Lecture 8

November 21, 2025

1. ALTERNATIVE DEFINITION: TANGENT VECTORS AS CURVE EQUIVALENCE CLASSES

There is another intuitive and geometric approach to defining tangent vectors, which views
them as equivalence classes of curves through a point. This definition essentially captures the
classical notion of velocity vectors—the instantaneous direction and speed of motion along a
curve.

Definition 1.1 (Tangent Vectors as Curve Equivalence Classes). Let M be a smooth manifold and
p € M. Consider the set of all smooth curvesy : (—€,€) — M with y(0) = p. Define an equivalence
relation on these curves by:

Y1 ~7v2 < for some coordinate chart (U, ) around p, (¢ oy1)'(0) = (¢oy2) (0).

Atangent vector at p is defined as an equivalence class [y] under this relation. The tangent space
T3 M is the set of all such equivalence classes.

Remark 1.2. The equivalence relation is well-defined because if two curves have the same deriv-
ative in one coordinate chart, they have the same derivative in any other chart by the chain rule.
This makes the definition chart-independent.

We can define a vector space structure on T;ur"eM using coordinates: given [y,], [y2] € T,‘jur"eM
and a € R, define

(Y1l + [y21 =yl where poy(t) =@oy1(t) +poya(t) —@(p),

aly1l =lyal where poy,(t) =@(p)+alpoyi(t) —p(p)).
[Think this through why this make sense, i.e. why it is independent of the choice of representa-
tive of curve and of the chart.]
Now we establish the equivalence with our previous definition:

Theorem 1.3 (Equivalence of Definitions). There is a natural isomorphism between the tangent
space defined via derivations and the tangent space defined via curve equivalence classes:

TyM = TE M.

Proof. We construct mutually inverse maps between the two spaces.
From curves to derivations: Define ®: T,"""*M — T;, M by

O([yD(f) =(foy)(0) for feC®(M).

This is well-defined and preserves the derivation structure.
From derivations to curves: Define ¥ : T, M — T;u“’eM as follows. Given v € T, M, choose a
coordinate chart (U, ¢) with ¢(p) = 0 and let vl = v(x'). Define the curve Yo() = (p_l(tvl, N 270

and set W (v) = [y,]. This is independent of the coordinate choice.
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A straightforward verification shows that ® oW =id and ¥ o ® = id, establishing the isomor-
phism. 0

2. PARAMETERIZED CONTRACTION PRINCIPLE AND THE INVERSE FUNCTION THEOREM

Theorem 2.1 (Parameterized Contraction Mapping Principle). Let X be a complete metric space
and Y a metric space. Let ® : X x Y — X be a continuous map such that for some0 < p <1 and
allyey:

d(®P(x1,y),P(x2,))) < pd(x1,x2) forall x1,x € X.
Then for each y € Y there exists a unique x € X with ®(x, y) = x. If we denote this fixed point by
x=S(y), thenthemap S: Y — X is continuous.

Proof. Fix xp € X and define the sequence {x, ()} by xo(y) = X0, Xn+1 () = P(x,(¥), y)-
By the contraction property, d(x,+1()),xn(¥) < p"d(x1(y), x0(y)). For m > n, the triangle
inequality gives:

n

m—1
A (), xa (1) < Y pFd(x1 (), x0() < lp_pd(xl(y),xo(y))
k=n
Since p < 1, {x,(y)} is Cauchy and converges to some x(y) € X, which satisfies ®(x(y), y) = x(y)
by continuity. Uniqueness follows from the contraction property.
For continuity of S(y) = x(y), given € > 0, choose N so that d(xy(y),S(y)) <e€/3 for all y. By
continuity of ®, xy(y) is continuous in y, so there exists § > 0 such that d(y, o) < 6 implies
d(xn(y), xn(y0)) <€/3. Then:

d(8(y), S(yo)) < d(S(y), xn () + d(xn(¥), XN (¥0)) + d(xn(y0), S(y0)) <€

OJ

Let p € M and let x!, ..., x"" be differentiable functions on a neighborhood U of p. Let ¢(g) =
(x'(q),...,x™(q)) for q € U. We say that {x"}<;<, defines a coordinate system at p if there exists
an open neighborhood U’ of p, contained in U, such that (U’, ¢|yr, m) is a chart on M.

Theorem 2.2. The following are equivalent:
(1) {x'} defines a coordinate system at p.
) % form a basis of T, M.

Theorem 2.2 is a consequence of the following more general theorem:

Theorem 2.3. Let M and N be manifolds, pe M and g € N, and let F : M — N be a smooth map
such that F(p) = q. Then the following are equivalent:

(1) F is a local diffeomrophism at p.
@) dyF: TyM — TyN is an isomorphism.

Theorem 2.4 (Inverse Function Theorem on Euclidean Space). Let P: U c R — R be a C*®
map. Suppose that at some point a € U, the derivative DP(a) : R™ — R is an invertible linear
map. Then there exist neighborhoods U of a and V of b = P(a) such that P restricts to a C®-
diffeomorphism from U onto V.

Proof. Assume a =0, P(a) =0, and by composing with [DP(0)]"!, assume DP(0) = I.
Define ®(x, y) = x— P(x) + y. Then P(x) = y if and only if ®(x, y) = x.
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Since DP(0) = I and P is C!, choose ¢ > 0 such that for || x|, || x2 ]| < &:
IP(x1) = P(xz) — (x1 — x2) | < 31l %1 — X2 |
Then || D(x1, y) — P(x2, Y)II < %lel —Xx2|l, so ®(+, y) is a contraction.
Let X={x:|xll<e}, Y={y:llyll<e/2}. Forxe X, yeY:
1D, I <lx—PI+Iyl<zlxl+lyl<§+5=¢

sodP(X xY)cX.
By the contraction mapping theorem, for each y € Y there exists a unique x € X with ®(x, y) =
x, i.e., P(x) = y. Denote this by x = S(y). Then S: Y — X is continuous and Po S =idy.
To show Sis C':
Let yo € Y and xp = S(y0). Since DP(xp) is invertible (by continuity of DP and DP(0) = I),
consider the difference quotient:
S(¥) = S(yo) = [DP(x0)I "' (¥ = y0)
Iy = yoll
Using P(S(y)) = y and P(S(y0)) = yo, we have:
S(y) = S(y0) = [DP(x0)] ™ (y = y0)
= S(3) = S(y0) — [DP(x0)] " (P(S(1)) — P(S(30)))
= [DP(x0)] " (DP(x0)(S(y) = S(y0)) — (P(S(»)) = P(S(y0))))
By the differentiability of P at xy:

P(S() — P(S(y0)) = DP(x0) (S(y) — S(y0)) + o(IS() — S(yo) 1)

Thus:

I1S(y) = S(yo) — [DP(x0)]1 " (y = yo) < IIDPGxo)] |- o(IS(y) = S(yo) )

Iy = yoll ly—yoll
Since S is continuous and DP(xy) is invertible, |S(y) — S(yo)I/ly — yoll is bounded. Therefore

the right-hand side tends to 0 as y — yy, proving that S is differentiable at y, with DS(yy) =
[DP(x0)] ™.

The continuity of DS follows from the continuity of DP and S.

Higher regularity: The CF case for k > 2 follows by induction. We already have the derivative
formula DS(y) = [DP(S(y))]‘l. If Pis C¥, then DP is CF~1, and since matrix inversion is smooth,
the composition [DP(S(y))]~! is C*~! by the chain rule and the induction hypothesis that S is
Ck=1. Thus DS is C¥~!, meaning S is C*. O

Remark 2.5. The contraction mapping principle is not strictly necessary here, as the inverse map-
ping is clearly Lipschitz continuous. Nevertheless, it is a convenient tool in other contexts, such as
proving continuous dependence on initial conditions for ordinary differential equations.

3. IMMERSIONS, SUBMERSIONS, AND SUBIMMERSIONS

Let M and N be smooth manifolds, p e M and g € N, and let f : M — N be a smooth map
such that f(p) = g. Let m =dim M and n = dim N.

Definition 3.1. Let M and N be smooth manifolds, p € M and § € N, and let f : M — N be a
smooth map such that f(p) = q. Then (M, N, p, q, f) looks locally like (M, N, p,q, [) if there exist
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open neighborhoods U of p, V of q, U of p, V of G and diffeomorphismsg:U — U and h:V — V
such that:

(1) f{U)cV and f(O)cV,

(2) g(p)=p and h(q) = g,

(3) The following diagram commutes:

I

Remark 3.2. We shall apply this definition mainly when M is a vector space R™, N is a vector
space R" and f is a linear map. In this case, we will take p = 0, g = 0 without explicit mention.

3.2. Immersions.

Notation 3.3. We use both dy,f and T, f to denote the differential (or the tangent map) of a
smooth map f at point p. Both notations are standard in the literature and will be used in-
terchangeably in these notes.

Theorem 3.4. The following are equivalent:
(1) Tpf is injective.
(2) There exist open neighborhoods U of p, V of q, and W of 0 (in R*™™) and a diffeomor-
phismy :V — U x W such that:

(@ fU)cV,
(b) Ifi denotes the inclusion U — U x {0} c U x W, then the following diagram commutes:
U / 14
N
4
UxW

(3) (M,N, p, q, f) looks locally like a linear injectionf :R™ — R".

(4) There exist local coordinates {x'} atp and {yj} at q such that xi= yi of forl<i<mand
O=ylofform+1<j<n.

(5) There exist open neighborhoods U of p and V of q, and a smooth map o : V — U such that
fU)cVandoo f=1y.

Proof. The implications (2) = (3) = (4) = (5) = (1) are elementary.
We show (1) = (2). Since the question is local, we may assume that the following conditions
are satisfied:

a. N isan open subset of R”,

b. f(p)=0andImT,f =R" x {0} cR" xR""" =R",

Let W be {0} x R”"™ c R". Define f': M x W — N by f'(p, w) = f(p) + w. Then by the inverse

function theorem, f’ is a local diffeomorphism at (p,0). Hence, by shrinking M, N and W, we

may assume that f” is a diffeomorphism. Then the inverse v of f’ satisfies the condition of (2).
Let us verify the commutativity ¥ o f = ¢ in detail. By the definition of f’ and the fact that f’

is a diffeomorphism between U x W and V, we know that f : U — V is an injection. If y € f(U),
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then y € /(U x {0}) and f"~1(y) = (f~'(»),0) by the definition of f’. Therefore, w(f(x)) = (x,0)
for all x € U, whichmeans wo f =1. U

Definition 3.5. A smooth map [ satisfying the equivalent conditions of the preceding theorem at
p is called an immersion at p. A smooth map f which is an immersion at all p € M is called an
immersion.

Example 3.6 (Inclusion into product manifold). Let M and N be smooth manifolds, and fix a
point qo € N. Consider the inclusion map1: M — M x N defined by

up) = (p, qo0).
This map is an immersion. To see this, consider the projection map n : M x N — M defined by
n(p,q) = p. Then we have
motr=1y,.
This means that ©t is a smooth left inverse for 1 on the entire manifold M. By condition (5) of

the theorem, with U = M and V = M x N, it follows immediately that | is an immersion at every
pointp € M.

Example 3.7 (Dense immersion of R! into T?). Consider the 2-torus T? = S* x S! and let a be a
real number. Define the map f :R! — T? by

f(t) — (ezﬂit, eZniat).

This map is an immersion. To see this, consider the natural angular coordinates on T?. Let (0, )
be coordinates on the universal cover R? of T?, with the identification (0,¢) ~ (0 + m,¢ + n) for
m,ne’Z.

In these coordinates, the map f becomes

f(H=(t,at) modZ?.

Now, at any point ty € R, we can choose a neighborhood U of ty small enough so that the pro-
jection R?> — T? restricts to a diffeomorphism on (ty —€, ty +€) x (aty —€, aty +€) for somee > 0. In
this local coordinate chart, the map is simply

f@) = an,

e[}

which has full rank 1. Therefore, f is an immersion.

Note that when « is irrational, the image f(R") is dense in T?. This follows from the fact that
the irrational rotation on the circle is minimal (every orbit is dense). More precisely, for any open
set U c T?, there exists some t € R such that f(t) € U.

and its derivative is
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