Problem 1 + 2 (Product Manifolds)

Let M, N be topological spaces. A set $\Omega \subset M \times N$ is called open if for every $p = (x, y) \in \Omega$ there exist open neighborhoods U, V of x, y respectively such that $U \times V \subset \Omega$.

- (a) Show that this defines a topology on $M \times N$.
- (b) If M, N are Hausdorff, then so is $M \times N$.
- (c) If M, N have countable bases, then so does $M \times N$.
- (d) The projections from $M \times N$ onto the factors M, N are continuous.
- (e) If M,N are C^{∞} -manifolds, then so is $M\times N$.

Problem 3 (Path Connectedness Implies Connectedness)

Show that the closed interval [0,1] is connected, and use this to prove that path connectedness implies connectedness for topological spaces. Hint for showing [0,1] is connected:

- Assume for contradiction that [0, 1] is not connected, so it can be written as a disjoint union of two non-empty closed sets A and B.
- Without loss of generality, assume $0 \in A$. Consider the supremum of the set $\{x \in [0,1] : [0,x] \subseteq A\}$.

Problem 4 (Compact Exhaustion)

Assume I, J are bounded open intervals and $K \subset I, L \subset J$ are bounded closed (and thus compact) intervals. Prove that there exists a homeomorphism $f: I \to J$ such that f(K) = L. Furthermore, if $f_0: K_0 \to L_0$ is a homeomorphism between closed subintervals $K_0 \subset K$ and $L_0 \subset L$, show that f can be chosen such that $f|_{K_0} = f_0$. Using this result, prove that if M is a manifold admitting a compact exhaustion

$$K_1 \subset K_2 \subset K_3 \subset \cdots$$

where each K_i is homeomorphic to [0, 1], then M is homeomorphic to \mathbf{R} . Hints for second part:

• Construct the homeomorphism inductively. Start by mapping K_1 to a closed interval in \mathbf{R} .

- Use the first part to extend the homeomorphism from K_i to K_{i+1} in a compatible way.
- Consider the union of these compatible homeomorphisms to define a global homeomorphism $F:M\to {\bf R}.$
- Pay attention to the "overlap" regions to ensure consistency throughout the construction.

Submit solutions by Tuesday, October 28st, before 6:00 PM to Ernst-Zermelo-Str. 1, mailbox on the 3rd floor, or directly to me during Tuesday's class.