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1. SUBMERSIONS

Theorem 1.1. The following are equivalent:

(1) Tp f is surjective.
(2) There exist open neighborhoods U of p, V of q and W of 0 (in Rm−n) and a diffeomorphism

ψ : U →V ×W such that:
(a) f (U ) =V ,
(b) If π denotes the projection V ×W →V , then the following diagram commutes:

U
f
//

ψ
��

V

V ×W
π

;;

(3) (M , N , p, q, f ) looks locally like a linear surjection f̄ : Rm → Rn .
(4) There exist local coordinates {xi } at p and {y i } at q such that xi = y i ◦ f for 1 É i É n.
(5) There exist open neighborhoods U of p and V of q and a smooth map σ : V →U such that

f (U ) ⊂V and f ◦σ= 1V .

Proof. The proof is similar to the proof of the corresponding theorem on immersions.
We only need to show (1) ⇒ (2). Since the question is local, we may assume that the following

conditions are satisfied:

a. M is an open subset of Rm and N is an open subset of Rn ,
b. p = 0 and KerTp f = {0}×Rm−n ⊂ Rn ×Rm−n = Rm .

Let W be {0}×Rm−n ⊂ Rm . Define ψ : M → N ×W by ψ(x) = ( f (x), (xn+1, . . . , xm)). Then by the
inverse function theorem, ψ is a local diffeomorphism at p = 0. Hence, by shrinking M , N and
W , we may assume that ψ is a diffeomorphism. □

Definition 1.2. A smooth map f satisfying the equivalent conditions of the preceding theorem at
p is called a submersion at p. A smooth map f which is a submersion at all p ∈ M is called a
submersion.

Example 1.3 (Projection from product manifold). Let M and N be smooth manifolds. Consider
the projection map π : M ×N → M defined by π(p, q) = p.

This map is a submersion. To see this, note that for any point (p, q) ∈ M × N , the derivative
T(p,q)π is surjective. Indeed, we can use condition (5) of the theorem by taking the section σ : M →
M ×N defined by σ(p) = (p, q0) for any fixed q0 ∈ N . Then π◦σ= 1M , so π is a submersion.
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Example 1.4 (Projection to projective space). Consider the map π : Rn \ {0} → RPn−1 defined by
π(x) = [x], where [x] denotes the line through the origin containing x.

This map is a submersion. To see this, consider the coordinate chart U1 = {[x1 : · · · : xn] | x1 ̸= 0}
on RPn−1. On U1, we have coordinates (y2, . . . , yn) with y j = x j /x1 for j = 2, . . . ,n.

Define a smooth section σ : U1 → Rn \ {0} by

σ(y2, . . . , yn) = (1, y2, . . . , yn).

Then we have
π◦σ(y2, . . . , yn) = [1 : y2 : · · · : yn] = (y2, . . . , yn),

where the last equality holds because in the coordinate chart U1, the point [1 : y2 : · · · : yn] corre-
sponds exactly to (y2, . . . , yn).

Therefore, π◦σ= 1U1 , and by condition (5) of the theorem, π is a submersion on π−1(U1). Since
RPn−1 is covered by similar coordinate charts Ui = {[x1 : · · · : xn] | xi ̸= 0}, and on each such chart
we can define an analogous section, it follows that π is a submersion on all of Rn \ {0}.

More generally, if we consider the space of full-rank m ×n matrices (m Ê n) and the projec-
tion to the Grassmannian Gr(n,m) which sends a matrix to its column space, this map is also a
submersion, and a similar local section argument can be used to prove it.

1.4. Remarks.

(1) Sometimes the phrase " f has maximal rank" (meaning Tp f is injective if m É n and Tp f
is surjective if m Ê n) is used to include both concepts.

(2) An embedding is a smooth map f such that:
(a) f is an immersion,
(b) f : M → f (M) is a homeomorphism.

2. SUBIMMERSIONS

Definition 2.1. f is a subimmersion at p if the following equivalent conditions are satisfied:

(1) f looks locally like a composition M̄
s−→ Z̄

ι−→ N̄ where s is a submersion and ι is an immer-
sion.

(2) f looks locally like a linear map f̄ : Rm → Rn .

A smooth map f which is a subimmersion at all p ∈ M is called a subimmersion.

Remark 2.2. (1) The set of points p ∈ M where a smooth map f : M → N is an immersion
(resp. a submersion, a subimmersion) is open in M.

(2) The composition of two immersions (resp. submersions) is an immersion (resp. a submer-
sion). The analogous statement for subimmersions is false.

(3) In the definition of subimmersion, the order (submersion then immersion) ensures stable
rank behavior. For a linear map f̄ : Rm → Rn factoring as Rm s−→ Rr ι−→ Rn with s surjective
and ι injective, the rank is r . Reversing the order (immersion then submersion) may yield
different ranks under local coordinates, as seen in the example x 7→ (x,0) composed with
different projections.

Theorem 2.3. The following are equivalent:

(1) f is a subimmersion at p.
(2) rankTp ′ f is constant for p ′ ∈U and U some neighborhood of p.
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Proof. (1) ⇒ (2): Clear.
(2) ⇒ (1): Let r = dim ImTp f . Then, since the question is local, we may assume the following

conditions are satisfied:

a. N =V1 ×V2 is open in Rr ×Rn−r ,
b. f (p) = 0 and ImTp f = Rr × {0}.

Let π : Rr ×Rn−r → Rr be the projection on the first factor. Then π◦ f is a submersion. Hence we
may further assume that:

a. M =V1 ×U2 is open in Rr ×Rm−r ,
b. π◦ f : V1 ×U2 →V1 is the projection on the first factor.

The map f then has the following form:

f (x1, x2) = (x1,ψ(x1, x2))

Finally, since Tp ′ f has locally constant rank, we may assume that the rank of Tp ′ f is in fact
constant on V1 ×U2 (rank = r ).

We claim thatψmust be independent of x2 in a neighborhood of zero. Indeed, D2ψ(x1, x2) = 0
since otherwise f would have rank greater than r at (x1, x2). Our claim is therefore a conse-
quence of the following lemma:

Lemma 2.4. Let f : U ×V → R be a smooth function such that D2 f is identically 0. Then f is
locally independent of the V coordinate.

We conclude the proof of the theorem by noting that f may now be written as V1×U2 →V1 →
V1 ×V2 where the first map is pr1 and the second is 1V1 ×ψ. The first map is a submersion and
the second is an immersion. □

Remark 2.5. In differential geometry, the concept of subimmersion naturally arises in several
important contexts. In this course, we will encounter one particularly fundamental example:

Vector bundle theory: Consider a vector bundle homomorphismΦ : E → F between two vector
bundles over the same base manifold M. If the rank of the linear map Φp : Ep → Fp induced on
each fiber is constant, then the bundle homomorphismΦ (when viewed as a map between smooth
manifolds) is a subimmersion.

This example is of fundamental importance. The subimmersion property ensures that we can
define the kernel bundle ker(Φ), the image bundle image(Φ), and the cokernel bundle coker(Φ).
These constructions form the foundation of linear algebra over vector bundles and play crucial
roles in many areas of differential geometry.

Another context (which we may mention if time permits) is Lie group theory. For Lie groups
(manifolds with group structure), every continuous Lie group homomorphism φ : G → H is au-
tomatically smooth and a subimmersion. While Lie groups form an important class of examples,
their theory is rich enough to warrant a separate course.

In this course, the primary (and likely only) concrete examples of subimmersions we will en-
counter in detail will be constant-rank vector bundle homomorphisms.

3. SUBMANIFOLD

Suppose M is a subspace of N (with the induced topology) and let

ι : M → N
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be the inclusion map. We say M is locally a submanifold of N at p ∈ M if either of the following
equivalent conditions holds:

(1) There exists an open neighborhood U of p in M , a chart (V ,ψ) of N about p, and a linear
subspace E ⊂ Rn such that U ⊂V and ψ(U ) = E ∩ψ(V ).

(2) There exist local coordinates x1, . . . , xn defined near p in N and an integer 0 É k É n such
that M is locally given by x1 = ·· · = xk = 0.

If M is locally a submanifold of N at every p ∈ M , we say M is a submanifold of N .
We now justify this terminology.

Theorem 3.1. The following are equivalent:

(1) There exists a smooth structure on M such that ι is an immersion.
(2) M is a submanifold of N .

Proof. (⇒) This follows from the local coordinate characterization (item 4) of immersions.
(⇐) Choose an open cover {Ui }i∈I of M such that for each i ∈ I , there exists a chart (Vi ,ψi ) of

N and a linear subspace Ei ⊂ Rn satisfying Ui ⊂Vi and ψi (Ui ) = Ei ∩ψi (Vi ).
Each Ui inherits a smooth structure making ι|Ui an immersion. On overlaps Ui ∩U j , these

structures agree: if we take coordinates from (Vi ,ψi ) and (V j ,ψ j ), the transition map ψ j ◦ψ−1
i is

smooth on N and preserves the subspace structure defining M , hence {Ui ,ϕi =ψi |Ui }i∈I define
a global smooth structure on M for which ι is an immersion.

Alternatively, once we prove the uniqueness theorem later, we could argue that both smooth
structures make ι|Ui∩U j an immersion, hence they must coincide by uniqueness. □

Now we address the uniqueness of this smooth manifold structure:

Theorem 3.2. Let M be a topological space, N a smooth manifold, and f : M → N a continuous
map. If there exists a smooth structure on M making f an immersion, then this smooth structure
is unique.

Proof. Suppose A is a smooth structure on M such that f : (M ,A ) → N is an immersion. We
claim that for any manifold P , a map g : P → (M ,A ) is smooth if and only if f ◦ g : P → N is
smooth.

The "only if" direction is clear. For the "if" direction, we work locally. Let r ∈ P , p = g (r ), and
q = f (p). Since f is an immersion, there exist neighborhoods U of p in M and V of q in N , and
a smooth map h : V →U such that h ◦ f |U = 1U .

By continuity of f , we can find a neighborhood W of r such that g (W ) ⊂U . Then on W we
have:

g |W = idU ◦ g |W = h ◦ f ◦ g |W .

Since f ◦ g is smooth by assumption, g |W = h ◦ ( f ◦ g |W ) is smooth. As smoothness is local, g is
smooth everywhere.

Now, if A ′ is another smooth structure on M making f an immersion, then for any manifold
P and map g : P → M :

g ∈C∞(P, (M ,A ′)) ⇐⇒ f ◦ g ∈C∞(P, N ) ⇐⇒ g ∈C∞(P, (M ,A )).

By Theorem 3.4 in Lecture 4, this implies A =A ′. □

Example 3.3. Recall from Example 1.7 in Lecture 3 the two smooth structures on S1: one defined
by four charts via coordinate projections, and another by two charts via stereographic projection.
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One can verify that both atlases give S1 the structure of a submanifold of R2, hence by the theorem
they must be compatible.

Example 3.4. Let M and N be topological manifolds with f : M → N a homeomorphism. If N has
a smooth structure, then there exists a unique smooth structure on M making f a diffeomorphism.

Proof. For existence, pull back the smooth structure from N via f : if {(Vα,ψα)} is a smooth atlas
for N , then {( f −1(Vα),ψα ◦ f )} is a smooth atlas for M .

For uniqueness, if A1 and A2 both make f a diffeomorphism, then the identity map 1M =
f −1◦ f is a diffeomorphism between (M ,A1) and (M ,A2), so A1 =A2. Alternatively, this follows
from the uniqueness theorem for immersions. □

The uniqueness theorem also has a submersion counterpart.

Theorem 3.5. Let M be a smooth manifold, N a topological space, and f : M → N a surjective
map (not necessarily continuous a priori). If there exists a smooth structure on N such that f is a
submersion, then this smooth structure is unique.

Proof. Suppose A is a smooth structure on N such that f : M → NA is a submersion. We claim
that for any manifold P , a map g : NA → P is smooth if and only if g ◦ f : M → P is smooth.

The "only if" direction is clear. For the "if" direction, we work locally. Let q ∈ N and choose
p ∈ M with f (p) = q by the surjectivity of f . Since f is a submersion, , there exist neighborhoods
U of p in M and V of q in N , and a smooth map h : V →U such that f ◦h|V = 1V .

The map g ◦ f being smooth implies that g ◦1V = g ◦ f ◦h|V is smooth. hence g is smooth in
a neighborhood of q . As smoothness is local, g is smooth everywhere.

Now, if A ′ is another smooth structure on N making f a submersion, then for any manifold
P and map g : N → P :

g ∈C∞(NA ′ ,P ) ⇐⇒ g ◦ f ∈C∞(M ,P ) ⇐⇒ g ∈C∞(NA ,P ).

By Theorem 3.4 in Lecture 4 again, this implies A =A ′. □

Remark 3.6. From the proof of this theorem, we see that a surjective submersion plays a role anal-
ogous to a quotient map in topology. To verify that a map from a quotient manifold to another
manifold is smooth, it suffices to check that its composition with the submersion is smooth.

A direct example is provided by homogeneous polynomials on Euclidean space. Consider the
projection π : Rn+1 \ {0} → RPn onto projective space. If F : Rn+1 → R is a homogeneous polyno-
mial, then it naturally induces a map f : RPn → R defined by f ([x]) = F (x). To verify that f is
smooth, we only need to check that f ◦π = F |Rn+1\{0} is smooth, which is true since polynomials
are smooth.
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