Aufgabe 1 (Torus in \mathbb{R}^4)

Betrachten Sie für 0 < r < 1 den Torus

$$T_r = \{(z, w) \in \mathbb{R}^2 \times \mathbb{R}^2 : |z|^2 = r^2, |w|^2 = 1 - r^2\}.$$

Zeigen Sie, dass T_r eine kompakte 2-dimensionale Untermannigfaltigkeit des \mathbb{R}^4 ist, und berechnen Sie den Flächeninhalt von T_r .

Aufgabe 2 (Ein Oberflächenintegral)

Berechnen Sie das Integral

$$I = \int_{\mathbb{S}^2} x^2 y^2 z^2 \, d\mu_{\mathbb{S}^2}.$$

Aufgabe 3 (Untermannigfaltigkeiten und Einbettungen)

- a) Es sei $f:U\to\mathbb{R}^{n+k}$ eine C^1 -Immersion. Zeigen Sie: Zu jedem $p\in U$ gibt es eine offene Umgebung W von p mit $W\subset U$, sodass $f_{|W}:W\to f(W)$ eine Einbettung ist.
- b) Für $M \subset \mathbb{R}^{n+k}$ gelte: zu jedem $p \in M$ gibt es eine C^1 -Immersion $f: U \to \mathbb{R}^{n+k}$ mit $p \in f(U) \subset M$, die zusätzlich eine Einbettung ist. Zeigen Sie, dass M eine Untermannigfaltigkeit ist.

Hinweis: Eine injektive C^1 -Immersion $f:U\to\mathbb{R}^{n+k}$ ist eine *Einbettung*, falls $f^{-1}:f(U)\to U$ stetig ist. Hierbei ist f(U) mit der von \mathbb{R}^{n+k} induzierten Metrik auszustatten.

Abgabe: Di 9.2.2021 12 Uhr im ILIAS-Portal Ihres Tutorats.