Aufgaben zur Analysis III Ernst Kuwert, Marius Müller http://home.mathematik.uni-freiburg.de/analysis/

Aufgabe 1 (Konvergenz von trigonometrischen Reihen in L^2)

Folgerung 6.2 aus dem Skript besagt, dass für alle $f \in L^2((-\pi,\pi);\mathbb{C})$ gilt, dass

$$||f||_{L^2}^2 = 2\pi \sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^2.$$
 (1)

Folgern Sie nur aus dieser Gleichung und der Definition von $\widehat{f}(k)$, dass die zu f assozzierte Fourierreihe in $L^2((-\pi,\pi);\mathbb{C})$ gegen f konvergiert. Präziser: Folgern Sie nur aus Benutzung von (1), dass für

$$f_n(x) := \sum_{k=-n}^n \widehat{f}(k)e^{ikx}$$
 (2)

gilt, dass $||f_n - f||_{L^2} \to 0$.

Aufgabe 2 (L^p -Konvergenz bei Translationen)

Für $h \in \mathbb{R}$ sei $\tau_h : \mathbb{R}^n \to \mathbb{R}^n$, $\tau_h(x) = x + h$. Beweisen Sie für $f \in L^p(\mathbb{R}^n)$ mit $1 \le p < \infty$

$$\lim_{h \to 0} || f \circ \tau_h - f ||_{L^p(\mathbb{R}^n)} = 0.$$

Gilt das auch für $p = \infty$?

Aufgabe 3 (Zur dominierten Konvergenz und L^p)

Für $1 \leq p < \infty$ seien $f_k, f \in L^p(\mu)$ mit $f(x) = \lim_{k \to \infty} f_k(x)$ für μ -fast-alle $x \in X$. Weiter gebe es integrierbare Funktionen $g_k, g : X \to [0, \infty]$ mit $|f_k|^p \leq g_k$ μ -fast-überall, für alle $k \in \mathbb{N}$, und $g_k \to g$ in $L^1(\mu)$ mit $k \to \infty$.

- (a) Zeigen Sie, dass $|f|^p \leq g$.
- (b) Zeigen Sie, dass $||f_k f||_{L^p} \to 0$.

Abgabe: Di 22.12.2020 12 Uhr im ILIAS-Portal Ihres Tutorats.