Aufgabe 1 (Holonome Nebenbedingungen)

(6 Punkte)

Man berechne die Bahn $x: I \to \mathbb{R}^3$ einer Kugel der Masse m > 0, die ohne Reibung auf einer schiefen Ebene, beschrieben durch $x_1 + x_3 - 1 = 0$, von x(0) = (0, 0, 1) mit der Anfangsgeschwindigkeit $\dot{x}(0) = (0, v_2, 0)$ bis zur Ebene $x_3 = 0$. Dabei wirkt nur die Erdbeschleunigung q in Richtung der negativen x_3 -Achse.

Man gebe die Laufzeit an und vergleiche die Zeit mit der des freien Falls von (0,0,1) bis (0,0,0). Hängt die Laufzeit von der Anfangsgeschwindigkeit $(0,v_2,0)$ ab?

Aufgabe 2 (Unterhalbstetigkeit des Längenfunktionals) (5 Punkte

Zeigen Sie, dass das Längenfunktional $L(u) := \int_0^1 \sqrt{1 + u'(x)^2} dx$ bezüglich der schwachen Konvergenz in $W^{1,p}(I)$, $p \in (1,\infty)$ unterhalbstetig ist, nicht aber stetig bezüglich dieser Konvergenz.

Hinweis: Für ein Gegenbeispiel gegen die schwache Stetigkeit approximieren Sie eine konstante Funktion geeignet durch Zackenfunktionen.

Aufgabe 3 (Minimierer)

(5 Punkte)

Sei $\Omega \subset \mathbb{R}^3$ offen und beschränkt und $f \in L^2(\Omega, \mathbb{R}^3)$. Man zeige, dass das Variationsproblem

$$E[u] := \int_{\Omega} \left(\frac{1}{2} |Du|^2 - fu \right) dx \quad \text{ in } \mathcal{U} = \{ u \in H_0^1(\Omega, \mathbb{R}^3) \mid \operatorname{div} u = 0 \text{ in } \Omega \}$$

einen eindeutigen Minimierer hat.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt.

Abgabe ist am Montag, 17.11.2025 vor der Vorlesung.

Freiwillige Zusatzaufgabe (Unterhalbstetigkeit)

(4 Punkte)

Es sei X ein metrischer Raum und $f: X \to \mathbb{R} \cup \{\pm \infty\}$ eine Funktion. Die Funktion f heißt unterhalbstetig in $x_0 \in X$, falls $f(x_0) \neq -\infty$, und falls es zu jedem $r \in \mathbb{R}$ mit $r < f(x_0)$ eine Umgebung U von x_0 gibt, so dass für alle $x \in U$ gilt: r < f(x).

- 1. Zeigen Sie: Die Funktion $f: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ ist unterhalbstetig genau dann, wenn für alle $a \in \mathbb{R}$ die Menge $f^{-1}((a, \infty))$ offen in X ist.
- 2. Zeigen Sie: Das punktweise Supremum einer Familie in x_0 unterhalbstetiger Funktionen ist in x_0 unterhalbstetig.
- 3. Zeigen Sie: Ist (X, d) ein metrischer Raum, und ist $f: X \to [0, 1]$ unterhalbstetig, so gibt es eine monoton wachsende Folge stetiger Funktionen f_n , die punktweise gegen f konvergiert.

Hinweis: Setze $f_n(x) = \inf\{f(y) + nd(x, y) | y \in X\}.$