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Introduction

Bordism or cobordism starts out quite naively as an equivalence re-
lation of manifolds: two closed manifolds X, Y are cobordant if there is
a manifold with boundary Z whose boundary is X q Y . There are al-
ternative versions taking the orientation into account or allowing only
complex manifolds. However, the set of equivalence classes turns out
to have a lot of structure, e.g., it is in fact a group, even a ring. The
definition can be made relative to a base, so that we have a bordism
group for every manifold. This turns out to define a generalized co-
homology theory and hence is very closely related to the construction
of characteristic classes. In particular, vector bundles also have cobor-
dism classes. The information in cobordism in finer than in singular
cohomology. One extra bit of information in complex cobordism is the
formal group law that describes the formula for the first Chern class of
the tensor product of line bundles.

In the last decade, an analogous theory was also developed in alge-
braic geometry, mostly by Levine and Morel. There are two approaches:
there is an explicit geometric construction mimicking the topological
situation. Alternatively, one uses the setting of motivic homotopy the-
ory and defines cobordism as the cohomology of the spectrum MGL.
The theory is compatible with the topological one under the analytifi-
cation functor. As in the topological case, it gives insights in the nature
of characteristic classes for algebraic varieties. As a corollary, we ob-
tain surprising divisibility properties of algebraic cycle classes. These
were needed in the acclaimed proof of the generalized Milnor conjecture
(also called Bloch–Kato conjecture) by Voevodsky and Rost.

In the seminar, we want to learn about the basics of the theory and
then concentrate on some aspects. Important applications will have
to be left out. The first talks treat the original case, i.e., differential
topology. We look in more detail into the case of complex corbordism
and present the work of Quillen. There is a nice application to the inte-
gral Hodge conjecture that already shows the significance for algebraic
geometry. In the second part of the program, we explain the geometric
definition of Levine and Morel. A selected number of properties will
be proved, while others will have to be taken for granted. Finally, the
application to the Bloch–Kato conjecture will be explained in a survey
talk.
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Talks

Talks are 90 minutes (two times 45). Recall that we would like to
have plenty of time for questions and discussions. Hence we recommend
that speakers prepare a 60 minute talk.

1. The Pontryagin–Thom construction [13, 19]
18.10.17 (Anja Wittmann)

This talk should introduce the homotopy-theoretical view on topo-
logical cobordism. Reserve much time for the last two items below.

(1) Definition of unoriented ΩO and oriented cobordism ΩSO, ring
structure.

(2) Recall Whitney’s embedding and transversality theorem (with-
out proofs).

(3) Recall the classifying spaces BO(k) and BSO(k). We only need
the universal property. Introduce a model only if there is time.

(4) Define the Thom spaces MO(k) and MSO(k).
(5) Explain the Pontryagin–Thom homomorphisms

πn+k(MO(k))→ ΩO
n and πn+k(MSO(k))→ ΩSO

n .

(6) Explain why the Pontryagin–Thom homomorphisms become
isomorphisms for large k.

2. Computation of cobordism up to finite groups [13, 19]
25.10.17 (Ben McDonnel, Fabian Kertels)

We recapitulate the classical computations of cobordism groups.

(1) Introduce complex cobordism and the Pontryagin–Thom homo-
morphism πn+2k(MU(k))→ ΩU

n [18].
(2) Explain the Thom isomorphism theorem.
(3) Explain the Serre–Hurewicz theorem for homotopy and homol-

ogy up to finite groups [13, Sect.18].
(4) Recall Chern classes and numbers. Note that Chern numbers

are bordism invariants [13, Sect. 16].
(5) Give (multiplicative) generators of the rational cobordism ring ΩU⊗

Q: for ideas and references see the “complex bordism” page [9].
discuss Milnor manifolds and Milnor hypersurfaces.

Explicitly mention divisibility of characteristic number ([13,
16.6,16-E]): for d-dimensional manifold, sd(M) ≡ 0 mod `. Mil-
nor manifolds: manifolds of dimension d = `i−1 with sd(M) ≡
±` mod `2. This will reappear in the last talk.

(6) If time remains, also give generators of ΩSO ⊗Q. We will deal
with ΩO later.
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3. h-cobordism theorem and handle decomposition [12, 3]
8.11.17 (Simone Murro, Ksenia Fedosova)

This talk considers aspects of bordism that belong to another branch
of the story as the rest of the talks in this program. We will see a
method how to split a cobordism into a sequence of elementary cobor-
disms (= handle attachments).

(1) [3, Sect. 1.2], [12] Introduce handles and the basics of handle-
body decomposition.

(2) [3, Sect. 1.4], [12] Present some results on reducing the handle-
body decomposition.

(3) [12, §9] Formulate the h-cobordism theorem. The proof uses
the methods from above. But instead of proving the theorem
sketch some of the applications.

4. Bordism as a multiplicative cohomology theory [1, 2]
15.11.17 (Eva-Maria Müller, Yuhang Hou)

This talk introduces multiplicative cohomology theories, orientations
of vector bundles. Oriented and complex cobordism are nice examples.

(1) Stabilising the Pontryagin-Thom homomorphisms in direction
of k leads to Thom spectra MO, MSO, MU [1].

(2) Give a general definition of a spectrum E and the associated
generalised homology and cohomology theories (don’t talk about
smash products or maps of spectra, really, don’t).

(3) Define multiplicative cohomology theories E and E-orientations
(Thom classes) of vector bundles [5, Def 7.19, 8.10]

(4) Starting from (2), give geometric descriptions of (unoriented/
oriented/complex) bordism homology and cohomology of smooth
manifolds [2]. If there is time, explain products.

(5) Exhibit Poincaré duality and explain the pushforward in bor-
dism cohomology.

5. Formal group laws and the Lazard ring
22.11.17 (Nelvis Fornasin, Jorgen Lye)

(1) From (commutative) Lie groups to formal group laws. (exam-
ples: additive, multiplicative, maybe elliptic?)

(2) Explain universality for group laws and show that there is a
universal one-dimensional formal commutative group law. In-
troduce the Lazard ring L by giving generators and relations
(maybe compute the first nontrivial relation explicitly).

(3) Introduce complex oriented cohomology theories and explain
characteristic classes (for example, Conner–Floyd Chern classes
for complex bordism [4]).

(4) Explain how to associate a formal group law to a complex-
oriented cohomology theory.
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For literature references, start searching from the Wikipedia page.
Coordinate closely with the next talk to know what statements about
the formal group laws and Lazard ring are required (and for appropriate
choice of notation).

6. Quillen’s theorem on complex cobordism [15, 16]
29.11.17 (René Recktenwald)

This talk finally describes the complex cobordism ring ΩU (and its
real analogue ΩO) completely.

(1) Explain Quillen’s theorem that complex cobordism gives rise to
the universal formal (associative and commutative) group law.

(2) Sketch the proof following either [15] or [16], without going into
too much details.

(3) Explain the analogous statement on ΩO.
(4) Maybe explain how to get from complex cobordism to integral

cohomology and topologicalK-theory (if you want you can state
Landweber exact functor theorem)

(5) Maybe (i.e., if you want) describe ΩU at a prime p and introduce
Brown–Peterson cohomology.

7. Counterexamples to the integral Hodge conjecture
[20]

6.12.17 (Elmiro Vetere)

We want to present Totaro’s counterexamples. His argument uses a
factorisation of the cycle class map via cobordism. (The talk should
focus on explaining the Chow groups and the factorization of the cycle
class map.)

(1) Introduce Chow groups (up to rational equivalence) for smooth
varieties over a field (e.g. using Fulton’s intersection theory
book)

(2) Sketch the construction of the cycle class map to cohomology,
formulate the Hodge conjecture and its integral version

(3) explain factorisation of cycle class map through complex cobor-
dism, sections 3 and 4 of [20] (for time reasons, the product
structure can be sketchy)

(4) explain the application to the integral Hodge conjecture [20,
Section 7], but since it’s not in the focus of the seminar, we
don’t need to see all details for the construction of the varieties
approximating the classifying spaces.
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8. Oriented theories over a base field k
13.12.17 (Fritz Hörmann)

[7, 8, 10] This talk introduces the notion of oriented cohomology
theory for smooth varieties over a field k. This definition is directly
inspired by Quillen’s ideas in 5. and 6.

(1) Definition
(2) Examples: CH∗, singular and etale cohomology, K0[β, β

−1],
MGL2∗,∗, etc.

(3) The formal group law of an oriented theory
(4) Discuss the role of different notions of orientability in topology

and algebraic geometry

9. Algebraic cobordism: basic properties
20.12.17 (Giovanni Zaccanelli)

This is a summary of the basic properties and structures of algebraic
cobordism [10, Introduction, Ch. 1]. Note that the proofs of some of
these properties will be given in the next few talks whereas this talks
is about presenting the results

(1) Algebraic cobordism as the universal oriented theory
(2) Extra structure: localization sequence
(3) Ω∗(k) ∼= L∗

(4) Conner–Floyd and Ω∗ ⊗ Z ∼= CH∗

(5) The analogue of Quillen’s theorem: degrees and generalized
degree formulas. Examples.

10. The construction of algebraic cobordism
10.1.17 Annette Huber

This talk gives the construction of algebraic cobordism as a Borel-
Moore functor Ω∗. Cf [10, 2.1 and 2.2]

11. Basic properties: localization sequence [10, 3.2]
17.1.18 Frédéric Deglise

This lecture proves the fundamental localization sequence for a closed
embedding i : Z → X of smooth schemes, with open complement
j : U → X.

Ω∗(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0.

As a preliminary step, the class of a normal crossing divisor is con-
structed. (If you want, you can discuss the relation with the excision
sequence in topology.)

Mention without proof that homotopy invariance and the projective
bundle formula are true.
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12. Ω∗(k) and the Lazard ring
24.1.18 Annette Huber

The main theorem: Ω∗(k) ∼= L∗ for fields of characteristic zero, [10,
Ch. 4.3].

The injectivity is rather easy, either by relying on topology or by
using characteristic numbers.

The surjectivity reduces to showing that the additive theory Ω∗⊗LZ
on X = Speck is just Z. One starts by using the computations of the
classes of projective space bundles from 8(a) to reduce to a birational
statement, and then using the generic projection of a smooth projective
variety to reduce to the case of hypersurfaces, then finally deforming
to a union of hyperplanes.

13. Ω∗ and CH [10, Ch. 4.5]
31.1.18 Brad Drew

This lecture shows that CH∗ is the universal additive theory, thus
identifying CH∗ with Ω∗⊗Z. Additional computations and a discussion
of the topological filtration on Ω∗ are discussed.

(1) Ω∗ ⊗ Z ∼= CH∗ [10, Section 14.1]
(2) The topological filtration [10, Section 14.2].
(3) Computations [10, Section 14.3].

Mention without proof the relation to K0[β, β
−1] and multiplicative

formal group law[10, 4.2].

14. Bloch–Kato conjecture
6.2.18 (Matthias Wendt)

Mainly a discussion of [10, Ch. 4.4]. The main results are the “gen-
eralized degree formula” in algebraic cobordism and its application to
Rost’s degree formula for the characteristic numbers constructed from
the Newton class. (the statement of Rost’s degree formula concerns
the characteristic number sd)

Explain the formulation of the Bloch–Kato conjecture. Sketch the
proof. Make sure that the degree formulas are mentioned.

Contact

For questions on the topological part of the program: Sebastian Goette,
Nadine Große.
For questions on the algebraic part of the program: Annette Huber,
Matthias Wendt.
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