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Chapter 1

Introduction

These are notes of courses given in 2015 and 2018 at the University of Freiburg. In 2007
Tobias Lamm lectured on this topic at FU Berlin, and I followed his notes. The subject
of the course is the regularity theory for two-dimensional geometric variational problems, in
particular compensation methods due to Henry Wente, Frédéric Hélein and Tristan Riviere.
Along the lines we introduce certain Hardy and Lorentz spaces, and present the construction
of a Coulomb gauge following Karen Uhlenbeck.



CHAPTER 1. INTRODUCTION



Chapter 2

(Geometric variational problems

The purpose of this Chapter is to introduce the key examples of two-dimensional geometric
variational problems. More background information on these examples can be found in the
book of Jost [33].

2.1 The two-dimensional Dirichlet energy

The Dirichlet energy of a map u € C*(U,R") on an open subset U C R? is defined by
1
E(u) = 2/ |Dul>  where |Du|? = tr(Du" Du). (2.1)
U

The definition applies in any dimension, but the following interesting feature is specific to the
case of dimension two.

Theorem 2.1.1 (Conformal invariance). Let f : U — V be a conformal diffeomorphism
between open sets U,V C R%. Then

Ewof)=EW) forall f € CYV,R™).
Proof. Denote by g = (gi;) = DfYDf the Gram matrix (or induced Riemannian metric)

associated to f. The condition that f is conformal means that the tracefree part ¢° vanishes,
in other words we can write

9ij = 62)‘615 where \ : U — R.
Using DfT = 22D f~! we compute
|D(vo f)* =tr(Df"Dv o fDvo fo) = tr(DfoT(DUTDv) o f) = e | Dv?o f.

But e?* = \/det g = |det Df| in dimension two, thus the transformation formula yields

1 1 1
[ Ipwenp =3 [ pePosidensi=; [ |po
2 Ju 2 Ju 2 Jy
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For u € C1(U,R™) with £(u) < co and ¢ € CL(U,R") we have the first variation formula

%S(u +to)|i=0 = /U<DU7 Dep). (2.2)

Assuming further u € C?(U,R™) we can integrate by parts to obtain

d
et oo =~ [ @ug)
U

In other words the Euler-Lagrange operator for the Dirichlet energy is —A. We say that v is a
critical point of the Dirichlet energy if the first variation in (2.2) vanishes for all ¢ € C(U,R™).
For u € C%(U,R") this is equivalent to u being harmonic, i.e.

Au = Ugy +Uuyy =0 onU. (2.3)

From the conformal invariance of the Dirichlet energy one derives an equivariance property of
the Laplacian as follows. Let f : U — V be a conformal diffeomorphism and ¢ € C}(U,R™).
Then by Theorem 2.1.1

- [1awone) = ZEwof+tolno

d
= Lt tpo 1o
— - [ {avpes
v

= - [ (ave ) jae Dy

Putting g;; = e*8;; we get |det Df| = ¢} as above and conclude
(Av) o f = e ?*A(v o f) for any conformal diffeomorphism f: U — V. (2.4)

How comes geometry into play? For v € C1(U,R") with n > 2 the area functional is

A(u) = /U Vdetg where g = (gij) = (Oiu, dju). (2.5)

In fact y/det g is the Jacobian Ju, we have explicitely

\/detg = \/lﬁlu\zlﬁguP — (O1u, Dau)? = |O1u A Dou| = Ju.

In the following we asssume that u is immersed and hence g invertible. The first variation of
the area in direction ¢ € CL(U,R") is then computed as follows. First

0 (05 + 100055 + 80Dl = (OF,D50) + (045, 09).

Using the formula ; det g = det g tr(g~'0;g) we obtain, writing g=! = (¢¥),

d g
GAtlio = [ 670,5.060) /et
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Note that ¢g—! is again symmetric. Partial integration yields

%A(u + t@)|i=0 = —/ (H,p)\/detg where H = 9;(\/det gg” 0ju). (2.6)
U

1
vdet g

We now compare the area functional to the Dirchlet energy. First we have
1 2 2 1 2
Ju = |01u A dqu| < |Oyu| |Oou| < 5(]8111,\ + |Ogul?) = §|Du\ :
Thus A(u) < E(u) with equality if and only if u satisfies the conformality relations, that is
<81u,82u> =0 and |81u]2 = \(92u|2. (27)

If w is immersed and conformally parametrized, with induced metric g;; = e”‘éij and Jacobian
Ju = e** then the mean curvature vector becomes

H=e?Au. (2.8)

It follows that a conformally parametrized immersion v : U — R" is a minimal surface if and
only if u is Fuclidean harmonic. These facts provide a close relation between the Dirichlet
energy and the area functional in two dimensions.

The question whether any immersed surface admits a reparametrization which is conformal
is of fundamental importance; it has local and global aspects. In 1825 Gaufl proved that
any real-analytic surface admits locally a conformal reparametrization; this was extended to
surfaces of class C! by Lichtenstein in 1911. For oriented surfaces the parameter changes are
then holomorphic, so that the immersion induces a global complex structure on the param-
eter domain, which becomes naturally a Riemann surface. The construction of a conformal
parametrization is much simpler for minimal surfaces, see [12].

The following result goes in a different direction: it shows that certain critical points of
geometric variational problems satisfy automatically the conformality relations. The result
plays a crucial roéle in proving that the classical approach to the Plateau problem actually
produces a minimal surface. Moreover, this generalizes to other problems for surfaces with
precribed mean curvature. Historically, the result was also relevant in the regularity theory,
because earlier regularity proofs needed to assume conformality [24]. In the literature one
often finds the term stationary for a map which is critical with respect to variations of the
independent variables.

Theorem 2.1.2. Let D = {(z,y) € R? : 22 +y* < 1}. Assume that u € C1(D,R"™) has finite
energy and satisfies

d
@S(U 0 ¢t)|t=0 = 0,

for any smooth family ¢ : D x (—e,e) = D of diffeomorphisms ¢, = ¢(-,t) with ¢p = idp.
Then u satisfies the conformally relations (2.7).

It is only asserted that u is weakly conformal, leaving open whether w is immersed or not.
However if u is also harmonic, then points with vanishing Jacobian are isolated and have the
character of branchpoints, see [12]. We also point out that it is crucial that D is (conformally
equivalent to) a disk.
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Proof. We assume that v : H — R" where H is the upper half plane. There is an explicit
conformal equivalence between D and H, so that the result transfers to D via conformal
invariance. Consider a vector field X € C°(R?,R?) with Xo7 = 7X, where 7(z,y) = (x, —y),
in particular Xs(z,0) = 0 for all x € R. The associated flow ¢ : R? x R — R? is smooth, and
¢¢ = ¢(+,t) is diffeomorphic with inverse ¢_;. Uniqueness for the initial value problem implies

H(1(2),t) = T(¢(2,t)) forall z€ R% t € R.

In particular ¢¢(R) = R and ¢(H) = H. Substituting ¢ = (£,7) = ¢—+(z) we have
1
2
We differentiate under the integral at ¢ = 0. As ¢(z,t) = z for z ¢ spt X, the integrand and
its derivative for t € (—¢, ) are bounded by C |Du|? which is integrable. We compute

0 0 0

E(uwodn) = 5 [ IDul(O)DA(OP dedn = 5 [ IDu(z) Do) det Do) dady

aDﬁs—t(Z) “Ul=g = aaﬁf)—t(z + 5v)|s=0,t=0
0 0
= %géf)—t(z + SU)|t=0,s=0
0
= —gX(sz sV)]s=0
= —DX(z)- .
This implies
0 1 0 .
aDqﬁ,t(z) lt=0 = DX (z), 5 det Dp_i(z) = —div X (2).

Putting X = (a,b) we find

%E(U o dt)|t=0 = /H ((Du(z), Du(2)DX (z)) — %]Du(z)ﬁdiv X(2)) dzdy

- / ((Ou, 05u)0; X7 — %]DU\Q(?iXi) dxdy
H
1
- /]HI (§(|UI|2 — |uy*)az + (Ug, uy)ay) dody

1
[ (s = 5 = o )by) dady

Taking X |y € C°(H, R?) arbitrary, we see that the function
h(z2) = Jual* = |uyl® = 2i{ug, uy) € L(H, C)

is a weak solution to the Cauchy-Riemann equations, and hence holomorphic. Next we take
X = (¢py, pz) where ¢ € C(R?) is odd, that is ¢(x, —y) = —¢(x,y). Then X is admissible
whence

/ (Ug, uy) Ap dxdy = 0.
H

Using odd reflection the function (ug,u,) extends to a weakly harmonic function which is
integrable on R?. By the mean value formula, we conclude that (uz,u,) is identically zero.
The Cauchy-Riemann equations now yield that h(z) is constant and in fact vanishes, again
by integrability. O
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2.2 Surfaces of prescribed mean curvature in R?

Let D = {(z,y) € R? : 22 + y?> < 1}. For u € C'(D,R3) we consider the functional

F(u) —;/D\Du|2+/Du*w, (2.9)

where w € CH(R3, A%2(R?)) is a given two-form. To interpretate the second term geometrically,
let us assume for simplicity that v € C?(D,R3). Consider the cone over u defined by

F:Dx[0,1] = R F(z,t) = tu(z).

Writing dw = H dVigs where dVgs = dX' A dX? A dX? we get by Stokes’ theorem

/ FH(HdVgs) — / F*dus
Dx[0,1] Dx[0,1]

= / dF*w
Dx[0,1]

_ /F(-,l)*w—/ F(-,O)*w+/ Frw
D D aDx[0,1]

= /u*w—i—/ F*uw.
D aDx[0,1]

The C? assumption was used when interchanging F* and d. Introducing the multiplicity
function 6p(X) =3 p(, y—x sign det DF(z, ), we get by the transformation formula

/ H0Fd£3:/ u*w—|—/ F*w.
F(Dx][0,1]) D 0D x[0,1]

The second integral on the right depends only on u|gp, thus it reduces to a constant when
restricting to a class of maps with prescribed boundary values. Up to that constant, the
integral fD u*w then corresponds to the volume of the cone, weighted with the function H
and counted with multiplicities. A special case of interest is

1 1
w =z XidVps = g(dex2 ANdX? + X2dX3 NdX + XPdXT A dX?),

in other words w(Y, Z) = $dVgs(X,Y,Z) = 3(X,Y A Z). Then dw = dVgs and F*w = 0 on
0D x [0,1] no matter what boundary condition, namely we have

ol 8 ~o(5. ) - Yo r4) o

Therefore in this case we get the classical volume, with multiplicities,

1
3/<u,uw/\uy) d:ndy:/ u*w:/ Op dL3. (2.10)
D D F(Dx[0,1])

Next we calculate the first variation of the functional.
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Lemma 2.2.1. Let F(u) be the functional in (2.9), and put dw = H dVgs. Then for any
u € C%(D,R3) and ¢ € C?(D,R?) we have

d
f(u+5gp)|520:/<Du,Dgp>+/ H o u{ug Ay, @), (2.11)
de D D

Proof. We consider the affine homotopy
F:Dx[0,e] - R, F(z,t) = u(z) + tp(2).

Applying Stokes’ formula on D x [0, ] we get

/ F*(H dVgs) = / (u+ep)w— / uw +/ Frw.
Dx0,e] D D 0D x[0,e]

The last integral on the right vanishes since 0,F(z,t) = ¢(z) = 0 on 9D x [0,¢]. Taking the
derivative at € = 0 yields

€
a/(u+€<p)*w€:0 = 8/ /H(F(:B,y,t))detDF(x,y,t)dxdydﬂe:o
Oe D Oe 0 D
= /H(u(a:,y))detDF(x,y,O)dxdy
D
= /H(u(x,y))det(um,uy,Lp)da;dy
D

= /D H(u(z,y))(us A uy, @) dedy.
The claim follows by combining with the first variation of the Dirichlet energy. O
We see that regular critical points of F are solutions of the elliptic system

Au=(Hou) uz Auy in D. (2.12)

If v is in addition a conformal immersion, with induced metric g;; = 62/\5ij, then we can
rewrite the equation in the form
Uz N U

e Au= (Hou) v where = ———"Y_
e A uy|
We know from (2.8) that the left hand side is the mean curvature vector, hence the surface u
has prescribed mean curvature H o u. A special case is when H is constant, then wu is called
a constant mean curvature or CMC surface. One may then take as differential form

H
w= gXLdVRS (H constant).

The partial differential equation (2.12) is called the prescribed mean curvature or constant
mean curvature equation, respectively. This terminology does not require solutions to be
conformally parametrized, but the geometric interpretation is available only then. To obtain
geometric solutions, one may potentially use Theorem 2.1.2. Namely for any C! diffeomor-
phism ¢ : D — D which preserves orientation the transformation formula yields

/D (1o g)w = /D pHut = /D .
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If w is a critical point of F with respect to variations u o ¢;, then one conludes
GEwo oo = 5 (Fuodn - [ o1w)lo =0
0t t)lt=0 = t Ry t=0 = U.

The conformality relations now follow from Theorem 2.1.2. This applies, for example, to min-
imizers of F under Plateau boundary conditions.

To derive the prescribed mean curvature equation from the vanishing of the first variation
we have imposed strong regularity assumptions on the function w. In contrast, the existence
theory will only give us functions u € W2 N L>®(D,R3), say. It is a key issue to show that
these weak solutions are regular. The special case of constant mean curvature was solved by
Wente in 1969 [65], whereas the general case of variable mean curvature (for which How is a
priori only bounded and measurable) was proved by Riviére much later in 2007 [48].

2.3 Harmonic maps

As second example we now introduce harmonic maps. Let M C R™ be an m-dimensional
smooth compact submanifold where 1 < m < n—1. By definition, a harmonic map v : D — M
is a critical point of the Dirichlet energy under the constraint that u(D) C M; that is only
variations staying in M are allowed.

We first consider the special case of a round sphere M = S»! ¢ R®. We then have the
projection 7 : R™\ {0} — S"~ 7(z) = fay- For z € S*~1 its derivative is given by

Dr(z)v =P (z)v =v — (v, z)x.

Now assume that u € C'(D,R") has finite Dirichlet energy and maps into S*~!. For ¢ €
C}(D,R™) we compute using the chain rule

jtg(ﬂo(UthSO))\t—o=/D<DU7D(D7T(U)<P)>:/D<DU,D(<P—<<P7U>U)>-

Note that |u +tp| > 1 — [t] |¢||copy > 0 for [t small. Now (Du,u) =0 so that

;lté'(wo(u—l—t(p))]t:o:/D<Du,D<p>—/D<|Du2u,gp>.

If u € C?(D,R") we can integrate by parts to get the harmonic map equation
—Au = |Dul? u. (2.13)

To generalize this computation to the case of a general submanifold M C R™, we need the
following tubular neighborhood lemma which is stated without proof.

Lemma 2.3.1. Let M C R™ be a compact submanifold of class C?. There exists a neigh-
borhood U,(M) = {Y € R™ : dist(Y,M) < o}, such that the nearest point projection
M U,(M) — M is well-defined and given by

™(X+N)=X forall X € M, N € TxM* with [N| < o.

Moreover ™ is of class C' and has derivative Dn™ (X) = PT(X) for all X € M, where
PT(X) is the orthogonal projection onto Tx M.
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Now assume u € C''(D,R") has finite Dirichlet energy and maps into the submanifold M. For
¢ € CY(D,R™) one computes

d
GEE o o)l = [

<Du,D(D7rM(u)<p)>—/ <Du,D(PT(u)g0)>.
D

D

Let v(t) be a C! curve in M, and let e;(t) be a parallel orthonormal frame along 4. Then
el = AM(4/ ¢e;), and hence for any v € R"

_dpT d

((DPT)(W)’Y,)’U = dtP (Y)v = %<€iav>€i = <AM(7/761')7U>€1' + <€i,U>AM(7/7€z‘)-

As in the case of the sphere, we note that Du maps into T, M, therefore

d
S o (u+t0)l=o

/D <Du, PT(u)Dgo + ((DPT)(u)Du)g0>

- /(Du,Ds0>+/ (Du, (AM(Du,e;), p)er)
D

D

We rewrite the last term as
(AM(D,u, ), ©) (Bau, €;) = (AM (Dqu, Dpu), @) =: (AM (Du, Du), ¢).

Thus we finally obtain the form

d

ag(ﬂ'ﬂ/[ o (u+1ty))|=o = /D<Du,D<p) + /D<AM(Du, Du), ).

Again if u € C%(D,R") one arrives at the general harmonic map equation
Au = (AM o u)(Du, Du). (2.14)

We have introduced harmonic maps as critical points under the constraint u(D) C M.
However, the energy of a map u € C'(D,M) depends only on the Riemannian metric
h(-,-) = {-,*)|Tm, and not on the particular choice of the isometric embedding of (M, h).
From that viewpoint, harmonic maps are in the realm of intrinsic Riemannian geometry. On
the other hand, the inclusion M C R"™ induces the embedding C'(D, M) c WhH2(D,R"),
which opens an approach to existence by variational methods. In fact the subset

WY2(D, M) := {u € WY"2(D,R") : u(z) € M almost everywhere}

is closed under weak convergence by Rellich’s theorem, and the Dirichlet integral is lower
semicontinuous under weak convergence. This allows to obtain minimizers in W12(D, M)
e.g. under Dirichlet boundary conditions. A drawback is that these minimizers may have
singularities and may not even admit an approximation by C' maps in the W? topology
locally; here a classical example.

Example 2.3.2. For B the unit ball in R® and S the unit 2-sphere, it is easy to see that

uw:B—S% u(z) = —,
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belongs to W2(B,S?) and solves the harmonic map system, (2.13) in the weak sense. In fact, u
minimizes energy in WH2(B,S?) under Dirichlet boundary conditions [35]. Any neighborhood
of the origin is mapped to the full 2-sphere. If w denotes the area form on S* and v : B — S?
is smooth, then d(v*w) = v*dw = 0 which implies

/dn/\v*w—/d(nv*w)—o for anyneCcl(B)-
B B

By contrast, we compute for the singular map u

/ dn AN u*w = hm dnu*w) = — lim nuw = —4mwn(0).
B B\B.(0) N0 JaB.(0)

In other words, we have d(u*w) = 4w dg in the sense of distributions, detecting the topological
singularity. Using dominated convergence, one proves that if ux, — u in W12(B,S?), then
ujw — uw*w in LY(B, A2(R3)). It follows that with respect to the local Wb topology, u cannot
be approzimated by smooth maps uy, : B — S?.

2.4 Conformal invariance in 2 dimensions

The goal of this section is to classify all two-dimensional variational integrals of first order
which are conformally invariant. We will see that the example of the Dirichlet energy plus a
pullback of a 2-form already constitutes the general case, if we allow a general Riemannian
metric in the target.

Let f:R" x R?>*" R, f = f(X, A), be an integrand. On any bounded domain G C R?, we
have the associated functional

F(u,G) /f u(z))dzdy for u:G — R™.

We say that F is conformally invariant if for any conformal diffeomorphism ¢ : G — ¢(G))
we have the property

Fluop ™', ¢(@)) = Fu,G) forall u:G — R™ (2.15)

The following classification is due to Michael Griiter.

Theorem 2.4.1 (|25]). Consider a functional F(u,G) = [ f(u,Du), such that f and D3 f
are continuous on R™ x R"™2. Assume also that

f(X,A) >0 whenever A # 0.

If F(u,G) fG u, Du) is conformally invariant, then it has the representation

Flu) = % /G g(u)(Du, Du) + /G e, (2.16)

where g 1s a Riemannian metric and w is a 2-form, both continuous on R™.
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Proof. We compute substituting w = ¢(z)
Fuoo (@) = [ f(uto(w), Dulg™ (@)D ) du
#(G)
= [ Ful2). Du:) Do) ) det Do) d

Let ¢ : R? — R? be a conformal diffeomorphism. Taking G = D,(0) and u(z) = X + Az for
given X € R”, A € R"*2 we obtain after dividing by |D.| and letting £ \, 0

f(X,A) = f(X,AD(0)~")| det Dg(0).

First we use dilation invariance to show that f(X, A) is a quadratic polynomial in A. Namely
by taking ¢(z) = z/t for t > 0 and differentiating twice at ¢ = 0, we see that

FX, 4) = S DAF(X,0)(A, A).

Next we chose ¢(z) = Sz for S € SO(2) to get f(X,A) = (X, AST). Combining yields
D3 f(X,0)(A, A) = D3 f(X,0)(AST, AS™).
For A=V ®e € R"*2, we note that
(V® (Se))¢ =V(Se, () =V{e,ST¢) = (Vwe)STC.
Thus by taking Se; = es, Ses = —e; we see using polarization that

DAf(X,0)(V®@ey, W®ey) = DAf(X,00((V®e)ST, (W ®ep)ST)
= DAf(X,0)(V®e,W®e),

Dif(X,0)0(V®@e, W®er) = —Dif(X,0)((V®@er)ST, (W ®e)ST)
= —Dif(X,0)(V®e, W®ep).

We can now expand

1
f(uv D’LL) = §(D21f(u,0)(01u®61,61u®61) —|—Dif(u,())(agu®62,82u®€2))
+ DA f(u,0)(D1u @ e1, 0ou @ €3)

1
=t 59(u)(Du, Du) + u*w(er, ),

where the symmetric form g and the antisymmetric form w are defined as

g(X)(V,W) = Dif(X,00(V®er, W er),
wX)(V,W) = D4f(X,0)(V®e, W ®es).

By assumption both are continuous on R™. Finally the assumed positivity of f implies that g
is a Riemannian metric, namely we have for V # 0

g(X)(V,V)=D4f(X,0)(e1 @ V,e1 @ V) = 2f(X,e; @ V) > 0.

This finishes the proof of the theorem. O
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The calculation of the Euler-Lagrange equation for the Riemannian Dirichlet energy is
straightforward using local coordinates. We compute for ¢ € C°(G,R")

d ) 1 . )
—Eg(u+tp)li=o = / (gjk(U)aaSD]aauk + *aigjk(u)gozﬁaujaauk)
di g >

1

_ / " (gjk(u)Auk + Orgsn(u)atiBau® — iﬁjgik(u)aauiaauk>
G

= —/ gjk(u)goj (Auk + gkl(u)aiglm(u)ﬁauiﬁaum — %gkl(u)algim(u)aauiaaum>
G

=~ [ gue! (A4 T O™,
G

Here the Ffj are the Christoffel symbols of the metric g; we used that the term O u’O,u™ is
symmetric in ¢ and m. For the pullback integral, we proceed as in the case of codimension one.
Introducing the 3-Form Q = dw, we have putting F': D x [0,e] — R"™, F(z,t) = u(z) + te(2),

d/(u+€ Vol = &
dE o ®Y e=0 —

@ F*Q oo
de Jax[o,e) :

= /(Qou)(um,uy,cp)
G
- /ngk(U)stgkl(U)(Q © u)(ug, uy, €).
In summary, the Euler-Lagrange operator Lg(u) of the functional (2.16) is given by
Ly(u)f = —Auk — Ffj(u)é?aui@auj + g™ (w) (2 0 u) (ug, uy, €), (2.17)
where Ffj are the Christoffelsymbols of g and 2 = dw. The nonlinear operator
(ANu)E = AuF + Ffj(u)ﬁauiﬁauj

is sometimes called the tension field or intrinsic Laplacian of u. The system (2.17) is semilinear
with principal term given by the standard Laplacian, and a right hand side which is a quadratic
form of the gradient, possibly depending nonlinearly on u. The key question is now whether
a regularity theory is available for such systems. Here are the bad news.

Example 2.4.2. Consider the scalar equation
—Au=|Du)* onG= D1 .(0).

We claim that the function u(z) = log log %, r = |z|, belongs to WY2(G) and solves the equation
i the weak sense. For this we compute

1
UI(T) = )
rlogr
1 1
" _ _ _
u (T) - T2 log r ’]”’2 10g2 r?
1
Du* = 4 (r)?=—-+—,
| Dul (r) r2log? r
Au = d"(r)+ 1u'(r) __
T r2log? r
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Away from the origin the equation holds in the classical sense. Substituting r = et where

t € [1,00) we have
/1/6 dr _/Oodt_ 00 fors=1
0 rlogs%— Lot %1 for s > 1.

S

Thus Du € L*(G,R?). Using cutoff arguments one now proves that Du is the weak deriva-
tive, and that the equation holds weakly on the full domain G. We also see that solutions
to the Dirichlet problem may be nonunique, since u = 0 on OG. Furthermore, we have a
counterezample to an L' theory for the Laplacian: Au is integrable while D*u is not.

The fact that u(x) = loglog % is unbounded is important in the previous example. Namely,
if the weak solution was bounded then a regularity result by Ladyzhenskaya and Ural’tseva
(1961) would imply that it is Holder continuous; further regularity would then follow easily. In
the case of harmonic maps the boundedness of the weak solution is for granted, by assuming
the target manifold to be compact. Nevertheless the result of Ladyzhenskaya and Ural’tseva
does not apply, because it is limited to scalar equations. This is seen from the following
modification of our example, due to Hildebrandt and Widman.

Example 2.4.3. The map u(r) = exp(iloglog 1) is a bounded weak solution to the system

—Au = |Duf*Au  where A = ( 1 _11 > .

In summary we see that the regularity for the prescribed mean curvature equation and
for harmonic maps is subtle, and that the particular structure of the nonlinearity needs to be
exploited in some way.



Chapter 3

Harmonic maps into spheres

3.1 A conservation law

For a bounded domain €2 C R™, consider the set of mappings
Wh2(Q, 8" Y = {u e WH2(Q,R") : Ju(z)| = 1 almost everywhere}. (3.1)

As defined in the last section, a map u € W12(Q,S" 1) is weakly harmonic if

/(Du7Dq§) :/ |Du)?(u,¢)  for all ¢ € Wy* N L¥(Q,R). (3.2)
Q Q

We remark that test functions in CZ°(€Q2,R™) are sufficient to deduce the more general form
of the equation. In fact, for given ¢ € Wol’2 N L>®(Q,R™) choose ¢, € C(2,R™) such that
ér — ¢ in W2 and pointwise almost everywhere. Then let n € C°(R",R") such that
n(z) = z for |z| < ||@||re. The functions ¥, = 1 o ¢y, are uniformly bounded and converge to
¢ almost everywhere. Moreover

DYy — Dol < ||Dno ¢p(Déy, — D)| 12 + |[[(Dno ¢ —Id)Do| 12 — 0,

where dominated convergence was again used in the last term. The general version of (3.2)
now follows by testing with 1, and passing to the limit. Of course this argument is not specific
to our present topic, but applies to any semilinear system with right hand side quadratic in Du.

We take up the subject of harmonic maps into spheres with a reformulation of the Euler-
Lagrange equation due to Yun Mei Chen and Jalal Shatah, see also [29]. In the following ar-
guments, we use several times the Sobolev product rule implying that the space W2N L ()
is an algebra. If additionally one of the factors belongs to WOI’Q(B, R™), then this is also true
for the product.

Theorem 3.1.1 ([9, 53|). For u € WY2(B,S"™1) the following are equivalent:
(a) u is weakly harmonic.

(b) For any A € R™" with AT = —A we have div (Du'Au) = 0 weakly, that is

/ (Du - grad o, Au)y =0  for all ¢ € C°(B). (3.3)
B

19
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Proof. Let u be weakly harmonic. Testing with ¢Au € I/Vol’2 N L*°(B,R™), we obtain
0 = [ 1Duu )
B
— [ (Du D)
B
= / Oop(Onu, Au) —i—/ ©(Oat, Ay u)
B B
= /(Du-grad ©, Au).
B

For the reverse direction, we need to show that these special variations are sufficient to deduce
the full harmonic map system. Denote by ey, ..., e, the standard basis of R", and consider
the skew-symmetric matrices

Aij:(ei®ej—ej®ei)€R”X” for 1 <4,5 <n.
For any w € S"~! the A;jw span T,,S"™1, in fact for any ¢ € T,,S"~! we have the expansion

§ = (Ruw-wefw

— Z (fiwj — wifj)(ei ® ej)w

ij=1

n
= Z £iwj(ei Rej—e; ® ejw
iji=1

n . .
= Z fzijijw.
ij=1
For a given variation ¢ € CZ°(B,R™) we obtain the representation
¢ = (o, upu+ > @ijAju, where gij = (¢' — (¢, upu’)u. (3.4)
ij=1

Using assumption (b) and the identity (Du, A;; Du) = 0, we see that

/<DU’D(%J’A@']’U)> :/<Du'grad@ij>Aiju>+/ ©ij(Du, AjjDu) = 0.
B B B

On the other hand, from (Du,u) = 0 we infer

= u2 u .
/B (Du, D((6, uyu)) = /B Dul?(u, 6)

Claim (a) follows using the representation (3.4). O

As an application we show that the set of weakly harmonic maps into the round sphere is
closed under weak convergence. This is not obvious from (3.2), in general the weak conver-
gence Duy, — Du does not even imply |Dug|? — |Du|? as measures. However it is a simple
consequence of Theorem 3.1.1.
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Corollary 3.1.2. Let u, € WY2(B,S" 1) be weakly harmonic, and suppose uj, — u weakly
in WE2(B,S"1). Then u € WY2(B,S" 1) is also weakly harmonic.

Proof. We have Duj, — Du weakly in L?(R™%), and u, — wu strongly in L?(B,R") by
Rellich’s theorem. Then (9a¢)Aug — (Gap)Au strongly in L2(B,R") for ¢ € C°(B), and

/ (Du-grad p, Au) = lim [ (Duy - grad ¢, Aug).
B

k—o0 B
The result follows by Theorem 3.1.1. O

Equation (3.3) derives in a more systematic way as conservation law associated to rotational
symmetry. This relation was explained in the fundamental work of Emmy Noether [42]. Let
us explain this in some generality, for a variational integral

F(u) = /Qf(u,Du) where f: R" x R™™  f = f(z,p).

An explicit dependence f = f(z, z,p) could be allowed without any changes, it is omitted for
simplicity. A diffeomorphism ¢ : R™ — R" is a symmetry of the Lagrangian f if

f(#(2), Do(2)p) = f(z,p) for all (z,p) € R" x R"™*™. (3.5)
In fact we then have

.F(qﬁou)—/Qf(¢ou,D¢ouDu)—/Qf(u,Du)—f(u).

From a one-parameter family of symmetries ¢y = ¢(-, ), ¢o = idgrn, one derives an infinitesimal
version of symmetry by differentiating (3.5) at ¢ = 0. This yields, viewing D, f(z,p) € R™*™,

(D, f(z,p),n(2)) + (Dpf(z,p), Dn(z)p) =0  where n(z) = aaqtb(z, 0). (3.6)

This in turn implies infinitesimal invariance, namely for any U CC ) we have

CZ/Uf(<15tOu,D(@ou))H:O—/U((sz(u,Du),nou>—|—<Dpf(u,Du),D77ouDu)) =0.

Now let u be a critical point of F. Testing the weak Euler-Lagrange equation with the function
onou for ¢ € CL(Q) and then using (3.6), we obtain

0 = /Q(<sz(uyDU),w7<>U> + (Dpf (u, Du), D(pn o u)))
- /Q<Dpf(u,Du),(nou)®D<P>
= /Q<Dpf(u, Du)Tnou, Dy).

Therefore if f = f(z,p) has the infinitesimal symmetry (3.6) and if u is a weak solution to
the Euler-Lagrange equations, then one has the conservation law

div (Dpf(u, Du)T nou) =0  weakly in Q. (3.7)
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In our special case we have ¢;(z) = R(t)z where R(t) = exptA for A € R"*" skew-symmetric.
It follows that n(z) = Az and the condition of infinitesimal symmetry holds, namely

(Dpf(p), Dn(z)p) = (p, Ap) = 0.

One conludes that a weak harmonic map wu :  — S”~! satisfies
div (Du™ Au) =0  weakly in Q.

In his second paper [27]| Frédéric Hélein exploited this relation of symmetries and conservation
laws further to prove regularity for harmonic maps into manifolds with transitive isometry
group [27]. Of course , the key point of Theorem 3.1.1 is that test functions of the type pAu
are sufficient to deduce the full harmonic map system, so that the conservation law is actually
equivalent to the Euler-Lagrange equation.

We now turn to conservation laws associated to symmetries on the domain. For any diffeo-
morphism ¢ : U — ¢(U), U «C 2, we have by the transformation rule

Fluop™,o(U)) = W)f(y,uwrl(y),Du(¢-1<y>>D<¢-1><y>>dy

= [ Fota).u(o). Dua) Do) ™) [ det Dola) o (3)
Chosing a a one-parameter family ¢; of diffeomorphisms with ¢¢9 = idg we compute, putting
£ = %‘f(-, 0) and noting det D¢y > 0,

d

ﬁ}"(u o ¢t_17 ¢t(U))|t:0

= /U ((Dxf(-,u, Du), &) — (Dpf(-,u, Du), Du - DE) 4 f(-,u, Du) divg)

:/U(<Dxf(-,u,Du),§>/ (Du' Dy f(-,u, Du) — f(-,u, Du)Idgm, DE).

U

It is convenient to introduce the abbreviation

H(z,z,p) = pTDpf(x, z,p) — f(x, z,p) Idgm € R™*™, (3.9)
or in coordinates of
Hg(xv z,p) = pra 7 (.T, Z7p) - f(i', Zap) 5%
P
We say that u is critical with respect to inner variations, if
d
%]—"(u 0od; ', )|i=o =0 for any flow ¢; of a vector field £ € C°(Q, R™). (3.10)

We have ¢y = id on Q\spt &, so ¢ : Q@ xR — Q is globally defined and smooth, with ¢t_1 = ¢p_¢.
By the calculation above, we see that (3.10) implies

div H(-,u, Du) + Dy f(,u, Du) =0  weakly in Q. (3.11)
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In coordinates this takes the form
O[HE (-;u, Du)] + (Oaf)(,u, Du) =0 fora=1,...,m.

Equation (3.11) is called Noether’s equation in [19], it replaces the Euler-Lagrange equation
in the setting of inner variations. Now in view of (3.8), a diffeomorphism ¢ : @ — ¢(Q) is
called a symmetry for the Lagrangian f = f(x, z,p) if

f(@(x),z,p Do(x) ") | det Dp(x)| = f(z,2,p) for all (z,z,p) € & x R" x R™™.

Again we replace this by an infinitesimal version. Assuming a one-parameter family ¢; of such
symmetries, we get by differentiating and putting £ = %H:O

(Da f (2, 2,p),&(x)) — (H(:, 2,p), DE(x)) = 0. (3.12)

If u € C1(2,R™) is critical for inner variations, then any such infinitesimal symmetry ¢ yields
a conservation law. Namely, testing (3.11) with ¢ where ¢ € C(Q) we find

0 = /Qg0<D$f(-,u,Du),£>—/Q<H( u, Du), >
= /¢(<Dxf(~,u,Du),§><H(-,u,Du / ,u, Du) §D<p>
Q Q
= —/Q<H(.,U,Du)T§,D¢>.

In other words
div (H(-,u, Du)T¢€) =0 weakly in Q. (3.13)

As an example, let us reconsider the conformal invariance of the Dirichlet integral. We have
for the Dirichlet integral, writing pe; = v and pes = w,

P ww)
H(p) = ( Tow) — 3P - ) )

Now w critical with respect to inner variations means

/Q<H(Du), ( Ao Ay >> =0 forall (A p) € CHQ,R2).

Mz Hy

Clearly, this just says that the function h = |ug|* — |uy|? — 2i(ug, u,) is holomorphic. The
complex quadratic differential h(z)dz? is called the Hopf differential of the map [32]. Next,
the condition that a vector field £ = (a, b) is an infinitesimal symmetry reads

<( Wﬁ,lv'f”'g) _é(‘ﬁlﬁ)w,z) >< A >> —0 forall v,w€R".

As expected, this is equivalent to £ = a + ib being holomorphic. It is easy to see that the
(local) flow of £ is then by biholomorphic transformations.
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Clearly the Noether equation will generally not imply the Euler-Lagrange equation, since inner
variations only compare to reparametrizations of a given map. For instance, any map is critical
for the area integral with respect to inner variations. Naively, one might expect the reverse
implication to hold. Namely, writing the Euler-Lagrange equation formally as DF(u) = 0 and
applying the chain rule, we should get

d /
a7 (wo é)le=o = DF(u)(u o ¢)(0) = 0.

In other words, the Noether equation should follow from the Euler-Lagrange equation by
testing with ¢ = (u o ¢;)'(0); this is actually true if u is sufficiently smooth. However, if
u is just a weak solution then ¢ may not be admissible as test function because of lack of
regularity, as it involves a derivative of w:

¢
= Du- h = =0-
) u-&  where £ 5t |t=0

This gap is reflected in the regularity theory of harmonic maps, where inner variations played
an important role.

The story started with C.B. Morrey who proved regularity of minimizers in two dimensions
[37]. Much later R. Schoen improved this by showing that weak solutions are regular, provided
they are also critical with respect to inner variations [50]; this is of course fulfilled for minimiz-
ers by one-dimensional calculus. Actually, Schoen’s proof is essentially based on previous work
by M. Griiter who showed regularity of weak H surfaces, that is solutions of the prescribed
mean curvature system which are conformally parametrized [24], see Section 2.3 in Jost’s book
[33]. Eventually F. Hélein found that inner variations are not needed at all to prove regularity
in two dimensions [28]. In dimensions m > 3 R. Schoen and K. Uhlenbeck proved partial
regularity of minimizers, saying that the singular set has Hausdorff dimension at most m — 3
and consists of isolated points for m = 3 [51]|. F. Lin showed that the map u(x) = x/|z| is
in fact minimizing from B™ to S™~! for any m > 3 [35]. For weak solutions C. Evans [13]
and then F. Béthuel [3] showed that the singular set S has Hausdorff measure H™2(S) = 0,
again provided the map is also critical with respect to inner variations. In fact only dilations
are needed, they yield a crucial monotonicity formula. Any hopes for partial regularity of
weak solutions in dimension m > 3 without further assumptions were dashed by T. Riviére
[45]. He constructed a harmonic map u € W12(B3,S?) which is everywhere discontinuous. In
particular, this solution is not critical with respect to dilations in the domain.

3.2 Wente’s inequality

In this section we are back to dimension m = 2, in fact we only consider maps defined on the
unit disk D. Let us start the discussion with the classical Dirichlet problem for the Poisson
equation, assuming that

—Au = f weakly in D where u € WOI’Q(D).

A very fundamental estimate, due to Calderon and Zygmund, asserts that if f € LP(D) where
1 < p < oo, then u € W?P(D) and

[ullwzepy < C) 1fllLr(D)-
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In the case of the harmonic map or prescribed mean curvature systems, this does not apply
directly because the right hand side, being quadratic in the gradient, belongs a priori only to
L' (D). The Calderon-Zygmund theory does not extend to the space L'; the difficulty was al-
ready observed in Example 2.4.2. Henry Wente found that this drawback can be compensated
if the right hand side has a special algebraic structure, namely when f is a Jacobi determinant.
We refer to Heélein’s book [29] for an in-depth discussion.

Theorem 3.2.1 ([65]). For a,b € W12(D) given and {a,b} = azb, — aybs, there exists a
unique function u € W()l’2(D) solving

/ (du, dp) = / {a,b}p  forall p € W&’Z N L>(D), (3.14)
D D

The solution belongs belongs to C°(D) and satisfies

A

1
lelcom) < 5= Idallzao) bl 2o, (3.15)

IN

ldulzqpy < <= daliaqo) bl 120 (3.16)
Proof. The uniqueness of the solution is standard. The key to existence are the estimates,
assuming that a,b and hence u are smooth on the closed disk; everything else will follow by
a simple approximation argument. We observe that the equation is nothing but the third
component of the constant mean curvature system for H = —1. More precisely, consider the
scalar functional, for w = %XLdVRB,

Fastw) =5 [ 1D1F = [ P where f = (@.b0),

Then we have from Lemma 2.2.1, noting that (f; A fy,e3) = {a, b},

d
T oo = [ (uds) - [ (able.
D D

In particular, the equation (3.14) is invariant under orientation-preserving, conformal diffeo-
morphisms, acting on all variables a, b and u. Moreover, also the quantities in (3.15) are
conformally invariant. For the C? estimate, this discussion shows that it is sufficient to bound
u(0). Namely, for a € D we consider the disk automorphism

6(z) = 1Z—:—;z'

By conformal invariance, we can bound (u o ¢)(0) = wu(a), which gives the result. Now by
Green’s formula we have, writing r = |z|,

1
u(0) = By D(log r)da A db
1 1 d
= —lim d((logr)adb) — — lim a " Adb
2w e\0 D\DS(O) 2w e\0 D\DE(O) T

1 Ldr 2 ob
= 74/0 a(r,w)%(rm)d@.

_ﬂo
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Let a(r) be the mean value of a(r,-) on [0, 27], and estimate

| [CoroZieoae] = | [Tt -a) 2o

IN

~ ob
Ja — G(T)Hm(o,mr) : H%Hn(o,zn)

da ob
H%Hm(o,%) ’ H%Hm(o,%)‘

In the last step we used the Poincaré inequality on (0,27) for functions having zero mean
value; this follows easily by Fourier expansion. We conclude

1 [ 0a 0b dr
lu(0)] < 27T/O H@Hm(ogw)'H@”L?(o,%)?

1 Lor2m 1 da o 1/2 Lor2m 1 0b o 1/2
< 27r</0 /0 ﬁ’%‘ rdrdgo) (/0 /0 T—Z‘%‘ rdrdgo)
1

< %”daHLQ(D) - [|dbl| 2y

The L? bound for du now follows simply by testing with « and using Cauchy-Schwarz:
1
[ 1auP = [ wta.b} < lullooi ldalla | b2y < 5= Idallaqo bl

In the smooth case the estimates are settled. Given a,b € W12(D) we approximate a; — a,
b — bin WH2(D), where ay, by, are in C*°(D). Let uy, be the solution of the Dirichlet problem

—Auy = {ag, b} in D, uglsgp = 0.
Then uy — u; is zero on 0D and satisfies
—A(ur —wy) = {ag, b} — {ar, b} = {ar — a;, b} + {a;, b — b }.
We have ||da||z2(py + [|dbg|| r2(py < C for all k. By uniqueness and the estimates, we obtain

lur = will oy + Nd(ur — )l 20y < C (ld(ar, — a)ll2(py + ld(brx — b)) 22(D))
—0 ask,l — oc.

Thus ur — w in both W01’2(D) and C°(D), and u satisfies the desired estimates. To get the
weak equation for test functions ¢ € VVol’2 N L*°(D), we compute

[ tdudo) = tim [ (@) =t [ plan) = [ ofab)
D k—o0 D k—o0 D D

O
A slight extension of Wente’s theorem is the following statement for superweak solutions.
Corollary 3.2.2. Let a,b € WH2(D) and assume that v € L*(D) solves
—/ vAp = / ola, b} for all p € C*(D), ¢lop = 0. (3.17)
D D

Then v is the solution from Theorem 3.2.1, in particular v € Wol’z(D) NCY(D).
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Proof. We first note that weak solutions also satisfy the superweak formulation (3.17). In
fact, assume that u € VVO1 P(D), p € [1,2], solves the boundary value problem

[ (0uDg) = [ plab) foral e D), lap =0,
D D

Then by Sobolev trace theory, using u = 0 on 0D,

/(Du,Dcp}z/ uaso—/uAcp:—/uAgo.
D op Or D D

We apply this to the solution u € WOI’2(D) given by Theorem 3.2.1, and get by subtracting
/ (u—v)Ap =0 for all p € C(D), plap = 0.
D

Now for any n € C2°(D) we can choose ¢ € C*°(D) with zero boundary values, such that
Ay =n. It follows that v = u. O

By the Wente lemma, weak solutions v € W12(D, R3) of the constant mean curvature system
are continuous; in fact we can always substract a harmonic function to achieve boundary values
zero. For the prescribed mean curvature system with variable H, we already mentioned the
regularity result of Griiter [24], assuming additionally the conformality relations. His argument
is much different, the idea is that the image varifold under the map u : D — R3 has weak
mean curvature H and hence satisfies a monotonicity formula. Finally, Riviére proved that
all weak solutions are regular [46]; his proof will be presented in Chapter 5.

3.3 Regularity of harmonic maps from the disk to S" !

The regularity of two-dimensional harmonic maps was proved by F. Hélein around 1990, in
three papers of increasing generality as regards the target [26, 27, 28|. The first one studied
the case of a round sphere, the second addressed homogeneous spaces and finally the third
covered all compact submanifolds. Here we take up the case of a round sphere, starting with a
simple two-dimensional Hodge lemma. The Hodge decomposition in arbitrary dimension will
be discussed in connection with Uhlenbeck’s Coulomb gauge theorem, see Theorem 6.1.2.

We denote by d* the formal adjoint to the exterior derivative d with respect to the L? in-
ner product. In R? one easily calculates the following table:

a € CY(D) da = az dz + ay dy d*a =0
w=udzr+vdy € C*(D,AY(R?)) dw= (vy; —uy)dz Ady d*w=—(uy+vy)

B=bdx Ady € CY(D,A2(R?)) dB=0 d*B = by dz — by dy.

In particular d*da = —Aa and dd*8 = —Abdx A dy. A rather important observation, in view
of the Wente lemma, is that!

(da,d"B) = azby + ay(—b,) = {a,b}.

We are now ready to state the Hodge lemma.

'In the notation of Riviére, (da,d*S) = (Va, V> b).
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Lemma 3.3.1 ([31]). On the unit disk D C R?, any differential form w € L*(D, A*(R?)) has
a unique L?*-orthogonal decomposition

w=da+d"B where a e Wy(D), 8 € W-2(D, A>(R?)) with / B=0.
D

If d*w = 0 as distribution, then a = 0.
Proof. For any a € C°(D), € W12(D, A%2(R?)), we have

/(da,d*ﬁ)z/(d(da),ﬁ) =0, hence dW,?(D) L d*W2(D, A*(R?)).
D D

Now if da + d*f = w, then testing with da gives
ldalagoy = [ (da.da) + [ (a6.da) = [ (.

This shows that d*w = 0 implies a = 0. Moreover from the Poincaré inequality we get
lallw12py < Clldal|z2(py < Clwllr2(p)-
w = 0 implies further d*g = 0, which proves the uniqueness. For existence we solve
d*da = —Aa=d*win D where a € Wy*(D).

Then d*(w — da) = 0, which is the integrability condition to get the desired solution of
d*B=w—da, Be€W'(D,A*(R?)) with / B=0.
D

In fact, the Poincaré lemma does not apply directly due to lack of regularity. But we can
solve classically d*8° = (w — da). on Dj_.(0), where the right hand side is mollified. The
constant coefficient operator d* commutes with smoothing, so that the integrability condition
is preserved. Then we normalize and let € 0. O

The proof of regularity for two-dimensional harmonic maps v : D — S"~! divides into two
steps: first one shows that w is continuous, this is due to Hélein. The second step proving
smoothness was known before Hélein’s work, it is not specific to harmonic maps but applies
to general elliptic systems with right hand side quadratic in Du.

Theorem 3.3.2 ([26]). 2-dimensional harmonic maps u € WH2(D,S"1) are continuous.

Proof. Our aim is to realize the right hand side of the Euler-Lagrange equation as a sum of
terms of the form (da,d*f), i.e. Jacobi determinants. Denote the rows of the Jacobi matrix
Du by du'. The Euler-Lagrange equation is

n

—Au! = Z(duz,dtﬂ) u’.

i=1
Now du’ is a differential, thus w” = uw/du’ should be a co-differential. This is only possible if
d*w¥ = 0. Now the conservation law, Theorem 3.1.1, comes into play. We know that

div(DuTAiju) =0 where \jj =€, ®e; —e; Qe
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We compute for v € R?
(Du™ Ajju, v)ge = (Ajju, Du - v)gn = (W du’ — u'du? | v)go.
Thus d*(v/du’ — u'du?) = 0 in the sense of distributions, so by the Hodge lemma
wdu' —u'dw! = d*BY  where Y = b do A dy € WH(D, A%(R?)).

Luckily, the equation |u|? = 1 yields the identity

0= ]u\ Zu du’.

Thus we can write the harmonic map system as

n

—Aul = Z(dui,ujdui — uldu?)ge z": du’, d*37) Z{u b7}
i=1

=1

To arrange for zero boundary values, we let h € W12(D,R") be the harmonic extension of
ulpp. Then v =u —h € WH2(D,R") solves the problem

—Av) = Z{ui,bij} inD, v=0onadD.

We have v € C°(D,R") by Theorem 3.2.1, the Wente lemma. As the harmonic function h is
smooth in D, we conclude that u = v + h is also continuous in D. O

In the remaining part of this section we take up the problem of higher regularity for systems of
harmonic map type in arbitrary dimensions. This goes back to S. Hildebrandt, K.-O. Widman
and M. Wiegner.

Theorem 3.3.3 ([30, 66]). Let u € W12 N L>®(B3(0),R") be a weak solution of the equation
—Au = A(u)(Du, Du) on B2(0) C R™, m > 2. Assume that for constants a, M < oo

|A(2)(p, p)|

l|w]| oo (B (0))

< alpf* forall|z| <M, peR™™, (3.18)
< M. (3.19)
Then the following holds:

(1) Let a € (0,1). If aM < g¢ = eg(a) then u € CY¥(B1(0),R"™).

(2) For a € (3,1) we get further u € C#(By(0),R"), where p=3a—1 € (0, 3).

Proof. For x € B1(0) and ¢ € (0,1], let v € W12(B,(z),R") be harmonic with v — u €
W01’2(BQ(33)). We have the standard estimates

sup [v| < |[ullpe (B, @) < M,
By ()

sup |Dv|+ o sup |D?v|
BQ/Q(I) Bg/2(x)

IN

C
o2 DV 2B, (2))-
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For w=wu—wvand ¢ € I/Vol’2 N L>®(B,(x),R™) we infer
| pwpe) = [ (@)D D)),
Bo(z) Bo(z)

Taking ¢ = w yields the inequality

/ |Dw|* = / (A(u)(Du, Du),w) < a ”'LUHLOO(BQ(:E))/ | Du)?. (3.20)
By () By () B

o(T)

Now let 6 € (0, %] By the above bounds for v, we have the decay

/ |Dv|? < C(0p)™ sup |Dv|? < C’Gm/ | Dvl?.
BGQ(x) BQ/Q(:E) BQ(;B)

Using (||| zoo(B,(2)) < ullzoo(B,(@)) + V]2 (B, () < 2M, we estimate

(60)>™ / Duf? < 2(60)%" / Do’ + 2(00)>™ / Dwf?
ng(ﬂi) ng(ﬂf)

Beg($)

< comoor [

|Dv|? + 4aM(0@)2m/ | Du/?
By(x)

By (z)

< CO*(1+aMo™™) 92—"1/ |Dul?.
By()

In the last step we used that v(x) minimizes the Dirichlet energy with given boundary values.
Assume for the moment that
aM < o™, (3.21)

so that for any = € B1(0), ¢ € (0, 1] we have the inequality

o(2.00) < CFP(w,0)  where o(w,0) =* " [ |DuP
BQ(I)

Given o € (0,1] we choose k € Ny with 05T! < p < 6% and iterate

027Tn¢($7 ek)
0 (C6) o, 1)

92—m—2o¢(c«02—2a)k: 0204/ ’DU‘Q
B3(0)

¢(z, 0)

IN A

IN

Given a € [0,1), we chose 6 = f(a) € (0, 3] with C*72* < 1, and take g9 = 6™ in assumption

(1). Then (3.21) holds, and we conclude

& / Duf? < C(a)g™ / Duf?.
By (x) B>(0)

By Morrey’s Dirichlet growth theorem u(x) is a-Hélder continuous on B;1(0). To prove that
Du is also Hélder continous, we use that the L* bound for w has improved. Namely writing
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Uz o for the mean value on B,(x) we can now estimate, again using the maximum principle
for harmonic functions,

(By(2)) < 2lu = va,pll Lo (B, (x)) < Co

Wl Loo(B,(2) < 14— taoll Loo(B,(2)) + lv —

Inserting this into (3.20) yields, passing to mean value integrals,

][ |Dw\2 S C’Qa][ ‘DU|2 < Cgoz 200—2 Cg3a72‘
Bo(2)

Bo()

For simplicity, we allow the constant C' to depend on || Dul|r2(p,(9y), and we will write 2p :=

3a— 2> 0. Clearly
f  ipup
BQQ(Z)

‘(Dw)xﬁg‘z

IN

9_m][ |Dw|* < CH g,
By(2)

IA

][ |Dw|? < CH ™.
B, ()
This gives
][ |Du— (Du)x,9.9|2 < 2][ |DU_(DU).Z’,9,Q|2+2][ |Dw|2+2|(Dw)x,99|2
By, () Bay() Bygo()
= 2][ |Dv — (DU):B,GQ‘Q + Cgimgzl{
309(33)

It remains to estimate for the harmonic function v. Using the Poincaré inequality and the
standard bounds from above we obtain, for A € R™"*™ arbitrary,

f o IDo-@onaf < cloe? { DM
Beg(z) BQQ( )
< CloPe f Do AP
Be(x)
= 092][ |ID(v—£0)]*  where £(y) = Ay
BQ(I)
< 092][ |Du — AJ*.
BQ(I)

In the last step the minimizing property of v — ¢ was used. Taking A = (Du), , and combining
we arrive at

¢(x,00) < CH*¢(x, 0) + CO ™0™ where ¢(z, 0) = ][ |Du — (Du)a,q|*.
By(x)
Using induction, we see that
k—1
o(x,0%) < (COHFp(x,1) +Co ek~ 2“2 Co*2myi

k_
ol ((092—%)’“ g2 2(092—%)]’)
=0

IN
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Now fix a € (2,1) or equivalently p € (0, 3), and chose 6 € (0, ] with C§*~2* < 1. Then for
0++1 < p < 0% we infer, using the best approximating property of the mean value,

o(z,0) = ][ Dt — (Du)
By(x))

< ][ |Du — (Du), g1
By(x))

S H_m][ ]Du — (DU>$,9k‘2
ng ($)
< Co™
Campanato’s lemma implies that Du is u-Holder continuous on By (0). O

Corollary 3.3.4. Let u € W2NL>®(U, M) be a harmonic map on the open set U C R™ into
the smooth submanifold M C R™. Assume that u(x) is continuous at xo € U, more precisely

Ll)i{{l’(l) |w = pllpee(B,(z0)) =0  for some p € M.

Then u(x) is smooth in a full neighborhood of xy.

Proof. By translations we may assume xg = 0 and p = 0. The uy : B — M, uy(z) = u(\x),
are harmonic and satisfy

luxllLoo (Bo(0)) = Ul oo (Byr(0)) = 0 as AN 0.

For fixed o € (0,1), Theorem 3.3.3 yields uy € C'#(B1(0),R") for some p > 0. Thus
A(u)(Du, Du) is of class C%* near the origin, which means that its Newtonian potential and
hence u(x) are locally C?# on a neighborhood of the origin. Repeated application of the
Schauder estimates shows that w(z) is smooth on that neighborhood. O



Chapter 4

Hardy space

In this chapter we discuss applications involving estimates in Hardy space H!(R™).

4.1 Higher integrability of Jacobi determinants

We start by collecting some basic results about the maximal function.

Lemma 4.1.1. Let f : R"™ — [0,00) be measurable and 0 < p < co. Then we have
fP(x) dx :p/ Pz f(z) > a}|dao. (4.1)
R™ 0

Proof. Let xf be the characteristic function of the set {(xz,a) € R" x [0,00) : f(z) > a}.
Then xyis £ x L' measurable, and

fap =p [ o lda=p [~ oty (o.0) do.

Integrating we get by Fubini’s theorem

- f($)pdm:p/oooap_l/nxf(:ﬁ,a)dxda:p/oooap_le:f(m) > a}|dao.

Definition 4.1.2. For f € L. _(R") we define its mazimal function M f : R — [0, 0o by

loc

1
Mf()=sup—— [ |f()do. (4.2)
r>0 | Br(®)] /B, ()
When dealing with the maximal function one needs two basic principles, the Vitali covering
lemma and the Calderon Zygmund decomposition. In Vitali’s lemma the following notation
is used: for any ball B we write 5B for the concentric ball with 5 times the radius.

Theorem 4.1.3 (Vitali). Let B be a family of nondegenerate closed balls in R™ with diameter
bounded by a constant d < oo. Then there exists a disjoint subfamily B’ with the following
property: for any B € B there is a B’ € B’ such that

BNB' #0 and diam B’ > diam B/2,

33
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in particular B C 5B'. Thus if B is a covering of a set E then

B[ <5 > B (4.3)
B'eB’
Proof. Divide B into the families By, with diameter in (27%71d,27%d] for k = 0,1,.... We

define B’ = ;2 B, inductively as follows: Bj, is a maximal disjoint subfamily of By, and B},
is a maximal disjoint subfamily of those balls in B, which do not intersect any ball that was
previously selected. Now any B € B belongs to some Bi. By maximality, it must intersect a
ball B’ € B’ for some j < k, which proves the theorem. O

Theorem 4.1.4 (Calderon-Zygmund [7]). Let f € LY(R™) with f > 0. For any o > 0
there exists a countable family G of closed cubes with pairwise disjoint interior, such that the
following holds:

() a <o, f(z)dr < 2% for any Q € G.

(i) f(z) < a for almost all x € R"\G, where G = Jgeg Q-

C
(iii) |G| < E||f||L1(Rn)-

Proof. Chose a subdivision of R" into congruent cubes P having volume |P| > é”fHLl(Rn),
and denote this family by Fy. Clearly for P € Fy

ulj‘/Pf(x) dz < a. (4.4)

Using induction we now define families Fj, Gy of cubes for £k = 1,2,.... For this divide each
P € Fj_4 into 2" congruent subcubes using edge bisection. Then denote by Fj the subfamily
for which (4.4) holds, and by Gy the subfamily where (4.4) fails. The union of the cubes in
Fi, G is denoted by Fj,Gi; we note R™ = Fj, U U?:l Gj. The process is iterated as long as
Fj is nonempty. We prove the result for G = |JGx. Two cubes Q € Gi, Q' € Gy with k < ¢
have disjoint interior, since @’ comes from some P € Fj. If Q belongs to G and comes from

P € Fi_1, then

a<@/Qf(x)dxgﬁ;/Pf(az)dxgyla.

This proves (i). For z ¢ G, we have x € Py, for a sequence Py € Fj, thus

1

— | f(x)de <o where |P;| — 0.
[Pkl Jp,

By the Lebesgue differentiation theorem, see Cor. 2, Sect. 1.7 of [14], the left hand side
converges to f(x) a.e. which proves (ii). Finally (iii) follows since

1 1
G1=Y @< o [ is@lde =] [ 15

Qeg Qeg
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Our aim is to compare the function with its maximal function in terms of integrability. The
following are the key inequalities.

Lemma 4.1.5. Let f € LL (R"), f >0, and a > 0. Then for a constant C = C(n) < oo
C
Hz:Mf(zx)>a} < — f(z)dz. (4.5)
& Sa:f(x)> 5}
Reversely, there are constants C = C(n) < oo, A = A(n) > 0, such that

1/ f@)de < CHz: Mf(z) > ra}|. (4.6)
@ J{a:f(z)>a}

Proof. To prove (4.5) we chose for each € R™ with M f(x) > « a radius r, > 0 such that
f(y)dy > «|B*| where B* = B,_(z).
Bz

By Vitali, Theorem 4.1.3, there are disjoint B*, k € N, such that the set {z : M f(z) > a} is
covered by the enlarged balls 5B%+. Hence

|{m:Mf(m)>a}|§5”Z\B"”k]<Z/ ydy</ Dlde. (A7)
k=1
The trick to obtain the improved inequality (4.5) is to consider
i >
o) — { @) i f@) > a/2,

0 otherwise.

Clearly f(z) < fi(z) + § for all x € R", which implies M f(x) < M fi(x) + § and thus

{x:Mf(x)>a}C{z: Mfi(z) > =}

o[ 09

Applying the previous estimate (4.7) to f; yields

« 2-57
Ha: Mf(z) >a}f < {z: Mfi(z) > S} = — /{xf()m/z}f(w)dm-

We now prove (4.6), first assuming f € L'(R"). Let Q € G be as in Theorem 4.1.4 by
Calderon-Zygmund. Then for any x € ) we have, putting d = diam Q),

Q| QI [Ba(x)]

Using (ii) and (i) from Theorem 4.1.4 we infer, recalling that cubes in G have disjoint interior,

= /{wzf(m}f(z)dx < 1y / fa

Qeg
2" > 10|
Qeg
|{x: Mf(z) > 27 "n""2a}).

a< L / J(y)dy < Ba@l_1 [ Sy <),

IN

IN
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To get (4.6) for f € LL_(R™) we apply the result to f, = X{jz|<k}f /[, this yields

1

/ fala)de < C [{z: Mfu() > Aa}| < C[{a: Mf(z) > Aa}.
A Jizepi(wy>a)

The left hand side passes to the limit by monotone convergence. O

As first consequence, we show that for 1 < p < oo there is no difference between f and M f
when it comes to L? integrability.

Theorem 4.1.6 (Hardy-Littlewood). For f € LP(R™) with 1 < p < oo we have
M fllLe@ny < Cllfl|Logny where C = C(n,p) < occ. (4.8)

Proof. The case p = oo holds with constant C'(n,00) = 1. For 1 < p < 0o we estimate using
(4.1) and (4.5)

[ rapds = » /ooap-lr{:c:|Mf<x>\>a}da
Rn 0

Cln)p / ob~? / (@) dz da
0 {zeR™:|f(z)|>a/2}

2| f ()]
= Cop [ @] [ ot dada

C(n)2r=1p
L [ (@ e

IA

O

Remark 4.1.7. The function M f is never in L'(R"™) unless f = 0. In fact, for any R < oo
we have Br(0) C By () for |x| > R, yielding the lower bound

> b

~ | Baj)(2)] By ()

Mf(z) )y > / ()] dy.

BRr(0)

If HfHL1(BR(O)) > 0 then the right hand side is not integrable. To get an example where the
mazimal function is locally not integrable consider f : R™ — R given by

1
~ Jolrlog? 2]

f(x)

Bye(0) = 0 wheree=2718....
We compute substituting r = e~ for 0 < o <1/e

¢ dr > dt 1
/ f(:c)da::/ 5 :/ 5=
B,(0) o rlog”r —logo t log o

In particular f € L'(R™). On the other hand as B, (x) D By, (0), we estimate for x| < 1/e

() () ()
Mf(z) > /B R /B RLE

= el = e x| log |

The right hand side is not integrable near the origin (for the integrals see also example 2.4.2).
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Contrary to the case p > 1, the L' integrability of the maximal function M f implies an
improved integrability of f. This was discovered by E. Stein.

Theorem 4.1.8 (Stein [55]). Let B C R™ be a round ball. Then for any f € L'(B) we have

][B fllog™ 1f1 < CIM Il s) (4.9)

where logt := max(1,log).
Proof. We assume f > 0 and B = B;(0) by scaling. By (4.6) we estimate, using A = A\(n) > 0,

[ tanog s@de = [ 1) [ xswa) s

= / 1/ f(z) dx da
1 & Jef(x)>a}

0/1 {z: Mf(z) > \a}|da

IN

IN

CA o M[(z) > B} dB

= C M f(z)dx
{x:M f(z)>\}

< o(IMSl + [ M (@) ds).
{lz|>1, M f(z)>\}
From spt f C B we see that for |z| > 1

C

M) € s

in particular

Mf@)>A = |a|<1+ (C”J;”Ll)l/n — R

Now for |z| > 2 we have M f(z) < 2"C||f||z1. The inequality (1+¢)" < C(1 +t") yields

Mf(x)dx

IN

/ Cllf | R
{:p:|m|>%, Mf(x)>A}

ClAl L X+ F Nl )
CL+ M fl7p))-

VANVAN

On the remaining annulus, consider the reflection

x

¢: Bi\B1 — Bs\Bi, ¢(z) = (2 - |$’)m~

Given z € B;\Bi, any y € B; decomposes as y = sé—‘ + y*+ where —1 < s < 1. Then
2

|s — |z|| < |s — (2 — |z|)| which implies

ly == (s = |2)* +ly P < (s = 2~ [2])* + [y > = |y — ().
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Thus B, (¢(x)) N B C By(z) N B for any r > 0. Substituting y = ¢(x) we conclude

/ Mf(y)dy < C Mf(6(a)) do < C M f(x) da.
{1<]z|<3} {3<lal<1} {i<|z|<1}

The theorem follows by combining the estimates. O

Remark 4.1.9. The set of functions for which |f|log™ |f| is integrable is called the Llog L
class. As noted by Stein the above theorem is sharp, in the sense that the Llog L property
implies the local integrability of M f. To see this we write for any set E C R™

/Mfda: = 2/00|{x6E:Mf(m)>2a}|da
E 0

< QyEy+2/ i : Mf(z) > 2a] da.
1

Now (4.5) yields, with x ¢(x, ) the characteristic function of {|f(x)| > a},

[T twatswr s 2aiiae < [T(E ] isernal @) ds) da

(0}

= ¢ [ @l [Ty d

= T O+ x X.
= ¢ [ 1f@hog* 1f@)a

Thus for an arbitrary set & we obtain

/E M f(x)dr < (12| + /R 7 (@) log" |f(x)] ). (4.10)

Next we review some facts about degree theory and Jacobi determinants. Let Q C R™ be

a bounded domain of class C'. For a map u € C?(2,R") the oriented multiplicity function
iy : R® = Z is given by

_, signdet D if 00) is a regular value,

) = {Zu@_y igndet Du(z) i y ¢ u(09) is a regular valu oy

0 else.

Here y ¢ u(9Q) is a regular value if and only if det Du(z) # 0 for all x € u~'{y}. By the
inverse function theorem and compactness, each regular value has only finitely many preimages
so that the sum is defined. Our main tool in the following is the transformation formula: for
any g € L'(2), the function y Zu(z):y g(z) is integrable on R™ and

[ s@laecpu@acr@) = [ (3 a(@)ae).

u(z)=y

In particular, the set of points in R™\u(9€2) which are not regular has Lebesgue measure
zero. This is actually a step in the proof of the transformation formula, see [14, Section 3.3].
As u(09) is also a null set, the first alternative in the definition of 7,, applies almost everywhere.
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Now let h € CO(R™). By the transformation formula, we calculate
/ h(y) in(y) AL (y) = / h(u(z)) sign det Du(x)| det Du(z)| dL™ ()
n Q
= / h(u(x)) det Du(z) dL™ (x)
Q

= / u”(h(y) dy),
Q
where dy = dy' A ... Ady". Inserting h = div ¢ where ¢ € C}(R", R") we infer

/ (divg)indL" = /Q o (div 6 dy) = /Q wd(gudy) = /Q du* (¢udy) = /a ' (oudy).

Taking spt ¢ C R™\u(0B) yields Di,, = 0 on R™\u(9B), hence i, is constant on the compo-
nents of that set. For general ¢ we compute further

u*(oudy)(er,...,€5,...,e,) = det(pou,diu,... ,8/]2, ey Opu)
= (¢'ow) det(ei,alu,...,@,...,%u)
(=1)7" (¢ o w) cof (Du);j.

Here cof;j(Du) equals (—1)"*7 times the ij-minor, i.e. the subdeterminant when the i-th row
and j-th column of Du is omitted. Now assume |¢| < 1, so that by Cauchy-Schwarz

’ / ¢Ldy /m [ (pudy)| dH" " < /ag |cof (Du)| dH™ .

Recalling the definition of the variation measure |Di,| we arrive at
|Di,|(R") < / |cof (Du)| dH™ . (4.12)
o

The following is Lemma 1.3 in [39], see also Theorem 2.10 in [54] for the case n = 3.

Lemma 4.1.10. Let Q@ C R" be open and bounded, u € I/Vlln(Q R™). For any v € Q and
almost all r € (0,dist(z, 0N)), we have for a constant C = C(n) < oo

" <C |cof (Du)| dH™ . (4.13)
OBr(x)

‘ / det Du dL"

Proof. We first assume that v € C?(2,R™). Using once more the transformation formula, and
the fact that i, p, (,) is integer-valued, we have

/ det DudL" = / G, () AL™ < / [

Further, the Sobolev embedding theorem, see [14, Sec. 5.6, and (4.12) yield

n—1

([ Jiuml77d2") ™ < C|Divp | < O [cof (Du)| db" .
R™ 0B (x)
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This proves the lemma for maps u e C%(Q,R"). Now let u € W™(Q,R?), and chose u, €

loc

C?(9,R™) with up — u in T/Vl "(£2,R™). By Fatou we have for R < dist(z,09)

k—o0

R
/ lim inf/ |cof (Duy,) — cof (Du)| dH™ tdr
0 9B, (z)

< lim |cof (Duy,) — cof(Du)| dL"™ = 0.
k—o0 Br(z)

Thus for almost all r € (0, dist(x,09)) inequality (4.13) follows by approximation. O

We have now collected all ingredients to prove Miiller’s higher integrability theorem. The main
idea is to estimate the maximal function of the Jacobi determinant by the maximal function
of the (n — 1) x (n — 1) minors using (4.13). The advantage is that the minors come with a
power —"=, so that Theorem 4.1.6 by Hardy-Littlewood can be applied.

Theorem 4.1.11 ([39]). Let Q@ C R, n > 2, be open and bounded. If u € WH™ (2, R™) has
det Du > 0 almost everywhere, then for any compact set K C )

/ det Du log™ (det Du) < C(d, 6, [Jully1.n(q)), (4.14)
K

where d = diam K and ¢ = dist(K, 092).

Proof. Let B be a ball of radius d containing K, and put g = xx det Du. The result follows
from Theorem 4.1.8 once we have the estimate

IMgllLr () < CUBI 6, [[ullwin(e))- (4.15)

We show an improved version where the right hand side depends only on the L7-T-norm of
cof(Du). For r > §/4 and all € R" we have the trivial inequality

][ gl L < C/ | det Du| dL" < C/ lcof (Du)| 7T dL™. (4.16)
() o Jo " Jo

In the last step we used Du - cof(Du)™ = (det Du) Id, which implies
| det Du|™ = | det Dul | det cof (Du)| < | det Du| |cof (Du)|",

thus | det Du| < |cof(Du)[™ (=D, Now for 7 < §/4 we may assume dist(z,dQ) > 6/2. As
det Du > 0, Lemma 4.1.10 implies for almost all ¢ € (r, 2r)

n—1 n—1

(/ |g|d£”) "< (/ detDudE") T <o lcof (Du)| dH™ 1.
B, (2) By () 0B, (z)

Integrating on (r,2r) and dividing by ™ gives, putting cof(Du) = 0 on R™\(2,

(][ ygydc" o c][ lcof (Du)| dL™ < CM(cof(Du))(z).  (4.17)
Br(x)

Combining (4.16) and (4.17) yields

Mg(z) < C’M(cof(Du))“%l(w) + ;/ |cof (Dw)| 7T dL™,
Q
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and by integrating

o C|B| =7
< n-1 " .
1Mg: ) < CIM(col (D)7, )+ =5 lleof (D)l T8,

Now as "5 > 1 we can apply Theorem 4.1.6 by Hardy-Littlewood to get
M (of (D), 2y ) < Clleof (D), o = Clleof (D),
Combining gives (4.15), and hence the theorem. O

In [39] the estimate is stated for det Du log(2 4 det Du). This follows easily from the version
above, using log(2 + s) < logs + 1 for s > 2. In Section 7 of [39] a counterexample is given,
showing that the condition det Du > 0 cannot be dropped.

4.2 The Hardy space

As is well-known a bounded sequence f;, in L'(R") may have a weak limit which is not rep-
resentable by an L'(R™) function, but only by a signed Radon measure. The Hardy space
HY(R") is continuously embedded into L'(R") and has a norm which scales like the L'(R")
norm. However, as opposed to L'(R™) the unit ball in H!(R") is weakly sequentially compact.

To start we recall the notion of convergence in CO(R"), i.e. ¢ — ¢ if and only if

Jsptor @R and  [l¢x — ¢llcogn) — 0.
k=1

It is possible to construct an underlying topology, however this is omitted for reasons of
simplicity. For a linear form A : CO(R") — R and U C R” open, we define
|A|(U) := sup{A(¢) : ¢ € CO(R™), spt ¢ C U, |¢| <1} € [0, 00]. (4.18)

For arbitrary sets £ C R™ we then put |A|(E) = inf{|A|(U) : E C U open}. We denote by
CO(R™)" the set of those A for which |A|(U) < oo whenever U cC R™. Clearly, any such A is
sequentially continuous on CY(R™). Moreover, the Riesz representation theorem asserts that
|A| is a Radon measure, the so-called variation measure of A, and that there is a |A|-measurable
function o : R™ — {£1} such that

A(p) = pod/A| for any ¢ € CO(R").
R

The convolution of A € C2(R™)" with ¢ € C(R") is the function

G A:R" =R, (p*A)(x) = Ad")  where 67 (y) = d(z — y).

For example (¢ * dg)(z) = ¢(x). We note that ¢ * A € C°(R") since the map R" — C?(R"),
z — ¢, is sequentially continuous, as is A : C2(R™) — R. Any function f € L} (R") defines
canonically a functional Ay € CO(R™)’ by

As(9) = [ o) f(y)dy,

R”
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and the two notions of convolution are consistent, in the sense that

(03 A0)@) = A7) = [ oo —)f)dy = (0 (@)
Now we introduce a general class of test functions, namely
T ={¢ € CXR") :spto C B1(0) and || Do||r~ < 1}. (4.19)

Clearly (||| oo rny < 1 for ¢ € T. For the rescalings we use the notation
br(z) = t‘”gb(%) for t > 0, (4.20)

thus spt ¢y C By(0) and || D¢y oo (mn) < t~(+1)_ In the following definition the term grand
refers to the fact that the maximimum over all kernels in 7 is considered, rather than working
with a specific one; this makes the application more flexible.

Definition 4.2.1. The grand mazimal function of A € C2(R™) is defined by
A*(z) = supgyer Sups [P * A()]. (4.21)

Let ¢ € C2°(R™) with spt ¢ C Bg(0) and [|Dé||pecrn)y = @ > 0. Then the function ¢ (z) =
ﬁ(b(R:c) belongs to T, and we calculate

(0 A)(@) = Ay = oz —y)) = Ay = R app(z —y)) = R a(pr * A)(2).
Thus for any ¢ € C°(R™) we have the inequality
(6 % A)(2)| < R D ooy A*(z)  if spt ¢ C Br(0). (4.22)

There are several characterizations of Hardy space, whose equivalence is by no means obvious,
see [15] or [57|. A nice introduction is due to Semmes [52].

Definition 4.2.2. H'(R") is the set of all A € C2(R™)’ for which A* € L*(R"™). We put
1Al mny = A" L2 ey (4.23)

As (A1 + A2)* < A7+ A5 and (aA)* = |a|A*, the Hardy space is a normed vector space. The
following lemma will allow us to consider its elements as L' functions.

Lemma 4.2.3. The space H'(R™) is continuously embedded into L'(R™).

Proof. We use approximation by smoothing. Choose a fixed kernel ¢ € C2°(R™) with spt ¢ C
B1(0) and [z, ¢(x)dr = 1. Writing A = |[AlLo by the Riesz representation theorem and
putting ¢(z) = ¢(—x), we compute using Fubini’s theorem, recalling ¢¥(y) = é¢(z — ¥),

| @@ = [ A0 da
N /n IR{,fbt(ﬂ”—?J)U(y)dIAI(y)n(ac)d;z

= / . dr(z — y)n(z) dz o(y) d|A|(y)
= A(qut*n) — A(n) ast 0.
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To justify this we note that (x,y) — ¢(z —y) n(z) o(y) is integrable with respect to L™ x |A].
Namely, the function is measurable and we have, putting K; = {y € R™ : dist(y,sptn) < t},

L[ b =)l n(o) e Al ) < = Al < o

Now from (4.22) we have the bound
|y A(2)] < "Dy oo ey A* () = || D|| oo (mryA* (2) € L (R™).

As the ¢ * A are equiintegrable they converge in C?(R™)" subsequentially to some f € L!(R™).
But Ay = A by the above, hence the sublimit improves to a limit. Finally

Il mny < 1i£11\i0nf [Pt * All L1 wny < [[D@| oo mry A" || L1 R
O

From now on the elements of H!(R") are regarded as L!(R™) functions, in particular we write
f* instead of A}. As pointed out at the beginning, the following weak compactness theorem

distinguishes the space H!(R"™) from L!(R™).

Theorem 4.2.4 (weak compactness in H!(R")). Let fix be a bounded sequence in H'(R").
Then there exists an f € H'(R™), such that for a subsequence fr — f in CO(R™), and

[ £l ey < liminfy oo [| fiell2 (ny- (4.24)

Proof. By Lemma 4.2.3 we have || fi|[z1®n) < C, so that fr — A in CY(R™) after passing to
a subsequence. Now for ¢ € T and ¢t > 0 we have

(0 F)la) = [ oF ) ) dy =5 A@D) = (< A)(a),

which implies

(605 A)(&) = Jim (60 * fi)(x) < limint fi (x).

= lim
k—o0
Take the supremum with respect to ¢ € 7 and ¢ > 0. Then by Fatou’s lemma
[Ales ey = 1A 3oy < K i [ 1 eny = i | ficles e
Finally A = Ay where f € L'(R") by Lemma 4.2.3, which finishes the proof. O]
Corollary 4.2.5. H'(R") is a Banach space.

Proof. Let f, € H'(R") be a Cauchy sequence. By Lemma 4.2.3 and Fischer-Riesz, f;
converges in L'(R™) to some f € L'(R"). Theorem 4.2.4 implies that f € H!(R"), and that

1f = fellar@ny < Hminf|[fy = follgr@ny <& for £> K(e).
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Corollary 4.2.6 (Cancellation in H!(R")). For every f € H'(R™) we have

f(y)dy = 0. (4.25)
Rn

Proof. We first check the scaling of the Hardy norm. For f € H'(R") and t > 0 let f;(y) =
t="f(¥). Compute for ¢ € T, t > 0, by substituting y = tz,

@+ f)@) = [ o=yt f(F)dy
-

_ /nqss(t(;”—z))f(z)dz
= (055 1) (5)

We estimate on the right with f*(¥), and then take the supremum over ¢ € T, s > 0, to get
fiz) = t‘"f*(%) for z € R", ¢ > 0.
We first get the inequality, for equality we use (f;)1 = f. In particular we obtain
t

”ft”HI(Rn) = HfHHI(Rn) for all ¢ > 0.

Now for f € L'(R") the f; converge in C?(R") to a multiple of the Dirac measure g as t \, 0,
in fact dominated convergence yields

¢(x) fr(z)de = | o(ty)f(y)dy — $(0) [ f(y)dy.
R™ R™ Rn

On the other hand we must have f; — f € H(R™) for a subsequence by Theorem 4.2.4. As

the Dirac measure is not in H'(R"™) we conclude that [g, f(y)dy = 0. O
Alternatively, we can argue more directly: for a given sequence xp — 00, we pass to a
subsequence with ‘i—:‘ — z. For ¢ € T we have putting Ry = ||
n g* n -n T —Y —-n z
" (@) = ol loun, + Fal =27 [ () dy»270(3) [ s do

Choosing ¢ appropriately we obtain
liminf |z|" f*(z) > c‘ / f(y) dy‘ for some ¢ > 0.
T—00 R™

Thus f* integrable implies that the integral of f is zero.

Next we compare the grand maximal function to the maximal function of Hardy-Littlewood.
Lemma 4.2.7. Let f € LL (R"). The for any v € R" we have

(1) f*(z) < CMf(x),

(2) Mf(x) <Cf*(x), if f = 0.
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Proof. To prove the first statement we calculate for ¢ € 7, ¢ > 0,

[ o010
< 6l eyt / )l dy

()

(¢ )(@)| = 7"

< OMf(z).

Taking the supremum over ¢ € T, t > 0 shows claim (1). On the other hand, choosing ¢ € T
such that ¢ > %XBUQ(O) we can estimate, for f >0,

— 4N rT—y 711} c
@epw = [ o Thswaz ey [ swazef i

n t
This implies

M f(x) = sup ][B ( )f(y) dy < iiglg(@b% * f)(z) < %f*(w)-

t>0

Theorem 4.2.8. Let f € L'(R™) such that spt f C Br(0) and [y, f(z)dz = 0. Then

1l mmy < C (

Proof. We estimate the L! integral of f* by splitting into the regions Bag(0) and R™\ Byg(0).
For |z| < 2R the inequality f*(x) < C M f(z) from Lemma 4.2.7 yields

IM fllLr(Byr(oy) + 1111 @ny)-

/ (@) dz < C M f[lL1(Byg(0))- (4.26)
Bar(0)
For |z| > 2R we have dist(z, Bg(0)) = |z| — R > 1|z|, hence
1
¢t*f(m):/ d(2)f(x —tz)dz=0 when 0 <t < =|z|.
B1(0) 2
For ¢t > 1|z| we estimate using [p. f(y)dy =0

o t@ = | [ (oo~ s ) dy

< D6yl R /R W)l dy
CR
W/Rn |f(y)] dy.
Integrating shows
/ Fayde<c [ 15@)ldy. (1.27)
R™\Bar(0) R™

The theorem follows by combining (4.26) and (4.27). O
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Corollary 4.2.9. Let f € LP(R"), 1 < p < oo, with spt f C Bg(0) and [z, f(x)dz = 0.
Then f € HY(R™) and
[ £l @y < Cp) R 7 || fll o (rn)-
Proof. The Hardy-Littlewood inequality, see Theorem 4.1.6, implies
IM |1t (Byn(oyy < CR* % [MFllpo@ny < C0) B || £l zogeny.
Since also || f|lp1(wn) < CR"» |1l »(mny, the claim follows from Theorem 4.2.8. O

Remark 4.2.10. We give an ezample of a function f € HY(R) with compact support, for
which M f is not locally integrable. Consider

where aj, = —k:x[_%m + kX(o,%}-
k=2

The function ay(z) belongs to H'(R™) by Corollary 4.2.9. As ap(x) = kai(kx) = (a1)
we have [|ag |y w) = lla1llyr(w) for all k, and

(),

1
k

e < € g

On the other hand, for x € (0, f] chose n > 1 with STeEsy] +1) <z < 5., and estimate
i n+1 1
pt (log k)2 log 2n)2 ~ 2z(log1/x)?’

It follows that

1 21 + log 2
J(z)log f(z) 2 2xlog (1 Og( lo gl) = )

Thus f does not belong to the Llog L class, and Stein’s theorem 4.1.8 shows that M f is not
locally integrable. The integrability of f* is due to a cancellation effect.

In 1993 Coifman, Lions, Meyer & Semmes [10] gave a number of applications of Hardy space to
partial differential equations. Some of them were previously known by other methods, among
them is the so-called div-curl lemma from Murat and Tartar [40, 61]. In fact, this is a classical
result in compensated compactness. We give a version involving differential forms, for which
we now recall some basic facts.

The exterior derivative dw and its adjoint d*w of a differential form w are
n n
dw = Z de' NOw and d'w=— Z e;Low.
i=1 1=1

Using coordinates one easily checks that (¢ Aw,n) = (w, zLn) where ¢ = (-, 2z). In particular
we have as claimed, for forms with compact support,

/ (dw,n dx—/ Z (dz' A Oyw, ) d / Z w, €;L0in) d / {w,d"n) dz.



4.2. THE HARDY SPACE 47

Lemma 4.2.11. We have d*d + dd* = —A.

Proof. For z € R™ we denote by I(z)w = zLw the interior multiplication and by E(z)w = (Aw,
¢ = (-, z), the exterior multiplication. Then

d*dw = — Z I(ei)E(ej)afjw, and dd'w=— Z E(ej)I(ei)ajg-iw.
i,j=1 i,j=1

As 8i2jw = 8]24w, the claim follows by proving that

Sym(I(e;)E(e;) + E(ej)I(e;)) = 6;;1d.
By polarization with respect to e;, e;, it is in fact sufficient to show
I(2)E(z) + E(2)I(z) =1d  for any z € R", |2| = 1.
Now I(z) = E(2)*, thus A*(R") = im E(z) @ ker I(z) and any w decomposes as
w=E(W +w’ where I(2)w" =0, I(z)u' = 0.
Using E(2)? = 0 and I(2)w” = 0 we have
1()B (2w = I(2)B(a) = (¢ ") (5,) = ()" = .

We compute further
E(2)I(2)w = E(2)I(2)E(z)w = E(z)u'.

The claim follows by adding the two equations. O

Lemma 4.2.12. Let § € LI(R" A*(R")) where 1 < q < oo. If dB = 0 in the sense of
distributions, then there exists a form ~ € I/Vli’q(R",Ak_l(R”)) such that dy = 3, and

[DYlagny < ClIBllrawny  where C = C(n,q). (4.28)
Proof. For any B € LI(R™, A¥(R™)) there exists a ¢ € VVI?)’C‘Z(R”, AF(R™)) such that
Ap=8 and |D*| e < ClBliaen where C = Cn,q) < .
Namely, if 8 € C>°(R") we take the Newtonian potential

27 forn >3,

;|z
o(x) = /n Nz —vy)B(y)dy whereI'(z) = {(2—”)wn

+ log |z| for n = 2.

The L9 estimate of D%¢ is then the Calderon-Zygmund inequality, see for instance [2]. For
general € LY(R™) we approximate by 3; € C°(R™) in LI(R™). Then 3; = A¢; where

lim sup || D*¢;| arry < C|lB| Lagrn)-

J—00

Subtracting a linear function, we can arrange that

/ D¢jdxr =0 and / ¢jdx = 0.
B1(0) B1(0)
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A standard contradiction argument using Rellich’s theorem yields
6llwraBro) < CR, @)Dl Lagrn)-

After passing to a subsequence we have ¢; — ¢ in T/Vli)’cq(R"), and || D?¢|| arny < C||Bl Laqrn)-
Thus ¢ is the desired solution of A¢ = f.

Now if df = 0 then d*d¢ is harmonic. In fact for any ¢ € C®(R™, A¥(R")) we compute,
using d? = 0 as well as (d*)? =0,

/n<d*d¢>,AC>dx = —/n<d*d¢,(d*d+dd*)c>d9¢
- / (dep, d(d*dC)) da — / (d*¢,d*(d"d()) dx
o "
_ / (D, D(d*dC)) da
- /(5,d*d§>dm.
-

As d*d¢ belongs to LI(R™ A*¥(R™)), the mean value inequality implies that d*d¢ vanishes
identically. This in turn implies —dd*¢ = 5, and the lemma is proved by taking v = —d*¢. O

The following is the key observation of Coifmann, Lions, Meyer and Semmes.

Theorem 4.2.13 ([10]). Let a € LP(R™, A*(R")), 8 € LY(R", A" *(R™)), where 1 < p,q < oo
and % + % =1. If da = 0 and dB = 0 weakly, then a A 8 € H'(R™) and

oA Bl wny < Cllalo@e) 1Bl Lagr)- (4.29)
Proof. By Lemma 4.2.12 there exists v € W,o9(R", A" *~1(R")) such that
dy=8 and [Dyllgaee) < ClI8)agar. (430)

On the other hand, the equation da = 0 has the weak formulation
/ aANd(=0 forall (e CEO(R”,A"_I“_I(R”)). (4.31)

To see this we need the formula, for w € A¥(R™), n € A»*(R") and * the Hodge star operator,
wAn= (=" sn)dat AL A da”.

Using this we compute

anNdl = a/\dei/\&C
=1

n

= (=1)FDO=k+D) 1)k {(da' Ao, %0;C) da' A .. A da”

=1

= (—1)nEFD=1 (g, Z eid; * C)dzt AL A da"
=1

= (—1)"*D {q, d(+¢)) dat A ... A dz™
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This shows (4.31). Now by approximation, any form ¢ = n(y — ) with n € C2(R") and
70 € A"F=1(R™) constant, is admissible in (4.31), thus we get

/TWQABZ—/TaAmMWv—%) (4.32)
For given ¢ € T and t > 0, we take n(y) = ¢F(y) = ¢¢(z — y). Then |dn| <t ! and

C
oexanp)@l = [ stans< T lalh=ldy.

Rn Bt (CI?)

We now use Holder’s inequality with exponent r € (1,p]. The second factor, which gets the

power s = -5 € [g,00), is estimated by the Sobolev-Poincaré inequality. More precisely

prtanmol < F(F, ara) (f,  h-st )

< C(f;@ﬂaT@Oi(f;wﬂDvﬁﬁﬁk

< CM(|a]")(z)F M(1Dy|M)(x)3.

1
s

Here we need % <1+ % — % Take the supremum over ¢ > 0 and integrate, then use Holder
with exponents p, g to get

| tanyar = ¢ [ Mol MDA da

IN

1
Cl[M([el) ) 1M (DY)

1
!
Hﬁ(w LY (R")

IN

1 1
T Al X
Clle™ 17 2 gy 1PN g oy

= Clallpr@e) DYl Larny-

To apply the Hardy-Littlewood theorem 4.1.6 we needed that r < p, A < ¢. We eventually fix
the parameters: we can chose 7 > 0 such that

1 1 11
—<=<min(1,1+=—=). (4.33)
p T noq

Then r € (1,p), and we can chose A > 0 such that

1 1

< gmm04+ﬁ—;) (4.34)

|
> =

Thus A € [1,¢), and the Sobolev-Poincaré inequality applies. Recalling the L7 estimate from
Lemma 4.2.12, we arrive at the desired bound

la A Bl ey < Clle Lo@n 18]l La@ny-
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The paper [10] states the theorem for vector fields £ € LP(R™,R"™) and B € L4(R",R")
satisfying curl £ = 0 and div B = 0, claiming that

IKE, B) 31 gy < ClIE| Loy | Bl Loy -

This result is also included in our formulation by considering the forms

a:ZEZ-dafi and ﬁzBdel/\.../\dx":Z(—l)iBidxl/\.../\a?a?i/\.../\dx".
i=1 =1

We then have x(a A 8) = (E, B). One possible application is to Jacobi determinants of maps
u:R" = R" with Du € L™(R"™,R™*"). The theorem then implies
det Du = *(du* A ... A du™) € HY(R™).

In the case det Du > 0 this yields another proof of Miiller’s theorem 4.1.11: one combines
Stein’s theorem 4.1.8 with Lemma 4.2.7 to obtain, for any ball B C R",

c
c
C
c

| det Du log™ det Dul| 11 (p) B, || M(det DU)HLl(B))
B, [|(det Du)*|[ 1))
B, H det DUHHI(R"))

B, | Du|| nmny)-

~ —~

IANIA A IA

The H!-estimate for det Du can be combined with the following regularity result by Fefferman
and Stein [15], thereby proving a certain generalization of Wente’s theorem 3.2.1. Note that
functions in W?! are continuous in dimension n = 2.

Theorem 4.2.14 ([15]). Let f € H*(R"), and assume that u : R — R is a solution of
—Au=f inR".
Then u = ug + h where h : R™ — R s harmonic and ug : R™ — R satisfies

1 D%uoll31 () < CIf a1 (-

4.3 Atomic decomposition

In this section we prove that every element in H' can be decomposed into so-called atoms.

Definition 4.3.1. A function a € L>®(R") is called an H'-atom (with admissible ball B), if
the following holds:

spta C B, (4.35)
1

llal|zoo®ny < 575 (4.36)
(R™) |B|

/ a(x)dx = 0. (4.37)
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This notion is invariant under recalings, more precisely B = B;(0) is admissible for a(z) if and
only if By(x) is admissible for af (y) = ¢ "a(*%). For example, the functions aj, in example
4.2.10 are H'-atoms on R.

Lemma 4.3.2. For any H'-atom a we have ||y gny < C, for C' < co universal.

Proof. By translation we can assume that a has admissible ball B = Br(0). Applying Corol-
lary 4.2.9 we obtain

||CLHH1(Rn) < OR"|al|poo(mny < C. (4.38)
g

As a consequence of this bound, we can build series of atoms as follows.
Lemma 4.3.3. Let ap € L'(R"), k € N, be a sequence of H'-atoms, and let N\, € R with
S22 M| < oo, Then f =330 Aray converges in H(R") and
o
£l emy < C D Il (4.39)
k=1
Proof. The series converges absolutely since
o oo
D I kakllz ey < C D M| < oo
k=1 k=1

The claim follows since H!(R") is a Banach space, see Corollory 4.2.5. O

The goal of this section is to prove a converse to Lemma 4.3.3, namely to decompose a given
f € HY(R™) into a sum of H'-atoms. For this we need the following Whitney decomposition,
see also [56].

Lemma 4.3.4. Let Q C R" be open, Q1 # R", and d(z) = dist(z, F') where F' = R"\().
There exists a collection G of closed cubes P with the following properties, where P denotes
the concentric cube scaled by factor 2:
(i) diam P < dist(P, F') < 4diam P,
(i) Upeg P = and P C Q.
(iii) int (PNP)=0  forany P,P' €g,

Furthermore let G, = {P € G : Pn By 2(x) # 0} for x € Q. Then we have, for constants
c=c(n)>0and C =C(n) < oo,

(iv) cd(z) < diam P < Cd(zx) for any P € G, and #G, < C.

We note that cubes in G have positive volume by (i), hence G is countable by (iii).
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Proof. For given z € Q choose £ € Z maximal with /n2/T! < d(z). Let P be a cube with
vertices in the grid 2¢Z" and sidelength 2¢, such that z € P. Then the following holds:

d(x) — diam P > v/n 2t — /n 2" = diam P,
d(x) < v/n2? = 4diam P.

dist(P, F)

>
dist(P, F) <

Thus if Gy is the set of all dyadic cubes P with property (i), then € is exhausted by Go.
Moreover any P € G satisfies

dist(P, F) > dist(P, F) — diam P/2 > diam P/2 > 0.

We take G as the set of maximal cubes P in Gy, in the sense that P is not contained in any
bigger cube of Gy. As F' is nonempty, any cube in Gy is contained in a maximal cube, hence G
satisfies (i) and (ii). Now consider two dyadic intervals I; 5 with lengths 2 < 22 and common
interior. Then I; C Iy, since the endpoints of I are also vertices of the 2¢1-grid. Therefore by
maximality G has also property (iii).

Fory e PN Bj(z)/2(z) and any 2 € P we estimate
3
dist(P, F) < dist(z, F) < |z —y| + |y — x| + d(z) < |z —y| + id(x)

Using diam P < dist(P, F) and inf,cp |z — y| < %diam P, we obtain after rearranging
diam P < 3d(z).

On the other hand, also for y € PN Bg(g)/2(z) and z € P arbitrary, we have

d 3
dz) <|z—y|+ |y — z| + dist(z, F) < (;) + idiamP + dist(z, F).
Rearranging and taking the infimum among z € P, we see that
d(z) < 3diam P + 2dist(P, F') < 11 diam P.

Hence the first statement in (iv) settled. Now dist(z, P) < dist(x, P) + 1 diam P < 2d(z),
thus P C Bsgy)(7) and |P| > c(n)d(x)". As the cubes in G have disjoint interior, property
(iv) follows by volume comparison. O

Lemma 4.3.5. Let f € LL (R") and ¢ € C°(B,(0)). Then for given z € R™ we have
| o)) dy| < (12 = w0l + 0" Dol 1 (2) (4:40)
Proof. We write
- o(y)f(y) dy = . (z=(z=y)f(y)dy = - ¢*(z —y) f(y) dy = (6" x f)(2).

Now we have spt ¢* C By(z — z9) C Bgr(0) for R = |z — zg| + o. The inequality follows by
applying the estimate (4.22). O
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The key step in the atomic decomposition is the following Calderon-Zygmund type argument.
For its statement, we note that f* is lower semicontinuous and hence superlevel sets {x € R™ :
f*(z) > a} are open, as f* is defined as a supremum over continuous functions.

Lemma 4.3.6. Let f € HY(R") and o > 0, such that Q = {x € R" : f*(z) > af # R
Let Py, k € N, be the family of cubes obtained by Lemma 4.3.4, and put Qi := Py. Then the
following holds:

(i) For each k there is a function by with support in Qy and integral zero, such that
10k |31y < C’/Q *(z) dz. (4.41)
k

(ii) For g = f —b, where b= 72, by, we have |g(z)| < Ca almost everywhere.
Proof. Fix £ € C2°(R") with spt¢{ € (—1,1)", 0<é<land {=1on [— 3, 3]", and define

& € CX(RY), &) = (=),

where x,0p, are the center and sidelength of Py, in particular spt &, C int Qx and £ = 1 on
Py As Q=2 Py, we get 372, > 1 on Q. Moreover, by Lemma 4.3.4 (iv), locally all
but finitely many of the §; are zero, thus we obtain the smooth partition of unity

ne € C(R™), m(z) = z%
d

Clearly 0 < np <1 and sptn, C int Q. Moroever we compute

Dny(z) = ! Z D&y (z — &k(® )D@(ﬂf))
(Sxi6@) =

According to Lemma 4.3.4(iv) the number of j with Q; N Qr # 0 is bounded by C(n), and
|DEj(z)| < CJt; < O/l for these j. Hence

C

Han”CO(Rn) ~ a for C = C(n) (4.42)
Furthermore
c(n)ly < / Nk (x) doe < / n(z) de < Cly. (4.43)
Py Qk
We define b, € C°(R"™) with spt by C int Qx by
Jon S y) dy

bp(z) = (f(x) — c(f where ci(f) = . 4.44
k() = (f (@) — cr(f)) k(f) fRnnk dy (4.44)

Note that cx(f) is the mean value with respect to the measure £ 7y, in particular

/ b (x) dx = f(z) ng(z)de — ck(f)/ N (z)dz = 0. (4.45)
n R7

n
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We apply Lemma 4.3.5 to estimate ¢, (f). As sptng C Bey, (zx) and ||Dngllco < %, we can
estimate for any z € R", using also (4.43),

o Vi n+1
()] < CEZI LIS e,
k

By Lemma 4.3.4(i) there is a point z € R™"\Q with |z — x| < C¥p, thus we have
lek(f)| < Cf*(2) for |z — x| < Cl,  in particular |cx(f)] < Ca. (4.46)

We now verify statement (ii) of the theorem. For z ¢ Q we simply have |g(z)| = |f(z)| <
ff(z) <a. If x €, then we get, since 7, is a partition of unity,

= br(z) = f@) = > (fl@) =l F))me =D cr(fm()
k=1

k=1 k=1

Using (4.46) we can estimate
| < Z ‘Ck \Uk < Ca,

so (ii) is proved. We now turn to estimating by (x), first in the case z € Q. Consider

ot * (i f)(x /Qf)tfﬁ Yne(y)f(y)dy  where ¢ € T, t > 0.

We apply Lemma 4.3.5 with ¢(y) replaced by ¥(y) := ¢i(z — y)nx(y) and with z = . Using
either spt ¢ C By(x) or alternatively spt C Bey, (z1), we get

|6 % () ()| < C min(t, |z — xx| + Cl)" T Dl cogen) [ ().

By (4.42) we have
1 C
D3| comny < prEy + ey

Inserting and taking the supremum over ¢ € 7 and t > 0, we see that
(mf)*(x) < Cf*(z) for |x — x| < Clg. (4.47)

Furthermore using (4.46) we can also estimate

0 ()| < el [ forle = m(w)ldy < CF(a) for o = o] < Cli (445)
Taking again the supremum over ¢ € T, t > 0, and combining yields
bp(z) < Cf*(x) for |z — xg| < Cly. (4.49)

To treat the complemetary case, we now assume x € R"\Qy. By (4.45) we can write

(@xb)(@) = [ (onlo—9) = dulo — o) i) dy = I~ I
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where

o= [ e =) = la =) o) ) do
o= alf) [ (e —9) - il — o) miy) dy.

We assume that & was initially chosen such that £(z) = 0 for ||z||s > 2. Then

20
me(y) =0 for ||y — apoo > ?’f

< 2 e can estimate

For [ly — zp]lo0 < 5,

2 1
12 = ylloo = [l = Zlloo = lly — Zrlloc = [l = Tilloo — gl\x = Trlloo 2 Sl = zklloo.

It follows that 1
[z =yl > |lz — ylloo = 5l

Thus if ¢t < ﬁ\x — x|, then ¢y(x —y) = 0 and ¢(x — x) = 0, in particular

]ac—a:k|

La=0 fort< —]x — . (4.50)

3v/n

Now assume that ¢ > ﬁbs — x|. By the mean value theorem, we have

y—x
[Pe(x —y) — de(@ — )| < (| Dl co@nyly — zk| < | thkl

For 1(y) := (¢1(x — y) — d¢(x — x))mk(y) we get recalling (4.42)
L ValkC _ C

DY) < o + e T

We apply Lemma 4.3.5, taking again z € R"\Q with |z — 2| < Cl;. Then f*(z) < «, and we
obtain using spt ) C Bey, (Tk)

Crtla 1
L < —k ——  fort>——|z— 4.51
L L v (451)
The same estimate follows for 5 using (4.46), namely
_ Clyar ng“a 1

Combining (4.50), (4.51) and (4.52) we conclude

dx
bi(z)dz < Cﬁ”“a/ @
/Rn\Qk g g Ri\Q, | — T[T

* d
C’ZZHQ/ —g
o T

Ca Qg

C [ (x)dx
Qk

Here we used Q. C Q = {f* > «a}. Claim (i) follows from this estimate and (4.49). O

IN A

IN
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The following characterization of Hardy space is one of the key results in [15].

Theorem 4.3.7 (Fefferman-Stein). For any f € HY(R") there ewists a sequence ay, k € N,
of H'-atoms and a sequence N\, € R, such that

=Y i, (4.53)
k=1
where the convergence is in the H'-norm, and moreover
S Al < Cl s ey (151)
k=1

Proof. For each v € Z we apply Lemma 4.3.6 with o = 2¥ > 0, obtaining the decomposition

f=g"+b=g"+> b (4.55)
k=1

We put 9 := {x € R" : f*(z) > 2"}. By Lemma 4.3.6(i) and Lemma 4.3.4(ii),(iv) we have

St <cy [ F@dr<c | paide= [y ds
k=1 k=17 Q% o R

Since f* € L'(R™) we therefore conclude that
oo
1f = 9"l < DMKl = 0 as v oo, (4.56)
k=1

On the other hand, Lemma 4.3.6(ii) says that
19" | oo @ny < C2” =0 as v\, —o0. (4.57)
Combining (4.56) and (4.57) we have in particular

D gt =g =g =gV = fin L (R") as N — oc. (4.58)
V<N

Now using that 7)) is a partition of unity on Q" D O*1 we can write

gu+1 o gz/ — Y — by+1
= > (F=dP)mk =D (F = D)™ i
k=1 (=1 k=1
= Y (F=&WO)m =D D (F = )ny g
k=1 k=1 /=1

Note that the sums are locally finite, hence interchanging the summation poses no problem.
By definition of the ¢}/(f), the integral of each term in the first sum is zero. To achieve this
also for the second sum, we just subtract the necessary corrections. Define

cre(f) = T = Y = ][Rn(f — ) AL . (4.59)
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Note that ¢/ ,(f) = 0 if @, N QY = 0. We now claim that g"*! — g¥ = 3°3% | AY where

(= (F = =Y ((F = e )k = el n .

(=1

In fact, the corrections cancel when summing over k, since by linearity of c”Jrl

Yol = 26”“ = )K)

k=1

we get

o0

_ Z+1< o V+1 n )
1

— CZ+1(f 7Cl£+1(f)) — O

By definition, the A} integrate to zero and have support in the union of Q with those Q”'H
intersecting Q7. Choosmg some x € Q7 N Q”H we have by Lemma 4.3.4(iv), as F¥ C F”Jr1

diam Q4 < Cdist(z, F*™) < C dist(z, F¥) < C diam Qf.
Therefore A} has support in a ball By with diam By < C¢}. We finally claim that

For this we reorder the terms in AZ as follows.
o0
= fug(1- Zn”“ S+ S (T P+ ()

As ny ™! is a partition of unity, the first term vanishes on Q¥*!, while on R"\Q"*! we have
|f(z)] < f*(z) < 2“FL. For the second term, we recall |c¥(f)] < C2” from (4.46). The
constant cj ,(f) is estimated similarly by Lemma 4.3.5, replacing f by (f — cZ'H(f))nZ, and

taking z € F**1 such that |z — 24| < C/ < OfY. This yields
(DI < C((f =M (2) < OF(2) + Cle ()l < 027

Here we used (4.47) and (4.48). Since the overlap of the 7! is estimated by Lemma 4.3.4(iv),
the bound (4.60) is established. Now put aj = A7/} where A} = C2"|B}| with C' < oo as in
(4.60). It is immediate that the a¥ are H!-atoms with admissible ball BY. Moreover

> iIAZ\ < CY 2”Z!Qk|

[V|<N k=1 lv|<N =
< CY 2> 27y
[v|[<N
< cz/ > 1} dt
[v|[<N

IN

¢ [ 1@ de =1l
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By Lemma 4.3.3 the series

Dg =g =0 AL=) ) Ny

VEZL vEZ k=1 veZ k=1

converges absolutely in H!(R™) to some function fe H!'(R™). But the convergence is also in
Ll (R") by Lemma 4.2.3, and we conclude f = f by (4.58). Thus we have constructed an
atomic decomposition as desired. O

The rest of this section presents an application to the Poisson equation Au = f. For f
belonging to H'(R"), we show that all second derivatives are in L!(R™). We start by recalling
some facts about the Newtonian potential. For w, 1 = [S"~!| the fundamental solution of the
Laplace operator is

1
7\x|2_" for n > 3,
[:R™N{0} = R, I'(x) = (12 — N)wp—1
— log |z| for n = 2.

2T

The Newtonian potential of a function f is given by the formula (whenever defined)

Nf RS R Nf(@) = [ T - )f(w)dy
For f € C°(R™) we know that Nf is well-defined, smooth and solves A(Nf) = f.

Lemma 4.3.8. For f € L>®(R™) with compact support, we have w = Nf € VVIQ’Q(]R") and

ocC
HDQUHL?(R”) = ||f”L2(R”)~

Proof. We first assume f € C2°(R"™). Putting d = diam(spt f) we have

/ Iz —y)|dy < / II'(z)|dz < C(d,R) < oo for || < R.
spt f {lzI<|z[+d}

This implies
u(@)| < O, RB) | fllzmqery for |z] < R

Differentiation under the integral and integration by parts yields

dju(x) = . L' (x —y)f(y) dy.

Repeating the argument above then also implies
[Du(@)] < O(d, B) || fllzwany for 2] < R

Finally we have

a?j“@) = /n 3i2jf(a: —vy) fy)dy for x € R™\spt f.
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Now for y € spt f and |z| large, we have |z —y| > |z|/2 and see from the kernel representations

C C
|Du(z)| < Ps |D?u(x)| < PR for |z| large.

We calculate

/ |D2u?dz = / Oi((?juafju)dx—/ Oju0jAudx
Br(0) Br(0) Br(0)

= / i (Oju iju — Ojulu) dx + / |Au|? d.
Br(0) Br(0)

Letting R — oo we conclude
I D?ul| 2gny = |1 £l L2@rn) < o©.

For general f we consider the smoothings f. = n. * f. Dominated convergence implies that
Nf:(z) — N f(x) for all x € R™. From the bound in T/Vli):O(IR{") we see that u. — u uniformly,
this implies in particular Au = f in the sense of distributions. By weak® compactness we also

have u € WI}):O(R”) But now 6%u5 is a Cauchy sequence in L?(R™) and thus agjua — 6%u €

L?(R™). In particular we have
|1 D%ul| p2(rny = i{% |1 D% ue | p2(rn) = i{% [ fell2@ny = 11l L2 @n)-
This finishes the proof of the lemma. O
Theorem 4.3.9. For any f € H'(R™) there exists u € I/Vlic1 (R™) solving Au = f, such that
HD2UHL1(R”) < O fllpr @ny- (4.61)

We remark that if u € I/Vlicl(R") is any other solution of Av = f with D?v € L'(R"), then by
Liouville D?(v — u) = 0 and v — u is affine-linear. In particular (4.61) holds also for v.

Proof. Let a € L'(R"™) be an H!'-atom with admissible ball B = Bg(0). By the previous
lemma, the Newtonian potential u® = Na belongs to I/Vlic2 (R™) and satisfies

1 1
/ |D*u?| da < || D*u®| p2(mm) | B2 = [lall 2 (any| B2
Bar(0)
Now let K;; = 82-2]T. For |z| > 2R we can differentiate the kernel to get

() = [ Ko —laty)dy = [ (Ko —y) - K@)ay) dy

n

In the last step we used that a has integral zero. For t € [0,1] and y € Bgr(0) we have
|z — ty| > || — R > |2/, which yields

1
|Kij(r —y) — Kij(x)| < /0 |DK;j(z — ty) - y| dt < Cly||z|~ .
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Using |z| > 2R > 2|y| we obtain

/ |sz($ - y) - sz(l‘)| dr < C|y| |:L‘|_(n+1) da
< Cly| | t?dt<C.
2|yl
Inserting we find
/ fafjua(a:ﬂ dr < C la(y)] |Kij(x —y) — Kij(x)| de dy
R™\ By (0) Br(0) R"\ Bag (0)

A

< C HaHLl(R”)-
Combining the two estimates using the L°°-norm, we finally arrive at
ID%u®| 1 gy < Cllal| oo | B] < C.

Now let f = Z;’;l Aja; be the atomic decomposition of f given by Theorem 4.3.7. Put
k k
fr = Z Ajaj and v = Z Ajui € VVE)CZ(R”)
j=1 j=1
We have Avg, = fi, — f in H'(R™). Furthermore our estimates and Theorem 4.3.7 give

oo o
S ID2 ) ) < €S IN| < CllF s ey < 0.
j=1 j=1
Thus D?vy, converges in L*(R™) to some W € L!(R™, R™ "), which satisfies
trW=f and [[W]pign) < Clfllpr@n)-

Now we pass to ug(x) = vg(x) — (Ag -  + bg) where

Ak:/ Duvg(z)dz and bk:/ vg(z) dz.
B1(0) B1(0)

By a standard contradiction argument involving Rellich’s theorem, compare Lemma 4.2.12,
we get after passing to subsequence

up — u in I/Vlz’cl (R™).
It follows that D?u = W, and u € VV120C1 (R™) is the desired solution. O

One can in fact prove the optimal regularity D?u € H!(R"), as noted by Stein [57]. In [52]
there are some remarks about localizing the concept of Hardy space.



Chapter 5

Lorentz spaces

In this chapter we study Lorentz spaces, which have been introduced by George Lorentz around
1950. These spaces can be viewed as interpolations of the classical LP-spaces, and they are
particularly relevant in connection with optimal Sobolev embeddings.

5.1 Definition and basic properties

Theorem 5.1.1. Let f : R®™ — R be measurable. Then there is a unique non-increasing, right
continuous function f* :[0,00) — [0,00] such that

{f* > st =|{|f] > s} forallse]0,00). (5.1)

Moreover f* has the property

/OOO fH(t)dt = /OOO f«(s)ds = /n £ (z)] da. (5.2)

The function f. : [0,00) — [0,00], fi(s) = [{|f| > s}|, is called the distribution function
of f; it is nonincreasing and continuous from the right. The theorem asserts the existence
and uniqueness of a non-increasing, right continuous function f* on [0,00) having the same
distribution function as f. We remark that if f : [0,00) — [0,00] is non-increasing and
continuous from the right, then we have f* = f by uniqueness.

Proof. 1t is easy to check that a function f : [0,00) — [0, 00] is non-increasing and continuous
from the right if and only if the set {f > r} is an interval of the form [0, b), for all » > 0. Now
assume that f*:[0,00) — [0, 00] has all required properties. We claim that

{f*>s} =10, fi(s)) foralls>0. (5.3)

In fact, the set on the left is an interval [0,b) where b = [{|f] > s}| = f«(s) by (5.1). A
statement equivalent to (5.3) but more symmetric is

fft)y>s < fi(s)>t. (5.4)
In particular we obtain uniqueness since we then also have

{fo >t} =10, f*(t)) forallt> 0. (5.5)

61
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For existence we define f*(t) by (5.5). Then f* is nonincreasing and continuous from the
right, and (5.3) follows reversely. We note from the above that

fr@) = {fe >t} and  fuls) = {f" > s} (5.6)

Finally we compute

/Ooof*(t)dt:/ooon*>5}|d52/000|{f|>s}]ds:/Rn|f(x)|dx,

=f«(s)

In the next lemma we prove the Hardy-Littlewood-Polya inequality.

Lemma 5.1.2. Let f,g: R™ — R be measurable. Then we have

/ f(fl»‘)g(x)ld:ré/oo fr()g*(t) dt. (5.7)
Rn 0

Proof. Using Fubini‘s Theorem on R" x (0,00)? we calculate for f,g >0

z) dz = / . /0 /0 X{r<f(@)} X{s<g(w)} drds dz

:/oo/oo|{f>r}ﬁ{g>s}|drds

[ee)

2"

IN

Il
S—S—.3

min |{f>7“}| |{g>s}|) drds

0
o)

8

min (f«(r), g«(s)) drds
0

= / / X{r<f*(#)}X{s<g*(t)} dt drds
0 0 0

f*

0
We used that f*(t) > r, g*(t) > s if and only if ¢ < min(f«(s), g«(s)) by (5.4). O

To introduce the Lorentz spaces we further define, for f : R™ — R measurable,

t
_ 1/0 f(w)du for t > 0. (5.8)

f** is non-increasing and f** > f*. For f € LY(R") we have f* € L'([0,)) by (5.6),
therefore f** is continuous on (0,00). Moreover f**(t) — f*(0) as t N\, 0, since f* is right
continuous, and f**(t) = 0 as t * co.

Definition 5.1.3. Let 1 <p < oo, 1 < g <oo. A measurable function f : R™ — R belongs to
the Lorentz space LP1(R™) if and only if the following integral is finite:

o % *% qﬂ %
1l = </o (£ ®)" )" fori<q<o (5.9)

1
supgso t7 [ (t) for ¢ = o0
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For p =1, 1 < ¢ < oo, the definition just reduces to L4(R") = {0}. We emphasize that the
LP4(R™) norm has the same scaling as the usual LP(R™) norm, that is

I£allzoageny = A5 | Fllpoagen)  for any A > 0. (5.10)

Lemma 5.1.4 (Hardy’s inequality). Let 1 < g < oo, 7 >0 and g : (0,00) — [0,00), then

/ooo(/otg(“)d“)qt_r_ldt = <z>q/ooo (ug ()" u™" ™" du (5.11)
/OOO (/toog(u) du>qtr—1 dt < <z>q/(]m (ug(w)* u™" du. (5.12)

Proof. The function ¢(x) = |z|? is convex. Putting u = L1 u®"! for a > 0 to be chosen, we
get by Jensen’s inequality

([atra)’ = (5 (f st a)’

< (f)q ][t ()T u(= gy

«Q 0
e -1 t
— (tg)q /O(g(u)u)qua(l_‘n_ldu.

Inserting we obtain using Fubini, provided that a(q — 1) < r,

00 t 1 -1 00 t
/ (/ g(u) du) =1 ag < (—)q / gela=)—r=1 / (g(w)u)? u* =Dt dy dt
0 0 @ 0 0

-1 [ e
- <l>q /0 (9(w)u)?u =07 / tela=D==1 gt gy

«

< () e | tower

(5.11) follows by taking a = { (which is in fact optimal). We deduce (5.12) from (5.11),
applied to g1 (u) = g(1/u)/u? Substituting s = 1/t and then v = 1/u we get

/OOO (/:0 g(v) dv)qs”’lds = /OOO <ﬁoog(v) dv>qtfrfl &t
= [T ([ wwan) e

Defining || f||zz.2(gn) just as || f[|pr.a(rny, but with f* instead of f**, we have

/]

p
rrirny < | fllragn) < IlefHLf’q(R") forall 1 <p < oo, 1<g<oo0. (5.13)
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The first inequality is obvious as f* < f**. For ¢ < oo, the second inequality follows from
Hardy’s inequality putting r = ¢ — % > 0:

dt

oo%** q=r
/O(tf(t))t =

oL gt

f
/ quﬁfq Liu
)

c\

’B

p
>f§5

u

A/~
’E

p
For ¢ = oo we compute by hand that

1 1

1 1 [t 14 1, bt p 1,
tr f*(t) =tr [*(s)ds <tr " sup,. (spf (s)) / s pds = 1 SUP4~q (spf (5))
0 0 p—

The definition of the spaces LY?(R™) with norms || f|l .74 (ny makes sense also for p = 1, a spe-
cial case is LY (R") = LY(R™) = LY°(R™). By contrast for p = co we have L{¥(R") = {0}
for 1 < g < oo, while L7 (R") = L®(R") = LY°(R").

The choice of f** in definition 5.1.3 is motivated by the fact that the triangle inequality
holds, see [36]. Here we will only show that taking f* yields a quasinorm. We compute

(f +9)«(25) = {If + gl > 25} <[{IF] > s} + [{lg] > s} = fu(s) + g4(5)-
Using (5.5) we get

(f+9)72t) = 2[{s=0:(f+9)«(2s) > 2t}
< 2({s=0: fu >t} + |[{s>0: g, >t}
= 2(f*(t) + g*(1)).
From here we easily see that
1 + gllrageny < 277 (1l nan) + lgllnan))- (5.14)

In particular LP4(R™) is a vector space. We now show that the classical L? spaces are included
in the Lorentz family as the special case ¢ = p.

Lemma 5.1.5. For 1 < p < oo the LPP(R™)-norm is equivalent to the LP(R™)-norm, and the
LY (R™)-norm is equal to the L'(R™)-norm.

Proof. By (5.13) the norm || f||z».»(rny is bounded above and below by the integral

(/Ooo (t;f*(t))pit>; = Hf*HLP([O,oo)).

But || f*|lzr(j0,00) = [l fllzr(rn) by Lemma 4.1.1. That lemma also yields that

| £l 100 mny = Sup (1) = 1f 1 Lro,00)) = I L2 (Rny-
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The next Lemma proves a duality result for Lorentz spaces.

Lemma 5.1.6. Let f € LP9(R™), g € LV (R™) with %—F z% = % +d =11<p<oo). Then

[ 15@gt@)lde < fllraan ol ey (5.15)

Proof. Using Lemma 5.1.2 and Hoélder’s inequlity we estimate

1 L d
[ aswie < [Terodend
< 1 dtNg ([, L g A\
< ([ eror ([ rar )
The result now follows from (5.13). O

Next we deal with relations among the spaces LP4(R™).

Lemma 5.1.7. Let Q C R™ be measurable with |Q] < co. Then for any f : R™ — R measurable
we have, with a constant C' depending only on the parameters,

Wl gy € Clflioany  forp>1and g <d, (5.16)
11 .
Ifxellra@ny < CIQP " | fxallppa @ny forp <p' andq,q abitrary.  (5.17)
Proof. To show (5.16) in the case ¢’ = co we compute

b q_g*qtsﬁ—ls gtsi*sqi
(tf(t))—f(t)/o dé/o(f()) -

p

Using this and (5.13), we estimate further for ¢’ < oo

[T r@r S <sweas £ [T 50 S < Ol
0 0

For (ii) note first that (fxa)«(s) = [{|flxa > s}| < [€Q]. Recalling (5.6) this implies f*(t) =
{f« >t} =0 for t > |Q|. Now we estimate

19] 1
Ifxallagn < C / Y fxa)* () dt
o S
< Cowp(sh (fxa)() [ 67
s>0 0
< OO [ fxallpm (RY).

Finally we conclude

11
Ifxallra@ny < Cllfxaller@ny < CIAUP 7| fxall o 00 ny < X0l Lo70" ey
The lemma is proved. O

Lemma 5.1.8. For any 0 < X\ < n the function I(z) = |z|~> belongs to LX>®(R™).
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Proof. We compute using again (5.6)

1\ %
()-(s) = Hhv>sH=au(5)"
A
fon _ (Qn\n
()@ = (). >t = (%)
Thus we have t%(b\)*(t) = (Ozn)% for all t > 0, and the result follows from (5.13). O

The next lemma is a technical result which is needed later on.

Lemma 5.1.9. For 1 <p < oo and 1 < q < 0o, we have

g4t _

Hf”%z,q—/Oootz_l(tzl)f*(t)) , _/Ooo(f*(s))ﬁsq—l ds. (5.18)

In particular, the LP1(R™) norm is bounded by the right hand side from above and from below.

Proof. By substituting ¢ = rP, using Fubini and (5.2), we calculate
o q
ey > [ 7 0
oo
= [ eyt
0 oo oo
= PQ/O /0 X{S<f*(Tp)}rqflsq*1 dsdr

= ri 117 drds
pq/o /0 X <97y

= p/ fe(s) P st ds.
0

Lemma 5.1.10. Let f € L'(R") and s > 0. Then for a constant C = C(n) we have

S

(Mf).(Cs) < = /{ RIS (5.19)

Proof. We may assume f > 0. Let M = {z € R" : Mf(x) > Cs}. For any x € M there exists
a ball B* = B,z (z) such that

Cs|B*| < | fly)dy < / F(y)dy + 5B,
Bz Bzn{f>s}

By absorbing we see that
oo L
Yy)ay.
(C—=1)s Brn{f>s}

In particular we get |B*| < mﬂfﬂy(m) < oc0. By Vitali’s covering lemma, Theorem 4.1.3,
there is a subset M’ C M such that the balls B*, z € M’, are pairwise disjoint, and such that

|B*| <

Mc ] 5B"
xeM’
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Here 5B* means the concentric ball scaled by factor 5. We conclude

(Mf)(Cs) = M| < 5" Y |B”|

zeM’
>/ F(y) dy
BzN{f>s}

<« "
- (C_l)SxEM’

5n
—_ dy.
< (0_1)8/{f>8}f(y) Yy

The result follows by taking C' = 5" + 1. O
Lemma 5.1.11. Let f € L*(R™). Then for a constant C = C(n)
(M) (t) < Cf™(t) forallt>D0. (5.20)

Proof. We assume f > 0. Choosing s = f**(¢) in Lemma 5.1.10 we obtain

Froom.ere) < [ e

< [
{f>f*)}

/0 FYdE =t ).

IA

Here we used
[ g = [ s+ 01 > 510)
>1 () 0

B /foj) > slds+ £ O > FO)

t
= / hat < / @t atr.
{f>1)} 0

Finally the claim of the lemma follows, namely we have

(Mf)*(t) = {(Mf)« > t}] < C ().

Theorem 5.1.12. Let 1 < p < oo and f € LP4(R"™). Then we have

M fllra@ny < CNfllran)- (5.21)

Proof. This follows directly from Lemma 5.1.11 and (5.13). An alternative proof is by com-
bining the Hardy-Littlewood Theorem 4.1.6 and Marcinkiewicz interpolation, see Theorem
5.2.1. O

Lemma 5.1.13. Let f € LP9(R™) where 1 < p,q < oo. If n € C2(B1(0)) is a kernel with
Jgn n(z) dx =1, then

Ne* f— fin LPIR"™)  where ny(x) = Q_TLH(E).
%
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Proof. By splitting f = f* — f~ we can assume f > 0. We first show that if 0 < fi, 7 f
pointwise, then the convergence is in LP9(R"™). Before entering this argument, we note that
{f > s}| < oo for any s > 0. Otherwise f*(s) = oo on some interval [0,¢), which implies
f5(@t) = |{f« > t}| = ¢ for all t > 0. But then also f**(¢) > § for all ¢ > 0, and hence

/ 5 pt))e & > 5‘1/ tr L dt = oo.
0 t 0

Our claim follows by repeated use of dominated convergence. First {f — fi > s} \ 0, and we
have {f — fr > s} C {f > s} where |{f > s}| < oo, therefore

(f = fi)«(s) = l{f = fx > s} (0.

It follows that {(f - fk)* > t} AWV @, and {(f — fk)* > t} C {f* > t} where ‘{f* > t}‘ —
*(t) < co. This implies

(f = fu)"(t) = H{(f = fr)« >t} (0.

Now (f — fi)* < f* € L*((0,t) for any t > 0, and we get

t
0

(F= 070 = [ (£~ 5 @) o

Finally £ (f — f,)*(t) < t# f**(t) € L(%), and we conclude

[e%¢} 1 d
I = el = [ (0 =507 0) F N0

As any measurable function f > 0 can be approximated from below monotonically by step
functions, it is now sufficient to prove the theorem for f = yg where F C R" is bounded and
measurable. The LP? norm of yg is easily computed:

IE| for0<s<1 L) {1 for 0 < t < |E|,

«(s) < t) <
Oee)«(s) {0 fors>1. P 0 fort>|E|.

This implies further
(1) = 1 for 0 <t < |E],
XV TR fort>|B|.

Using this one obtains
2 1

P s
IXEllLra@ny = (q(p — 1)) ‘E|r. (5.22)

To bound 7, * f in LP(R™), we use

“n x—y
s @) =] [ a(*2) 1) d| < C llloon) M ).
Applying Theorem 5.1.12 we obtain

Img * fllzpaeny < Clnllco@my 1 f | ragn)- (5.23)
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Now let € > 0 be given. By Lusin’s theorem, there exists a function ¥ € C?(R") such that

0<¥<1l and [{¥#xys} <<

Using the triangle inequlity, (5.23) and then (5.22), we see that

Mo * XE — XElLra@ny < Cllng* (xe — X)zra@n) + Cling * X — Xl Lrarr)
+CIX — xEll Lra@n)

1
Cllng * X — Xl pagny + C(n) er.

IN

But by Lemma 5.1.7 the LP? norm is estimated by the L°*° norm, which is just the L™
norm. Therefore n, * x — x in LP9(R™), and the lemma is proved. O

Lemma 5.1.14. Let E C R™ be Lebesque measurable. Then for a constant C' = C(n)
C
/ P < ZER for 0< A <. (5.24)
B A
Proof. First of all we compute for any ball B = Br(0) that

R
. c A
/ 2} de = an/ P ldr = SR < ﬂ|B|2 (5.25)
B 0 A A

Choose R > 0 such that |B| = |E|. Then we have
B\E| = |B| — |BN | = |E| - |EN B| = |E\B|.

This implies

/ @ dz < R(E\B| = R>"|B\E| g/ 2" da
E\B B\E

Adding [, |2[*™ dz to both sides we get, recalling |B| = |E],

/ ]ac)‘_”dxg/ |z} dx < C(n)]E\%
E B A

O

We are now in the position to prove the first main application of Lorentz spaces. Namely we
show that functions whose gradient is in L™! are continuous.

Theorem 5.1.15. Let Du € L™Y(R"™). Then u is continuous, and for any ball B C R"
)u(fn) - ][ u’ < CllxpDul|pn1@ny,  for any point x € B. (5.26)
B

Proof. We have Du € L™"™(R") = L™(R"™) by Lemma 5.1.7 and Lemma 5.1.5. By scaling we
can assume B = B1(0). We have for y =2+ ow € B

lu(z) — uy)| = ’/Og(aru)(x rw)dr| < /OOO(XBDU|)(37+ ) dr.
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Integrating we obtain

u) — ][Buw) dy|

IN

2

C/ / xB(x + ow)|u(z) — u(z + ow)| 0" tdwdp

0 Snfl

2 e’}
< C / / XB(aH—gw)/ (xB|Dul)(x + rw) dr 0" 'dw dp
0 Jsn-1 0

C’/ / Tlfn(XB]DuD(x + rw) " Ldw dr

0 Jsn

= ¢ [ o=yl "Dutw)dy

The right hand side is estimated using Lemma 5.24:

[le=alpu@lds = [ o= ol [ v dsds
B B 0

= / / |z — ' " dx ds
0 BN{|Du|>s}

C /OOO(XBDU)*(S)TIL ds

< CllxsDul|pnagn)-

IN

IN

In the last step we used Lemma 5.1.9 with p = n and ¢ = 1. Now approximate u in LP4(R")

by smooth functions u, using Lemma 5.1.13. Then u, — u in L] _(R") and

o — ug’HCO(B) < ‘ ][B(ug —ug)| + CllxB(Du, — DU@’)HL"J(R”) —0 for g, o' = 0.

This shows u € C°(B). O

We now show that the standard Sobolev embedding in R™ can be improved.
Theorem 5.1.16 (Poornima [44]). Let f € L+ 1(R"), n > 2, have Df € L*(R"). Then f
belongs to Ln—1"(R") and

191, gy < € NPT a ey (5.27)
Proof. By approximation, it is enough to prove the estimate for f € C!(R"). Fix a nonde-
creasing cutoff function ¢ € CY(R) with (t) = 0, p(t) = 1 for t > 1, and consider
55— A

o2 € CUR), 02(s) = o

We have D(p2 o f) = (¢2)' o f Df, in particular

) for A\ >0, &> 0.

C
ID(2 0 f)| < ;X{)\<f<)\+a}|Df"

This yields the estimate

/0 1D(&2 0 £) 1 s A

IN

C oo
- / / X{r<f(z)<rte} | Df ()] dwdA
0 R™

C f(=z)
- [ psw) / ax
€ Jrn f(z)—e

= CDflpr(wn)- (5.28)
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We will now prove the inequality
oo n—1
/0 Fu(s)"5 ds < C|Df | 12 e (5.29)

For s > 0 let f(s) = |{fT > s}|. Then f.(s) = f(s) + fo (s), thus

n—1

n-1 _ n-1 n-1 _, \n=l
Fuls) ™ < (2max(f(s), fi (s)) ™ <270 (fuls) = + [ (s) ).
Thus it suffices to prove (5.29) with f;~ on the left. Now by the usual Sobolev inequality
1620 Fll 21 gy < CID2 0 )l ey

Integrating over [0, 00) we obtain using (5.28)

| 1620 1l 1 gy < CUD sy,

Finally we take the limit as € (0. It is convenient to introduce
v 0,00) > R v = [ [ o g7
R

Clearly @2 o f — X{f>x} pointwise in R", and |p: o f| < xgpts. Therefore by dominated
convergence

lim () = [{f > A}l = £,

Applying Fatou’s lemma we finally conclude
/ FEOVS dN < liminfee(\) " dA
0 e\0

T A "
= Tminf 2 0 ] oy . dA
< CIDSlp.

The desired estimate now follows from Lemma 5.18, choosing p = 5 and ¢ = 1 there. [

More generally we deduce the continuous embedding, for f € L%(R”) with Df € LP(R"),

—1
1fllzer < C(n,p) |Df|lpo@n) where g = —2— 7 = (n=lp (5.30)
n—p n—p

To see this we first note (")« (o) = f« 0% for any o > 0. Substituting o = s" yields
y g y

(S = [{(f)e >t} = |{s" : fuls) > t}| = r/{f » 1 ds.

The LP4(R™) norm of f" is given by

o0 1 dt o0 qa_1 -1 q
tr(fMYy* ()= = r‘l/ tr / s"lds) dt
/0 (@) 13 0 ( {fo>t} )
< ot [T [T gt
0 0

o fx(s)
Tq/ srl/ tifl dtds
0 0

> 1
= Tp/ Srilf*(s)pds‘

0

IN
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By Lemma 5.18 this implies
1
I fllrar@ny < C Hf”Hiq,l(R") (and vice versa). (5.31)

Now for f as above and 1 < p < n we take r = Z—:;p > p and estimate using Holder

IDU M@y < CIF'Dfllpiwn
r—1
< UMy g 1D oy
p=1
= Cfl"%%  IDfller@n
Ln—p (Rn)
<

ClIDfIIzr ny-

Combining with (5.31) for ¢ = -2+ we see that

n—1

1 1
N 2 ey = CIFTI < DU 1 ey < CNDFllLe@ny- (5.32)

n—p (R %’1(]1@”)

5.2 Interpolation and PDE estimates

The next Theorem is the so called Marcinkiewicz interpolation theorem for Lorentz spaces
and it is taken from [58|. Here we use the notion of a subadditive operator between vector
spaces V, W of measurable functions on R™. A map T : V — W is called subadditive if for all
f,g €V and X\ € R one has, for almost all x € R,

T(f+9) (@) < [(Tf)(@)|+[Tg(z)| and [T(Af)(z)| = [AT(f)()].
An example of a non-linear subadditive operator is M f, the maximal operator.

Theorem 5.2.1. Let 1 <rg <11 <00, 1 <pg#p < o0, and let T be a subadditive operator
satisfying the following estimates:
Lol RY) = DPO(R™), T f] oo (R") < O£ o (R™),

U un

T n T o0 n n
Ln(RY)  — LP2(RY),  (Tfllzerec@ny < Cllfllror (R™),

Thenfor%zl;e—i—iandl:l;—oe—i—p%(0<9<1), and for 1 < g < oo, we have

ro p
| T fllra@ny < C N fllra@ny, (5.33)
where C' = C(p;, 74, 0).
Proof. For f € L™ (R™) we consider cutoffs at level f*(b) given by
R R A
Here b > 0 is a variable, it will be specified later. We compute

by (o) = J F+(5) if s > f*(b), R L if s > f*(b),
(f )*( ) {f*(f*(b)) olse. (fb)*( ) {f*(s) _ f*(f*(b)) olse.



5.2. INTERPOLATION AND PDE ESTIMATES 73

In the second step we get

0 if t > fi(f*(0)),
fr(t) else.

0 if ¢ > f.(0) = £ (f7(D)),

= {f*(t SR dse

(S0 () = {
From the definition of f* we get the inequality

F(F70) = [{f > 7703 = 1" > [7(0)} < b, (5.34)

This implies
0 if t > b,

f(t) else. (5.35)

(f7) (1) < {
By monotonicity of f*, we have (f3)*(t) < f*(¢) for all ¢ > 0. On the other hand, we may use

Fr(fe(8)) = Hfe > fuls)} < s, thus (fy)"(0) < f7(f(f7 (D)) < f7(D).

In particular we see that

()" () < {;EZ)) i:lste_z b (5.36)

Now we estimate T'f. By subadditivity we have for almost every z € R"
ITf(@)] = T(f*+ fo)(@)| < T ()] + |Tfo(x)].
It follows that for any s > 0 we have
{Tf| > s1+ 82} C {|Tf°] > s1} U{|Tfo| > s2}-

This means
(Tf)u(s1+ 52) < (Tf°)s(51) + (T fo)x(52)-

Choosing s1 = (T'f°)*(t) and sy = (T'f)*(t) and using (5.34) we infer
(Tf)*(s1+s2) <t+t=2t.
Thus we have shown
(TF)*(2t) < 514 s2 = (Tf2)*(t) + (Tf)*(t) for all t > 0. (5.37)
As final preparation, we note that by assumption, for all ¢ > 0 and all b > 0,

0 (T (1) < CllFpror gy (5.38)
TR ) < Clfsllinagn- (5.39)

A

The key idea of the proof is to cutoff depending on ¢, namely we choose b = t7 where v > 0
will be fixed appropriately.
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We first consider the case r; < 0o, ¢ < 0o. Then we have by (5.37)

IT A pagany = /0“’ (22 pr0)" L

IN
Q
o
/N
~
|
~
~
~—
N
=
N—

IN

/OOO (t%(Tf”)*(t))q% +/OOO (t%(Tfﬂ)*(t))q%

=:1 =:1s

In the first integral, we estimate applying (5.38), for b =t7,
11 q dt
C/ (tp PO Hft’YHLTO,l(Rn)) 7
0

o i 1 dANadt
C/ tp PO/ Aof ()\)7) 7
7; w d\\ 7 du
C/ “’“/OMWU)U'

In the second last step we used (5.35), then in the last step ¢ = u? was substituted. At this
point we chose v appropriately, namely we take

I

IN

IN

IN

(5.40)

S =B =
3=[2 =

Then we continue appplying Hardy’s inequality, see (5.11),
RV NS B b B qdu
C’/ ur TO/ Aro L (N) dA
&0 L1 . g \1-2
C ()\To f ()\)) AT o T dA
dA
- ¢ / (V)" = Il e

The estimate of the second integral is rather similar. We have

I

IN

IN

® 11 qdt
L < C / (7 m\|fﬂ|rm,1(m) =
11 1 dX\\q dt © 11 dA\\a dt
< r * Yy _ r
_C’/ tpm )\lf(t)/\)t+c/0 (tppl/t‘v)\lf(>/\)t
<

W**w%q@ /°° 11/“’3* drya di
0/0 tP Plf(t)tl) ;e (tp o ﬂ)uf()\))\> =,

Recalling the choice of vy from (5.40) we continue, substituting u = t7,

L < C/ "d“+c/ G 1/ ()\%f*()\))q%>@

u
q4_4_3

Cl AN aeny + C / 1 yi-%-1 )
Uiy

IN

IN
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Here we used the case (5.12) of Hardy’s inequality. Having completed the proof for r1, ¢ < oo,
we address next r1 < 0o, ¢ = 0o0. By the above calculations, we estimate

1 11 7 d\
B (TF) (1) < cm)mQA AT fH () 2

A
1o o1 d\ 11 [ 1 d\
rorm [ a2 on / Aoy 2
0 A & A
Using )\%f*()\) < HfHLl‘OQ(R”) we obtain further
1 1o 11 d) 1_1 2
tr(T (M) < Cllflpreomntr 2o | AT 7 ==+ Ot f2(7)tn
0
1_1 (% 1 _1d\
+C‘|f||Lr,oo(Rn)tp P1 / )\TI T —
& A

IN

C [ fllLres.
The proof of the remaining case 71, q = oo uses that (fp)*(¢) < f*(b); it is left to the reader. [

In the following we prove some PDE-estimates involving Lorentz-spaces. Before doing this we
need the following Lemma (see [29]).

Lemma 5.2.2. Let Q C R" be bounded with C'-boundary, let g = (g1,92) € L*(,R?) and
let a be a solution of

Aa=divg n Q,
a=0 on O (5.41)

Then we have that the operator
P(g) =Va (5.42)
is continuous between LP9(Q,R?), 1 < p < oo, 1 < q < 0o, and itself.

Proof. From standard LP-theory we know that P is continuous between LP(Q,R?), 1 < p < oo,
and itself. Therefore we can apply Theorem 5.2.1 to get the desired result. O

Lemma 5.2.3. Let f € LP9(R") and g € LP»®(R") with -+ - > 1. Then h = fxg €
L™*(R™) where % = p% + p% — 1 and s is a number such that q% + q% > % Moreover we have
[Pl Lrs mry < cllfl|pprar )19 Lp2.a2 mny- (5.43)
Proof. See |67]. O
The next three theorems are taken from [29] (see also [1] and [18]).
Theorem 5.2.4. Let Q C R? be open with 0Q € C*. Let f € L' () and let o be a solution of

—Ap=f in Q,
=0 on 09, (5.44)

then Vo € L**(,R?) and

IVl 2200 () < (D121 ()- (5.45)
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Proof. We consider f € L'(R?) which we obtain by extending f by 0 outside of Q and we
define

Y(x) = | K(x—y)f(y)dy,

R2
where K(z) = 5 ln(ﬁ). Then we know that
A =7
in R? and
Vi = | VE@=y)f)dy.

Since f € LY(R?) = LY*°(R?) and |[VK|(z —y) < ey € L** (see Lemma 5.1.8) we can
apply Lemma 5.2.3 to get that V¢ € L>> and
IV 200 < el fllzr = el fllLi (-
Since Vi = P(V|q) we can apply Lemma 5.2.2 to conclude the proof of the Theorem. [
In the following Theorem we improve Wente‘s inequality.

Theorem 5.2.5. Let  C R? be open with C'-boundary, let f € HY(R?) and let ¢ be a
solution of

—Ap=f in Q,
=0 on 09, (5.46)
then Vo € L*>Y(Q,R?) and
IVl p21(q) < eI f[101R2)- (5.47)

Proof. We let

Y(z) = - K(z —y)f(y)dy,

where K (z) = 5= In(%;). Then we know that

[2]
A= f
on R2. By Theorem 4.3.9 we know that 1 € W2!(R?) with

1V9]11 < el flle-

Hence we get from Theorem 5.1.16 that Vi € L%!(R?) with

IVYl[L21 < | fllae-

Using again that Vo = P(Vi|q) we can apply Lemma 5.2.2 to conclude the proof of the
Theorem. O
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The next theorem is also an improvement of Wente‘s inequality. This theorem has recently
been used T. Riviére [48] in his study of Willmore surfaces.

Theorem 5.2.6. Let Q C R? be open with C%-boundary, let a,b be functions such that Va €
L?°(Q), b € WH2(Q) and let ¢ be a solution of

—Ap ={a,b} in Q,
=0 on 09, (5.48)

then o € W12(Q) and
IVollr2@) < dlVallp2.000) IVl 120 (5.49)

Proof. We first prove (5.49) for a,b € Wh2(Q). Let U D Q be smooth and bounded. Moreover
we let a,b € W01’2(U) be the extensions of a,b and we let 9 be the solution of

~Ayp ={a,b} in U,
=0 on OU.

Then we he have

V 22:* A
V|2 /Uw "
=/w{a,5}

U
- [ atw.y

U
:—/amf

U

:/ VavVyu

U

<[Vl 200 | [V [ 21
<c||Val| 2.0 |[VO]| L2 [V 2,

where we used Lemma 5.1.6, Theorem 5.2.5 and where ¥ is a solution of

—AV = {¢,b} in U,
¥=0 on OU.

Since the extension operator is continuous from WP to WP for every 1 < p < oo we can
apply Theorem 5.2.1 to get

VY2 < el|Vallp2.00 () [V | L2(0)-
Moreover, since

—Ap=—-Ay in Q,
=0 on 09,



78 CHAPTER 5. LORENTZ SPACES

we get that

IVellLe) < IVl 2wy
< c[|Val|p2.00 () [Vl | £2(2)-

This proves (5.49) for a,b € W12(Q).

If we now only have a such that Va € L?°°(Q) we choose a sequence ay € Nj<pcaW 1P (1)
such that ap — a in WP(Q) for every p < 2 and ||Vag||;20 < cl|al|f2. (note that you
can’t find a sequence aj, € W12 with the above properties). Indeed you can just consider the
convolution of a with a sequence of mollifiers which are in L! and then you can apply Lemma
5.2.3 to get the desired properties. Then we have by (5.49) that the solution ¢y of

—Aypy, = {a, b} in Q,
=0 on 09,

is bounded in W12(€) and therefore we have that o5, — 7 weakly in W12(Q) with
IVnlL2 < c|[Val| 2.0 |[VO]| 2.
Additionally, since {ay, b} = 0,(ay0yb) — 0y(ar0,b), we have that
{ag, b} — {a,b}
in W=1P for every 1 < p < 2 and therefore
Yk — ¢

in WP for every 1 < p < 2. This shows that ¢ = 1 and finishes the proof of the Theorem. [



Chapter 6

Regularity of geometric variational
problems

This chapter addresses the regularity of critical points of two-dimensional, conformally invari-
ant variational integrals. The case of harmonic maps was settled by Hélein [26], whereas the
general result including surfaces of prescribed, variable mean curvature is due to T. Riviére
[46]. It is his proof that is presented here.

6.1 Gauge transformations

Lemma 6.1.1. Let Q C R™ be a bounded domain of class C?. Then for any w € W12(Q, A1)
we have the identity

/(|dw\2+|d*w]2—\Dw|2):/ (T wT) + Hlw()? + d(w) (@) + o) ). (61)
Q oN

Here h, H denote the second fundamental form and mean curvature of 02 with respect to the
inner normal v, and w' is the projection of w to T(0Q) using A'(R™) = R™.

Proof. For a one-form w, the exterior derivative and the divergence are given by

dw = Z (Oiwj — @-wi)dxi Adr?  and d'w = Z O;wi.

1<i<j<n i=1

1 n
|dw|? = 3 > (O — dwi).
i,j=1

79
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We note that d* is formally L? adjoint to the derivative d on functions. We compute

n

Dwl? = ) (0iw))?,

=
n
2
|[dw|®* = 75 Ojw;j — ](,uZ = g ij E 0j(wiOiw;) E w; O wj,
4,j=1 4,j=1 t,j=1 t,j=1

n

n
|d*w|* = Z( iw; ) (0jwj) Z@ w;0jw;) Zwiﬁfjwj

1,j=1 1,j=1 1,j=1

Combining and integrating by parts we obtain, recalling that v denotes the inner unit normal,

/(!dw|2 + |d*w|* — |Dwl|?) = / (Dow)(v) + w(v)d*w) dp.
Q o0

For given p € 910, we now choose a local tangent frame 7,...,7,_1, such that at p
n—1
D, 73 = h(7a,78)v, and hence D, v=— Z h(Ta, T8)T8-
B=1

Furthermore, we extend v such that D, v = 0 at p. Then we have at that point p

n—1
(Dow)(v) = Ou(w)) =) w(ta)w(Dr,v)
n—1
= 0uW®)+ D h(Ta, 78)w(Ta)w(ra)

Secondly, we get

d'w = —(D;w)(1a) — (Dyw)(v)
~0r, (W (Ta)) + (D7, 7a) = Dy(w(v))
= dtw' + Ho(v) - 8,(w(v)).

Here w' is the pullback to 9 by the inclusion map, d% is the intrinsic divergence on 9€). We
used that the at p. Combining we find

(Dyw)(v) + w(v)d*w = h(w—r wh) + Hu(v)?
+Z W(T0)0r, (W) + w)diw "
= h(wT w') + How)? + dw)(w") +w@)drw.

The claim of the lemma follows by integrating. O
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In this section we prove an existence result for Coulomb gauges due to Uhlenbeck [62]. The
issue is to construct a preferred gauge for a connection on a vector bundle over a Riemannian
manifold. More precisely the theorem deals with a local situation B x R™, where B is the
unit ball in R™ and the R™ factor represents the coordinates with respect to a given frame.
A connection is then given by a matrix-valued one-form A = A;(x)dz’ with A;(x) € R™*™,
It induces a notion of parallel vector fields along curves v : [a,b] — B by the linear ordinary
differential equation

Vv
dt

We should really write (A o v)(v'), however it is customary to omit the basepoint. The
connection is often denoted by its local form V4 = d + A. For simplicity we restrict to SO,
bundles; this means that the bundle is oriented and carries a Riemannian metric. The R™
factor represents the coordinates with respect to some oriented orthonormal frame, thus the
bundle metric becomes the standard scalar product (-,-). The connections are required to be
compatible in the sense of the product rule, for any vector fields ¢, along -,

d Vav Vaw
Stvw) = (S0 w) 4 (0, TAY e (A enres) + (e A ) = 0.
Thus A is an so,,-valued one-form. Any oriented orthonormal frame F = {vy,..., v} over
B induces new coordinates vr, such that v = Pvr for some P : B — SO,,. It follows that

Ci)s = e

= P '(Pvg) + P 'A(®)Pvr
= v+ (PHdP() + PTTA(Y)P)vr.

=v'+ AR )v=0 wherev: [a,b] — R™. (6.2)

The map P : B — SO, is called a gauge transformation, and the one-form P~'dP + P~'AP
is the transformed connection. The group of gauge transformations acts isometrically on the
space of connections with respect to the L? distance

dist(Vy4, Vp)? = / IVa—Vg|*de = / |A — B|?dz.
B B
In fact we have
/ |P7'V4P — PP dx = / |P~Y(Va — VB)P|?dx = / Va4 — Vg|*dz.
B B B

It is therefore natural to ask whether any gauge orbit contains an element which minimizes
the distance to the trivial connection d = Vq. If V4 is the desired minimizer, then we get by
chosing P = exp(ty) with x : B — sop,
1d —t ¢ —tx At
=—— [ le7™Xd(eX) + e X Ae™X| dx|i—o = | (A,dx).
This means that the minimizer is a weak solution to the equations
d+*A=0in B, vLA=0on 0B.

These are called the Coulomb or Hodge gauge conditions. The following result is due to
Uhlenbeck [62].
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Theorem 6.1.2. Let Ag € L?(B, A ®s0,,) be a connection on B = {x € R" : |z| < 1}. Then
there erists a gauge transformation P € W12(B,S0,,), such that A = P~1dP + P71 AgP €
L?(B,A' ® so,,) has the following properties:

(1) A solves the system d*A =0 in B, v.A =0 on 0B.
(2) ldPl 2By + 1Al 2By < CllAoll 2By
(3) There is a £ € W'2(B, A% @ s0,) with i}5(d* &) = 0 on OB, such that
d¢=A and |[£llwr2m < CllAllL2 s
Proof. As outlined we consider a minimizing sequence P, € W12(B,S0O,,) for the functional
E(P) = /B |P7YdP + P71 AgP|? dx = /B |dP 4+ AgP|* da. (6.3)
We have the inequality

E(P)>(1—¢) / |dP|* dx — C. / | Ag|%. (6.4)

Moreover |Pgx| = n, thus we can assume P, — P € W1%(B,S0,,) weakly in W12 strongly
in L? and pointwise almost everywhere. As |AgP;| = |A0\ we get AgPy — AgP in L?(B) by
Vitali’s convergence theorem. Thus the infimum is attained by P, and

E(P) < liminf E(P}) < E(1d) /|AO|2

Put A = P~'dP 4+ P7'AgP. Then [|A|2(p) < || Aollz2(p) by the minimizing property, and
from dP = PA — AgP we see that

ldPl 2y < 1 Allz2(m) + [[Aoll2(m) < 2[AollL2(5

Moeoever, as explained above, A satisfies the weak Hodge gauge conditions
/ (dx,A)dx =0 for all smooth x : B — $0p,.
B

To show claim (3) we employ linear Hodge theory. By Lemma 3.3.1 in Chapter 3 there exists
a form ¢ € WH2(B, A?) such that

A—d¢ where /BB*(VL@ —0 and [€lwrees < A2

Our proof in Chapter 3 was only in two dimensions, but its generalization is straightforward.
For any smooth x : B — so,, we compute by partial integration

/B (dy, AYdz = /B dy A
_ (—1)”/de/\d*§

- <—1>"/63xi33<d*5>.

The weak version of the Hodge gauge condition (1) implies %5 (d * §) = 0. O
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In dimension n = 2 we get £ = 0 on the boundary. Namely for ¢ = & da' A dz? we have
d* & = d&y, and the normalization becomes f@B o df = 0. The presented gauge theorem is
weak in the sense that no additional regularity of P and A is asserted. It is possible that P has
singularities which change the topological type of the bundle. In dimensions n < 4 Uhlenbeck
proved a stronger version where P is estimated in W22, and accordingly A in W12, These
estimates depend on a smallness assumption for the L? norm of the curvature F' = dA+ AN A.
For n < 3 the smallness threshold can always be achieved by scaling, whereas in the critical
dimension n = 4 it is a necessary, nontrivial condition.

6.2 Equations of the form Au = QVu

Let B C R? be the unit ball in R2. In this section we study the regularity properties of
solutions of elliptic systems of the form

—Au = QVu, (6.5)

where u € WH2(B,R™) and Q € L?(B, so(m) ® A'R?). Before coming to the detailed study
let us give some examples for systems of the type (6.5).

1) From (?7) we see that harmonic maps into spheres satisfy an equation of the form (6.5)
with (QY) = (u'Vu! — w/Vu') € L2(B, so(m) @ A'R?).
2) It is easy to see that surfaces with prescribed mean curvature H € L>®(R3) (i.e. solutions
of (77)) solve a system of the form (6.5) with
0 V+iud  —vt?
Q=—-2H(u) | -V+tu? 0 V+tul | € L*(B,s0(3) ® A'R?).
Viu?  —viu! 0

3) Harmonic maps into general target manifolds.
Here we let w € WH2(B, N), where N < R™ is a smooth and compact Riemannian
manifold without boundary. Then we know from the discussions in chapter 2 that
harmonic maps into N are critical points of the functional

1
E(u) = 2/BVU|2dvg.

To compute the critical points of E we let ¢ € C}(B,R™) with ¢(z) € Ty, N for all
x € B. Then we compute

Since this is true for all such ¢ we know that

Au 1 T, N.
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Therefore if we let {vy41,...,vn} be a smooth local orthonormal frame for the normal
bundle near u(x) we can write

m

Au(z) = D Mi@)vi(u()),

i=n+1

where the \; are scalar functions. Using the fact that (Vu,v;(u)) = 0 for every i €
{n+1,...,m} we get

i =(Au,vi(u))
= div(Vu, v;(u)) — (Vju, (dpv;) (u)V juk)

and hence

Au = Z Aivi(u)

m m 2
= Z ZZ<VJU, (dkljz)(U)V]Uk>l/z(u)

i=n+1 k=1 j=1
= — A(u)(Vu, Vu).

Moreover, using the definition of A, we see that (using that 3", Vufv¥(u) = 0 for every

i)
At ==Y (Vu, (deri) () ViF) v (u)

=— Z Vuk (v () (dr; ) (w) V! — vF (u) (dsvy) (u) Vab),

and hence u solves an equation of the form (6.5) with
(Qsk) = (Z(Vf(u)(dkl/i)l(u)Vul — UF(u)(dsvy) (u) Vi) € LB, so(m) @ A'R?).
il

Conformally invariant variational problems.
We consider the functional

Eo(u) = ;/B(\Vu|2—i—w(u)(@xu,ayu))dx,

where w is a C! two-form on R™ such that the L>-norm of dw is bounded. By Theorem
2.4.1 we see that every conformally invariant energy in two-dimensions can be written
in this way. The Euler-Lagrange equation of E,, can easily be computed to be

Au’ + A (u)(Vu, Vu) + )\;l(u)ﬁmujaé =0,
where /\é-l(u) = dw(y)(ei,ej,el) and where {e;}i—1,. ) is the standard basis of R™.
Using that )\él = —\J, we calculate
1

j1(u)0,u7 0, =5 (1) = Ny () VEul V.
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Combining this with the result of 3) we see that the Euler-Lagrange equation of every
conformally invariant energy in two dimensions can be written in the form (6.5) with

Qi = > (17 () (dys)! () Vet! = v (u) (dovs)! () V')

il
=37 L ORw) ~ Ny ()T
l

€L*(B, so(m) ® A'R?).

After having collected all these examples of systems of the type (6.5) we now state the main
Theorem of this chapter. This Theorem was only recently proved by Tristan Riviere [46] (see
also [34], [47] and [60] for related results).

Theorem 6.2.1. Let u € W12(B,R™) be a solution of (6.5) with Q € L*(B, so(m)® A'R?).
Then u is continuous and therefore by Theorem 77 as smooth as the data permits.

Proof. The Theorem will be proved in three steps.
Step 1:

Lemma 6.2.2. Let m € N and Q € L?(B, so(m) @ A'R?). Let A € L°NWY%(B, M(m)) and
B € WY2(B, M(m)) be solutions of

VA - AQ=V'B. (6.6)
Then u € WY2(B,R™) is a solution of (6.5) with Q iff
div(AVu + BV+tu) = 0. (6.7)

Proof. By a direct calculation (using that divV+ = 0 and VuV+tv = —V+uVo) and using
(6.6) we get

div(AVu + BV1tu) =(VA — V1 B)Vu + AAu
=A(Au + QVu).

This proves the Lemma. O

Step 2:

Lemma 6.2.3. There exists € > 0, ¢ > 0 such that for every Q € L*(B, so(m) ® A'R?) with
/ 1Q%dz < e, (6.8)
B
there exist A € L NWY2(B,Gl(m)) and B € WY2(B, M (m)) satisfying

/(|VA2+ |VB[})dz + || dist(A, SO(n))||2e < c/ Q) and (6.9)
B B

VA—-AQ—-V*iB=0. (6.10)
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Proof. For Q € L*(B,so(m) ® A'R?) with [, |Q*dz < ¢ we apply Theorem ?? to get the
existence of P € W12(B,SO(m)) and & € WH2(B, so(m)) such that £ =0 on 9B,

vi¢ =P lvP+ PlQP. (6.11)
and
1€llwi2 + [V Pl g2 + VP |2 < cf|€] 2 (6.12)

Claim 1: There exist A € W2 0 L>°(B, M(m)) and B € WY2(B, M(m)) solving

AA=VAV+¢+VEBVP in B, (6.13)
AB = -VtAVP ! —div(AVEPL +VEPTY) in B, (6.14)
A
oA =0 and B=0 on 0B, (6.15)
ov
/ A=0. (6.16)
B

To prove this claim we apply Theorem ?? (combined with remark ??) and standard L?-theory
to get

[ Allwr2 + 1| Allze < el|VE]| 2]V Al L2 + €| VP 2] [VB]| 2 and (6.17)
1Bllwi2 < cl[VPY| 2|V A|| 2 + ¢l [VE][ 2] | Al oo + [ VE]| 2. (6.18)

Using (6.12) and choosing ¢ small enough we combine (6.17) and (6.18) to get
Al + 1| Allzee + [1Bllwie < el [ 2. (6.19)

The existence of the desired solution of (6.13)-(6.16) (and hence the proof of Claim 1) now
follows from a standard fixed-point argument. 3
Next we define A = A 4 id and we see from (6.13)-(6.16) that A and B solve

AA=VAV+ ¢+ VEBVP in B, (6.20)
AB = —-V+tAVP™! —div(AVEPTY) in B, (6.21)
A
o4 =0 and B=0 on 0B, (6.22)
ov
/ A=B|. (6.23)
B

Moreover we get from (6.19) that
IVAl|2 + || dist(A, SO(m))|| o + || Bl w2 < €[] 2. (6.24)
Now it is easy to see that (6.20) can be rewritten as
div(VA — AV+e —VEBP) =0 (6.25)
and hence, by Lemma ?7, there exists C € W12(B, M (m) ® A'R?) such that

VA - AV+e —vViBP =VtC. (6.26)
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Since by (6.22) and the definition of £ we have

(VA - AV —VEBP) v _24 AVie . v —VEBP v
14
=0

on B we can moreover assume that C'= 0 on dB. Using a rotation by § (one can also view
V4 as xd and then the rotation by % is just another application of ) we see that (6.26) is
equivalent to

—VCP ' =VtAP ' 4 AVeP 1 4 VB,
and hence, using (6.21), we calculate

—div(VOP™) = VEAVP ! + div(AVEP™Y) + AB
= 0. (6.27)

Claim 2: Every solution C of (6.27) with C' = 0 on 0B vanishes identically.
To see this we apply again Lemma ?? and get the existence of D € W12(B, M(m) ® A'R?)
such that

viD=vCepPl (6.28)

Since C' = 0 on 0B we easily see that %—5 =0 on OB and we can also assume that fB D =0.
Hence C' and D solve

AC =V+DVP in B, (6.29)
AD=vCV+tP~! in B, (6.30)
D
C=0 and oD =0 on 0B, (6.31)
ov
/ D=0. (6.32)
B

From this we see that we can apply Theorem ?7 for (6.29) and (6.30) (in this case combined
with remark ?7) to get

IVCll2 + VDIl 2 < e(|IVP| 2|1V DI 2 + (VP | 12][VC| 2). (6.33)

By choosing € small enough we get from (6.12) that C'= D = 0 and this shows the claim.
From (6.26) we now see that A and B solve

VA - AVte —viBP=0. (6.34)
Defining A = AP~ we see that

IVAll2 + [ dist(A, SO(m))||ze < e(|[VAlL2 + [|All o [[VP ]2 + || dist(A, SO(m)]| )
< |92, (6.35)



88 CHAPTER 6. REGULARITY OF GEOMETRIC VARIATIONAL PROBLEMS

where we used (6.12) and (6.24). Moreover we use (6.11) and (6.34) to calculate

0=VA— AV'¢ —VIBP = VAP + AVP — APV+¢ — V1BP
= AVP — AVP + (VA - AQ - V'B)P

and therefore
VA-AQ-ViB=0. (6.36)
This finishes the proof of the Lemma. O

Step 3:
For every point x € B we choose a radius r, > 0 such that fBr,.(ac) Q)2 < &, where ¢ is the

same as in Lemma 6.2.3. In the following we write B, (x) = B. Then we can apply Lemma
6.2.3 to get the existence of A and B solving (6.6). Hence we can apply Lemma 6.2.2 to see
that

div(AVu) = VBV u = —~V+BVu and (6.37)
V(AVu) = V%AV, (6.38)

Now we apply Lemma ?7 to get the existence of € W12(B,R™) and € W12(B,R™@A'R?)
such that

AVu = Va+ Vg, (6.39)
Using (6.37) we see that « solves
Aa = div(AVu) = —V+BVu. (6.40)

Now we denote by w the mean value of u on B1 and let 4 € WOI’Q(]R@,R’”) be the extension
2
with compact support of v —u. Then we have that Vi = Vu on Bi. Moreover we use
2
Poincare’s inequality to get

V]| 22y < cllu — HHWL?(B%) < ||Vullr2(p)-
We extend B in the same way and denote the resulting map by B € Wol’z(Rz, M(m)). Then
we let & be the solution of

Aa = -ViBVi (6.41)

on R2. Since by Corollary ?? —V'BVa € H'(R?) with

| = VBV 2) < el VB2 Vul 25
we can apply Theorem 4.3.9 to get that & € W*!(R?). Since

Al —a) =0

on Bi we get that o € W*(B
2
solves

1) (harmonic functions are smooth). Next we observe that [
4

AB =V+tAvuy (6.42)
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and hence we can argue as before to get that 3 € W!(B
that

). Therefore we see from (6.39)

Bl

AVu € WHY(By) (6.43)

P

and therefore (using (6.9))

Vu e WH(B1) or we W*(B.). (6.44)

P
P

Combining this with Corollary 7?7 we finish the proof of the Theorem. O

With the following counterexamples of Frehse [17] we show that one can not drop the
condition that 2 has to be antisymmetric.

Remark 6.2.4. Let u = (u1,us) € WH2(B, St C R?) be defined by

2
ui(x) =sinlnln —,

]

2
uz(z) = coslnln —
]

then it is easy to check that u solves the elliptic system —Au = QVu with

O— <(U1 + ug)Vul (u1 + UQ)VUQ>
(UQ — ul)Vul (U2 — ul)VuQ '

So in this case 2 is not antisymmetric and u is bounded but not continuous.
For w € WY2(B,R?) given by

2
ui(z) =Inln —,
]
2
ug(z) =Inln —
]

we have that u solves the elliptic system —Au = QVu with

o Vul 0
Q_< 0 Vu2>’

Here we even don‘t have that u is bounded.
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