Problem 1 (Hessian at a Critical Point)

Let $f: M \to \mathbf{R}$ be a smooth function on a smooth manifold M, and let $p \in M$ be a critical point of f (so $df_p = 0$).

Recall that if $\{x^1, \ldots, x^n\}$ is a coordinate chart around p, we may write f in these coordinates as $\tilde{f} = f \circ \varphi^{-1}$ and define the Hessian matrix by

$$\left(\frac{\partial^2 \tilde{f}}{\partial x^i \partial x^j}(0)\right).$$

(a) Show that the bilinear form

$$\operatorname{Hess}_{p}(f)(v,w) := \sum_{i,j} \frac{\partial^{2} \tilde{f}}{\partial x^{i} \partial x^{j}}(0) v^{i} w^{j}, \quad v, w \in T_{p}M,$$

is independent of the choice of local coordinates. (Hint: Use $df_p = 0$ to show that all first-order terms in the coordinate change formula vanish at p.)

Thus the Hessian defines a well-defined symmetric bilinear form

$$\operatorname{Hess}_p(f): T_pM \times T_pM \to \mathbf{R}.$$

(b) Show that if $\operatorname{Hess}_p(f)$ is nondegenerate, then there exists a coordinate chart (U,φ) around p in which f takes the standard form

$$f(x) = f(p) - x_1^2 - \dots - x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_n^2$$

(This is the local normal form of f at a nondegenerate critical point, i.e. the Morse lemma.)

Problem 2 (Genericity of Morse Functions)

A smooth function $f: M \to \mathbf{R}$ is called a *Morse function* if all of its critical points are nondegenerate.

Let $M \subset \mathbf{R}^n$ be a smooth submanifold, and let $f: M \to \mathbf{R}$ be a smooth function. For a fixed vector $h \in \mathbf{R}^n$, consider the function

$$f_h(x) := f(x) - \langle x, h \rangle.$$

Prove that for almost every $h \in \mathbb{R}^n$, the function f_h is a Morse function on M.

Problem 3 (Transversality of Hyperplanes with Submanifolds)

In Problem 3 from last week's assignment, we showed that the set of hyperplanes in \mathbf{R}^n not transverse to a fixed subspace $P \subset \mathbf{R}^n$ forms a submanifold of G(n-1,n). Let $M \subset \mathbf{R}^n$ be a smooth submanifold. Define the subset

$$Y = \{(x, W) \in M \times G(n-1, n) \mid W \text{ is not transverse to } T_x M \}.$$

Prove that Y is a smooth submanifold of $M \times G(n-1, n)$.

Problem 4 (Bertini's Theorem)

Let $Gr_k(\mathbf{P}^n)$ denote the Grassmannian of k-dimensional projective subspaces in projective space \mathbf{P}^n . Note that $Gr_k(\mathbf{P}^n)$ is diffeomorphic to G(k+1,n+1), the Grassmannian of (k+1)-planes in \mathbf{R}^{n+1} .

- (a) State (without proof) the analogue of Problem 3 for $Gr_{n-1}(\mathbf{P}^n)$.
- (b) Deduce that for almost every hyperplane $H \in \operatorname{Gr}_{n-1}(\mathbf{P}^n)$, the intersection $M \cap H$ is transverse.

Submit solutions by Tuesday, December 2nd, before 6:00 PM to Ernst-Zermelo-Str. 1, mailbox on the 3rd floor, or directly to me during Tuesday's class.