Aufgabe 1 (Harmonische Funktion bzgl. einer riemannschen Metrik) (4 Punkte) Wir betrachten das Funktional

$$\mathcal{F}(u) = \int_{\Omega} \sum_{i=1}^{n} g^{ij}(x) D_i u(x) D_j u(x) \sqrt{\det g(x)} \ dx,$$

wobei $(g^{ij}(x))_{i,j=1}^n$ die inverse Matrix der positiv-definiten Matrix $(g_{ij}(x))_{i,j=1}^n$ ist. Seien $g_{ij} \in C^0(\Omega)$ für alle $i, j = 1, 2, \dots, n$ und $\varphi \in H^1(\Omega)$.

- 1. Zeigen Sie, dass das Funktional \mathcal{F} einene eindeutigen Minimierer in der Menge $M = \{u \in H^1(\Omega) : u \varphi \in H^1_0(\Omega)\}$ besitzt.
- 2. Berechnen Sie die Euler-Lagrange-Gleichungen des Funktional \mathcal{F} unter der zusätzlichen Annahme, dass $g_{ij} \in C^1(\bar{\Omega})$ und $u \in C^2(\bar{\Omega})$.

Die Minimierer des Funktional \mathcal{F} heißen harmonische Funktion bzgl. der riemannschen Metrik g.

Aufgabe 2 (Ein Existenzresultat) (4 Punkte)

Sei $\Omega \subseteq \mathbb{R}^n$ offen und beschränkt mit C^1 -Rand $\partial\Omega$, $2 , und <math>f \in C^{\infty}(\overline{\Omega})$. Wir betrachten für $u \in H_0^1(\Omega) \cap L^p(\Omega)$ das Funktional

$$E[u] = \int_{\Omega} \left(\frac{1}{2} |Du|^2 + \frac{1}{p} |u|^p - fu \right) dx.$$

1. Fassen sie das Funktional als Funktional $E: H_0^1(\Omega) \to \mathbb{R} \cup \{+\infty\}$ auf, und zeigen sie, dass $u_0 \in H_0^1(\Omega)$ existiert, sodass

$$E[u_0] = \inf_{u \in H_0^1(\Omega)} E[u].$$

2. Nehmen sie zusätzlich an, dass $u_0 \in C^2(\overline{\Omega})$ gilt. Zeigen sie, dass die Lösung u_0 das folgende Randwertproblem erfüllt

$$\begin{cases} -\Delta u_0 + |u_0|^{p-2} u_0 = f & \text{in } \Omega, \\ u_0 = 0 & \text{on } \partial \Omega. \end{cases}$$

Aufgabe 3 (Konvexität und Polykonvexität)

(4 Punkte)

Für $\alpha \in \mathbb{R}$ sei $F_\alpha : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ gegeben durch

$$F_{\alpha}(p) = \alpha |p|^2 + \det(p)$$

mit $p=(p_{ij})\in\mathbb{R}^{2\times 2}$, wobei $|p|^2=\sum_{i,j=1}^2p_{ij}^2$ ist. Bestimmen Sie alle $\alpha\in\mathbb{R}$, für die F_α die Legendre–Hadamard-Bedingung erfüllt ist; für die F_{α} konvex ist; und für die F_{α} polykonvex ist.

Aufgabe 4 (Subdifferential)

(4 Punkte)

Sei $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ eine konvexe Funktion. Ein Vektor $g \in \mathbb{R}^n$ heißt Subgradient von f an der Stelle x_0 , wenn für alle $x \in \mathbb{R}^n$ die folgende Ungleichung gilt

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle.$$

Das Subdifferential $\partial f(x_0)$ ist die Menge aller Subgradienten von f im Punkt x_0 .

- 1. Sei $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ konvex, unterhalbstetig, und $f \neq +\infty$. Dann sind die folgenden Bedingungen äquivalent
 - (a) Es gilt $x^* \in \partial f(x_0)$.
 - (b) Die Funktion $z \mapsto \langle x^*, z \rangle f(z)$ nimmt ihr Maximum bei $z = x_0$ an.
- 2. Betrachte die Funktion $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} -x+1, & x \le 1\\ (x-1)^2, & x > 1 \end{cases}$$

Bestimme das Subdifferential für alle $x \in \mathbb{R}$.

Bitte schreiben Sie Ihre(n) Namen, die Matrikelnummer sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt.

Abgabe ist am Montag, 24.11.2025 vor der Vorlesung.