basis of Tp M.

Theorem 2.2 is a consequence of the following more general theorem:

Theorem 2.3. Let M and N be manifolds, p ∈ M and q ∈ N , and let F : M → N be a smooth map
such that F (p) = q. Then the following are equivalent:

(1) F is a local diffeomrophism at p.
(2) dp F : Tp M → Tq N is an isomorphism.

Theorem 2.4 (Inverse Function Theorem on Euclidean Space). Let P : U ⊂ Rm → Rm be a C∞

map. Suppose that at some point a ∈ U , the derivative DP (a) : Rm → Rm is an invertible linear
map. Then there exist neighborhoods Ũ of a and Ṽ of b = P (a) such that P restricts to a C∞-
diffeomorphism from Ũ onto Ṽ .

Proof. Assume a = 0, P (a) = 0, and by composing with [DP (0)]−1, assume DP (0) = I .
DefineΦ(x, y) = x −P (x)+ y . Then P (x) = y if and only ifΦ(x, y) = x.
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Since DP (0) = I and P is C 1, choose ε> 0 such that for ∥x1∥,∥x2∥ É ε:

∥P (x1)−P (x2)− (x1 −x2)∥ É 1
2∥x1 −x2∥

Then ∥Φ(x1, y)−Φ(x2, y)∥ É 1
2∥x1 −x2∥, soΦ(·, y) is a contraction.

Let X = {x : ∥x∥ É ε}, Y = {y : ∥y∥ É ε/2}. For x ∈ X , y ∈ Y :

∥Φ(x, y)∥ É ∥x −P (x)∥+∥y∥ É 1
2∥x∥+∥y∥ É ε

2 + ε
2 = ε

soΦ(X ×Y ) ⊂ X .
By the contraction mapping theorem, for each y ∈ Y there exists a unique x ∈ X withΦ(x, y) =

x, i.e., P (x) = y . Denote this by x = S(y). Then S : Y → X is continuous and P ◦S = idY .
To show S is C 1:
Let y0 ∈ Y and x0 = S(y0). Since DP (x0) is invertible (by continuity of DP and DP (0) = I ),

consider the difference quotient:

S(y)−S(y0)− [DP (x0)]−1(y − y0)

∥y − y0∥
Using P (S(y)) = y and P (S(y0)) = y0, we have:

S(y)−S(y0)− [DP (x0)]−1(y − y0)

= S(y)−S(y0)− [DP (x0)]−1(P (S(y))−P (S(y0)))

= [DP (x0)]−1 (
DP (x0)(S(y)−S(y0))− (P (S(y))−P (S(y0)))

)
By the differentiability of P at x0:

P (S(y))−P (S(y0)) = DP (x0)(S(y)−S(y0))+o(∥S(y)−S(y0)∥)

Thus:
∥S(y)−S(y0)− [DP (x0)]−1(y − y0)∥

∥y − y0∥
É ∥[DP (x0)]−1∥ · o(∥S(y)−S(y0)∥)

∥y − y0∥
Since S is continuous and DP (x0) is invertible, ∥S(y)−S(y0)∥/∥y − y0∥ is bounded. Therefore

the right-hand side tends to 0 as y → y0, proving that S is differentiable at y0 with DS(y0) =
[DP (x0)]−1.

The continuity of DS follows from the continuity of DP and S.
Higher regularity: The C k case for k Ê 2 follows by induction. We already have the derivative

formula DS(y) = [DP (S(y))]−1. If P is C k , then DP is C k−1, and since matrix inversion is smooth,
the composition [DP (S(y))]−1 is C k−1 by the chain rule and the induction hypothesis that S is
C k−1. Thus DS is C k−1, meaning S is C k . □

Remark 2.5. The contraction mapping principle is not strictly necessary here, as the inverse map-
ping is clearly Lipschitz continuous. Nevertheless, it is a convenient tool in other contexts, such as
proving continuous dependence on initial conditions for ordinary differential equations.

3. IMMERSIONS, SUBMERSIONS, AND SUBIMMERSIONS

Let M and N be smooth manifolds, p ∈ M and q ∈ N , and let f : M → N be a smooth map
such that f (p) = q . Let m = dim M and n = dim N .

Definition 3.1. Let M̃ and Ñ be smooth manifolds, p̃ ∈ M̃ and q̃ ∈ Ñ , and let f̃ : M̃ → Ñ be a
smooth map such that f̃ (p̃) = q̃ . Then (M , N , p, q, f ) looks locally like (M̃ , Ñ , p̃, q̃ , f̃ ) if there exist
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open neighborhoods U of p, V of q, Ũ of p̃, Ṽ of q̃ and diffeomorphisms g : U → Ũ and h : V → Ṽ
such that:

(1) f (U ) ⊂V and f̃ (Ũ ) ⊂ Ṽ ,
(2) g (p) = p̃ and h(q) = q̃ ,
(3) The following diagram commutes:

U
f
//

g
��

V

h
��

Ũ
f̃
// Ṽ .

Remark 3.2. We shall apply this definition mainly when M̄ is a vector space Rm , N̄ is a vector
space Rn and f̄ is a linear map. In this case, we will take p̄ = 0, q̄ = 0 without explicit mention.

3.2. Immersions.

Notation 3.3. We use both dp f and Tp f to denote the differential (or the tangent map) of a
smooth map f at point p. Both notations are standard in the literature and will be used in-
terchangeably in these notes.

Theorem 3.4. The following are equivalent:

(1) Tp f is injective.
(2) There exist open neighborhoods U of p, V of q, and W of 0 (in Rn−m) and a diffeomor-

phism ψ : V →U ×W such that:
(a) f (U ) ⊂V ,
(b) If ι denotes the inclusion U →U×{0} ⊂U×W , then the following diagram commutes:

U
f
//

ι ##

V

ψ
��

U ×W

(3) (M , N , p, q, f ) looks locally like a linear injection f̄ : Rm → Rn .
(4) There exist local coordinates {xi } at p and {y j } at q such that xi = y i ◦ f for 1 É i É m and

0 = y j ◦ f for m +1 É j É n.
(5) There exist open neighborhoods U of p and V of q, and a smooth mapσ : V →U such that

f (U ) ⊂V and σ◦ f = 1U .

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) are elementary.
We show (1) ⇒ (2). Since the question is local, we may assume that the following conditions

are satisfied:

a. N is an open subset of Rn ,
b. f (p) = 0 and ImTp f = Rm × {0} ⊂ Rm ×Rn−m = Rn .

Let W be {0}×Rn−m ⊂ Rn . Define f ′ : M ×W → N by f ′(p, w) = f (p)+w . Then by the inverse
function theorem, f ′ is a local diffeomorphism at (p,0). Hence, by shrinking M , N and W , we
may assume that f ′ is a diffeomorphism. Then the inverse ψ of f ′ satisfies the condition of (2).

Let us verify the commutativity ψ◦ f = ι in detail. By the definition of f ′ and the fact that f ′

is a diffeomorphism between U ×W and V , we know that f : U →V is an injection. If y ∈ f (U ),
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then y ∈ f ′(U × {0}) and f ′−1(y) = ( f −1(y),0) by the definition of f ′. Therefore, ψ( f (x)) = (x,0)
for all x ∈U , which means ψ◦ f = ι. □

Definition 3.5. A smooth map f satisfying the equivalent conditions of the preceding theorem at
p is called an immersion at p. A smooth map f which is an immersion at all p ∈ M is called an
immersion.

Example 3.6 (Inclusion into product manifold). Let M and N be smooth manifolds, and fix a
point q0 ∈ N . Consider the inclusion map ι : M → M ×N defined by

ι(p) = (p, q0).

This map is an immersion. To see this, consider the projection map π : M ×N → M defined by
π(p, q) = p. Then we have

π◦ ι= 1M .

This means that π is a smooth left inverse for ι on the entire manifold M. By condition (5) of
the theorem, with U = M and V = M ×N , it follows immediately that ι is an immersion at every
point p ∈ M.

Example 3.7 (Dense immersion of R1 into T 2). Consider the 2-torus T 2 = S1 ×S1 and let α be a
real number. Define the map f : R1 → T 2 by

f (t ) = (e2πi t ,e2πiαt ).

This map is an immersion. To see this, consider the natural angular coordinates on T 2. Let (θ,φ)
be coordinates on the universal cover R2 of T 2, with the identification (θ,φ) ∼ (θ+m,φ+n) for
m,n ∈ Z.

In these coordinates, the map f becomes

f (t ) = (t ,αt ) mod Z2.

Now, at any point t0 ∈ R, we can choose a neighborhood U of t0 small enough so that the pro-
jection R2 → T 2 restricts to a diffeomorphism on (t0−ϵ, t0+ϵ)× (αt0−ϵ,αt0+ϵ) for some ϵ> 0. In
this local coordinate chart, the map is simply

f (t ) = (t ,αt ),

and its derivative is

Tt0 f =
(

1
α

)
,

which has full rank 1. Therefore, f is an immersion.
Note that when α is irrational, the image f (R1) is dense in T 2. This follows from the fact that

the irrational rotation on the circle is minimal (every orbit is dense). More precisely, for any open
set U ⊂ T 2, there exists some t ∈ R such that f (t ) ∈U .
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