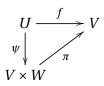
Lecture 9

November 21, 2025

1. Submersions

Theorem 1.1. *The following are equivalent:*

- (1) $T_n f$ is surjective.
- (2) There exist open neighborhoods U of p, V of q and W of 0 (in \mathbf{R}^{m-n}) and a diffeomorphism $\psi: U \to V \times W$ such that:
 - (a) f(U) = V,
 - (b) If π denotes the projection $V \times W \to V$, then the following diagram commutes:



- (3) (M, N, p, q, f) looks locally like a linear surjection $\bar{f}: \mathbb{R}^m \to \mathbb{R}^n$.
- (4) There exist local coordinates $\{x^i\}$ at p and $\{y^i\}$ at q such that $x^i = y^i \circ f$ for $1 \le i \le n$.
- (5) There exist open neighborhoods U of p and V of q and a smooth map $\sigma: V \to U$ such that $f(U) \subset V$ and $f \circ \sigma = \mathbf{1}_V$.

Proof. The proof is similar to the proof of the corresponding theorem on immersions.

We only need to show $(1) \Rightarrow (2)$. Since the question is local, we may assume that the following conditions are satisfied:

- a. M is an open subset of \mathbf{R}^m and N is an open subset of \mathbf{R}^n ,
- b. p = 0 and $\operatorname{Ker} T_p f = \{0\} \times \mathbf{R}^{m-n} \subset \mathbf{R}^n \times \mathbf{R}^{m-n} = \mathbf{R}^m$.

Let W be $\{0\} \times \mathbf{R}^{m-n} \subset \mathbf{R}^m$. Define $\psi : M \to N \times W$ by $\psi(x) = (f(x), (x^{n+1}, ..., x^m))$. Then by the inverse function theorem, ψ is a local diffeomorphism at p = 0. Hence, by shrinking M, N and W, we may assume that ψ is a diffeomorphism.

Definition 1.2. A smooth map f satisfying the equivalent conditions of the preceding theorem at p is called a submersion at p. A smooth map f which is a submersion at all $p \in M$ is called a submersion.

Example 1.3 (Projection from product manifold). *Let M and N be smooth manifolds. Consider the projection map* $\pi : M \times N \rightarrow M$ *defined by* $\pi(p,q) = p$.

This map is a submersion. To see this, note that for any point $(p,q) \in M \times N$, the derivative $T_{(p,q)}\pi$ is surjective. Indeed, we can use condition (5) of the theorem by taking the section $\sigma: M \to M \times N$ defined by $\sigma(p) = (p,q_0)$ for any fixed $q_0 \in N$. Then $\pi \circ \sigma = \mathbf{1}_M$, so π is a submersion.

2 Y. Bi

Example 1.4 (Projection to projective space). *Consider the map* $\pi : \mathbb{R}^n \setminus \{0\} \to \mathbb{RP}^{n-1}$ *defined by* $\pi(x) = [x]$, where [x] denotes the line through the origin containing x.

This map is a submersion. To see this, consider the coordinate chart $U_1 = \{[x_1 : \cdots : x_n] \mid x_1 \neq 0\}$ on \mathbb{RP}^{n-1} . On U_1 , we have coordinates (y_2, \dots, y_n) with $y_j = x_j/x_1$ for $j = 2, \dots, n$.

Define a smooth section $\sigma: U_1 \to \mathbf{R}^n \setminus \{0\}$ by

$$\sigma(y_2,...,y_n) = (1, y_2,..., y_n).$$

Then we have

$$\pi \circ \sigma(y_2, ..., y_n) = [1 : y_2 : \cdots : y_n] = (y_2, ..., y_n),$$

where the last equality holds because in the coordinate chart U_1 , the point $[1:y_2:\cdots:y_n]$ corresponds exactly to (y_2,\ldots,y_n) .

Therefore, $\pi \circ \sigma = \mathbf{1}_{U_1}$, and by condition (5) of the theorem, π is a submersion on $\pi^{-1}(U_1)$. Since \mathbf{RP}^{n-1} is covered by similar coordinate charts $U_i = \{[x_1 : \cdots : x_n] \mid x_i \neq 0\}$, and on each such chart we can define an analogous section, it follows that π is a submersion on all of $\mathbf{R}^n \setminus \{0\}$.

More generally, if we consider the space of full-rank $m \times n$ matrices $(m \ge n)$ and the projection to the Grassmannian Gr(n, m) which sends a matrix to its column space, this map is also a submersion, and a similar local section argument can be used to prove it.

1.4. Remarks.

- (1) Sometimes the phrase "f has maximal rank" (meaning $T_p f$ is injective if $m \le n$ and $T_p f$ is surjective if $m \ge n$) is used to include both concepts.
- (2) An *embedding* is a smooth map f such that:
 - (a) f is an immersion,
 - (b) $f: M \to f(M)$ is a homeomorphism.

2. Subimmersions

Definition 2.1. *f is a subimmersion at p if the following equivalent conditions are satisfied:*

- (1) f looks locally like a composition $\bar{M} \xrightarrow{s} \bar{Z} \xrightarrow{\iota} \bar{N}$ where s is a submersion and ι is an immersion.
- (2) f looks locally like a linear map $\bar{f}: \mathbf{R}^m \to \mathbf{R}^n$.

A smooth map f which is a subimmersion at all $p \in M$ is called a subimmersion.

- **Remark 2.2.** (1) The set of points $p \in M$ where a smooth map $f : M \to N$ is an immersion (resp. a submersion, a subimmersion) is open in M.
 - (2) The composition of two immersions (resp. submersions) is an immersion (resp. a submersion). The analogous statement for subimmersions is false.
 - (3) In the definition of subimmersion, the order (submersion then immersion) ensures stable rank behavior. For a linear map $\bar{f}: \mathbf{R}^m \to \mathbf{R}^n$ factoring as $\mathbf{R}^m \stackrel{s}{\to} \mathbf{R}^r \stackrel{\iota}{\to} \mathbf{R}^n$ with s surjective and ι injective, the rank is r. Reversing the order (immersion then submersion) may yield different ranks under local coordinates, as seen in the example $x \mapsto (x,0)$ composed with different projections.

Theorem 2.3. *The following are equivalent:*

- (1) f is a subimmersion at p.
- (2) rank $T_{p'}f$ is constant for $p' \in U$ and U some neighborhood of p.

Proof. $(1) \Rightarrow (2)$: Clear.

(2) \Rightarrow (1): Let $r = \dim \operatorname{Im} T_p f$. Then, since the question is local, we may assume the following conditions are satisfied:

a. $N = V_1 \times V_2$ is open in $\mathbb{R}^r \times \mathbb{R}^{n-r}$,

b. f(p) = 0 and Im $T_p f = \mathbf{R}^r \times \{0\}$.

Let $\pi: \mathbf{R}^r \times \mathbf{R}^{n-r} \to \mathbf{R}^r$ be the projection on the first factor. Then $\pi \circ f$ is a submersion. Hence we may further assume that:

a. $M = V_1 \times U_2$ is open in $\mathbb{R}^r \times \mathbb{R}^{m-r}$,

b. $\pi \circ f : V_1 \times U_2 \to V_1$ is the projection on the first factor.

The map *f* then has the following form:

$$f(x_1, x_2) = (x_1, \psi(x_1, x_2))$$

Finally, since $T_{p'}f$ has locally constant rank, we may assume that the rank of $T_{p'}f$ is in fact constant on $V_1 \times U_2$ (rank = r).

We claim that ψ must be independent of x_2 in a neighborhood of zero. Indeed, $D_2\psi(x_1,x_2)=0$ since otherwise f would have rank greater than r at (x_1,x_2) . Our claim is therefore a consequence of the following lemma:

Lemma 2.4. Let $f: U \times V \to \mathbf{R}$ be a smooth function such that $D_2 f$ is identically 0. Then f is locally independent of the V coordinate.

We conclude the proof of the theorem by noting that f may now be written as $V_1 \times U_2 \to V_1 \to V_1 \times V_2$ where the first map is pr_1 and the second is $\mathbf{1}_{V_1} \times \psi$. The first map is a submersion and the second is an immersion.

Remark 2.5. *In differential geometry, the concept of subimmersion naturally arises in several important contexts. In this course, we will encounter one particularly fundamental example:*

Vector bundle theory: Consider a vector bundle homomorphism $\Phi: E \to F$ between two vector bundles over the same base manifold M. If the rank of the linear map $\Phi_p: E_p \to F_p$ induced on each fiber is constant, then the bundle homomorphism Φ (when viewed as a map between smooth manifolds) is a subimmersion.

This example is of fundamental importance. The subimmersion property ensures that we can define the **kernel bundle** $\ker(\Phi)$, the **image bundle** $\operatorname{image}(\Phi)$, and the **cokernel bundle** $\operatorname{cokernel}(\Phi)$. These constructions form the foundation of linear algebra over vector bundles and play crucial roles in many areas of differential geometry.

Another context (which we may mention if time permits) is **Lie group theory**. For Lie groups (manifolds with group structure), every continuous Lie group homomorphism $\phi: G \to H$ is automatically smooth and a subimmersion. While Lie groups form an important class of examples, their theory is rich enough to warrant a separate course.

In this course, the primary (and likely only) concrete examples of subimmersions we will encounter in detail will be constant-rank vector bundle homomorphisms.

3. Submanifold

Suppose *M* is a subspace of *N* (with the induced topology) and let

$$\iota: M \to N$$

4 Y. Bi

be the inclusion map. We say M is **locally a submanifold of** N **at** $p \in M$ if either of the following equivalent conditions holds:

- (1) There exists an open neighborhood U of p in M, a chart (V, ψ) of N about p, and a linear subspace $E \subset \mathbb{R}^n$ such that $U \subset V$ and $\psi(U) = E \cap \psi(V)$.
- (2) There exist local coordinates $x^1, ..., x^n$ defined near p in N and an integer $0 \le k \le n$ such that M is locally given by $x^1 = \cdots = x^k = 0$.

If M is locally a submanifold of N at every $p \in M$, we say M is a **submanifold of** N. We now justify this terminology.

Theorem 3.1. *The following are equivalent:*

- (1) There exists a smooth structure on M such that i is an immersion.
- (2) M is a submanifold of N.

Proof. (\Rightarrow) This follows from the local coordinate characterization (item 4) of immersions.

(⇐) Choose an open cover $\{U_i\}_{i\in I}$ of M such that for each $i\in I$, there exists a chart (V_i, ψ_i) of N and a linear subspace $E_i \subset \mathbf{R}^n$ satisfying $U_i \subset V_i$ and $\psi_i(U_i) = E_i \cap \psi_i(V_i)$.

Each U_i inherits a smooth structure making $\iota|_{U_i}$ an immersion. On overlaps $U_i \cap U_j$, these structures agree: if we take coordinates from (V_i, ψ_i) and (V_j, ψ_j) , the transition map $\psi_j \circ \psi_i^{-1}$ is smooth on N and preserves the subspace structure defining M, hence $\{U_i, \varphi_i = \psi_i|_{U_i}\}_{i \in I}$ define a global smooth structure on M for which ι is an immersion.

Alternatively, once we prove the uniqueness theorem later, we could argue that both smooth structures make $\iota|_{U_i \cap U_i}$ an immersion, hence they must coincide by uniqueness.

Now we address the uniqueness of this smooth manifold structure:

Theorem 3.2. Let M be a topological space, N a smooth manifold, and $f: M \to N$ a continuous map. If there exists a smooth structure on M making f an immersion, then this smooth structure is unique.

Proof. Suppose \mathscr{A} is a smooth structure on M such that $f:(M,\mathscr{A})\to N$ is an immersion. We claim that for any manifold P, a map $g:P\to (M,\mathscr{A})$ is smooth if and only if $f\circ g:P\to N$ is smooth.

The "only if" direction is clear. For the "if" direction, we work locally. Let $r \in P$, p = g(r), and q = f(p). Since f is an immersion, there exist neighborhoods U of p in M and V of q in N, and a smooth map $h: V \to U$ such that $h \circ f|_U = \mathbf{1}_U$.

By continuity of f, we can find a neighborhood W of r such that $g(W) \subset U$. Then on W we have:

$$g|_W = \mathrm{id}_U \circ g|_W = h \circ f \circ g|_W$$
.

Since $f \circ g$ is smooth by assumption, $g|_W = h \circ (f \circ g|_W)$ is smooth. As smoothness is local, g is smooth everywhere.

Now, if \mathcal{A}' is another smooth structure on M making f an immersion, then for any manifold P and map $g: P \to M$:

$$g \in C^{\infty}(P, (M, \mathcal{A}')) \iff f \circ g \in C^{\infty}(P, N) \iff g \in C^{\infty}(P, (M, \mathcal{A})).$$

By Theorem 3.4 in Lecture 4, this implies $\mathcal{A} = \mathcal{A}'$.

Example 3.3. Recall from Example 1.7 in Lecture 3 the two smooth structures on S^1 : one defined by four charts via coordinate projections, and another by two charts via stereographic projection.

One can verify that both at lases give S^1 the structure of a submanifold of \mathbf{R}^2 , hence by the theorem they must be compatible.

Example 3.4. Let M and N be topological manifolds with $f: M \to N$ a homeomorphism. If N has a smooth structure, then there exists a unique smooth structure on M making f a diffeomorphism.

Proof. For existence, pull back the smooth structure from N via f: if $\{(V_\alpha, \psi_\alpha)\}$ is a smooth atlas for N, then $\{(f^{-1}(V_\alpha), \psi_\alpha \circ f)\}$ is a smooth atlas for M.

For uniqueness, if \mathcal{A}_1 and \mathcal{A}_2 both make f a diffeomorphism, then the identity map $\mathbf{1}_M = f^{-1} \circ f$ is a diffeomorphism between (M, \mathcal{A}_1) and (M, \mathcal{A}_2) , so $\mathcal{A}_1 = \mathcal{A}_2$. Alternatively, this follows from the uniqueness theorem for immersions.

The uniqueness theorem also has a submersion counterpart.

Theorem 3.5. Let M be a smooth manifold, N a topological space, and $f: M \to N$ a surjective map (not necessarily continuous a priori). If there exists a smooth structure on N such that f is a submersion, then this smooth structure is unique.

Proof. Suppose \mathscr{A} is a smooth structure on N such that $f: M \to N_{\mathscr{A}}$ is a submersion. We claim that for any manifold P, a map $g: N_{\mathscr{A}} \to P$ is smooth if and only if $g \circ f: M \to P$ is smooth.

The "only if" direction is clear. For the "if" direction, we work locally. Let $q \in N$ and choose $p \in M$ with f(p) = q by the surjectivity of f. Since f is a submersion, , there exist neighborhoods U of p in M and V of q in N, and a smooth map $h: V \to U$ such that $f \circ h|_V = \mathbf{1}_V$.

The map $g \circ f$ being smooth implies that $g \circ \mathbf{1}_V = g \circ f \circ h|_V$ is smooth. hence g is smooth in a neighborhood of g. As smoothness is local, g is smooth everywhere.

Now, if \mathcal{A}' is another smooth structure on N making f a submersion, then for any manifold P and map $g: N \to P$:

$$g \in C^{\infty}(N_{\mathcal{A}'}, P) \iff g \circ f \in C^{\infty}(M, P) \iff g \in C^{\infty}(N_{\mathcal{A}}, P).$$

By Theorem 3.4 in Lecture 4 again, this implies $\mathcal{A} = \mathcal{A}'$.

Remark 3.6. From the proof of this theorem, we see that a surjective submersion plays a role analogous to a quotient map in topology. To verify that a map from a quotient manifold to another manifold is smooth, it suffices to check that its composition with the submersion is smooth.

A direct example is provided by homogeneous polynomials on Euclidean space. Consider the projection $\pi: \mathbf{R}^{n+1} \setminus \{0\} \to \mathbf{RP}^n$ onto projective space. If $F: \mathbf{R}^{n+1} \to R$ is a homogeneous polynomial, then it naturally induces a map $f: \mathbf{RP}^n \to \mathbf{R}$ defined by f([x]) = F(x). To verify that f is smooth, we only need to check that $f \circ \pi = F|_{\mathbf{R}^{n+1} \setminus \{0\}}$ is smooth, which is true since polynomials are smooth.

REFERENCES

[1] Jean-Pierre Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, vol. 1500, Springer, 1992.

MATHEMATISCHES INSTITUT, UNIVERSITÄT FREIBURG *Email address*: yuchen.bi@math.uni-freiburg.de