Aufgabe 1 (Gleichungsdefinierte Untermannigfaltigkeiten) Bearbeiten Sie die Teilaufgaben (a) und (b).

- (a) Zeigen Sie, dass die Menge $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 2xz = 4\}$ im Punkt $(2,\sqrt{3},1)$ eine Tangentialebene hat, und berechnen Sie diese.
- (b) Zeigen Sie: die Menge $\{(x,y,z) \in \mathbb{R}^3 : xy = 3, xz = 2\}$ ist eine eindimensionale Untermannigfaltigkeit. Bestimmen Sie mit der Multiplikatorenregel von Lagrange die Punkte auf M, die am nächsten zum Nullpunkt sind.

Aufgabe 2 (Hüllkurve)

Betrachten Sie die Differentialgleichung $f(x) = xf'(x) - e^{f'(x)}$.

- (a) Zu $a \in \mathbb{R}$ gibt es genau eine Lösung $f : \mathbb{R} \to \mathbb{R}$ der Form f(x) = ax + b.
- (b) Bestimmen Sie mit Legendretransformation eine Funktion $f:(0,\infty)\to\mathbb{R}$, deren Graph durch die Geraden in (a) berührt wird (Skizze).
- (c) Zeigen Sie, dass es unendlich viele verschiedene C^1 -Lösungen $f:(0,\infty)\to\mathbb{R}$ der Differentialgleichung mit f(1)=-1 gibt.

Aufgabe 3 (Wurf mit Reibung)

Beim schiefen Wurf aus der Höhe h > 0 mit der Anfangsgeschwindigkeit $v = (v_1, v_2)$ und der Erdbeschleunigung g ist die Bahnkurve $(x(t), y(t)), t \in [0, T(\varepsilon)]$, gegeben durch die Formeln

$$(x(t), y(t)) = \begin{cases} \left(v_1 t, h + v_2 t - \frac{g}{2} t^2\right) & \varepsilon = 0\\ \left(\frac{v_1}{\varepsilon} (1 - e^{-\varepsilon t}), h - \frac{g}{\varepsilon} t + \frac{v_2 + g/\varepsilon}{\varepsilon} (1 - e^{-\varepsilon t}) & \varepsilon \neq 0. \end{cases}$$

Dabei ist $\varepsilon \in \mathbb{R}$ der Reibungsparameter, und $T(\varepsilon)$ ist der Zeitpunkt des Aufschlags in Höhe y=0. Zeigen Sie für die Wurfweite $w(\varepsilon)$ die Näherung

$$w(\varepsilon) = w(0) - \frac{g}{3} \frac{v_1 T(0)^3}{gT(0) - v_2} \varepsilon + o(\varepsilon).$$

Aufgabe 4 (eine Untermannigfaltigkeit)

Sei $M=\{(x,y)\in\mathbb{R}^2: xy=0\}$. Zeigen Sie, dass $M\setminus\{0\}$ eine eindimensionale Untermannigfaltigkeit des \mathbb{R}^2 ist, aber nicht ganz M.

Bitte schreiben Sie Ihre(n) Namen sowie die Nummer Ihrer Übungsgruppe auf jedes Lösungsblatt. Abgabe Montag, 9.7.2007 bis 9:15.