Universität Freiburg Dr. Azahara DelaTorre Dr. Lothar Schiemanowski

Parabolic Partial Differential Equations _{SS 2019}

EXERCISE SHEET 8

Turn in by Thursday, July 11.

1. (2P) [Weak Maximum Principle] Suppose $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is bounded, twice continuously differentiable in $x \in \mathbb{R}^n$ and continuously differentiable in $t \in [0, \infty)$ and satisfies

$$\begin{cases} \partial_t u - D\Delta u \le 0 & \text{on } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{in } \mathbb{R}^n \end{cases},$$

where $u_0 \in L^{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

Then

$$\sup_{\mathbb{R}^n \times (0,\infty)} u = \sup_{\mathbb{R}^n} u_0.$$

Hint: Use the maximum principle in bounded domains!

2. (2P) [Strong Maximum Principle] Suppose $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is bounded, twice continuously differentiable in $x \in \mathbb{R}^n$ and continuously differentiable in $t \in [0, \infty)$ and satisfies

$$\begin{cases} \partial_t u - D\Delta u \le 0 & \text{ on } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{ in } \mathbb{R}^n \end{cases}$$

where $u_0 \in L^{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

If u attains a maximum at (x, t) with t > 0, then u is constant.

Hint: Use the fundamental solution!

3. (2P) Prove there is at most one solution $u : \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$, which is bounded, twice continuously differentiable in $x \in \mathbb{R}^n$ and continuously differentiable in $t \in [0, \infty)$ satisfying

$$\begin{cases} \partial_t u - D\Delta u = 0 & \text{ on } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{ in } \mathbb{R}^n \end{cases}$$

,

where $u_0 \in L^{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

4. (2P) Find the solution to the initial value problem

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{on } \mathbb{R}^n \times (0, \infty) \\ u(x, 0) = \exp(-|x|^2) & \text{for } x \in \mathbb{R}^n \end{cases}$$