Aufgabe 1 (Elliptische C^0 -Abschätzung, 4 Punkte) Sei $\Omega \subset \mathbb{R}^n$ beschränkt und erfülle $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$ die Gleichung

$$a^{ij}\partial_{ij}^2 u + b^i\partial_i u + qu = f,$$

wobe
i $q \leq 0$ und a^{ij} gleichmäßig elliptisch mit Elliptizitätskonstant
e $\lambda > 0$ ist. Dann gilt

$$\sup_{\Omega} |u| \le C \left(\|u\|_{C^0(\partial\Omega)} + \|f\|_{C^0(\Omega)} \right)$$

mit einer Konstanten $C = C\left(\frac{\sup|b|}{\lambda}, \operatorname{diam}(\Omega)\right)$.

Hinweis: Leiten Sie zunächst ein geeignetes elliptisches Maximumprinzip für die Ungleichung

$$a^{ij}\partial_{ij}^2 u + b^i \partial_i u + qu \ge 0$$

her.

Aufgabe 2 (Gegenbeispiel zur C^2 -Regularität, 8 Punkte) Es gibt zu jedem $\varepsilon > 0$ eine Funktion $u_{\varepsilon} \in C_c^{\infty}(B_1(0))$ mit

$$1 = \|\Delta u_{\varepsilon}\|_{C^0} \le \varepsilon \|D^2 u_{\varepsilon}\|_{C^0} \quad \text{ und } \quad \|u_{\varepsilon}\|_{C^0} \le C(n).$$

Zeigen Sie dies in folgenden Schritten:

- (1) Die C^0 -Schranke folgt aus $|\Delta u_{\varepsilon}| \leq 1$ und Aufgabe 1.
- (2) Skalierung: es reicht $v_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$ zu finden mit

$$0 < \|\Delta v_{\varepsilon}\|_{C^0} \le \varepsilon \, \|D^2 v_{\varepsilon}\|_{C^0}.$$

(3) Zeigen Sie, dass die Funktion

$$v_{\varepsilon}(x) = \eta_{\varepsilon}(x) \langle Ax, x \rangle$$
 für $A \in \mathbb{R}^{n \times n}$ mit $\operatorname{tr}(A) = 0$, $\eta \in C_c^{\infty}(\mathbb{R}^n)$

die Eigenschaften in (2) hat, falls A nicht schiefsymmetrisch ist und $\eta_{\varepsilon}(0) = 1$, $D\eta_{\varepsilon}(0) = 0$, $D^2\eta_{\varepsilon}(0) = 0$ und

$$|x| |D\eta_{\varepsilon}(x)| + |x|^2 |D^2\eta_{\varepsilon}(x)| < c_A \varepsilon,$$

mit einer geeigneten von A abhängigen Konstanten c_A .

(4) Bestimmen Sie nun η_{ε} , zum Beispiel $\eta_{\varepsilon}(x) = g(\varepsilon \log \frac{1}{|x|})$ für g geeignet.