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Chapter 1

Introduction

The rough idea of Geometric Measure Theory (GMT) is to model surfaces in Euclidean spaces
by measures. From the Analysis course or from Differential Geometry, we already know two
ways to describe surfaces:

e a parametrized surface of dimension n in R"** is an immersion f € C'(U, R"**) where
U C R” is an open parameter domain.

e a C'! submanifold of dimension n in R"™* is a subset M with the following property:
for any p € M there is an open neighborhood W and a diffeomorphism ¢ : W — ¢(W),
such that (M NW) = (R™ x {0}) N p(W).

These concepts are definitively very useful. However, in Geometric Calculus of Variations we
are dealing with sequences 3; of surfaces. For instance, in the classical Plateau problem we
want to minimize the area among surfaces 3 having a given boundary 9% = I'. The approach
is to choose a minimizing sequence ¥;, i.e. the areas of the 3; converge to the infimum. The
goal is obtain the minimizing surface > as the limit of the ¥;. In situations of this type, the
above concepts are of limited use.

For submanifolds M; C R™™* the data, i.e. the covering by open sets W and the diffeo-
morphisms ¢, can degenerate in many ways along the sequence. For instance, the open sets
W may shrink or the diffeomorphsms may lose their rank etc. This concept is really inappro-
priate when dealing with sequences.

The concept of parametrized surfaces is somewhat better, at least if we consider immersions
fi : U = R™* from a fixed parameter domain, since then we can ask about the convergence
of the functions f;. However this also leads to serious difficulties:

e If the immersions f; were uniformly Lipschitz, then we could apply the Arzela-Ascoli
theorem to get a Lipschitz limit. But in problems of interest, like for example in the
Plateau problem, we only have a bound for the total area, and this does not give us
any pointwise control. In fact a minimizing sequence for the Plateau problem could get
really wild, forming many thin tentacles and so on.

e By invariance of the area under reparametrization, there is the possibility of degeneration
due to bad parametrizations, even if all f; just describe one nice fixed surface. There are
concepts to handle this by choosing a preferred parametrization, e.g. a parametrization
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by arclength for curves or a conformal parametrization for two-dimensional surfaces.
Also in higher dimensions there are situations where a particular parametrization plays
a role, for example if the surfaces are graphs. However in general there is no special
parametrization and this poses a problem for the concept.

By contrast the space of measures has a simple and general compactness property. Let p; be
a sequence of Radon measures on R"** such that sup;cy i (U) < oo for all U cC R™"**. Then
a subsequence converges to a Radon measure p, in the sense that

/ pdp = lim @dp;  for all ¢ € COR™MH).
Rn+k 10 JRn+k

This suggests to model surfaces in R"** just by Radon measures, but this notion is too general.
We want to have concepts which still capture some geometry. The above interprets Radon
measures as nonnegative linear functionals on C?(R"*¥). We now list three main concepts of
GMT, using in each case a description as linear functionals:

Varifolds (Almgren, Allard)
Let G(n, k) be the set of n-dimensional subspaces of R"**. For any n-dimensional, properly
embedded surface ¥ one has a functional V& acting on functions ¢ : R*™* x G(n, k) — R by

Va(6) = /E o, T, ) dpis ().

This motivates the definition of an n-varifold as a nonnegative continuous linear functional V'
on CO(R"** x G(n, k)). Equivalently, V is a Radon measure on R"** x G(n, k). This concept
allows to define the first variation and a weak notion of mean curvature, in particular one
introduces the class of stationary varifolds generalizing classical minimal surfaces.

Currents (Federer, Fleming)
To any n-dimensional, oriented, properly embedded surface ¥ C R™* one associates a func-
tional Ty acting on differential n-forms with compact support by integration, that is

TZ(W) = / w forallwe C’go (RnJrk’ An(RnJrk))
2

The space of n-dimensional currents is then defined as the set of all continuous linear func-
tionals on that space of differential forms. It is easy to define the boundary of an n-current,
one just puts 9T(n) = T'(dn) for all (n — 1)-forms. For regular surfaces ¥, this is consistent
by the theorem of Stokes. A big success of the concept is that it allows to formulate and solve
Plateau’s problem.

Caccioppoli sets (Caccioppoli, Di Giorgi)
A Borel set E C R"*! is a Caccioppoli set if its characteristic function x g has locally bounded
variation. This means that for any bounded open set U C R™ one has

|Dxg|(U) = sup{/Edivg(.r) dx :sptg C U, |g| < 1} < 0.

The definition is motivated by the case when E is a domain of class C', with inward unit
normal vg and boundary measure pygp. Namely then the theorem of Gaufs implies for g as



above
/ divg(z) dz = — / (9(2), (@) dpop() < pop(U) < oo.
E oFE

The concept of Caccioppoli sets is of great importance in phase transitions, where two mate-
rials are separated by a common phase boundary. A classical example is the Stefan problem
modelling the melting of ice in water.

All three concepts lead to a beautiful theory, however we will not be able to cover them
for reasons of time. We decided to focus on varifolds since they are rather general, have many
applications and relate to my own recent work.



CHAPTER 1. INTRODUCTION



Chapter 2

Measure theory in metric spaces

Definition 2.1. A measure on X is a function u: 2% — [0, 00] with u(0) = 0, such that
u(A) < ZM(Ai) whenever A C U A;. (2.1)
i=1 =1

It follows that p is monotone, that is u(A) < u(B) for A C B, and countably subadditive:

Reversely, these two properties imply (2.1). We should mention that p as above is often called
an outer measure, while by a measure one means a countably additive function on a o-algebra
which is given a priori. However, in geometry it is convenient to have p defined on all sets.

Definition 2.2. A set A C X is u-measurable if the following holds:
u(S) > p(SNA)+pu(S\A) forall S CX. (2.2)

As S is the union of SN A and S\ A, we always have u(S) < u(S N A)+ u(S\A), and hence
equality if A is measurable. Null sets are measurable: if ©(N) = 0 then

WSAN) =0, and  u(S) > u(S\N) = u(S N N) + u(S\NV),

We will see that the system M of measurable subsets of X is closed under set operations and
limits. To formulate this one introduces the following basic concept.

Definition 2.3 (o-Algebra). A system A C 2% is a o-algebra, if the following hold:
i) XeA
i) AcA = X\Aecd

(iii) Aje A fori=1,2,... = 2, 4ieA

A o-algebra A is also closed under countable intersections, this follows by writing

(A4 = X\ (U X\Ai> :
i=1 i=1
Moreover for A, B € A we also have A\B = AN (X\B) € A.

9
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Lemma 2.4. Let Ay, As, ..., A C X be pairwise disjoint, u-measurable sets. Then

k k
p(SnJA) => w(SNA) foralscX.
=1

=1

Proof. This is trivial for k = 1, and for k > 2 we get by induction, as Ay is measurable,

k k k
pSnlJA) = n((SnlJA)nA) + (Sl A)\A)
i=1

=1 i=1

k—1
= u(SNAp)+p(Sn ] 4)
=1
k
= ZM(S N A;).
i=1
O
Theorem 2.5. The system M of p-measurable subsets of X is a o-algebra. Moreover
A; € M, i € N, pairwise disjoint = M( U Ai) = Z,u(Ai). (2.3)
=1 =1

Proof. We have X € M since pu(SNX) = p(S) and p(S\X) = p(0) = 0. For A € M we also
have X\ A € M, because

(S0 (X\A) = u(S\A)  and  p(S\(X\A)) = u(S N A).
Next we show that AU B € M for A, B € M, in fact we have for any S C X

1(SNA)+ pu((S\A) N B) + u((S\A)\B)
u(SNA)+ pu(S\A) (using B € M)
pu(S)  (using A € M).

W(SNAUB)) + u(S\(AUB)) <

<
<

This yields further ANB = X\ ((X\A)U(X\B)) € M and A\B = AN(X\B) € M. Induction
shows that M is closed under finite unions and intersections. We now prove

AieM fori=12.. = A=|JAeM.
i=1
We can assume that A; N A; = 0 for i # j, otherwise we consider A = AN(A1U...UA; ).
We conclude for any S, using Ule A e M,

k k k
p(S) = p(SnJA) +u(S\[JA) =D ulSNA)+ u(S\A).
i=1 i=1 i=1
The inequality uses Lemma 2.4 and monotonicity of u. Letting & — co we conclude

[e.o]

p(S) =D (SN A) + p(S\A) > u([J(S N A)) + 1(S\A) = u(S N A) + u(S\A).

i=1 =1
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Thus A = | J;2, 4; is measurable. Putting S = X in Lemma 2.4 we finally have

k
li ) > A;) > 1 A;).
Jim H Zu p U im M(H i)
O
Theorem 2.6 (Continuity of measure). Let Ay, Ao, ... be measurable sets. Then
(i) if Ay C Az C ... then p(U2y Ai) = limpoo p(Ak),
(i) if Ay D A2 D ... and p(Ay) < oo, then p( (N7 As) = limp_ oo w(Ag)-
Proof. For (i) let A, = Ay U?:_f A; and compute using (2.3)
0o ) ~ k
UA = U A) =ZM(Ai)=klggou U = lim ji(Ay).
i=1 i=1 i=1
For (ii) consider the increasing sequence Aj = A;\Aj. We have
H(A) = (A 01 Ag) + A1\ A) = p(Ag) + p(A}).
We conclude using statement (i)
p(A) — lim p(Ay) = lim p(A}) = UA’ —uAl\ﬂA (A1) — () A2).
O

Example 2.7. The condition p(A;1) < oo in (ii) cannot be dropped, e.g. consider the counting
measure and Ay, = {k,k+1,...} CN.

A useful construction is the following mapping of a measure.

Lemma 2.8. For a measure p on X and f: X —Y, the pushforward on'Y is defined by

Fp) = 2" = [0,00], f(1)(B) = u(f~1(B)).
f(p) is an outer measure. If f~1(B) is p-measurable, then B is f(u)-measurable.

Proof. Tt is easy to see that f(u) is an outer measure. By definition, f~!B is y-measurable if
pw(S)=u(SNf1B)+u(S\f'B) forall ScC X.
On the other hand, the f(u)-measurability of B means that
p(f 7)) = p(fIT O fIB) + u(fTIT\f7'B)  forall T CY.

Clearly, the first implies the second. O
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Up to now we considered measures on an arbitrary set X, but from now on we assume that X
carries a metric d. In particular we have the Borel algebra, which is by definition the smallest
o-algebra that contains all open sets (or equivalently, all closed sets). It is then a natural
requirement for p to have these sets measurable. This can be guaranteed via the following
nice result.

Theorem 2.9 (Caratheodory’s criterion). Let u be a measure on (X,d), and assume

(AU B) > u(A) + uw(B)  whenever dist(A, B) = qunl;f Bd(a, b) > 0. (2.4)
acA,be

Then all Borel sets are p-measurable.
Proof. We show that any closed set C C X is measurable. Let S C X be arbitrary, without
loss of generality p(S) < oo. Consider the parallel sets

1
Cj={r e X :dist(z,C) < =}

<

We have dist(S\Cj, SUC) > % > 0, hence the assumption implies
U(S\Cj) + (S N C) < u((S\C5) U (SN O)) < u(S).
The theorem follows if we can show

p(S\C) < lim p(S\Cj). (2.5)
Now consider for k£ € N the parallel strips

1 . 1

We have for any j € N
S\C = (S\C)) U Sp.

Taking the limit 7 — oo we can write, using the monotomclty,

u(S\C) < hm ,u(S\C )+ hm u( U Sk> (2.6)
=j

Now for k& > j + 2 we have dist(S;, Si) > — % > 0. Therefore by assumption

1
J+1
N N
Soutse) = () <u(s) < oo
Nz 1 le
ZM(S%—l) = M( U S2i—1> < u(S) < oo
i—1

=1

From the Cauchy criterion for series, we conclude

lim u(USk) < hm Z,u (Sk) = 0.

j—o0
=J =J

Recalling (2.6) we obtain (2.5), and the theorem is proved. O
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Definition 2.10 (Borel regularity). A masure p on a metric space (X,d) is called Borel
reqular, if it has the following two properties:

(1) All Borel sets are p-measurable.

(2) Any S C X has a Borel hull: there exists a Borel set B D S with pu(B) = u(S).

We want to discuss the Borel regularity in connection with the operation of restricting a
measure, which is defined as follows.

Lemma 2.11 (restriction measure). Let p be a measure on X and E C X. Then the restric-
tion of u to E is the measure given by

(uLE)(A) = uw(ANE) forall AC X.
If A C X is p-measurable, then A is also uLFE-measurable.
Proof. For any S C X we have, if A is y-measurable,

(e E)(S) = wSNE)
> pu((SNE)NA)+ p((SNE)\A)
= u((SNA)NE) +pu((S\A)NE)
= (uE)(SNA) + (uE)(S\A).

Note that in Lemma 2.11 the set £ need not be y-measurable.

Theorem 2.12 (Borel regularity of uLE). Let u be a Borel reqular measure on X. Then for
E C X the measure p_E s also Borel regular, if one of the following conditions hold:

(1) E is a Borel set.
(2) E is p-measurable, and E is a countable union of sets with finite p-measure.

Proof. Lemma 2.11 implies that Borel sets are u_ E-measurable, thus we only have to construct
a Borel hull for a given set S C X. We first give the argument for condition (1). As p is Borel
regular, there exists a Borel set B such that

(SNE)CB and pu(B)=u(SNE).
Let B = BN (X\E). Then B is Borel with B D S, and we compute
(4w E)(B) = u(B 1 E) < u(B) = u(S 1 E) = (u_E)(S).

This proves our claim. We now show the result for condition (2), first in the case when
pu(E) < oo. Choose B D E Borel with u(B) = p(E), and compute for any S C X

(ueB)(S) = p(SNB)
< WSNE)+u(SN(B\E))
< u(SNE)+ u(B\E)
= (W E)(S) + pu(B) — p(E) < (uB)(S).
=0

This shows u_E = pLB, and the claim follows by case (1). Finally, let F be p-measurable
with F'= J;2, E; where u(E;) < co. We can assume:
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e L is p-measurable, otherwise choose Borel sets E; D E; with u(E;) = p(E;), and
consider E; N F instead of Ej.

e [y C Fy C ..., otherwise we pass to UZZI E; instead of I;.

Now let S C X. As shown just before, we can choose B; D S Borel with (u_E;)(B;) =
(uE;)(S). For B =132, Bj we have B D S and, by continuity of the measure,

(wE)(B) = p(BNE)
= lim p(B N Ej)
j—o0
limsup u(B; N Ej)
j—00
= lim p(S N Ej)
J—00

(1 E)(S).

This settles the remaining case. O

IN

IN

Theorem 2.13 (Approximation). Let pu be a Borel measure on (X,d). Then for any Borel
set A C X the following hold:

(1) p(A) =inf{u(U) : U open, A C U}, if the right hand side is finite.
(2) u(A) =sup{p(C) : C closed, C C A}, if u(A) < oc.
Proof. We first assume that u(X) < oo, and consider
A={AC X : Ais Borel and satisfies (1)}.
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Of course the countable intersection of the U; need not be open, however

00 N N
ﬂAjC ﬂAjC ﬂUj-
j=1 j=1 j=1

By continuity of the measure, and recalling u(X) < oo,
N 00 o]
i p((V0;) = () < () 4) +e.

Now A trivially contains the open sets. But any closed set C is the intersection of the open
sets {x € X : dist(z,C) < %}, hence A also contains the closed sets. Let

A={AcA:X\Aec A}
Clearly §, X € A, and A € A implies X\ A € A. Moreover for Aj e A we have
U4jed and X\[JA4;=[)X\4, €A
j=1 j=1 j=1

Thus A is a o-algebra which contains the open sets. It follows that A and hence also A are
equal to the Borel algebra. For claim (2), still in the case pu(X) < oo, we argue that

u(X\A) inf{u(U) : X\A C U open}
= inf{u(X\C): A D C closed}

= w(X)—sup{u(C): A D C closed}.

For u(X) = oo statement (2) follows from the finite case by considering puc A, which is a
finite Borel measure by Lemma 2.11. For (1) we consider u.Uy where Uy D A is open with
/L(Uo) < Q. 0

Definition 2.14 (Radon measure). Let (X,d) be a locally compact, separable metric space.
A Borel reqular measure p on X is called a Radon measure if

u(K) < oo  for all compact K C X. (2.7)

A metric space is locally compact if for any x € X there is an r > 0 such that B, (x) is compact.
For instance, a Banach space is locally compact if and only if it is finite-dimensional. A metric
space is separable if it contains a countable dense subset. The space R™ has both properties,
as does any submanifold M C R"™ (Analysis 3).

Lemma 2.15 (o-compactness). Let (X, d) be locally compact and separable. Then there exists
an ezhaustion X = \J;2, U;, where the U; are open with U; compact.

Proof. For any x € X we have by assumption

r(z) = sup{r > 0 : B,(z) is compact} > 0.
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For any r < r(x), the closed ball B,(x) is contained in a compact set, hence these balls are
all compact. We now show that
liminfr(y) > r(z). (2.8)

Y=z

For r < r(z) take o € (r,r(z)). Then B,(y) C B,(x) for y sufficiently close to x. This shows
liminf, ,, 7(y) > r, and the claim follows by letting r  r(x). Now if r(x) = oo for some
x € X, then we can take U; = B;(x). Otherwise let z;, i € N, be a dense subset, and put

r(z:)

2

Ui = By, (z;) where g; =

Using (2.8) one verifies that any = € X is contained in some U;, and the lemma follows. [
Corollary 2.16. Let p be a Radon measure on (X,d). For A C X one has

(1) p(A) = int{u(U) : U open, A C U},

(2) p(A) =sup{u(K) : K compact, K C A}, if A is u-measurable.

Proof. To prove (1) we may assume u(A) < oo and also A Borel, otherwise consider the Borel
hull. Let Uy CC Uy CC ... be the exhaustion from Lemma 2.15. By Theorem 2.13 there exist
closed sets C; C U;\ A such that

/L(Ui\(A N Cz)) = u((UZ\A)\Ci) < 27,

Then V; = U;\C; is open, contains U; N A, and for V = J;2, V; we have
u(V\A) = u( U %\A) <3 wUNANG)) <.
i=1 i=1

Thus statement (1) is proved. For A p-measurable we have u(A) = lim;_, o u(ANU;), therefore
it suffices to prove (2) when A is relatively compact. Then p A is a Radon measure by Theorem
2.12. As proved, there exists U D X'\ A open with

uLAU) < urtA(X\A) + e =e¢.
Then C := X\U is closed with C' C A, in particular C is compact, and
p(A) < p(A\U) + (AN U) < p(C) +e.
The corollary is proved. O
At the end of the section we observe some properties of the measure pushforward.
Theorem 2.17 (Borel regularity of f(u)). Let X, Y be metric spaces and f € C°(X,Y).
(1) If p is a Borel measure, then f(u) is also a Borel measure.

(2) Let X, Y be locally compact and separable, and assume that f : X — Y is proper. If p
is a Radon measure, then f(p) is also a Radon measure.
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Proof. For (1) we note that the sets B C Y for which f~!(B) is p-measurable form a o-
algebra. The claim follows since f~1(U) is open for U open.

For (2) we have by assumption f(u)(K) = p(f~1(K)) < oo for K C Y compact. The
construction of a Borel hull for given T' C Y is more tricky, however. Of course we may
assume f(u)(T') < oo, and it suffices to construct for any € > 0 an open set W D T such that
F(p) W) < f(u)(T) + . We first consider the case T C V where V is open and relatively
compact. Putting S = f~1(T) we choose an open set U D S with u(U) < u(S) +¢. As f is
proper, the set f~1(V\U) is compact, and hence W := V\ f(f~1V\U) is open. For any y € V
we have the implication

yEW = ye f(f7V\U)
= ye f(fTIVA\S) = f(fHV\D))
= yecV\T.
This shows T' C W. By definition of W we have further
e fYV\U = f(z)¢W, thus f7Y(W)cCU.
We conclude
F)(W) = u(f7'W) < p(U) < u(S) + = f(u)(T) +e.

For T arbitrary we choose an exhaustion ¥ = U]oi1 V; by open sets V; such that V; CC Vji1.
Put Ty =T NV, and T; = T N (V;\Vj-1) for j > 2, and choose open sets W; D T; with
F()(W;) < f(u)(Tj) +279e. Then W = Uj2, W; contains T, and we have

NE

f)(W) < () (W;)

<.
Il
-

(fHT) +e

IA
Nk
=

<.
Il
—

(M'—f_l(T))(f_l(Vj)\f_l(ijl)) +¢e (where Vj :=0)

I
Nk

Il
—

r

pfTHD)THY)) +e
(1)(T) +e.

|
kh/—\k:

We used that open sets are u_f~!(T)-measurable.
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Chapter 3

Hausdorftf measure

Let (X,d) be a metric space and s € [0,00). To define the s-dimensional Hausdorff measure
of a set A C X, we consider the set Cs(A) of all countable coverings

oo
Ac|JGi where diam C; < 6.
i=1
We then define an approximating measure at scale 6 > 0 by

H3(A) = inf { i als) (diarzn C) : (Ch)ien € C(;(A)}. (3.1)

For 61 < 2 we have Cs, (A) C Cs,(A) and hence Hj (A) > Hj (A). We expect that for large
d > 0 the number H3(A) underestimates the true measure. The smaller 6 > 0 is chosen, the
more the covering has to follow the fine structure of the set A, so that the number Hj(A)
becomes more accurate. The number «a(s) is a normalization constant, in the integer case
s =k € Ny we take

() = £z € R s fa] < 1}) { o 32)
alk) = T € x| < = ) o o .
GD0-D1 for k=25 +1.
With this choice, it follows that
di i\ F di 5
a(k:)( 1a12nC’ ) =L¥(B,) wherer= 1ar2nC .

In particular if C; is a ball then the number equals the volume of that ball. For s ¢ Ny there
is no natural normalization. To be consistent in the integer case we take

71.5/2

——— where I'(?) :/ e d.
(G +1) 0

a(s) =

To define H§ we could restrict to coverings by closed sets since diam C' = diam C. It is straight-
forward to check that the Hj are measures. However, not all Borel sets are H§ measurable.
To give an example we use the following fact, to be proved in the exercises:

diamA=0>0 = Hi(A)=56.
Taking A = {z € R" : 7, > 0} and S = Bs/5(0) we obtain
HI(S N A) +HEHS\A) =20 > § = HL(S).

19
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Definition 3.1 (Hausdorff measure). Let (X,d) be a metric space and s € [0,00). The
s-dimensional Hausdorff measure of a set A C X 1is defined by

H(A) = sup H3(A) = lim H5(A).
(4) = supH5(A) = lim #5(4)

Lemma 3.2. The Hausdor[f measures H® on (X, d) are Borel reqular.

Proof. We apply Caratheodory’s criterion to show that Borel sets are measurable. Let A; o C
X with dist(A1, A2) =d > 0. For 6 < %, let C be a covering of A1 U As by sets of diameter
less than 6. Then the families C; = {C € C : C' N A; # (0} are disjoint, and hence we get

diam C'\ s iam C'\ s diam C'\ s
CZGEZQ(S)< 5 ) > C%C:la(s)<d2 >+C§2a(s)( 5 )
> H5(A1) + Hi(A2).

Taking the infimum with respect to C yields
H3(A1U Ag) > H5(A1) + H5(Az).

Letting 6 N\ 0 proves the criterion. Next let S C X and d; N\, 0 be given. For each i we choose

a covering Cj;, j € N, of S such that

diam Cj;

S R 1
) <13 () +

diam Cj; < 9; and ia(s)(

j=1
Without loss of generality the C; are closed, hence we obtain a Borel set by putting
o0 oo
B= ( U cij).
i=1  j=1
For fixed 0 > 0 we estimate, for 7 large such that ¢; < 6,
[e.e] o0 .
diam Cj;\ s 1
H;(B) < H3( U1 Cij) <Y ale) (1) S Hi () + -
j:

- 2
7j=1

Letting i — oo yields H3(B) < H*(S), and 6 \, 0 proves H*(B) < H*(S) as desired. O
Lemma 3.3 (Transformation of H® measure). Under a map f : X — Y between metric spaces
the H® measure of a set A C X treansforms as follows:

(1) For f Lipschitz one has H*(f(A)) < L* H*(A) where L = Lip(f).

(2) For an isometry f: X — Y one has H*(f(A)) = H*(A).

(3) For A CR™ and X\ > 0 one has H*(AA) = A¥H?*(A).

Proof. If L =0 in claim (1) then f is constant and the statement is easily checked. Otherwise
let A C J;2; C; be a covering with diamC; < §. Then f(A4) C U2, f(Ci) and we have
diam f(C;) < Lé, hence
. - diam f(Ci)\5 _ .~ diam C; \ s
Hig(f(4) €Y als) (Fg—2) < 27Yals) ()
i=1

=1
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Taking the infimum shows Hj 5(f(A)) < L¥H3(A), and (1) follows by letting 6 N\, 0.

In claim (2) both f and f~! have Lischitz constant one, hence
H(A) = H*(FH(f(A)) < H(f(A) < H(A).
Similarly in (3) the map 7)(z) = Az has Lipschitz A, this implies
1
A HS(A) = )\SHS(X)\A) < HI(AA) < N H(A).
O

The measures H® and H! compare as follows: let A C Uf; C; where diam C; < 6. Then we
have, assuming s < ¢,

i = S0 (M5 < S (0) S (25)’

Taking the infimum with respect to these coverings, we get

t a(t) 5 t=s S
Hé(A)gm@ H3(A).

In particular we have
Hi(A) <o = H'(A)=0 fort>s,
HI(A) >0 = H(A)=o0 fors<t.
Definition 3.4 (Hausdorff dimension). The Hausdorff dimension of a set A C (X,d) is
dimy(A) = inf{s > 0: H*(A) = 0}.
Example 3.5. The Cantor set C is the set of all s € [0, 1] having a triadic expansion

oo
s=0,8182...= Z 5;377  where s; € {0,2}.
j=1
This representation is unique: if s,t € C satisfy s; =t; for j <N —1 but sy # tn then

s—t[>2-37N— Y 2.37=2.3N_3N=3N>q.
J=N+1
The estimate also implies that C' is complete, hence also closed. Now C s the disjoint union
C=CoUCy whereCo={seC:s1=0},Cy={seC:s =2}
Note that Cy = %C and Cy = % + %C. Therefore Lemma 3.3 implies for any d € [0, 00)
1Nd g dfl La d L4

(g) 1) =H (gc) = 5 (H'(Co) + H(Ca) = SHI(C).

Now if d can be chosen with 0 < H(C) < oo, then

I\nd 1 ) log 2
( ) =3 that 1s d:log32:10g3.

3
The calculation suggests that this number d is the Hausdorff dimension of C.
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We now come to the comparison of the measures H"” and £" on R". The Lebesgue measure
has the following wellknown uniqueness property (see Analysis 3).

Theorem 3.6 (axiomatic characterization of £L™). If a Radon measure u on R™ is translation
wnwvariant, then it has the form p = cL™ for a constant ¢ > 0.

Lemma 3.7. On R™ we have H" = c L™ where 27" < ¢ < 2 "a(n)n™/?.
Proof. H™ is Borel regular by Lemma 3.2. Dividing [0, 1]" into k™ congruent subcubes of
diameter y/n/k, we infer for k large

H3(]0,1]") < k"a(n) <\2/:>n =2 "a(n)n"/2.

Letting § N\, 0 proves the upper bound, in particular H" is a Radon measure. Now consider
an arbitrary covering [0,1]" C |J;2; C; with diam C; < §. Then

1=2L7(] <Z£" ioz (diam C;)" i (d1amC> .
i=1 =1 =1

Taking the infimum over all these coverings we conclude

27" < H™([0,1]") < 2 "a(n)n"/2.
Ths claim follows by Theorem 3.6. O
The equality H™ = L™ is more involved. We need the following two facts.

Lemma 3.8. For open U C R" and 6 > 0 there ewist pairwise disjoint, closed balls B C U
with diam Bj < 0, such that
(o]
(v B) =0
j=1

This will be proved in Chapter 3 using a covering theorem.

Theorem 3.9 (isodiametric inequality).

diam A)n

5 for any A C R™.

Lr(A) < a(n)(
Example 3.10. The inequality is nontrivial in the sense that not every set A is contained
in a ball of radius diam A/2. A standard example is the equilateral triangle: the diameter is
equal to the sidelength, and one half the sidelength is shorter than the radius of the perimeter
by a factor \/3/2 < 1. We note however that if A is symmetric with respect to a point p, then
it is contained in a ball of radius diam A/2.

Theorem 3.11. We have H"™ = L™ on R".

Proof. For the upper bound choose an exhaustion of U = (0, 1)" by balls B; with diam B; < §
as in Lemma 3.8. Using that Hj < H" < C' L™ we obtain

12([0,1]") = Hg( G Bj) < ia(n)((ﬁm;Bj)" <1.

J=1 J=1



23

On the other hand if [0,1]" C |J;2, C; then by Theorem 3.9

1<Z£n §ia (dlamC) .

= =1

This yields #"(0,1]") > 1. 0

To prove the isodiametric inequality we employ a symmetrization. For v € S*~! we consider
the hyperplane P, = {z € R" : (z,v) = 0} and define

Apy=AN(p+Rv) where p e P,.

Then the Steiner symmetrization with respect to P, is defined by

1
s(a= U {p+tu:|t|g§£1(Ap,v>}. (3.3)
pEPv,Ap,v#Q)

Lemma 3.12. For v € S" ! and A C R" we have
(1) diam S,(A) < diam A,
(2) If A is L™-measurable, then so is Sy,(A) and L"(S,(A)) = L™(A).
Proof. We may assume diam A < oo. For p; € P, for i = 1,2 we put
=inf{teR:p;+tve A} and b =sup{t € R:p;+tve A}
The points p; + a;v and p; + b;v are in A, hence

diam A > |(p2 + bov) — (p1 + @10)], |(p1 + b1v) — (p2 + azv)|
= Vp2—p12+ (b2 — a1)?, VIp1 — p2? + (b1 — a2)?.

Now for p; + t;v € S,(A) we have |(p1 + t1v) — (p2 + tav)| = \/|p1 — p2|? + [t1 — t2|? where
1
‘tl — t2| < |t1| + |t2| < (bl —ay+ by — CLQ) < max(]bg — CL1| ’bl - CLQ|)

This proves claim (1). By the Cavalieri-Fubini theorem, the sets A,, are £'-measurable for
almost every p € P,, the measure £1(4,,) is a measurable function on P,, and

- / £1(Ay) AL (p).
P,

Altogether this implies claim (2). O

Proof. (of the isodiametric inequality) We assume diam A < oo and A closed. Put Ay = A
and define inductively the sets A; = S, (A1) for j = 1,...,n. We claim that, for o; the
reflection at P,

O'j(Ak) :Ak fOI‘jI 1,...,]6. (34)
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By definition of the Steiner symmetrization we have oy (Ax) = Ag, in particular (3.4) holds
for k=1. Nowlet k > 2and 1 <j <k —1. For p € P, we obtain by induction

(Ak-1)o;()er = Ak-10(05(p) + Rey)
= 0 (Ak;—l N(p+ ]Rek)) (using 0 (Ag—1) = Ak—1, 0j(ex) = ex)
= 0i((Ar—1)p.er)-

In particular £1 ((Ak—l)gj(p),ek) = L'((Ak-1)p,e,,). This implies 0;(Ay) = A by definition of
the Steiner symmetrization. Thus A,, is symmetric with respect to all coordinate hyperplanes,
and hence symmetric about the origin. This implies diam A,, > 2|z| for any = € A,, and we
conclude recalling Lemma 3.12

diam An)n < a(n) (diamA)n'

LP(A) = LM(A,) < a(n)( : :



Chapter 4

Covering theorems

In many arguments in GMT one has a family of balls B,y(z) covering a set A, with certain
information on each ball. Typically the radius o = g(z) > 0 is small depending on z. In
such a situation a covering theorem allows to deduce global information. We discuss two such
theorems due to Vitali and Besicovitch. The first produces a disjoint subfamily such that the
balls enlarged by a factor 5 are still a covering. This result is particularly useful if we have
a measure for which the enlarged balls can be estimated, e.g. the Lebesgue measure. The
Besicovitch theorem produces a covering out of the given balls. Of course then the subfamily
cannot be disjoint, however the theorem asserts that the overlapping is estimated.

Vitali’s theorem applies in any metric space (X,d). For a given closed ball it considers the
concentric ball with 5 times the radius, i.e.

B={xe X :d(xx) <50 for B={zreX:d(zx,z) < o} (4.1)
Theorem 4.1 (Vitali). Let F be a family of closed balls B C X with positive diameter and

D := sup diam B < oc. (4.2)
BeF

Then there exists a pairwise disjoint subfamily G such that

Usc U 5B

BeF B'eg
In fact, for any B € F there exists a B' € G such that BN B # 0 and B C B'.
Proof. We start by ordering the balls by their size. For k =1,2,... we put
Fr={BecF:27"D < diam B < 2'7*D}.
Now construct G C Fp inductively as follows:
e let G; be a maximal pairwise digjoint subfamily of Fj.

e let G, k > 2, be a maximal pairwise disjoint subfamily of F;, by which we mean the
set of all B € Fj, which do not intersect any B’ € G; for j =1,...,k — 1.

25
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The maximality of G means the following: let B be a ball in Fi. Then either it intersects
some ball B € G; for j <k —1 (for k = 1 this alternative does not apply), or it intersects a
ball B’ € G;. In fact otherwise B could be added to Gy contradicting the maximality. For the
radii of the balls we have

rad B<27"D < 2rad B

Thus if zg is the center of B’ and z € BN B’, then for any y € B we have
d(y,zo) < d(y,z) + d(z,z0) < 4rad B’ + rad B’ = 5rad B’.
O

The choice of a maximal subfamily is less obvious as it seems. In R™ we can argue as follows.
Assume that F is a family of closed balls with lower radius bound ¢ > 0. Let Fr be the
subfamily of balls contained in Bg(0). If By,..., By € Fg are pairwise disjoint, then

N
Na(n)p" < ZE"(Bi) < a(n)R"™, hence N < (?) .
i=1

There exists a pairwise disjoint subfamily of Fr with maximal number of elements. Now choose
R; = 1,2,... and proceed inductively. In a general metric space (X,d) such an argument is
not available. For the existence of a maximal subfamily one then needs Zorn’s lemma. We
omit the details.

Definition 4.2. A family F of sets in (X,d) is a fine covering of A if
inf{diamB: Be F,z € B} =0 for all x € A.

Corollary 4.3. Let F be a family of closed balls in (X,d) with positive, uniformly bounded
diameter. Assume that F is a fine covering of A. Then there exists a pairwise disjoint
subfamily G with the following property: for any finite collection By, ..., By in F one has

N
A\ U B; C U B/.
=1

B'e€G\{Bx,....Bn}

Proof. Let G be as in Theorem 4.1, and let x € A\ Ufil B; be given. As X\ Uf\il B; is open
and F is a fine covering, there exists a ball B € F with z € Band BNB; =0 fori=1,...,N.
Now by Theorem 4.1 there is a B’ € G with BN B’ # () and B C B’. We conclude z € B’ and
B’ # B;fori=1,..., N, thus

HARS U B

B'€G\{B1,....Bn}
O

Theorem 4.4. Let U C R" be open and § > 0. There exist pairwise disjoint closed balls
Bj C U with diam B; < 0 such that

(o G B;) = 0.
j=1
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Proof. We may assume that U is bounded, otherwise we apply the result to the disjoint open
sets Uy, = {x € U : k < |z| < k+1}. Let Fi be the set of closed balls B C U with diam B < 4.
By Vitali there is a pairwise disjoint subfamily G; C F; with

vec |J B

BeG

Thus we can estimate

£”(U\ U B) - E"(U)—E”( U B)

Beg; Beg:
= L'U)= ) L£(B)
Begy
= LMU)-5" ) L"B)
Beg:
< (1-=-5"")L™U).

Putfd=1- %5_”. Then there exists a finite subfamily G C G such that

£"(U\ U B> <0Lm(U).

Beg;

Now U\ U Beg! B is open. Iterating the argument we obtain a decreasing sequence

U=UyDU1D..., whereU=Us_1\ U B.
Beg;,

Here G, is a finite, pairwise disjoint collection of closed balls B C Uj_; with diam B < ¢ and
LMUy) < 0L (Ug-1).

The family G’ = (J—, G;. is pairwise disjoint, and we have
L (U\ U B) = lim L"(Uy) = 0.
Beg’

O

Theorem 4.5 (Besicovitch). Let F be a family of closed balls By(a) in R™ with o > 0, such
that o* = sup{o : By(a) € F} < co. Let A be the set of centers of the balls in F. There exist
subfamilies F1, ..., Fn, each pairwise disjoint, such that

N
ACU U B and N <C(n).
j=1BeF;

The theorem asserts the existence of a covering with overlap multiplicity bounded by C(n).
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Proof. We first prove the theorem for A bounded. Choose inductively balls By, Bs,... in F
as follows: if By,..., Bj_1 are already determined, let

7j—1
4; = A\JB,
i=1
0; = sup{o: By(a) € F,ac A;}.

Now choose B; = B, (a;) where a; € A; and g; > %g}f. The start of the process is for j = 1
where A1 = A and p] = ¢*. By construction we have

laj —a;| > o forj>i, (4.3)

4
o < go forj>i (4.4)
For the last inequality we note A; C A; for j > 4, this yields
* * 4
0j < 0; X 0; < 30i-

Combining (4.3) and (4.4) we get for j > i

1 2 3 1 1
laj —a;| > 0; > g@i"‘g'z@j > ggi—i-ggj.
Thus we have
B% (a;)) N Bej (aj) =0 fori#j. (4.5)
3

We claim that the constructed family of balls covers A. If the process stops at some j, then
A\ UL, B, is empty and the claim follows. Otherwise we use that A is bounded and ¢* < oo,
thus all balls are contained in a fixed large ball. Then (4.5) implies o; — 0 as j — oo. Now
for each a € A there is some ball B, (a) € F. For j sufficiently large we have

4
r > 3% > 0 =sup{o: By(d') € F,d' € A;}.

We conclude a ¢ A;, in other words a € B; for some i < j.

Now we divide the set of balls into subfamilies. We start by letting 71 = {By}. If By is
disjoint from By, then we add it to F;. Otherwise we make up a new subfamily 7y = {Bs}.
Proceeding by induction, each ball is added to the subfamily with smallest number which

keeps disjoint. If there is no subfamily with this property, then we create a new one. Now we
claim that there is a constant C, such that for any k£ € N we have

#J, < Cp where J, ={j <k:BjNBy# 0}. (4.6)

This implies that we need at most N = (), + 1 subfamilies in the above process, and the
theorem is proved. We note that the definition of Jj in (4.6) means that

]aj — ak] < 05+ 0k for all j € Jg. (47)

To prove (4.6) we distinguish between balls B; which are comparable in size to By, and other
balls which are bigger.
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Claim 1. For J, = {j € J; : 0j < 3p;} we have #J; < 20".

We use a packing argument. For j € J; we have %Qj < o and |aj —ax| < 0j + o < 40 Now
we estimate using (4.4) and (4.5)

@ am(%) <> am) (%) = (U Byla)) < £ (Bsalar) = aln)(5en)"

JEJ], JEJ,

The claim follows.

Claim 2. Let J = {j € Ji : 0; > 30k} Then for i,j € J/!, i # j, we have
<a; —ag,aj —ap) >0  for § > 0 universal. (4.8)

To deduce from (4.8) the estimate for #.J,) we again use a packing argument, but now on
S*~L. For w; = | | we have |w; —wj| > 2d where d = sin g. Let e, be the north pole, then

(# )Hn 1(Bd(€n) Nns*™ 1 = Z Hn_l(Bd(wj) ﬂSn_l) < Hn_l(Sn_l).

jeJy

It remains to prove (4.8). Let i,j € J/ with ¢ < j, and choose coordinates z = (y,z) €
R™ ! x R such that a; = 0 and a; = |a;|e,. We must find a cone around the z-axis which does
not contain a;, with a universal angle. Consider a point a € R™ with (a, e,) > 2(1 — €)p;, for
small € > 0 to be determined. Using (4.4) and j € J;/ we estimate

3
Sl —€)oj =0 +

>
al >

1 3
2(1—35) >Q]+2(1—35)Qk—gj+gk+ (1—95)

Choosing € = § we obtain, using |a;| = |a; — ax| < 0j + o by (4.7),

1 16

(aj,en) <2(1=5)oi = 5 0i (4.9)

The plane {z = ¥ 0;} intersects By, (a;) in an (n — 1)-disk. Using (4.3), (4.7) for i € J}/, and
(4.4) in the case when a; = 0, we see that

4
Qi,

Qi§|ai’§Qz+Qk<3

We now estimate the radius R of that disk by
16 2 16 2 32
R = o} - (3@1 - !ai\) > 0} - <§Qi - Qi) 7° 0
Let C be the cone over that disk, with tip ap = 0. For the angle 8 of C' we have

R 1
> . (4.10)
Yo V8
We next deal with points close to a; = 0. The spheres 0Bs,, (0) and 0B,,(a;) intersect in an
(n — 2)-sphere, which is contained in a horizontal plane {z = h}. We let C’ be the cone over

tanf =
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the corresponding (n — 1)-disk. To estimate the angle 6" of C’, we apply the cosine law in the
triangle with corners a; = 0, a; and a point on the (n — 2)-sphere. This yields

(Box)? +ail* —0f  3or | (Jail — 0i)(Jai| + 0:)

cosf = =
2(30x)|as| 2a| 60k |a|

Now ¢; < |ai] < gi + o by (4.3) and by the definition of Ji in (4.6). The definition of .J}/
further implies 390 < 0; < |a;|. Thus
)

NER:
3 6

N | —

cost <

Now 6 < #', in fact § = arctan % ~19,47° and ' = arccos% ~ 33,56°. We conclude

a; ¢ {(z,2) € C': z < h}. (4.11)

Namely, otherwise we had a; € Bs,, (0). But |aj| = |a; — ar| > 0 > 30x by (4.3) and defini-
tion of J}/, a contradiction. Finally, the part of C' with h < z < 1@69@- is the convex hull of the
two horizontal disks, and is therefore contained in By, (a;). But again by (4.3) we know that
laj — a;| > 0;, and we conclude a; ¢ C. This proves (4.8) with 0 = arctan ﬁ. The theorem

is proved in the case when A is bounded.

For A unbounded we apply the result to the families
Fi ={Byla) € F:3(k—1)0" <la| < 3ko*} where k € N.

We obtain subfamilies Fy, 1, ..., F n, each pairwise disjoint, which cover the set of centers of
Fi; here N = N(n) is the Besicovitch constant. Now put fori =1,..., N

A= Fri and F'= ] Fuu
k even k odd

These families are pairwise disjoint, since for B,(a) € Fj, and By (a’) € F; with |k — 1| > 2
la—d| 230" >0+ 0.
Therefore the theorem holds with constant 2/NV. O

Theorem 4.6. Let p be a Borel measure on R™, and let F be a family of closed balls with
positive radius and centers in a set A. Assume that p(A) < oo and

inf{o > 0: By(a) € F} =0  for each a € A.

Then for any open U there exists a disjoint subfamily F' with B C U for all B € F', such that
(1L A) (U\ U B) ~0.
BeF!

Proof. We may assume diam B < 1 for all B € F. Putting U = Uj, we determine for j > 2
open sets U; = Uj_1\ UZ’:l Bj 1, where Bj;, € F, with the following properties:

® Bj1,...,Bj, are contained in U;_; and are pairwise disjoint,
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o (uA)(Uj) <0 (ucA)(Uj—1) where 6 € (0,1) is a constant.

We then conclude as in Theorem 4.4 that 7' = {Bj : j > 2,1 < k < k;} has the desired
properties. To define U; we let F; = {B € F : B C Uj_1}, and note

inf{o > 0: B,(a) € F;} =0 foreachaec ANU;_;.

By Besicovitch there exists a pairwise disjoint subfamily F J/ such that

wa( U B) = %(MLA)(Uj_l) where N = N(n).

As the balls B € F] are disjoint and have positive radius, the family 7 is countable. For
instance, taking a point with rational coordinates in each B yields an injective map to Q.
The balls are uLA-measurable, see Lemma 2.11. By continuity of the measure, Theorem 2.6,

we can choose a finite set Bj1,..., Bj, in ]-'j’- such that
k; 1
() (U Bix) = 537 (e A)Uj-1).
k=1

Thus we conclude, using again measurability with respect to pLA,

k;
(neA) (Uj—l\ U Bj,k) < (1 - %) (HeA)(Uj-1).
k=1

The construction is complete. O
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Chapter 5

Differentiation of Radon measures

In the chapter we dicuss a version of the Radon-Nikodym theorem for Radon measures on R".
The proof applies the Besicovitch covering theorem, more precisely Theorem 4.6.

Definition 5.1 (Densities). Let u, v be Radon measures on R"™. The upper/lower density of
v with respect to p at a point x € spt yu s

D = limsu M an v(x :iminw
Do) =limsse @y ™ BV = IR )

We write D,,v(x) when the upper and lower density are equal.

We claim that the densities are Borel measurable functions. To see this we show that the
function  — p(By(z)) is upper semicontinuous, where By(z) denotes the closed ball as in
the previous chapter. This means that the sets {u(B,(x)) < t} are open, and then the claim
follows easily. Now if z;, — x and r > p then B,(z) D B,(xy) for k sufficiently large, thus
p(Br(x)) > limsupy,_, o u(By(zr)). We conclude

H(By(@)) = im u(By(2) = limsup u(By(a)).

k—o00

Lemma 5.2. Let A CR"” and 0 < a < 0o. Then the following hold:

(a) Ac{zeR":Dv(x)<a} = v(A) <ap(d),

(b) AC{z €R":Dyv(z) >a} = v(4)>apu(A).
Proof. To prove claim (a) we let U be any open set with U D A, and define the ball family

F={B=Byla) CU:ac A, v(B)<(a+e)u(B)}.
We have inf{p > 0 : By(a) € F} = 0 by assumption. Theorem 4.6 yields a pairwise disjoint
subfamily F’ such that
I/(A\ U B) =0.

BeF'
We conclude

v(A) < Y w(B) < (a+e) Y u(B) < (a+e)uU).

BeF’ BeF’
Taking the infimum over all U, see Theorem 2.13, and letting € \, 0 proves (a). For claim (b)
we argue that D,v(z) > o implies D, u(z) < 1, and then apply (a). O
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Theorem 5.3 (Radon-Nikodym). For Radon measures p, v on R™ the following holds:
(1) The set Z = {D,v = oo} satisfies p(Z) =0, and D,v ezists p-almost everywhere.

(2) For any u-measurable set A one has
v(A) = / Dyvdp+ (v 2)(A).
A

Before entering the proof we mention further terminology:

e v is absolutely continuous with respect to p, in notation v << pu, if u(A) = 0 always
implies v(A) = 0.

e 1 and v are mutually singular, in notation p L v, if there exists a Borel set Z such that
w(Z) = 0 = v(R"\Z).

Proof. We first give the proof when p(R™) and v(R™) are both finite.
Step 1: Proof of statement (1).

The inequality D,v > o holds on Z for any a > 0. Then v(Z) > au(Z) by Lemma 5.2, and
we conclude p(Z) = 0. Next consider for 0 < a < b < oo the sets

R(a,b) ={D,v <a <b< Dyv}.
Again by Lemma 5.2 we have
bu(R(a,b)) < v(R(a,b)) < ap(R(a,b)).
As a < b this is only possible when u(R(a,b)) = 0. But now
{D,v <Dy} = U R(a,b).
0<a<b<oo,a,beQ

Step 2: Proof of (2) in the case v << p.

For N = {D,v = 0} Lemma 5.2 implies ¥(N) < au(N) for any o > 0, hence v(N) = 0.
Moreover Z and {D,v < D,v} are null sets for p, thus also for v by assumption. Now
consider for t € (1,00) and m € Z the sets

Ay ={z € A:t™ < Dyv(z) < t™H}
We compute, again by Lemma 5.2,

v(A) = v(An) <Y " u(Ay) <t Z/A Dyvdy = t/ADuydu.

meZ meZ meZ
The lower bound follows in the same way, namely
m 1 1
)= S w2 el 2 7 5 [ D= [ Dy

Letting ¢ ™\, 1 finishes Step 2.
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Step 3. Proof of (2) for general u, v (still finite)
We claim that v, = v (R™\Z) is absolutely continuous with respect to u. In fact for u(A4) =0
and any a >0 let Ay ={z € A: D,v(r) < a}. Then by Lemma 5.2 we get

v(Ag) < ap(Ay) =0, thus v (A) =v(A\Z) = li/m v(Aqy) =0.

Now let A* = {z € R"\Z: D,,(v.Z)(x) > a}. Again by Lemma 5.2 we get
0 = (1.2)(A%) = ap(A®),

so that D, (v.Z)(z) = 0 for u-almost every € R™. This implies D v, = D,v for p-almost
every x € R", and Step 2 implies

v(A) — (nZ)(A) = v (A) = /ADMV* dp = /ADNV dp.

Step 4. Proof for general u, v
Consider the restrictions to Bg(0), and let R 7 oc. O

Corollary 5.4 (Lebesgue differentiation theorem). Let p be a Radon measure on R™, and
feLi (u). Then

loc

lim fy)du(y) = f(z)  for u-almost every x € R™.
o0 By(x)

Proof. We may assume f > 0. There is a unique Radon measure v on R™ such that
v(B) = / fdu  for B p-measurable.
B

v is absolutely continuous with respect to u, hence Theorem 5.3 yields the representation

V(B):/BDMVd,U,.

Taking for B the sets {f > D,v} and {f < D,v} we conclude f = D,v p-almost everywhere.
O

We mention a slight improvement which is sometimes useful. Let u be a Radon measure on
R" and f € L (1) where 1 < p < oo. A point = € spt u is an LP Lebesgue point if

loc

lo f 1) = @) duty) =0 (5.1)

We claim that p-almost all @ € spt p are Lebesgue points. By the Minkowski inequality we
have for any A € R

<][Bg(x) J f($)|pdu); = <][BQ(

Applying Corollary 5.4 on the right we obtain for all = € spt u, except a p-null set N(A),

1= AP du)” |7 (@) = N

T

imsup ( ][BM 1~ PP dp)” < 2|f() - A
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For z ¢ |Uycq IV(A) we can take a sequence Q 3 A; — f(z), the claim follows.

For example, consider the characteristic function xg of a py-measurable set £ C R™. Then
x € spt p is a Lebsgue point if and only if one of the following holds:

. uw(ENBy(x)) B
r€FE and A1)1{% —M(BQ(I)) =1,

. uw(ENBy(z)) B
x ¢ F and LIJI{%—M(BQ(@”)) =0.

The limit (if it exists) is called the u-density of E in z, in general one considers the upper and
lower p-density by taking the limsup and liminf. By the above, the u-density of E is equal
to one for p-almost all x € E, and equal to zero for u-almost all x € R™\E.

Definition 5.5. Let u be a Radon measure on R™, and let f : R™ — R. We say that A € R is
the approzimate limit of f with respect to p at a point x € spt u, if for alle >0
u(Bola) 0 {If A = €))

R 1(Bo(@)) =0

Notation: p-aplim,_,, f(y) = A.

The approximate limit is unique: let |\ — X'| = 2e > 0. For any y € B,(x) at least one of the
inequalities |f(y) — A| > € or |f(y) — | > € holds. Thus

p(Bo(@) NS = A > e}) + p(Bo(@) N {[f =N > €}) _ p(Bo(w))
#(By(2)) — (By(2))

Hence f(y) cannot have both X\ and )\ as approximate limits. f is approximately continuous
at ¥ € sptpy, if p-aplim,_, f(y) = f(z). If * € sptu is a Lebesgue point of a function

fe Llloc(,u), then f is approximately continuous at . Namely we have

B,(z)N — f(z)] >
“ ()uigg(x{)( Iz ][B (I)X{f—f(x)lza}dﬂ(y)

e

=1.

3

< ][ Mdu(y)—w as 0\, 0.
By ()

Corollary 5.6 (approximate continuity). Let u be A Radon measure on R™. Then any p-
measurable function f:R"™ — R is approzimately continuous at p-almost all points x € R™.

Proof. Consider for k € N the truncations

k if f(z) >k,
fule) =4 (@) i k< fl2) <k,
-k if f(z) < —k.
Then fy € Li.(n), and by the above f is approximately continuous on R™\ N, where Ny
is a p-null set. We claim that f is approximately continuous at all points ¢ (J,—; Ni. For
given € > 0 take k € N such that |f(z)| < k — e, which implies fi(z) = f(z). Now for
£(y) - F(@)] = & we have
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o if [f(y)| <k then |fr(y) — fu(z)| = [f(y) — f(2)] Z ¢,
o if [f(y)] > k then | fu(y) — fu(@)| = [[fe@)| = [fe(@)l| = k = (k —¢) =e.
Thus |f(y) — f(x)| > € implies |fx(y) — fx(x)| > €, and we conclude for x ¢ |Jro | Ni

p(Bo(@) N {f = f@)| 2 e}) _ n(Bo(@) N {Ifk = fu(2)] = €})
#(By(2)) - #(By(x))

—0 asp\,0.

We now turn to a another notion of density.

Definition 5.7 (s-dimensonal density). Let p be a Borel measure on (X,d) and A C X. The
upper/lower s-dimensional density of A with respect to p is

-, A B

P, Ar) = limsup AN B@)
o\0 a(s)oe®

0(u, A z) = liming 2A0Bel@)

o\0 a(s)oe®

We write 6°(uu, A, x) in case of equality. The functions 6°(u, A,-) and 6°(u, A, -) are Borel
measurable, even when A is not p measurable. Namely, Borel sets are u_A-measurable by
Lemma 2.11. The claim then follows from the upper semicontinuity (see definition 5.1)

(ueA)(Bo(x)) = limsup(uA)(By(y))-

Yy—x

Unfortunately the two statements in the next theorem are somewhat different in detail. We
note that the two sets F and A need not be py-measurable.

Theorem 5.8 (s-densities). For a Borel measure p on (X, d) the following holds:
(1) If °(u, E,-) > X\ on A, then u(E) > \H*(A).
(2) If 0°(u, A,-) < X on A, then u(A) < 2°AH*(A)  (for u Borel regular).

Proof. Tn (1) we can assume u(E) < 0o, A > 0 and also 6° (i, E,-) > X on A, by eventually
letting \' ' A. For any 0 > 0 we consider the family of balls

}':{Bg(a):aeA,g<5,W>)\}.

By assumption F is a fine covering of A. Let G be the disjoint subfamily as in Corollary 4.3.
For any finite G’ C G we have

(L E)( B)( | ] B) <
2 BB = (s (U B)=ue

Hence G is countable, we write G = {B; : j € N}. Now Corollary 4.3 yields that

AcC UBUUB for any k € N.
Jj=k+1
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Therefore we can estimate

k
e+ Y al)oe)

los(4) <
7=1 j=k+1
1 k 53 00
< XZ WE)(Bj)+ 5 D (1E)(By)
j=1 j=k+1
5 —
< SuE)+ 2 (BB,
j=k+1

Letting k — oo the series on the right disappears, and the claim then follows by letting § 0.

For (2) we can assume H*(A) < oo, and also 0° (i, A,-) < X on A (see above). Consider
(AN By(x))
a(s)e®
We have A1 C Ay C ... and A = Upo; Ar. Now p(Ag) — p(A) as k — oo (since p is

Borel regular this holds even when the Ay are not measurable, see Evans-Gariepy, page 5).
Therefore it suffices to estimate pu(Ay). We claim that

Ak:{zeA: <A forallgE(O,%)} for k € N,

p(AR) < 2°AH3 (Ay):

For this let C;, j € N, be any covering of Ay, with §; = diam C; < %, and such that A,NC; # 0
for all j € N. Taking points a; € Ay N C; we infer

A C U Cj C U B(;j(aj).

j=1 j=1
This yields the bound
p(Ar) < Y u(AnBs(a)))
j=1
[e) . 1
< A afs)8; (using ay € Ay, §; < E)
j:l
diam C;
< S (0.
Taking the infimum over all coverings of Ay we conclude
w(Ag) < 2°AHT (Ak) < 2°AHP(A).
k
This completes the proof of the theorem. O

Corollary 5.9. Let i be a Radon measure on (X,d) and s > 0. If u(A) =0 then

0°(u,x) =0 for Ho-almost every x € A.
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Proof. 1t suffices to show that for any A > 0 the following sets are H® null sets:
Ay={zcA:0 (u,2) > \}.

Let U D Ay be open. Then for 2z € Ay we have trivially 0°(u, U, 2) = 6° (u, ) > A. Thus from
Theorem 5.8(1) we obtain
AH(Ay) < u(U).

As infy5a, p(U) = p(Ay) = 0 the claim follows. O

Let p be Borel regular and assume that E' is g-measurable with y(X\E) < co. Then pu (X\E)
is a Radon measure for which E is a null set. We conclude

0" (1, X\E,z) = 6" (u(X\E),z) =0 for H*-almost every z € E. (5.2)
Corollary 5.10. Let A C (X,d) be a Borel set with H*(A) < co. Then
275 < gs(HS,A,x) <1 for H®-almost every x € A.
Proof. Consider for A\~ < 27% and AT > 1 the sets

At = {2 € A:0°(H A )

> At
A = {2€A:0°(H A x) <\~

2
).

For open U C A" we apply Theorem 5.8(1) to H*, ANU and A", we obtain
ANTHE(AT) SHS(ANU) = (HLA)(U).

Now since A is Borel and H*(A) < oo, the measure H*_A is Borel regular by Theorem 2.12.
Hence using Theorem 2.13 we get by taking the infimum over all U

AHS(AT) < (HELA)(AY) = HE(AT) = HH(AT) =0.

For the lower bound we note that on A~ we have ES(HS, A x) < ES(HS, A,x) < A™. Applying
Theorem 5.8(2) to H* and A~ we obtain

HI(A™) < PN H(AT) = H(A)=0.



40

CHAPTER 5. DIFFERENTIATION OF RADON MEASURES



Chapter 6

The Riesz representation theorem

In this chapter (X, d) is always a locally compact, separable metric space, for example X = R".
By Lemma 2.15 there exists an exhaustion X = Uf; U; where the U; are open with U;
compact. Let u be a Radon measure on X, and assume that 7 : X — RF is y-measurable and
satisfies |n(x)| = 1 for all z € X. Then we have an induced linear form

6+ CAXRY) = R o(f) = [ (fon)d (6.1
Moreover, for any compact set K we have the estimate, with constant C(K) = u(K),
6(f)] < C(K) || fllcoxy forall f € CX,R") with spt f C K. (6.2)

In other words, ¢ is a continuous linear functional on the space of CO(X,RF) functions with
support in K. If X happens to be compact then ¢ is continuous on the whole space C%(X, R¥).
Any linear form ¢ with (6.2) will be called a linear functional on C?(X,R¥). The goal of this
chapter is to reverse this process: given a linear functional ¢ on C?(X,R¥), we want to find
a Radon measure p and a p-measurable function 7 € C°(X,SF~1) such that ¢ has the repre-
sentation in (6.1). Moreover, the data p and 7 should be unique.

We start with the construction of the measure . To do this we need a partition of unity. The
usual statement asserts that that the partition functions y; can be chosen subordinate to the
covering Uy, in the sense that spt x; C Uy for some k. However, we need below that for i’ # i
one can choose k' # k, which is not automatic. Therefore we now prove a specific partition
lemma.

Lemma 6.1 (simple partition of unity). Let U;, 1 <i < N, be an open covering of a compact
set K C X. There exist functions x; € CO(U;) such that 0 < x; <1 and YN  xi =1 on K.

Proof. We argue by induction. For N = 1, that is K C U, we can take the function

(@) = (1 _ dist(z, K)

+
) for € > 0 sufficiently small.
€
Now let K C UZ]L U;. We construct compact sets Ky, Ky such that K = Ko U Ky and

N-1
Ky C UUi:5U0 and Ky CUy.
i=1

41
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For this we take open sets Vy D K\Uy and Vi D K\Uy, then we have

Ky := K\VN C K\(K\U()) C Uy,
Ky ::K\VQ C K\(K\UN)CUN.
K\Up and K\Uy are compact and disjoint by assumption, hence we can choose Vp, Vy

disjoint, so that K = KoU K as desired. Using induction we now have functions n; € C2(Uj;)
fori=1,...,N —1and ny € C2(Uy), all with values in [0, 1], such that

N-1

ZmzlonKo, ny =1 on Ky.
i=1

It follows that Z —1mi > 1on K. Thus for € > 0 small we can finally take

dist K)\+ 5
i = (1 B 1S (l‘a )) ]’3 e Cg(Uz)
€ Zi:1 i

O

Definition 6.2 (variation measure). For any linear functional ¢ on C2(X,R¥), the variation
measure |¢| : 2% — [0,00] is defined in two steps as follows:

(1) 161(U) = sup{6() : 1] < L. sptf C U} for U open,
(2) |¢p|(E) =inf{|p|(U) : U D E, U open} for E general.
The steps are consistent since in (1) we have |¢|(U) < |6|(V') whenever U C V.
Lemma 6.3 (variation measure). |¢| is a Radon measure.

Proof. We proceed in three steps.

Step 1: |¢| is an outer measure.

For U = () only the null function is admissible in 6.2(1) and hence |¢[(@) = 0. Next, let U;,
i € N, be open and f € C2(X) such that |f| < 1 and spt f C |J;2, U;. By compactness we
have spt f C Uf\;l U; for some N € N. Applying Lemma 6.1 we find functions x; € C2(U;)
with 0 < x; <1 such that

N
inzl on spt f.

j=1

For f; = xif € CO(U;) we have |f;| <1 and f = sz\il fi on spt f. This implies

Z¢ fi) _Z\¢| <Z|¢|

=1

Taking the supremum over these f we obtain

|¢>|UU Z\qﬂ ).

=1
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Now assume E C Uoo,1 E; where E, E; are arbitrary. Given € > 0 we choose open U; D Ej
with [¢|(U;) < |¢|(E;) + 2 7€, by just using Definition 6.2. Then E C U2, Uj and hence

[e.e] o0

6|(E <|¢|G Z Z

j=1 =1

Letting € \, 0 we conclude that |¢| is an outer measure.

Step 2: Borel sets are |¢|-measurable.
We use Carathedory’s criterion, Theorem 2.9. By definition of |¢|, we need to show that
whenever A, B C X satisfy dist(A, B) > 0 then

6| (W) > |¢|(A) + |¢|(B) for all open W D (AU B).

For small § > 0 the sets U = Bs(A)NW and V = Bs(B)NW are disjoint. Let f, g € C2(X,RF)
with spt f € U, sptg C V and |f|,|g] < 1. Then spt(f + g) C (spt fUsptg) C W and
|f + 9] <1onall X. We obtain

o(f) + o(g) = o(f + g) < [|(W).

Taking the supremum over all f, g we conclude

[6(A) + [0(B) < [8(U) + [4](V) < |¢|(W).

Step 3: Construction of Borel hull and finiteness on compact sets.
Given E C X with |¢|(E) < oo choose open U; D E with [¢[(U;) < [¢|(E) + ;. We may
assume that Uy DUy D .... Now B = ﬂjoil U; D E is Borel and satisfies

91(B) < lim [6](U)) = [9](E).

Hence |¢| is Borel regular. Finally if K is compact, then by assumption on X there exists a
relatively compact, open set U D K. Assumption (6.2) then yields

[6l(K) < [¢|(U) < C(U) <

We can now state the central result of the Chapter.

Theorem 6.4 (Riesz). Let (X, d) be a locally compact, separable metric space. Then for any
linear functional ¢ on C2(X,RF) there exists a Radon measure i and a u-measurable function
n: X — R* with |n(z)| = 1 for p-almost every x € X, such that

o(f) = /X (fomydu  for all f € COX,RY). (6.3)

The pair p,n with (6.3) is unique, and p is the variation measure |@|.

We first address the uniqueness, which requires the following approximation statement.
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Theorem 6.5 (Lusin). Let p be a Radon measure on (X,d), and let A C X with pu(A) < oco.
Then for any p-measurable g : X — R there exists a function § € C°(X) such that

n{z € A jle) £ 9@)}) <e  and  [Floopx) < esssup,ealg(@).
We postpone the proof of Lusin’s theorem, first we address the representation theorem.

Proof. (uniqueness) Assume that A, ( have also the representation property, that is

wnzéwgw for all f € CO(X,R¥).

If sptf C U und |f| <1, then ¢(f) < A(U) and hence u(U) = |¢|(U) < A\(U). Approximating
from outside we see that 4 < A. For the reverse inequality let K’ C X be compact. For U D K
open with U compact and for ¢ > 0 there exists a function ¢ € C°(X,R¥) with the property

ME) < e where E={z e U:((z) # ((x)} and ||§||CO(X) < esssup,ep|¢] < 1.

This follows directly by Theorem 6.5 in the case k = 1, i.e. ( real-valued. For ¢ vector-valued
we apply Theorem 6.5 to each component ¢?, and then obtain ¢ by projecting onto the unit
ball in R¥. Let x € CY(X),0< x <1, with spty CU and x = 1 auf K. We now estimate

w(U) > ¢(xC) (1 is the variation measure)
= /(xf, ¢)dA (the representation property)
U
[xar= [ x@q-na
U U

AMK) —2)(E)
AMK) — 2e.

>
>

Letting ¢ \, 0 and U N\, K we obtain u(K) > A\(K), and hence p > X on all Borel sets by inner
approximation. By Borel regularity, any £ C X has Borel hulls B, B’ D E for u respectively
A. We may assume B = B’, otherwise we pass to BN B’. We now conclude that u(E) = A\(E)
for all sets E. Next for given v € R* and any f € C%(X) we have fv € C?(X,R¥), therefore

[ tompdn= [ (fo.0ydu torall g e C20)
X X
Now CY(X) is dense in L!(u)!, hence we have

/ fodu=0 forall fe L'(y), where p = (v,17 — ).
X

Taking f = xksign ¢ for K compact yields ¢ = 0. We finally choose for v the standard basis
vectors and conclude n = {, which finishes the proof of uniqueness. O

Proof. (existence) We take p as the variation measure |¢|. For any v € R¥, |v| =1, let

Oy - CS(X) =R, ¢U(f) = ¢(fv)

! Aufgabe 1, Serie 4
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Our goal is to show that ¢, extends to a continuous linear functional on L'(yx). By duality
L' (p)" = L>®(u), we then obtain functions n; € L (u) such that for all f € C2(X,R¥)

k k k
= i€;) = e (fi) = i dp = ,n) dp.
o10) = L othie) = 3 0u(f) =32 [ fmn= [ (fm) e
Then we consider i = p|n| and
(a) = {n<w>/m<x>r i () #0
0 if n(x) = 0.
It follows that |77(z)| = 1 for fi-almost all x € X, and

o(f) = /X (f, ) dp = /X () Il dp = /X (f.7) di

This proves existence. Moreover, the proof of uniqueness now implies i = |¢| = u, hence
In| =1 p-almost everywhere, and u, 1 solve the representation problem.

We now address the extension problem. To estimate ¢, we introduce the functional
v CAX,RY) = Ry, o(f) = sup{e(g) : g € CLX,RY), |g| < f}.
We claim that
u(U) = sup{e(x) : x € CJ(X,Ry), spty C U, x < 1}. (6.4)
Namely for g € C9(X,RF) with sptg C U and |g| < 1 we have
#(9) < @(lg]) < sup{e(x) : x € C(X,R), spty C U, x < 1}.
On the other hand, for x € C2(X,R7) with y < 1 we have
p(x) = sup{g(9) : g € CL(X,R"), |g| < x} < (V).
Claim 1: ¢ is a half-linear functional on C?(X), which means that
@(af) = O‘@(f) fOI‘fECg(X,RSF),OéZO,
p(fi+f) = @(f) +e(fa) for fioe CUX,RY).

Proof. The first line is by definition. For the second let g1 2 € CO(X,R¥) with |g;| < fi and
#(g:) > ©(fi) — €. Then we have, choosing the sign appropriately,

e(f1) +o(f2) — 2 < [@(g1)| + [¢(g2)| = [¢(g1 £ g2)| < (f1 + fa).
For the reverse inequality let g € CO(X,R¥) be given with |g| < f1 + fo. Consider

i = {flﬁfrg falls f1 + fo > 0,
;=

0 sonst.
Then |g;| < f;, in particular g; € C2(X,R¥). As g = g1 + g2 we have
()] < [¢(g1)] + [6(g2)| < @(f1) + @ (f2),
hence (f1 + f2) < w(f1) +¢(f2).

Claim 2: We have o(f) = [y fdu for all f € CO(X,R{).
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Proof. For € > 0 we take numbers 0 =tg < ... <ty < oo with
[t —ti1| <e, maxf€ (ty_1,tn) and p(f ' {t;}) =0 fir i=1,...,N.

As p(sptf) < oo, the set of t > 0 with u(f~'{t}) > 0 is at most countable, so that the choice
of the t; is possible. We put U; = f~!(t;_1,t;) for i = 1,..., N, these are open sets.

Estimate of o(f) from below:
Let x; € CO(X,RY) with spty; C Uy, x; < 1fori=1,...,N. Then "% ¢, 1x; < f. Now ¢
is monotone by definition, hence we obtain

Zt@ 19(xi) = (Ztl 1Xz) < o(f).

We take the supremum with respect to the x;. From (6.4) we get ZZ Lticip(U;) < o(f), and

further
N

N
/X Fdu <Y tip(Ui) < (tioa +)u(Us) < o(f) + ep(sptf).
=1

i=1
Estimate of o(f) from above:
For i =1,...,N choose V; D U; open with u(V;) < u(U;) + ~- There exist x; € CY(V;) such
that spty; C Vi, 0 < x; < 1lund x; = 1 on U;. Then f < Zf\il tixi p-almost everywhere,
hence we can estimate

N
o(f) < > tivla)
=1

N

< ) (ticr+e)u(Vi) (by (6.4))
=1
N

Z(ti—l +e¢) (M(Uz‘) + %) + 5(M(U1) + N)

=2

N N
< th 1 (T3) + ZM(E%L%ZMHFC*?Q
i=1

=2

IN

< / f i+ e u(sptf) + || flleoc) + Ce.

Claim 2 follows by letting € \, 0 in both estimates. Finally, for f € C?(X) we have ¢,(f) =
o (f1) — du(f). We conclude

60| < 6ol + 100 < 0(F) + 0/ / fldu.

Thus ¢, extends to a continuous functional on L'(p), which completes the proof. O

It remains for us to prove Lusin’s theorem. We will apply th following classical extension
result.
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Lemma 6.6 (Tietze). Let C' C (X,d) be closed and f : C' — R be continuous. Then there
exists an extension f € CO(X) such that || f||co(x) = supyec | f(x)].

Proof. We may assume 1 < f < 2, otherwise consider 2 + %arctan f. We now define

F() = int fly) LY)

Jnf A(z.0) if x € X\C, or equivalently d(x,C) > 0.

We have inf f < f < sup f: the lower bound follows since d(z,y)/d(z,C) > 1, the upper
bound is obtained by choosing y € C' with d(z,y) < (1 + ¢)d(x,C). We show the continuity
of f first for a point 29 € dC. Let x € Bs(xo)\C and y € C with d(z,y) < (1 + a)d(z, )
where o € (0,1]. Then

d(xo,y) < d(zo,x) + d(z,y) < d(zo,z) + (1 + a)d(z,C) < (2 + a)d(zg, z) < 36.
Putting €(0) = supj,_,,<s |f(y) — f(20)| we obtain the estimate

f (o) — <(36) < f<y>m < (1+ ) f(xo) + 2:(39).

For d(x,y) > 2d(x,C) we have the trivial bound

> 2inf f > f(xo).

Taking o = 1 we obtain the lower bound

f(x) > f(x0) —e(36) = f(zo) asd 0.

On the other hand, for any a > 0 there exists y € C such that d(z,y) < (1 + a)d(z,C), so
that by letting o \, 0 we obtain the upper bound

f(z) < f(mo) +2e(30) — f(zp) asd \,O0.

The continuity on X\C follows easily from the triangle inequlity: using 1 < f < 2 we have

inf f(y)d(z1,y) < inf f(y)d(z2,y) + 2d(21, 22).

Thus infycc f(y)d(z,y) is Lipschitz on X\C. The same holds for d(z,C), and therefore fis
continuous on X \C as quotient of continuous functions. O

Proof. (Theorem 6.5) Consider the sets
k k+1
Aj,k:{a:eA:jgf(a:)<;r} fir je Nk e Z.

As A is a Radon measure, we can choose compact sets K i, C A; 1, such that (A4 \Kj i) <
2-9-IFl¢ /3. Hence

N

A}gloou( U ijk) :;L(A\ 6 Kjvk) < i 9=i—lklg /3 — 9=ic,

k=—N k=—0oc0 k=—00
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For N; € N sufficiently large we then have u(K;) < 277¢ where K; = Uk w, Kk~ Thus for
K =12, K; we obtain

o

wAK) < p( |JAVK)) < D7 u(A\K))

j=1 7j=1

Now consider the functions f; : A = R, fj(z) = % for x € Ajj. By compactness the sets
K C Ajy are at positive distance, so that f; is locally constant on K; D K, in particular
continuous. But |f(z) — f;(z)] < % — 0 as j — 00, hence the uniform limit f|x is continuous.
Using the Tietze extension from Lemma 6.6 the theorem follows. g

We denote by C?(X)’ the space of linear functionals A on C%(X), i.e. A is linear and for any
compact set K C X we have

A < CE) I fllcoxy  for all f € C(X) with spt f C K.
Definition 6.7. Let Ay, A € CO(X)'. We say that Ay, — A weaks in CO(X)" if
Aw(f) = A(f)  for all f € CYUX).

Any Radon measure induces a (nonnegative) linear functional by integration. The correspond-
ing weak convergence of Radon measures, notation py — u, is given by

/fduk%/fdu for all f € CO(X).
b's X

A simple approximation argument shows that if uj converges weakly then the weak limit p is
unique. Moreover then p(K) is bounded for any compact set K C X.

Lemma 6.8. Let X be a locally compact, separable metric space. For Radon measures py and
woon X the following statements are equivalent:

(1) pr — p weakly as Radon measures,

(2) For all open U and all compact K we have

w(U) <liminf ux,(U)  and p(K) > lign inf pg (K),
— 00

k—00

(3) For any bounded Borel set B with 1(0B) = 0 we have u(B) = limy_, 0 g (B).

Proof. The claims are proved step by step.
(1) = (2): Let U be open. For compact K C U choose x € C2(X) with 0 < x <1,spty C U
and y =1 on K. Then

W) < [ xdn = lim [ i < tinint u(0)
X k—oo X k—oco

Taking the supremum over all such K the lower semicontinuity for open U follows. Now for
given compact K we choose U D K open and then x as above, we obtain

w(U) > /Xdu— hm/xd,uk>hmsupuk.(K)

k—o00
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Taking the infimum over all such U proves the upper semicontinuity for compact K.

(2) = (3): Note that B is compact. Therefore we can estimate

w(B) = pu(int B) < hm 1nf p(int B) < limsup pp(B) < u(B) = u(B).

k—o0

(3) = (1): We may assume f € C(X,R{), otherwise we decompose f = f* — f~. Let
B = Bpr(zo) such that spt f C B and p(0B) = 0. Then choose 0 =ty < ... < ty with
|ti—ti—1]| < e, ty >max fand p({f =t;}) =0fori=1,...,N. Putting A; = {t;—1 < f < t;}
for i =2,..., N we have

N
D tiixa, < f<tixp+ Y tixa, thus

Integrating with respect to py yields

th 1k (A /fduk < t1u(B +thﬂk

Letting k£ — oo we see that

N
thUP/fde < t1u(B) +Ztiu ) < th 111(A) +2e p(B) < /fdu+25u(3)-
i=2

k—oo

The lower bound follows similarly,

N
fiminf [ = 3o, >Zwk )+ tau(B) 25 u(B) = [ fdu— 22 (B),

Now (1) follows by letting € ™\, 0 in both estimates. O
The following is an important application of the Riesz representation theorem.

Theorem 6.9 (Compactness for Radon measures). Let (X, d) be a locally compact, separable
metric space, and let i be a sequence of Radon measures on X such that

sup ug(K) < oo for all compact K C X.
kEN

Then there exists a Radon measure p and a subsequence uy such that py — p weakly as
Radon measures on X.

To prove the theorem we need the following fact.
Lemma 6.10. Let (X, d) be locally compact and separable. Then C%(X) is separable.

Proof. We first assume that X is compact. For ¢ > 0 we choose a covering B,y(z;), 1 < j < N,
and define the partition of unity

Xj

dist (z, Bo(z;))\ +
Xi= &N < —)
Zj:l X3

where x;(z) = (1 -
0



20 CHAPTER 6. THE RIESZ REPRESENTATION THEOREM

For given f € C°(X) and any x € X we estimate, observing x;(z) = 0 for d(z,z;) > 2o,
N
@) =3 Flap@)] = | 2 (F@) = F) ()] < ose (£,20).

j=1 7j=1

Taking g = % we obtain functions x;x, 1 < j < Nj. Linear combinations of the x;; with

coefficients in Q are then dense. For general X the result follows by choosing an exhaustion
by a sequence of compact subsets. O

Proof. (of Theorem 6.9) We assume that X is compact, thus we have by assumption

C :=sup pui(X) < oo.
keN

Choose a dense set of functions ¢; € C°(X), j € N. We have

sup ’/ ©; dﬂkz’ < Clejllcocx)-
keN | Jx

Taking successive subsequences and then passing to the diagonal sequence we obtain
3 lim pjdug  forall j € N.
k—o00 X
On D = Span{y; : j € N} we obtain the function

A:D— R, Alp) = lim  dpg.
X

- k—o0

A is well-defined, linear and satisfies the bound
A = Jim | [ pdi] < Cllelloogyy
— 00 X

By density, A has a unique extension to a linear functional, also denoted by A, in C%(X)’ with
norm ||A|| < C. Now by Theorem 6.4 there exists a Radon measure p and a p-measurable
function o : X — {£1} such that

A(p) :/ wodu  for all p € CV(X).
X

We claim that o = 1 p-almost everywhere. If K C {0 = —1} is compact, then

_ dist(z, K)

.
Z20) = 0 A(Y) € —plK) + p(UA(K\K).

pz) = (1

Letting £ \, 0 we have (U-(K)\K) — 0 and hence p(K) = 0. As {o = —1} is p-measurable
it must be a null set, i.e.

A(np):/ odp  for all ¢ € CO(X).
X
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Finally, for any ¢ € C°(X) and ¢o € D we have

‘A(SO)—/SOde:‘ < ‘A(SO)—A(SOO)‘+‘A(<P0)—/800duk‘+)/%dﬂk—/%@duk‘-

Letting k£ — oo we conclude
timsup [Ap) ~ [ due] < 2C o = ullcopr)
k—o0

By density of the set D we conclude that ui — p weakly as Radon measures. O

It would habe been clearer to state two results: first the sequential compactness in the space
CY(X)', and second the fact that if the sequence is induced by Radon measures, then the limit
is again a Radon measure.
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Chapter 7

Lipschitz functions

In this short section we discuss two basic results about Lipschitz functions.

Theorem 7.1 (Lipschitz extension). Let (X,d) be a metric space. Assume that f : A — RF
is Lipschitz where A C X. Then there exists a Lipschitz map f: X — R* such that f = f on
A and Lip(f) < VELip(f).

Proof. We first consider the case k = 1, and define
f:X >R, f(z)= inf fo(x) ~where fo(z) = f(a) + Lip(f) d(z, ).
ac

We have Lip(f,) = Lip(f), this implies for any a € A

f(z) < fa(z) < fa(y) + Lip(f) d(z,y).

Taking the infimum with respect to a shows Lip(f) < Lip(f). Now for b € A we have
F(b) < F(a) + Lip(f) d(b,a) = fu(b) forall a € A,

and equality is attained for @ = b. This hows f = f on A. In the vector-valued case, we apply
this extension to each component f;, and conclude

@) = Fwl = (

7

[N

< VEkLip(f)d(z,y).

k
(fi(@) = fiw)*)

1

O

In the case X = R" a result of Kirszbraun asserts the existence of an extension with the same
Lipschitz constant also in the vector-valued case. However this is not needed in the sequel.

Theorem 7.2 (Rademacher). Let f : R™ — R be locally Lipschitz. Then f has a classical
derivative Df(x) at L™-almost every point © € R™.

The following fact is of independant interest.

Lemma 7.3. If f: R"™ — R is locally Lipschitz, then f has weak derivatives 0;f € L3S (R™).

loc

23
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Proof. We may assume that Lip(f) = L < oco. We consider the difference quotient operator

fx + hei) — ()
h

By substitution we infer the integration by parts formula, for ¢ € C°(R"™) say,

fori=1,...,n.

o) f(w) =

O f(x)¢ () da = ()8, "¢ () da.

R R

Now ||6Z-hf||Loo(Rn) < L by assumption, thus we find a sequence hy — 0 such that 9% f — g
weakx in L(R™) = L'(R™)’, moreover ||gi||z00®n) < L by lower semicontiuity of the dual
norm. Passing to the limit in the integration by parts formula yields

| s == [ j@ocw s
The means that f has the weak derivative 0;f = g;. O

In the one-dimensional case, for given a < b and h > 0 small, we can take as test function

+(x—a) onla,a+h],
Cn(z) = %(b— x) on [b— h,bl,
1 on [a+ h,b— hl.

Denoting by g = f’ the weak derivative, we obtain
b 1 b a+h
[ @@= ([ f@do- [ fw)ds).

b—h

Letting h 0 we deduce the fundamental theorem of calculus, in the form

By Lebesgue differentiation, see (5.1), we conclude for almost every = € R

. z+h
Het I g| = ] [ )~ ot ay
1

h

h—0
= l9(y) — g(x)| dy == 0.
Al Jy—ai<inl

This shows Rademacher’s theorem in the case n = 1.

Proof. (Theorem 7.2) We assume L := Lip(f) < co. For v € R" with |v| = 1 we introduce
the upper and lower derivatives, taking values in [—L, L],

D, f(z) = limsup flattv) ~ /@) and D, f(x) = liminf flw+tv) = f(a:)
t—0 t t—0 t

As supremum /infimum of continuous functions, D, f and D, f are lower/upper semicontinu-
ous, in particular Borel measurable. We introduce the bad set

E,={zeR": D, f(z) < Dyf(z)}.
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By the one-dimensional case, the set E, N (y +Rv) has zero £! measure for any y € v*. Using
Fubini’s theorem we obtain

L"(E,) = /e X LY (E, N (y+Rv))dL" (y) = 0.

We next show that D, f = > ; v;De, f almost everywhere. For this we use that both functions
are weak derivatives, in fact for any ¢ € C°(R"™) we have by dominated convergence

flz +tv) — f(z)

[ Dufai@ds =t [ V=IO ¢ (0) e
o ((z = tv) = ((x)
= %1\1;1(1) . f(z) ; dx
= - - f(x)Dy((z) dx

= —Zvi f(fE)DelC(l') dx
i=1 JR?

- /R ) (;vzpeiﬂx)) ((a) d.

Our claim follows by the fundamental lemma of the calculus of variations. Note that the
calculation also shows that the pointwise derivative D, f is also the weak derivative. Now let
vk, k €N, be dense in S”~! and define G as the set of x € R” with the following conditions:

o D, f(x) exists for i =1,...,n,
e D, f(x) exists for all k € N,
e Dy, f(x) =Y" 1 viD,, f(x) for all k € N.

We have proved that R™\G is a null set. We claim that Df(x) = g(x) for z € G in the
classical sense, where g(z) = Y_i" | De, f(z)e;. Put

[z +tv) = (f(2) + (9(2), tv)

" for any v € S"L.

Q(U’ t) =

The equation D f(z) = g(z) follows if we show that

sup |Q(v,t)] - ast—0. (7.1)
lv]=1

In fact then we can estimate

[f(z+h) = (f(x) + (g(), h))] h
7 = ’Q(’h,\h\)‘ < sup |Q(v,|h]) =0 ash —0.

v|=1
For x € G we have Q(v;,t) — 0 as t — 0. Moreover

|f(z +tv) — f(x + tw)]
2]

Q(v,t) — Q(w, )] < +{g(@), v —w)| < (1+vn) L|v—wl.
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Given ¢ > 0 there exists an N € N such that S"~! C Ufil B,(v;). For v € S*! we choose
ie{l,...,N} with v € B,(v;) and estimate

QWO < [Quit) -+ (1 -+ Vi) Ll —uil < max |Q(u.8)|+ (1 + V) Le.
Taking the supremum with respect to v € S*™! and then letting ¢ — 0 we obtain

limsup sup |Q(v,t)| < (1+ +/n)Lo.

Letting now o \, 0 shows (7.1), and the theorem is proved. O
Corollary 7.4. The following statements hold.

(1) If f : R™ — R is Lipschitz, then Df(x) =0 a.e. on {f = 0}.

(2) If f,g: R™ — R"™ are Lipschitz, then Dg(f(x))Df(x) =1d a.e. on {go f =id}.
Proof. Let 0;f € L>(R™) be the weak derivatives, see Lemma 7.3. We claim that

OifT =x(p>0p0if and  OifT = —xir<0} Oif-
Fom this we get almost everywhere
Oif =0;fT —0;f =0 ontheset {f =0}

To compute d; fT we approximate by x. o f where

Vs24e2—¢e fors>0,
Xe(s) =

0 for s < 0.

Note that y. € C*(R) with derivative

X,E(S) _ ﬁ for s Z 0,
0 for s <0.

Using mollification of f we verify the weak chain rule, for any ¢ € C°(R"),

/nXEOfaiSO:_/nX/eof(aif)So'

Letting € ™\, 0 we conclude

/ o= — / Yisoo Oif @,
Rn Rn

The formula for f~ follows by using f~ = (—f)", which completes the proof of claim (1).

In the second claim, we know by Rademacher that the sets E; and E,; where the deriva-
tives don’t exist are null sets. By the classical chain rule, we have

D(go f)(x) = Dg(f(@)Df(x) forall o ¢ EfU{e: f(z) € Ey).

But g(f(z)) = « and f(x) € E, implies z € g(E,), which is also a null set. (2) now follows
from (1), applied to the function (g o f)(x) — . O



Chapter 8

The area formula

In this section we consider Lipschitz maps f : U — R™ where U C R™ and n < m. The goal is
the area formula, which computes the H"-measure of the image, counted appropriately with
multiplicities, in terms of the Jacobian integral.

Definition 8.1. Let f: U — R™ where U C R"™ is open and n < m. If f is differentiable at
x € U then the Jacobian is defined by

Jf(x) = \/det Df(2)TDf ().

The matrix D f(z)T D f(x) € R"*" is symmetric and positive semi-definit. In fact, with respect
to the standard scalar products on R™ and R™ we have

(Df(z)*Df(z)v,v) = |Df(z)v|*> for any v € R™.
In particular Jf(z) > 0 if and only if D f(z) has rank n.
Lemma 8.2. Let f : R" — R™, f(x) = yo + Lz, be affine-linear where n < m. Then
H'(f(A) =JLL"(A) forall ACR"™.

Proof. We assume yo = 0. The H™-measure is invariant under S € Q(m), and

J(SL) = y/det (SL)TSL = Vdet LTSTSL = Vdet LTL = JL.

Therefore we can assume L = IM where M € End(R") and I : R" — R" x {0} C R™ is the
inclusion map. In particular

JL = \/det (IM)TIM = Vdet MTITIM = vVdet MTM = | det M|.

By definition of Hausdorff measure, we see that IM(A) and M (A) have the same H"-measure.
Using H™ = L™ on R", see Theorem 3.11, and the transformation formula we get

HMIM(A)) = HY(M(A)) = L7(M(A)) = | det M| L™(A).

o7
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Lemma 8.3. Let f € CY(R",R™) where n < m, and let x9 € R™ with Jf(xg) > 0. Then
there exists a neighborhood U of xo with the following properties:

(1) flu is injective,

(2) f(A) is Borel for any Borel set A C U,

(3) H™"(f(A)) = [, JfdL™ for AC U Borel.
Proof. We first assume that f is a graph over U C R", more precisely

f:U—=R"xR™" =R" f(x) = (z,u(x)).
Then f is trivially injective, moreover we have the diffeomorphism
F:UxR""™ 5 UxR" ™" F(z,y) = (x,y + u(z)),
As f(A) = F(A x {0} we see that f maps Borel sets to Borel sets. Now let
w(E)=H"(f(E)) for ECU.

Clearly p is an outer measure on U. For A, B C U we have dist(f(A), f(B)) > dist(A, B),
thus dist(A, B) > 0 implies (see also Lemma 3.2)

p(AUB) =H"(f(A) U f(B)) = H"(f(A) + H"(f(B)) = u(A) + pu(B).

To construct a Borel hull for £ C U, we choose B D f(E) Borel with H"(B) = H"(f(E)) =
pu(E). We can assume B C f(U), otherwise we pass to BN f(U) which is again Borel. Now
7(B) is Borel and contains 7(f(F)) = E, furthermore

u(m(B)) =H"(f(m(B)) = H"(B) = u(E).
Finally, for K C U compact and F C K we have, using Lemma 3.3 and Theorem 3.11,
wE)=H"(f(E)) < L"H"(E)=L"L"(E) where L = Lip(f|x)-

Thus p is finite on compact subsets, and it is absolutely continuous with respect to £". The
lemma follows by Radon-Nikodym, Theorem 5.3, if we show that

Denp(z) = Jf(z) forall xzeU. (8.1)
For fixed x € U we consider the remainder function
p:U—=R"™", o(y) = uly) — (u(z) + Du(x)(y — 2))).
Furthermore we define ¢, : U x R™™"™ — U x R™™" by
Sy 2) = (y:2+o(y) and Uy 2) = (y.2 — (y))-
Clearly ¢ o) = 1) o ¢ = idygm-n. Moreover

Do = ( ity ) 0 P =( pn 5l )
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As Dy(z) = 0 we have Dé(z,z) = Dy(x,z) = E,,. Moreover given € > 0 we can choose
o > 0 such that

|Do(y)| = |Du(y) — Du(z)| < e for all y € By(x).
By the Lipschitz estimate, Lemma 3.3, we have

1

At H (U(f(Bo(x)))) < H"(£(Be())) < (1+2)" H" (¢(f(Bo(x))))-

Now observe that ¥ o f is affine, in fact
Y(f®) = (,uly) - ¢(y)) = (y, u(z) + Du(x)(y — ).
We compute D(¢ o f)(x) = Dy(z,u(x))Df(x) = Df(x). Using Lemma 8.2 we obtain
M (U(f(Bo(2)))) = Jf(x) L™(By(x)).
Combining with the inequalities above shows (8.1).
It remains to give the reduction to the graphical case. By passing to S(f — f(xg)) where
S € O(m), we can arrange that f(z9) = 0 and Df(xg) = IM where M € GL(R") and
I:R"™ — R™ is the inclusion. Let 7 : R™ — R" be the projection, then
D(r o f)(z0) = Df (z) = M.

By the inverse function theorem, there exists a neighborhood U of z¢ and a ¢ > 0 such that
@ = (mo f):U — By(0) is a diffeomorphism. By definition

Tofop ty)=y fory € By0).
Let 71 : R™ — R™" be the projection onto the last m — n coordinates, and define
u: By(0) = R™ ™ u(y) =7 o fop t(y).
It follows that f o ¢ 1(y) = (y,u(y)) =: g(y) for all y € B,(0). As f = go ¢ it is in-

jective and maps Borel sets to Borel sets, moreover for A C U we compute using Jf(z) =
Jg(¢(x)) | det Dp(x)| and the transformation formula

H"(f(A)) = H"(9(#(A4)) =/(A) Jg(y) dL"(y) Z/AJf(fﬂ) dL" (z).

O

Lemma 8.4. Let f € C*(R",R™) where n < m, and let A C {Jf > 0} be Borel. Then the
muliplicity HO(A N f~1{y}) is Borel measurable on R™, and

/A Jf@)de@) = [ HOAN F g} dH" (y).

Rm™
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Proof. For x € A choose U(z) as in Lemma 8.3. It is a fact that A is then covered by a
countable collection U(x;), j € N (for example, this follows by Vitali’s theorem). Define
j—1
45 = AU\ |J Ule).
i=1

As f|a, is injective we have H(A; N f~H{y}) = Xf(4;)(y)- The set f(A;) is Borel, hence
the mulitiplicity of A; is Borel measurable. We now compute by Lemma 8.3 and monotone
convergence

/Ade?-l = ;/Ajjfd?-[
_ . 0 . —1 n
- ;/Rn%(flmf wh )

= [ wans ) an.
O

Lemma 8.5. Let f € C'(R",R™) where n < m. Then the image of the set {Jf = 0} has
H"™-measure zero.

Proof. We consider the C' immersion f. : R® — R" x R™, f.(z) = (ex, f(x)). We compute
Df-(z)"Df.(x) = e En + Df ()" Df ().

The eigenvalues of Df(x)TDf(z) are nonnegative, we denote them by A; < ... < \,. Then
\i <|Df(x)]? for i =1,...,n, moreover since Jf(z) = 0 we have A\; = 0. Thus

n—1
0<e" < Jf. = \Jdet (2, + DSTDf) < (&2 + [DfP) 7 .

Now f = 7o f. where 7 is the projection onto R™. For A = {Jf = 0} N Br(0) we obtain by
Lemma 3.3 and Lemma 8.4

HAFA) < H (A < [ HOAN £ y)) dH () = /A 7. dc.

R m

As Jf. — 0 uniformly on A for £ \ 0 the claim of the lemma follows. O

Theorem 8.6 (area formula). Let f: R™ — R™ n <m, be locally Lipschitz, and let A C R"
be L"-measurable. Then HO(AN f~Hy}) is H"-measurable on R™, and we have

/A Jf@)der@) = [ HOAN FHy}) dHr(y).

Rm

Proof. Assume first f € C1(R",R™) and A Borel. Let Ay = AN{Jf > 0} and 4y =
An{Jf =0}. Then by Lemmas 8.4 and 8.5 we know that

o HO(A; N f~Hy}) is Borel measurable,
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e HO(AgNn f~Hy}) =0 for H"-almost every y € R™.

In fact, Ag N f~H{y} # 0 implies y € f(Ag), which is a H" null set. Now

/A Jf(x)dL™(x) = [pm HO(AL O fHy}) dH (),

/A Jf(@)dL"(x) = [pm HO(Ao N f7Hy}) dH" (y).

The area formula follows by adding the identities. To generalize the formula to Lipschitz maps
we apply the following C'! extension result.

Theorem 8.7 (Whitney). Let f : R" — R be locally Lipschitz. Then for any e > 0 there
exists a function f € CH(R™) such that

L'({f # [YU{Df # Df}) <e.

The proof of the Whitney extension is involved, we refer to sections 6.5. and 6.6 in Evans-
Gariepy. To continue with the area formula, assume now that A is £"-measurable, and let
f :R™ = R™ be locally Lipschitz. Choose f;, € C1(R",R™) such that

LY({fr# [YU{Dfi # Df}) <27".

Let Cx D {fx # fYU{Dfx # Df} be Borel sets also with £"(C},) < 27%, and put
By, = U Cj, hence L™(By) <27,
=k

Finally choose B C A Borel with £"(A\B) = 0. The sequence By, is decreasing, furthermore
fx = fand Dfy, = Df on B\By. As (), Br and A\B are L£" null sets and f is locally
Lipschitz, the sets f((re; Bx) and f(A\B) are H" null sets. It follows that for H"-almost
all y € R™ we have

HO( kﬂl BN f—l{y}) =0 and HO(A\BNf{y}) =0.

Therefore we have, again for H™ almost all y € R™,

HOANF ) = H(B\ BN}
k=1
= lem HO(B\Br N f{y}) (continuity of H° measure)

= [lim HO(B\Bi N f, {y}) (f = fx on B\By).
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It follows that HO(A N f~'{y}) is H™ measurable, and we conclude

/ JfdL" = lim JfdL" (monotone convergence)
A k—o0 B\B;
— Iim JfwdC™ (Jf = Jf, on B\By)
k—o0 B\Bk
= khm HO(B\By N f, H{y}) dH" (y) (fx € C*, B\By Borel)
—00
= lim HO(B\Br 0 fHy}) dH"(y) (f = fr on B\By)
= HO(AN f~{y})dH"(y) (monotone convergence).
RTYL

O

Corollary 8.8. Let f : R" — R™, n < m, be locally Lipschitz. Then for any L™-measurable
function g : R™ — [0,00) the function 3, 17,y 9(2) is H"-measurable, and

/n g(x)J f(z)dL" (x / > gla)dH (y (8.2)

zef~Hy}

Proof. For g = x4 where A C R" is L"-measurable the statement follows from Theorem 8.6.
The general case is then deduced by monotone approximation with step functions. O

Up to now we assumed n < m, but of course the case when n > m is also of interest. The
Jacobian of a map f € C'(R",R™) is then defined by

= \/det Df () Df ().

A wellknown case is the so-called onion formula, where f : R™ — R is given by f(z) = ||,
with Jf(x) =1 for all x # 0. We have

£r(4) = /OOO WA fYr}) dr

This is a special case of the following theorem.

Theorem 8.9 (coarea formula). Let f: R™ — R"™, n > m, be locally Lipschitz. If A C R™ is
L"-measurable, then the function H" ™ (AN f~Hy}) is L™-measurable on R™, and

[ t@ac@ = [ iy i), (33)
For the proof we refer to section 3.4 in Evans-Gariepy. We note the following consequence,

the proof is left to the reader.

Corollary 8.10 (C'-Sard). Let f € C*(R™,R™) where n > m. Then for L™-almost all
y € R™ the set f~{y} is a union of a (n — m)-dimensional C* submanifold and a closed set
of H"~™-measure zero.



Chapter 9

Rectifiable sets

In geometric measure theory, the class of rectifiable sets generalizes the class of C'! submani-
folds. In particular we will introduce a measure-theoretic notion of tangent space. Throughout
the section we assume that n < m.

Definition 9.1 (rectifiable set). A set M C R™ is called countably n-rectifiable, if there exist
functions f; € Lip(R",R™), j € N, such that

H"(M\ G fj(R”)> — 0. (9.1)

J=1

Lemma 9.2. A set M C R™ is countably n-rectifiable if and only if there exist n-dimensional
C'-submanifolds Nj, j €N, such that

e (M\ng Nj> ~0. (9.2)

Proof. Any C' submanifold N C R™ is a countable union of Lipschitz graphs. In fact, for
any x € N there exists o(x) € (0,1] such that N N Bs,,)(x) is a Lipschitz graph. By Vitali
N is covered by balls Bs,,,)(7:), i € I, where the balls By, (z;) are disjoint. In particular,
the set I is countable.

For the reverse direction, we may assume M C f(R™) where f € Lip(R",R™). By Lusin’s
theorem, see Theorem 6.5, there exist f; € C'(R",R™) such that L*({f; # [}) < % Put
C; = {Jf; = 0}, then we can write

F®RNG) = [ Ny,
k=1

where Njj are C' submanifolds. This follows by a covering argument similar to the above,
using that f; is locally an embedding on R™\C}. The remaining set E of all z € R™ with
f(z) ¢ f;(R"\C}) for any j is contained in Ey U E; where

Eo=(Wfi#f} and Ei=|J{f=£}1nC;

j=1 j=1
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Clearly L™(Ep) = 0 and hence H"(f(Ep)) = 0. For E; we estimate by the area formula

IS = 5Y0C) < UG < [ agyden <o,

Cj

O

We now introduce a measure-theoretic concept of tangent space. We denote by G(n,m) the
set of all n-dimensional vector subspaces £ C R™. We may identify F with the orthogonal
projection Pg onto E, then G(n,m) becomes the set

G(n,m)={P e R™™ . P2 =pP=PT trP=n}.

P? = P means that P is a projection, that is R™ = ker P @ im P and P = Id on im P. The
condition PT = P yields that ker P and im P are orthogonal. Finally, the equation tr P = n
implies that P has rank n. Note that

|P|? =tr (PTP) =tr P =n,
hence G(n,m) is contained in the sphere of radius y/n in the space of symmetric matrices. In
particular G(n,m) is compact.

Definition 9.3 (approximate tangent space). Let u be a Radon measure on R™ and x € R™.
Then u has approzimate tangent space P € G(n,m) at x with multiplicity 0 > 0, if

fizx — OH" P in CO(R™) as AN\ 0 where iz 2 (A) = X "u(x + AA). (9.3)
It is sometimes useful to write pi, x = A7"n, 2 (1) where 1, \(y) = %5*. In fact then

MeA(1)(A) = p(n; 3 (A)) = p(z + AA).

Of course we need to check that the concept is well-defined. If p = H"_.M where M is an
n-dimensional C'! submanifold, then the approximate tangent space at x € M should be the
classical tangent space T, M, with multiplicity § = 1. More generally, let M be the image
of an immersion with k sheets passing through x € M. If the tangent spaces of these sheets
are all equal to P € G(n,m), then H"_.M should have approximate tangent space P at x
with multiplicity § = k. Otherwise, the approximate tangent space should not exist. The
verification of these facts is left to the reader.

Lemma 9.4. Assume that p has approzimate tangent space P € G(n,m) at the point x with
multiplicity 6 > 0. Then the following holds:

(1) 0"(u,z) =0,
(2) P and 0 are uniquely determined.

Proof. Let f, g € C?(R™) such that f < XB,;(0) < g- Then we have for n = dim P

. o .. (Ba(2))
o= < liminf y1z 1 (B1(0)) = ay, lim inf o220
O/Pfd?l A{%/fdﬂx,)\ < liminf g2 (B1(0)) = an lim inf ="

B
9/ gdH" = lm [ gdug\ > limsup iz z(B1(0)) = ap limsup M
P ANO AN0 ANO Oén/\"

9
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Letting f 7 XB,(0) and g \ XB,(0) the left hand side goes to fay,, which proves claim (1).
For (2) we first observe that the dimension n of the tangent space and the multiplicity is
determined by (1). The existence of an n-dimensional tangent space means in particular that
fe, converges to a measure yu. Moreover if P is the tangent space then P = spt p. O

We now come to the main result of this section. We show that the existence of tangent spaces,
which is an infinitesimal information, implies the local property of rectifiabilty.

Theorem 9.5 (rectifiability of measures). Let u be a Radon measure on R™. Denote by M
the set of x € R™ at which p has an approzimate tangent space Ty € G(n,m), for some
multiplicity 0(x) > 0, and put 6 =0 on R™\M. If n(R™\M) = 0 then the following holds:

(1) M is H"-measurable and countably n-rectifiable.

(2) 0 is H™-measurable and p = H™.0, thus in fact 6 € L (H").

loc

Proof. We assume spt p is compact. By Corollary 5.9 we know that if u(E) = 0 then
0" (u,z) =0 for H"-almost all x € E. (9.4)

Using this for E = R™\ M yields a H" null set Z C R™\ M such that 0™(u,z) = 6(x) for all
x € R™M\Z. As the upper/lower desities are Borel measurable, we see that § and also M are
both p and ‘H"™ measurable.

Our goal is to find pieces of M which are Lipschitz graphs over the approximate tangent
spaces. For this we introduce some notation. Let & = m — n be the codimension. For
m € GE(R™) and 0 < a < 1 we consider the vertical cone

Xo(mz) ={y e R™ : [7(y — z)| > aly — z[}.

The opening angle of this cone is arccosa € [0, %). For z € M and 7 = T, we compute

. A
0 (p, X1(m,x),x) = limsupMLnT) where A = X1 (7,0) N B1(0)
2 N0 r 2
. 1

= limsup — pgr(A)

™0 On
0
b(z) H Typ(A) = 0.

Gn

IN

Thus we have
ETL(M,X%(W,I),SU) =0 forallxe M. (9.5)

For A > 0let My = {z € M : 6(x) > A}. Choosing A > 0 sufficiently small we have
m 1 m
PRT\M) < 7 p(R™). (9.6)

Next consider the functions fx,qr : M — [0, 00) given by

B, (X1 (Top, ) N By (2)
fr(z) = inf (B (z)) and  gy(xz) = sup ( 2 )
o<r<i —apr" 0<r<i o™
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For k — oo we know that fr(x) — 6(z) and gx(x) — 0. By Egorov there is a py-measurable
set £ C My, with u(My\E) < 3 u(R™), such that the convergence is uniform on E. Thus for
£ > 0 there exists a 6 > 0 such that for all z € E and all r € (0, 6] we have the following:

pB)

apr™
H(Xl (Tppt, ) N Br(x))
: — < & (9.7)
anr
1
WENE) < La(R™)
Now choose 71, ..., 7n € Gx(R™) such that

Gr(R™) C | B ().

=

L
16

7=1

Here the balls are defined using the Hilbert-Schmidt norm. It follows that we have a covering
N
Ec|JE; where Ej={z¢€E: T € By (m)}.
16
j=1

Claim 1. For e > 0 small and 6 > 0 with (9.7) we have
Xs(mj,x) N E;jNBs(z) ={z} forall x € Ej. (9.8)
4 2

Let y € Xs(m;,2) NE;NBs(x), and assume by contradiction that ¢ := |y — x| > 0. As 2p < §
4 2

we may apply (9.7) to get
(Topit ) 0 Bay(a))

an(20)"

p(X

N

<e.

Now we show that

B%(y) C (X (Tqu,m)ﬂng(m))-

1
2

In fact for z € Bg(y) we have |z — x| < |z —y| + |y — 2| < 20, and we calculate

‘ﬂ-Tzul (Z - x)‘ > ‘ﬂ-Tzui (y - x)| - ‘TrTzuL (Z - y)|

> Jmiy — o)) — =y — 2| — |2 — y]
= 7T] ’y T 16 y T z y
N 3 1 1
= 397169 ¢

9 1’ ‘
= — —|z—=x

162~ 2

Applying again (9.7), but now for y € E; C E, we obtain

(A—can(5) < wB
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We conclude A < (2% + 1)e. Thus for e < (2% 4+ 1)~! X\ we arrive at a contradiction, and
then (9.8) must hold for these £ > 0. This finishes the proof of claim 1.

Claim 2. For any xo € E; there exists a Euclidean motion Q) of R™ with Q(RF) = 29 + j
and a function u € Lip(R™, R¥) such that

E; ﬂBg (x0) C Q(graphu).

To show this we assume for simplicity that zo = 0. Consider two different points x12 in
E; N Bs(0). Decompose x12 = Y12 + 21,2 Where y; 2 € 77]-L and z12 € mj. As 29 € Bs(z1) we
4 2

obtain from claim 1, see equation (9.8),

3 3
|21 — 22| = |mj(z1 — 22)| < I |1 — 2| < 1 (lyr — w2l + |21 — 22|).

We conclude that |21 — 23] < 3|y1 — yo|, in particular y; # y2. Let A be the projection of

E; N B5(0) onto 7er. For y = W]J‘(SL') € A we define u(y) = z where z = y + z. This is
4

well-defined by the above, moreover u is Lipschitz with constant Lip (u) < 3. Claim 2 follows

using the extension from Theorem 7.1.

Now recall that 6 > 0 in (9.7) is independent of the point x € E. By Vitali, the set Ej;
is covered by a family of balls of radius g as in claim 2, such that the concentric balls of radius
% are disjoint. As all these balls intersect the compact set spt u, the family is actually finite.

As F is covered by Fi, ..., En, we obtain

L
EcC U Qi(graphu;) =: Gy,

=1

where u; € Lip(R", R¥) and the @Q; are Euclidean motions. Furthermore (9.7) yields

m 1 m
p(R™G1) < 5 HER™).
We now repeat the argument by considering the Radon measure pup = pur (Rm\Gl). As Gy
is closed, the measure p; has approximate tangent space T, with multiplicity 6(x) for all
x € R™\Gy, and trivially p1(Go) = 0. Therefore we can iterate the whole argument. For
i = 1,2,... we obtain sets G;, each a finite union of sets of the form @Q(graphw) where

u € Lip(R",R¥) and Q is a Euclidean motion, such that

J
M(Rm\ U Gi) <277 p(R™).
i=1
The set Mo = M\ ;2 G; has p-measure zero. As 0"(u,z) = 6(x) > 0on M D My, we obtain
from (9.4) that My is also a H" null set, and conclude that M is countably n-rectifiable.

We now turn to the proof of (2). We first claim that p is absolutely continuous with re-
spect to H". For this let M* = {& € M : §(z) < t} where t < oco. Then 0" (u,z) < t for
H"-almost all x € M, and Theorem 5.8(2) yields

W(A) < 2"t H™(A)  for all A C M.
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Thus if H"(A) = 0 then u(ANM?!) =0 for all ¢t < oo, and hence pu(A) = 0. Now according to
Lemma 9.2 there exist C'-submanifolds Nj, j € N, such that

we (M G N;) =0,

j=1

As p(N;\M) = 0 by assumption, we get from Corollary 5.9 and Lemma 9.4

lim

w(Be(xz)) )0 =0(x) forH'-a.e xe N\M,
N0 apE"

0(x) for all x € N;j N M.
Using (9.10) we conclude for H"-almost every « € N; that
g LNOBAD) (OB ety
o\0 Hn(N] N Bg(x)) o\0 ap 0" Hn(Nj N BQ(.’L'))
For any x € Nj there is an open neighborhood U, C R™ such that N; N U, is properly
embedded, for instance a graph. Then pN; and H"LN; are Radon measures in U,. By

Radon-Nikodym, see Theorem 5.3, we get that p = H"L60 on N; N Uy, and hence on all of N;.
Now for any Borel set B C R™ put

=0(x).

j—1
Bj=BNN;\|JN; forjeN
=1

By construction the B; are pairwise disjoint. Let
o0 o0
By:=B\|JB; c R™\ [ JN;.
j=1 j=1
We have H"(By N M) = 0 and hence p(By) =0, as well as H".0(By) = 0. Thus

w(B) =S u(B)) = S H'WH(B;) = H'H(B).
i=1 j=1

By Borel regularity we conclude g = H"L6. The theorem is proved. O

The next result is kind of converse, asserting the existence of approximate tangent spaces.

Theorem 9.6 (Existence of approximate tangent space). Let M C R™ be H"-measurable
and countably n-rectifiable, and let 6 € Llloc('H") be nonnegative with M = {0 > 0}. Then for
H™-almost aoll x € M the Radon measure p = H™ 0 has an approximate tangent space Ty
with multiplicity 0(z).

Before entering the proof we recall some basic facts about measures with density. If p is an
outer measure on a set X and 0 : X — [0, 00| is p-measurable, then one defines

pb(A) = / Ody if A is y-measurable.
A

The measure is extended to all sets F by approximating
pLf(E) = inf{u6(A) : A p-measurable, £ C A}.

It is easy to see that pLf is an outer measure, moreover it has the following properties:
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e any p-measurable set E' is also pf-measurable,
o u(E)=0 implies u 8(E) =0,
o [fd(u8)= [ f6Odu, whenever f: X — [0,00] is p-measurable,
o if 1 is Borel regular then w6 is also Borel regular.
All these assertions follow easily using the monotone convergence theorem.

Proof. (of Theorem 9.6) By Lemma 9.2 there exist C'-submanifolds N;, j € N, such that
My = M\ U?; N; is a H" null set. We claim that p = H"L0 has approximate tangent space

Tpp = T, Nj, with multiplicity 6(z), for H"-almost all z € M N Nj. (9.9)

Here T, N; is the classical tangent space of the submanifold N;. Let f € CY(R™) be fixed,
with spt f C Bg(0) and sup|f| < C. For given x € M; we write

1@ = [ i)+ F) i (2)

: R™\&(N;—2)

In the first integral we substitute z = 5% to obtain further

| #e )

3 (N —z)

- 2 /N]_f(y;‘”)d%”(ywjn/N]_f(y;x)w(y)—e<m>)d’ﬂn<y>
=@ [ @ are sy [ () 0w - 0w) ar.

Now clearly

lim F(2) M () = / F() d(HTLN,) (2).

ANO 3N )

It is sufficient to prove (9.9) for H"-almost all x € M; N U, where U is an open set such that
pn(U) < oo and H".N;(U) < oo. Moreover we can assume that

H"_N;j(By(x)) < Co"™ forallze N;NU, o€ (0,00

For the first integral we estimate

‘ /Rm\l(zvv—z) f(z) d“w(Z)‘

IN

C por (BRONS (N, — )

< %M(B/\R(x)\Nj)'

The right hand side goes to zero as A ™\, 0 for H"-almost all x € N; N U. Namely since
peU(R™\N;) < oo, the density formula (9.10) implies

B N,
li{r{l) Mm)n\]) =0"(wU,R™\Nj,z) =0 for H"-almost all z € N; N U. (9.10)
0 an0
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The remaining second integral is estimated by

; /N 1(757) 0) — b)) dwr ()| <

An

C

AT Bagr(z)

10(y) — 0(2)| d(H"_N;)(y)-

We use the Lebesgue point property (5.1) to conclude that the right hand side goes to zero
as A N\, 0, for H"-almost all points x € N; NU. Note that H"LN; is a Radon measure on U,
moreover by the above H"LN;(Bygr(x)) < C(AR)". Therefore (5.1) applies to the function
6 € L (H".N;) for z € N;NU, and the proof is finished. O

loc

Corollary 9.7 (measurability of Gauk map). Let p be a Radon measure on R™, and let M
be the set of x € R™ with an approximate tangent space Ty € G(n,m). Define the Gaufl map

G: M — G(n,m), G(x) = T,p.
If u(R™\M) = 0 then G~Y(B) is H"-measurable for any Borel set B C G(n,m).

Proof. Tt suffices to show that G~1(U) is H"-measurable for any open U C G(n,m). By
Theorem 9.5 the set M and the multiplicity function 6 (with 6 = 0 on R™\M) satisfy the
assumptions of Theorem 9.6. Let N;, j € N, be C'-submanifolds which cover M, up to a H"
null set, and denote by G; : N; — G(n, m) the Gaufs maps of the N;. Then by (9.9) we know
that G(x) = G(x) for H"-almost all € M N Nj, hence

G'U)NN; =G;H(U)NM  up to a H" null set.

As Gj_l(U) is open in IVj, the set Gj_l(U) N M is H" measurable. Now G~1(U) is the union
of the sets G™1(U) N N;, j € N, and another H" null set. O

Roughly speaking the last results say hat one has a reasonable notion of tangent space for any
‘H"-measurable, countably n-rectifiable set. This summarizes as follows.

Corollary 9.8. Let M C R™ be H"-measurable and countably n-rectifiable. There exists a
map Gy : M — G(n,m), Guyr(z) =: T, M, with the following properties:

(a) G,/ (B) is H"-measurable for any Borel set B C G(n,m).

(b) For any measure p = H™ 0, with 6 € L} (H™) and M = {0 > 0}, one has Tpu = T, M
with multiplicity 0(z) for H™-almost all x € M.

(c) For any n-dimensional C'-submanifold N C R™ one has ToN = T, M for H"-almost
allz € MNN.

Proof. We first construct a function 6(x) as in (b). For this we assume that M is covered, up
to a H" null set My, by C! submanifolds N; for j € N. We can assume H"(N;) < 1, otherwise
we pass to a covering of N; by subsets with this condition. Now let

j—1
0(z) =277 forze MNN\|JN.
=1

By Theorem 9.6 the space T, exists H™-almost everywhere, and from (9.9) we know that

Top=T,N; for H"-almost every x € M N Nj.
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We define Gyy(z) = Typp, then (a) is proved in Corollary 9.7. Now if fi = H"L6 is another
measure as in (b), then Theorem 9.6 can be applied again, and (9.9) yields that T, = T, N; =
G (x) with multiplicity 6(x) for H"-almost all z € M N N, which proves claim (b). Finally
if N ¢ R™ is a C'! submanifold of dimension n, then we can simply add N to the collection
Nj; and obtain (c) again from (9.9). O

A set M C R™ with 0 < H"(M) < oo is purely n-unrectifiable if it has no subset of positive
H"-measure which is countably n-rectifiable. A deep theorem of Besicovitch (n =1, m = 2)
and Federer (n < m arbitrary) asserts that then P(M) has zero £" measure for almost every
P € G(n,m). An example is the triangular Cantor set considered in series 8 of the homework
assignments.
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Chapter 10

Varifolds

Definition 10.1. Let U C R™ be open. By definition, an n-varifold V on U is a Radon
measure on Gp(U) = U x G(n,m). Notation: V € V,(U).

Recall that G(n,m) is identified with the subset of L(R™ R™) = R™*™ consisting of all
orthogonal projections of rank n. Then the Hilbert-Schmidt norm induces a metric on G(n, m).
For P € G(n,m) we have For P € G(n,m) we have |P|?> = tr (PTP) = n, therefore G(n,m)
is compact.

Definition 10.2. Let 7 : G, (U) = U x G(n,m) — U, w(x, P) = x. The weight measure of
V € V,(U) is the Radon measure py = w(V) on U. Alternative notation: uy = |V|.

The projection 7 is proper, in fact for compact K C U the set 7~ }(K) = K x G(m,n) is
also compact. Moreover G(n,m) is of course separable. The Radon measure property then
follows from Theorem 2.17. By the transformation formula we have for any Borel function
0 :U — [0,00)

/ o(z) dpy (z) = / o(x) dV (z, P). (10.1)
U

Gn(U)

Theorem 10.3 (Disintegration). For any V € V,(U) there exists a family V*, © € U,
of Radon measures on G(n,m) such that for every Borel function f : G, (U) — [0,00) the
following holds:

(1) the function x — fG(n m) f(z, P)dV*(P) is py measurable, and

@) Jo 0 1@ PYAV (@, P) = fy sy S, P) AVE(P) day (2).
Two families of Radon measures with (1) and (2) coincide up to a py null set.
Remark 10.4. Taking f(x, P) = ¢(x) in (2) we infer using (10.1)
Je@veGmmyan @ = [ @ avp)= [ o),
We conclude that V*(G(n,m)) =1 for py-almost all x € U, i.e. V* is a probability measure.

Proof. (Theorem 10.3) We first check the uniqueness. Take in (2) the product function
xa(z)f(P), where A is a Borel set and f € C°(G(n,m)) is nonnegative. This yields

/ / F(P) AV (P) dpay (x) = / F(P)dV (z, P) = n(VLf)(A).
A JG(n,m)

Gn(A)
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The Radon measure (V'L f) is absolutely continuous with respect to py = w(V'). The equation
says that the corresponding Radon Nikodym density is

x— A(f) = /G( )f(P) dV*(P).

The density is determined iy -almost everywhere. Thus for two such families A7, there exists
a py null set Z¢ such that AT(f) = AS(f) for all x € U\Z;. Now choose a dense set, see for
instance Lemma 6.10,

{fi}jen C {f € C*(G(n,m)): f > 0}.
Then Z = J;Z, Zy; is a py null set, and Af(f;) = A3(f;) for all j € N, » € U\Z. But the
linear functionals f — A{,(f) are continuous, in fact we have [[A{,]| < 1. By density we
conclude that A7(f) = A5(f) for all f, and all z € U\Z.

To prove existence, we consider for ¢ > 0 the functionals A, , € C°(G(n,m))’ given by

_ oy TV)(By(@)
Az,g(f) - fGn(BQ(Z’)) f(P) dv( 7P) /LV(BQ(:E)) :

By Radon Nikodym, there exists a null set Zy such that
3 li\r‘r%)ALQ(f) =:A,(f) forall z € U\Zy. (10.2)
0

Let f; be the dense set as above, and Z = Ujoil Zyg,. Then for f € C%G(n,m)), f >0, and
0,0 > 0 we estimate for x € U\Z
Ao (f) = Aao(f)] < [Aao(f5) = Aao(F)] + 2[1f = fillco-
Letting first o, 0 \, 0 and then taking the infimum among all f; we conclude
App— Ay in CY(G(n,m)) forall 2 € U\Z
For x € U\Z we obtain by Riesz a Radon measure V* on G(n,m) such that

A(f) = /G( )f(P) dV*(P) for all f € C°(G(n,m)), x € U\Z.

The functions = — A, ,(f) are Borel, hence A, (f) is uy measurable for f € C°(G(n,m)). We
claim that for any Borel set B C G(n,m), the function

Au(xs) = /G oy XYV = V()

is py measurable. Namely the sets with this property form a o-algebra, and for K C U
compact the property follows using the monotone approximation x(P) = (1 —kdist(P, K ))+
of the characteristic function xgx. Next by Radon Nikodym we know that for any function
xA(x)f(P), where A C U is Borel and f € C°(G(n,m)) is nonnegative, we have property (2),
that is

/Gn(A) e = /A /G(n,m) JB)VEP) dpy (@),

Repeating the argument just before, this holds also with f replaced by x5 where B C G(n,m)
is Borel. The product sets A x B generate the Borel o-algebra of U x G(n, m), therefore we
now have (1) and (2) for all Borel sets. The theorem follows by using a final approximation
by step functions. O
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Example 10.5. Let M C U be a C' submanifold of dimension n. Assume that M is prop-
erly embedded, this means M N K is compact for any compact K C U. Using the Riesz
representation theorem, we define the n-varifold V' by the functional

V()= [ fla,T:M)dH"(x) forall f € CJ(U x G(n,m)).
M

Taking f(x, P) = ¢(x) where p € CO(U) we obtain from (10.1)
[ e@dm@ = [ p@avie.P)=Vie) = [ o) dia).
U n(U) M
Thus py = H" M. Next take a product function p(z)f(P) and compute
| e@rranan@ = vien
— [etw) [ p@)avep)du )
U G(n,m)
_ / () / F(P)dV*(P) dH"(x).
M G(n,m)
For py-almost all x € U we conclude that
/ f(P)aV®(P) = f(T.M) for dll f € C°(G(n,m)).
G(n,m)

This means V¥ = o7, pr for py-almost all x € U.

Our next issue is to define the pushforward of a varifold V' € V,,(U) under amap ¢ € C1(U, U").
We have an induced map between the Grafimannians given by

Gno: Gi (U) = Gu(U'), Guo(x, P) = (¢(x), Dp(x) P). (10.3)

Here G} (U) is the set of (z, P) where D¢(x)|p is injective, this restriction is obviously needed.
While the definition views G(n, m) as the set of subspaces, a description in terms of projections
is needed for computations. Assume that vq,...,v, is a basis of P. Define the Gram matrix

G(z) € R, Gyj(x) = (DP(x)vi, Dp(x)v;).
We have G(z) > 0 if and only if (z, P) € G} (U). The projection onto @ = D¢(x)P is
Pow =) GY(x){w, D(x)vi) Do (x)v;.
ij=1

Note that vy,...,v, need not be orthonormal, thus for P’ close to P we may use the basis
v/ = P'v;. In particular, we see that G;f (U) is open and G¢ is continuous for ¢ in C*. For
any P € G(n,m) we define the Jacobian

N|=

= (det G(:c))%, it v1,...,vy, is orthonormal.

Jp¢(x) = det (Dd(x)|p)" Do (z)|p)
Jo: G (U) = [0,00) is continuous, and Jpé(x) > 0 if and only if (z, P) € G5 (U).
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Definition 10.6. Let V € V,,(U) be a varifold such that ¢|spuy, is proper. The pushforward
6.V €V, (U') is given by

¢V (B) = / Jpo(z)dV (z, P)  for any B C G,(U").
(Gno)~1(B)

In this lecture we only need the case when ¢ is a diffeomorphism. Then G (u) = G, (U), and
the condition that ¢ is proper is automatic. We emphasize that the varifold pushforward is
different from the measure pushforward under G, ¢, because the Jacobian appears.

Example 10.7. For x € U and X\ > 0, let V \ be the pushforward of V € V,(U) by

y—x

A

Ny : U= R™ npa(y) =

We have D, \(z) = 3 1d, in particular Jpnz A(y) = A~ for all (y, P) € G, (U). Moreover
Gunen(y, P) = (55, P). If A C R™ is bounded then n;i(A) =z + A\A is contained in U for
A > 0 sufficiently small. Thus

KV (A) = Vx,)\(A X G(nvm))

1
= 3V (@ +24) x G(n,m))

= %/Lv(er)\A)
= (1v)za(4).

Furthermore, testing with o product set yields
[ XA V(B di () = V(A x B)
= A "V((z+\A) x B)

= A_"/UXHAA(ZJ) VY(B) duv(y)

— / XA (2)VE(B) dpg 1 (2).

In summary, the blowup varifold Vi x = (nz 1)V has v, = pax and (Vi ))* = yrtiz,
Definition 10.8. A varifold V € V,,(U) is called rectifiable if the following holds:

(1) Typy exists for py-almost all x € U, with some multiplicity 6(x) € (0, 00).

(2) V* =07, for py-almost all x € U.

Denote by M the set where Ty exists. Recalling Corollary 9.8 we obtain the representation
V(N = [t T div@) = [ f M) deo)a). (10.4)

Reversely, let M be H"-measurable and countably n-rectifiable, and let 6 € LIIOC(H”) such
that M = {6 > 0}. We may define a varifold by the right hand side of (10.4), using the
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tangent space T, M = Gp/(z) as defined in Corollary 9.8. The function f(x,T,M) is then
H"-measurable, in fact for any product A x B C U x G(n,m) of Borel sets we have

(id x G)"Y(Ax B)=AnGY(B).

This is H™*-measurable by Corollary 9.8. Hence the varifold is well-defined by the formula

- / fla, T, M) d(H™ 0)(x).
M

Arguing as in Example 10.5 we see that py = p and V* = 7, for p-almost all x € U. We
write V' = v(M, @) if a varifold arises in this way.

We want to compute the pushforward in the case of a rectifiable varifold. For this we need an
extension of the area formula to rectifiable sets resp. varifolds. Consider first an n-dimensional
submanifold M C U of class C'. The notion of a C' map f : M — RP can be defined us-
ing charts. In particular the differential Df(z) : T, M — RP is well-defined and linear. We
introduce the following operators, where 7, ..., 7, is any orthonormal basis of T, M:

e the gradient of f € C1(M) is VM f(z) = I (Df(x)7:) 7. Tt is characterized by
(VM f(z),v) = Df(z)v for all v € T, M.

If fis C' on all of U then VM f(x) = Pr, 7V f(x), where V f(z) is the gradient in R™.
In this context VM f(x) is sometimes called the tangential gradient.

e for f € C'(M,RP) the divergence on M is defined by divM f(z) = tr (Pr,mDf(z)), or

n

divM f(z) = > (Df(x)7i, 7).

=1

e the Jacobian of f € C1(M,RP) is given by Jy f(z) = \/det(Df(z)*Df(z)), hence
JMf(z) = \/detG(x) where Gij(z) = (Df(x)7;, Df(x)7;).

Now let M be countably n-rectifiable and H"-measurable. For f € C*(U,RP) we define
DMf(x) = Df(z)|ra  for H-ae. z € M.

Here T, M is as in Corollary 9.8. In particular if NV is an n-dimensional C' submanifold then
T, M =T,.N for H™almost all x € M N N.

Lemma 10.9. Let f € CY(U,U’) where U C R™, U’ C R are open. Assume that M C U is
H"-measurable and countably n-rectifiable, and let g : M — [0,00) be H"-measurable. Then
the function y — Z{meM:f(m):y} g(x) is H™ measurable on U’ and

M n n
/M()Jf ) dH / Z o) ')

zeM: f(x
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Proof. Assume first that M is a C'' submanifold parametrized by ¢ € C1(Q,R™). Then
D(f o @)(w) = DM f((x))Dpla)  where Dp(x) : R” — Ty M.

This implies
D(f o ¢)(@)*D(f o p)(x) = Dp(x)" D" f(p(x))* DM f(p(x)) Dp(a).

To compute the Jacobian we choose an orthonormal basis A = {71,...,7n} of T,;;)M, and
denote by £ = {e1,...,e,} the standard basis of R”. Then

(D(f o @)(@)"D(f 0 9)()) ge = Dp(@)ga (DM f)(p(2)) DY f(ip()) 44 Dp(@) e
Taking the determinant we obtain
J(F o) (w) = T f(p()) Joo(x).
Thus we get from the standard area formula

/) Z D) = [ Y gleta)a(

peM:f(p)= z€Q: f(p(x))=y

- / 9((@)) T(f 0 0)(x) dL™(a)
e~ (M)

- / 9(0(@)) T [ () Tp(x) dL™ ()
e~ (M)

= /g(p)JMf(p)dH”(p)-
M

The formula extends to any C! submanifold by a partition of unity. Now let M be as in the
theorem, and assume again that M is covered by C' submanifolds Nj, j € N, up toa H" null
set. Let Ni = N; \U/Z] N;. Then

DS RCICEETE | o) alo) 7% ) a2 )

peEM:f(p)=

= [ o) ao) IV 1) a0,

Here we used DM f(p) = DVi(p) H"-a.e. on M N N;. The lemma follows by adding up. O

Theorem 10.10 (rectifiable pushforward). Let f € CY(U,U’) where U C R™, U’ C RP are
open. Let V' be a rectifiable varifold in U such that f|sptpu, s proper. Then f.V is rectifiable,
moreover if V' is represented by V = v(M,0), then f.V =v(f(M),0f) where

Opy)= > Ox)

zEM: f(x)=y

Proof. By Lemma 9.2 M is covered by C! submanifolds N;, j € N, up to a H" null set Mj.
Thus f(M) is covered by the f(N;) up to the null set f(Mp), and is countably n-rectifiable
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by definition. Further f(M) = {6; > 0}, so that f(M) is also H"-measurable by Lemma 10.9
above. We compute for any Borel set B c U’

prv(B) = fV(B xG(n,m))
_ / Ipf(z)dV (z, P)
(B)xG(n,m)

:/ JM f(x) dpy (z)

f=4(B)

- / Xs-1() (@) I () 0(a) dH" (2)
_ / Z e(x>x3<y>cm”<y)

zeEM: f(x)=
= (H".0f)(B )

Thus pif,v = H".0f. To compute (f,V)Y we need an extra consideration. We claim that for
H"-almost all y € f(M) we have

Df(x)T,M =T, f(M) forall z € f{y}. (10.5)
Let M+ = {x € M : JMf(z) > 0}. By the area formula the set f(M\M™) is a H" null set:

(M) < [ enar o ) awe) = [ 3 @) aa) o

M\M+

By Corollary 9.8 T,M = T, N, for H™-almost all z € M+ N N;. For these x the image f(N;)
is locally a manifold, we have

On the other hand, again by Corollary 9.8, locally

T, f(M) = T,f(N;) for H"a.e. yec f(M)N f(N;).
Combining shows (10.5). Now we can calculate for a product set B x S in U’ x G(n, m)

/B LV (S dppv(y) = (fV)(B x 5)

Jpf(z)dV (z, P)

/{xefl(B):Df(x)PGS}

/ / Tpf (@) dV*(P) dyuy ()

J~YB) JDf(x)=1(S)

- / 5 ozt (S)TY f() 6(x)dH" ()
F~Y(B)

/ S sy (S)0() dH(y)

xeM: f(z)=y

/ 51 1 (S) 0 (y) dH" (y)
/ or, 1) (S) dpg.v (y).

Recalling again Corollary 9.8 we have (f.V)Y = (5Ty F() =01, (u V) O
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Chapter 11

The first variation

For his paper from 1973 Allard selected the title The first variation of a varifold. Previous
applications of geometric measure theory were dealing with minimizers, either in the context
of BV functions and Caccioppoli sets (Di Giorgi) or in the setting of area-minimizing currents
(Federer-Fleming). The focus of Allard is on results for critical points instead of minimizers,
and this is pointed out in his title.

Let U C R™ be open, and let ¢ € C?(U x (=6,0),U), ¢ = ¢(-,t), be a family of maps
with the following properties:
(2) there is a compact set K C U such that ¢(-,t) =id on U\K, for all t € (—¢,¢).

Such a family is called a variation with compact support in U. The associated velocity field is

X(z) = %(m,O), hence spt X C K.

Theorem 11.1 (first variation). Let V € V,,(U) be an n-varifold with finite mass in U. Then
for any variation ¢ as above

d
e @l = [ (DX(@).P)dV (z.P). (11.1)
Gn(U)
If vi,...,v, ts an orthonormal basis of P then

(DX (z), P) =Y (Dy,X(x),v;) = divpX (z).
=1

Proof. By definition of the pushforward we have

oV (U) = @)VU x Glnm) = [ Jpou(w)dV (z. P).
UxG(n,m)
We compute using an orthonormal basis vy, ..., v, of P
ng@(x)lm = g(det@qﬁt(ﬂf)v' D¢>t(x)v‘>)%lt—o = i(D X (), vi)
ot = ot 7y 7 = - Vi y Ui/

81
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The assumptions allow to differentiate under the integral (check), we get

d
el = [ (DX (@), P)V(x,P).

The function Jp¢;(x) is of class C* on U x (—46,6), and Jp¢(z) = 1 on U\K. Therefore we
can differentiate under the integral to obtain the result. O

Example 11.2. Let vy, ...,v be unit vectors in R™. Denote by P; the projection onto Ru;,
and consider the rectifiable 1-varifold

k 00
V(f) :Z;/O f(svi, P;) ds.

It follows that the first variation is

k oo
/Gl(Rm)<DX(:U),P>dV(x,P) = ;/0 (DX (sv;)vi, v;) ds

E oo
— Z/o %(X(svﬁ,vﬁds

=1

= —(x(0),>w).

i=1
The first variation vanishes for all X if and only if Ele v; = 0.

Example 11.3. Let M C U be a compact embedded submanifold of class C2, possibly with
boundary OM. As discussed the induced varifold V has weight measure py = H™LO and
vertical measures V¥ = o1, pr, see Example 10.5. The second fundamental form of M is

AX,Y) = (DxY)t  for tangential vector fields XY : M — R™.

Here 1 means the projection onto (TM)L, For X € CCI(U, R™) we compute, using a local
orthonormal tangential frame T1,...,Tn,
n
aivM(XY) = 3D (X))

i=1
n
= > (DXt 7m) — (X', Do)

i=1
= —(X,H).

Here H = oy A, 1) is the mean curvature vector. Thus the first variation integral becomes
/ divpX(z)dV(z,P) = / divy, X (z) dH" (x)
n(U) M

= / divM X T dH" + / divM XL dH"
M M

. / (X, ) dHP) — / (X, ) dH™.
oM M
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Here n denotes the interior unit conormal along OM, we used the theorem of Gaufi on M
for the tangential filed X '. The mean curvature term is absolutely continuous with respect
pwy = H"LM, whereas the boundary term is singular.

We consider the right hand side of the first variation formula as a linear functional
SV : CHUR™) =R, §V(X) = / (DX (z), P)dV (x, P). (11.2)
Gn(U)
Definition 11.4. V € V,(U) has locally bounded first variation if for all compact K C U
0V|(K) =sup {6V (X) : X € C}(U,R™), spt X C K, | X[ <1} < oo.

If this holds, then 6V extends to a continuous functional on C%(U, R™) by density, and the
Riesz representation theorem applies. [0V] is a Radon measure, and there is a |§V| measurable
function ny : U — R™ with |ny| = 1 such that

V(X) == [ (XG@)m(e) doV(a).
The choice of sign is for convenience. Now by Radon-Nikodym for any Borel set A
VIA) = [ D8V + (8VI-2)(A).

Here Z = {x € U : Dy, |6V|(z) = oo}, and py(Z) = 0. In order to arrive at a notation
analogous to manifolds, we put

Hy = Dy, |6V)ny  and oy = |0V|.Z.

Then Hy € L} (v, R™), and the formula becomes

loc
V) = = [ (XA dy = [ (X dov.

For a compact submanifold with boundary, ﬁv = H is the mean curvature vector, oy =
H"~LLOM is the boundary measure and 7y is the interior conormal along 9M.

Definition 11.5. Let V = v(M,0) be a rectifiable n-varifold in U C R™. We say that V has

weak mean curvature H € L}, () where p € [1,00], if

/ divM X dpy = —/ (H,X)dpy  for all X € CH(U,R™). (11.3)
U U

A rectifiable n-varifold V with weak mean curvature H =0 is called stationary.

If V' has locally bounded first variation with singular part oy = 0, then V has weak mean
curvature Hy = (D, |6V |)nv € L (uy). Tt is easy to see that the reverse implication is also

valid. The following application relates to a maximum principle for classical surfaces.

Theorem 11.6 (inclusion principle). Let V' be a rectifiable n-varifold in R™ with spt u compact
and H € L'(p). Assume that

(H(z),z) > —n  for all z € R™\Bg(0).

Then spt u C Br(0).
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Proof. Let v € C1([0,00) be monotonically increasing with v(r) = 0 for r € [0, R]. For the
vector field X (x) = v(r)z where r = |x| we compute

divM X = ny(r) 4+ ' (r) [ VMr |2

X is admissible in the first variation formula since spt p is compact. We conclude

0< /r’y’(r)|VM7'!2dr = / (diVMX —ny(r)) dp = - /"Y(r)«ﬁ(x)’@ +n) dp.

Choosing y(r) > 0 for r > R we conclude u(R"™\B,(0)) = 0 and hence spt u C Br(0). O

Corollary 11.7 (convex hull property). Let V' be a rectifiable n-varifold with compact support,
and assume that V is stationary in R™\K where K is compact. Then the support of u is
contained in the convex hull of K.

Proof. Assume that K C Bgr(x¢). By assumption we have

(H(z),z —x9) =0> —n for all x € R™\Bgr(xo).

The inclusion principle implies that spt u C Bpr(zg). It is an elementary fact that for K
compact, the intersection of all balls containing K yields the convex hull. O

We now come to the fundamental monotonicity formula. The original proof of Allard, see
[?], is for general varifolds with locally bounded variation, it employs the method of slicing a
varifold. Our version is taken from Simon’s book [?] and is restricted to rectifiable varifolds.

Theorem 11.8 (monotonicity formula). Let V' be a rectifiable n-varifold in Br(xg) C R™
with weak mean curvature H € Llloc(u) where = py. Then for oll 0 < 0 < o < R we have

[M(BT(%))T:Q - / N ) dp(z) (11.4)
r= Bo(20)\Bo (z0)

T o |x — :c0|”

/Tn+1/ o) x),x — xo) dp(x) dr.

Proof. In the first variation we use as vector field X (z) = v(r)(z — zo) where v € C([0, 0))
and r = |z — x9|. We compute using |Vr| =1

divM X () = ny(r) + v/ (r) [VMr[? = ny(r) + 77/ (r) (1 = [ (V7)1 2).

Thus we have the identity
[ )+ 0 0)) du= [T Pda = [ =) (15)
We let y(r) = gi)(%) where ¢ € Ccl([(), 1), and consider the functions
I(o) = / o\~ ) du,
J(o) = /<Z> (V)= dps,

L(o) = /¢ H , & — x0) dpt.
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I'(o) = /¢’(;) (— é) dp = —;/7‘7/(7“) dp,
Mo = [¢(5) (= HNEn Pau=— [ )70 P
Using (11.5) we calculate

d

SeHe) = e / ny(r) + 7y () dp

A pointwise differential inequality cannnot be integrated easily, therefore we now pass to a
weak formulation. For any text function n € C1((0, R)) we have

- [t @ de= [T @ de+ [ Lon@ de. (116)
We choose ¢. € C1([0,1) with 0 < ¢. < 1, such that
, C
pe(s)=1for0<s<1l—e and |¢.(s)|< - for all s.

The functions 7. (r) = gbg(g) converge pointwise everywhere to the characteristic function of
the (open) ball By(zp). As € \, 0 we have by dominated convergence

Lo = [ oc(5)du— n(Bolan),
L(o) = /¢a<2)<ﬁ7$—$o>dﬂ—>/3(x)<ﬁax—$o>dﬂ-

Here we used that H € L} (1). We have further again by dominated convergence

loc

[err@n@de — [ o u(Bae) i) de
—n—1 —n—1 7 T—x ]
/Q L:(o)n(e)do — /@ /BQ(%)(H, 0)n(e) deo

For the integral J.(p) we argue differently. For any o € (0, o) we have for £ > 0 small

B d ry |[(Vr)+)?
nJ! —/ (=) —2—du(z
‘Q (Q) dQ {|lz—z0|>0} ¢ (Q) |‘T - x0|n N( )‘

i ‘ /BQ("”O)\Bus)g(%) d)ls(%) <_ é) (Vr)H? (o7 = r7") du’

€Q"C+1 (\_(1 —€)7" = 1) u(By(20)\B(1—e)o(0)) )

<Ce
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By dominated convergence, this implies further

Jlermo-g [ (5 [ o) alerde—o.

On the other hand partial integration yields

d r |(VT)J“2 // /
) do o) e —zopt & o) do =% . do.
/dg/{lx—xo|za}¢ (9) |z — wo[" Hle) ¢ B, (z0) x_xo‘n p(x) 1 (o) do

Collecting terms we obtain for p € (o, R) the weak differential equality

d (1(By(@0)) _ M 7)) = 1 T x—x x
@(7 /Bg( ) = ot /Bg<zo><H’ o) due): (LD

o" 20)\ By (w0) 1T — T0|™

To integrate the equation we first observe the continuity of the function

Br 112
o, MBr(x0) / Vr@ P .
rn Bu(0)\Bo (z0) [T — To|™

As B,(xo) is the open ball the continuity for r ¢ is clear. For r \, 0 we observe that
VMpr(z) =0 for H" l-almost all z € M NIB,(z).

To see this let M be covered by C' submanifolds N; up to a H" null set. By (9.9) we have
VMp(z) = VVir(z) for H"-almost all z € M N N;. But {x € N; N 0B, (x0) : VVir(z) # 0}
is an (n — 1)-dimensional submanifold and hence a H"™ null set, the claim follows. Now the
right hand side in (11.7) is locally bounded on (0, R), hence its integral is locally Lipschitz.
Thus we obtain (11.4) for all ¢ € [o, R), up to an integration constant. By right continuity at
r = o0, the constant is zero and the theorem is proved. O

Remark 11.9. Put h(z) = (H(x),x — ). Uing Fubini the mean curvature term in (11.4)
can be transformed as follows:

o 1 /
L @ = [ = / B(E)X a0 <ry dit() dir
/J yn+l - (z0) pntl B, (z0) {lz—zo|<r}

1
= / / il 1 X{|z—zo0|<r} dr d,u,(m)

xo)
1 1
ac())

—) du(z).

max(|ac—x0] o) on
Lemma 11.10. Let V' be a rectifiable n-varifold in Br(xo) C R™ sstisfying
Vo T for some p >, (118)

Then for 0 < o < o < R we have
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Proof. From (11.7) we know that

- -1,
dr rn ™ ) By (o)

1 1_ ' _» d T _n
LIy = I()p (r) > —— 1 = —— 175,
dr P P drp—n

The inequality holds weakly, and the lemma follows by integration. O

Theorem 11.11 (existence of density). Let V' be a rectifiable n-varifold in U C R™ with weak
mean curvature H € LY. (uy) for some p > n. Then the density

loc
. v (Br(2))
o" =1
(hy,2) A0 et

exists for all points x € U. Moreover the function 0" (uy, -) is upper semicontinuous.

Proof. We put p = py and assume that I' = ||ﬁHLP(M) < oo. The existence of the density is
then immediate from Lemma 11.10. Let B,(y) C By(x). Then r = dist(y, 9B,(z)) € [o, 0],
and we estimate by Lemma 11.10

(u(Ba(y))>é

Qo™

VAN
—
=
S
3
s

IN

o\» M(Bg(w))p
()" (

T a”)p+—gp'
n@ p—n

For o N\, 0 we obtain

0" (1, y) < (0)i (n(BQ@:))); - roen

Letting now y — x, hence r — g, we get

Sl

limsup 6" (u, y)

Yy—T

< <M(Oigg(f)));+ I Ql—ﬂ

Finally we let o \, 0 and obtain

S =
3 =

limsup 0" (u,y)» < 60" (n,2)7.

y—
This is the upper semicontinuity. O
Lemma 11.12. Let V be a rectifiable n-varifold in Br(zo) C R™. Assume that

(1) 6™(p,x0) € (0,00) exists.

(2) Vign; = Y for some sequence \j \, 0, where Y is a stationary rectifiable n-varifold.

Then'Y is a cone around the origin, that is Yo\ =Y for all A > 0.
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Proof. For any Radon measure v and A > 0 we let v = A™"n(7y) where ny(z) = §. Consider

10) = [y o) =2 [ (3) drce).

Differentiating at A = 1 yields

1) ==n [ hlz)dr(a) - [(dho).a) dr o)
To compute the derivative for all A > 0, we apply the formula when ~ is replaced by v,. Note

(Mo =0 " (A" () = (Ao) "m0 (7) = Yao-

Using this we calculate

d d d
I/ :7[ o=1 = — olo=1 = — o)lo=1-
M) = 2100 = 5 [ haoloms = 20 [ hd((0)0) o

Thus we obtain

M'(N) = —/ (nh(z) + (Vh(z),z)) dyr(z). (11.9)

Now let 4 = py and v = py be the weight measures of V' and Y. Assumption (2) implies
fix; — 7y as j — oo. From assumption (1) we obtain for all o > 0 (except a countable set)

(B, (0)) ol M (Bo(w0)) - 11(By;o(0))

= =" )
0 0" j—00 o 0™ j—oo  ap(Ajo)" (1, 20)

As Y is stationary by assumption, the monotonicity formula (11.4) implies

12
/ Md’y(z):o forall0 <o <p < R. (11.10)
Bo(20)\Bo (o) |

x — o|"

Using once more that Y is stationary we get

0 = / div" (h(z)z) dyx(z)
B / (nh(@) + (Vh)(x) ", 2)) dya ()
_ / (nh(z) + (Vh)(x), 2)) dua(x).

In the last step we used that by (11.10) we have z € T,y for y-almost all x € R™. Thus
I'(A\) = 0in (11.9) for all A > 0, and we conclude ) =~ for all A > 0. As Y is assumed to
be rectifiable, this implies Y =Y for all A > 0, which proves the lemma. O

Theorem 11.13 (tangent cones). Let V' be a rectifiable n-varifold in U C R™ with weak mean
curvature H € LY (u) for some p > n. Then for any xg € U the sequence Vion; where Aj N\ 0

loc
subconverges to a stationary, rectifiable cone Y.
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Proof. We know already from Theorem 11.11 that the density 0™ (u, zo) exists and is positive
on spt u. Putting I' = ||H||1»(,) we have further by Lemma 11.10 for A < B

fagn(Br(0)) = A""u(Bxr(zo))

. 1(Bxr(z0))
B Ry

< Rn((M(B};Jéﬂio))>; +pEnR(1)_Z)p-

By passing to a subsequence we have Vi, — Y and pg,x — 7 where v = py. Now for
¢ € CLHR™,R™) we compute (see Example 10.7)

Var@) = [ (DY), P)dViale P

— A /cn<BR(x0)) <D¢(y _)\x0>,P> dV (y, P)

— Aln / div' (¢ 0 gy ) () du(y)
Br(zo)

- —/\1”/ (H(y),d 0 Nuer(y)) dp(y)
Br(=o)
= —/\/ (H(wo + Ax), ¢(2)) Aty 1 ().
Rm

Thus V;, » has mean curvature ﬁxo,A(m‘) = )\ﬁ(azo + Ax), and

( /BR(0> Heoal d“““) P ( /B,\R(mo) |H|P du) 3

Assuming spt ¢ C Bgr(0) and |¢| < 1 we conclude

1 1

3V, < |[Hppall” o (Br(0))'™
6V @) < MHao ], gy a0 (BR(0) 7

< c HﬁHLP(M;BR(Zbo)) Ali%Rn -0 as \ \‘ 0.

It follows that §Y (@) = lim; 0 0Vay 2, (¢) = 0, hence Y is stationary. Applying Lemma 11.12
we conclude that Y is a stationary cone. Actually for this we need to know in addition that
Y is rectifiable, this will be proved in the next section. O



