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Chapter 0

Introduction

The aim of this book is to present the theory of period numbers and their
structural properties. The second main theme is the theory of motives and co-
homology which is behind these structural properties. Whereas period numbers
are quite close to transcendental number theory, motives are rooted in modern
algebraic and arithmetic geometry. In combining both viewpoints, we want to
present the strong link between formal properties of motives and some features
of the exciting algebra of period numbers.

The genesis of this book is involved. Some time ago we were fascinated by a
statement of Kontsevich [K1], stating that his algebra of formal periods is a
pro-algebraic torsor under the motivic Galois group of motives. He attributed
this theorem to Nori, but there was no proof indicated. After realizing this, we
started to work out many details in our preprint [HMS] from 2011. For this, we
were relying on Nori’s lecture notes [N] and [N1], as well as the sketch of the
construction by Levine [L1]. The input on period numbers came from Kont-
sevich [K1] and Kontsevich-Zagier [KZ], in particular elementary definitions of
periods and the indication of a connection between period numbers and Nori
motives.

Over the years we have come to realize that periods generate a lot of interest,
very often by non-specialists who are not familiar with all the techniques going
into the story. Hence we thought it would be worthwhile to make these details
accessible to a wider audience. We started to write this monograph in a style
suited also for non-expert readers by adding several introductory chapters and
many examples.
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A naive point of view

Period numbers are complex numbers defined as values of integrals

∫

γ

ω

of closed differential forms ω over certain domains of integration γ. One requires
restrictive conditions on ω and γ, i.e., that γ is a region given by (semi)algebraic
equations with rational coefficients, and the differential form ω is algebraic over
Q. The analogous definition can be made for other fields, but we restrict to the
main case k = Q in this introduction.

Many interesting numbers occuring in mathematics can be described in this
form.

1. log(2) is a period because
2∫
1

dx
x = log(2).

2. π is a period because
∫

x2+y2≤1

dxdy = π.

3. The Cauchy integral yields a complex period

∫

|z|=1

dz

z
= 2πi .

4. Values of the Riemann zeta function like

ζ(3) =
∞∑

n=1

1

n3
=

∫

0<x<y<z<1

dxdydz

(1− x)yz

are periods nubers as well.

5. Indeed, all multiple zeta values (see Chapter 14) are period numbers.

6. A basic observation is that all algebraic numbers are periods, e.g.,
√

5 can
obtained by integrating the differential form dx on the algebraic curve
y = x2 over the real region where 0 ≤ y ≤ 5 and x ≥ 0.

Period numbers turn up in many parts of mathematics, sometimes in very sur-
prising situations. Of course, they are a traditional object of number theory
and have been studied from different points of view. They also generate a lot of
interest in mathematical physics because Feynman integrals for rational values
of kinematical invariants are period numbers.

It is easy to write down periods. It is much harder to write down numbers which
are non-periods. This is surprising, given that the set of all period numbers is
a countable algebra containing of Q̄. Indeed, we expect that π−1 and the Euler
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number e are non-periods, but this is not known. We refer to Section 15.5 for
an actual, not too explicit example of a non-period.

It is as hard to understand linear or algebraic relations between periods. This
aspect of the story starts with Lindemann’s 1882 proof of the transcendence of
π and the transcendence of log(x) for x ∈ Q̄. Grothendieck formulated a con-
jecture on the transcendence degree of the field generated by the periods of any
smooth projective variety. Historical traces of his ideas seem to go back at least
to Leibniz, see Chapter 12. The latest development is Kontsevich’s formulation
of a period conjecture for the algebra of all periods: the only relations are the
ones induced from the obvious ones, i.e., functoriality and long exact sequences
in cohomology (see Chapter 12). The conjecture is very deep. As a very special
case it implies the transcendence of ζ(n) for n odd. This is wide open, the best
available result being the irrationality of ζ(3)!

While this aspect is interesting and important, we really have nothing to say
about it. Instead, we aim at explaining a more conceptual interpretation of
period number and shed light on some structural properties of the algebra of
periods numbers.

As an aside: Periods of integrals are also used in the theory of moduli of algebraic
varieties. Given a family of projective varieties, Griffiths defined a map into a
period domain by studing the function given by varying period numbers. We
are not concerned with this point of view either.

A more conceptual point of view

The period integral
∫
γ
ω actually only depends on the class of ω in de Rham

cohomology and on the class of γ in singular homology. Integration generalizes
to the period pairing between algebraic de Rham cohomology and singular ho-
mology. It has values in C, and the period numbers are precisely the image.
Alternatively, one can formulate the relation as a period isomorphism between
algebraic de Rham cohomology and singular cohomology – after extension of
scalars to C. The comparison morphism is then described by a matrix whose
entries are periods. The most general situation one can allow here is relative
cohomology of a possibly singular, possibly non-complete algebraic variety over
Q with respect to a closed subvariety also defined over Q.

In formulas: For a variety X over Q, a closed subvariety Y over Q, and every
i ≥ 0, there is an isomorphism

per : Hi
dR(X,Y )⊗Q C→ Hi

sing(Xan, Y an;Q)⊗Q C,

where Xan denotes the analytic space attached to X. If X is smooth, Xan is
simply the complex manifold defined by the same equations as X. The really
important thing to point out is the fact that this isomorphism does not respect
the Q-structures on both sides. Indeed, consider X = A1 \{0} = SpecQ[T, T−1]
and Y = ∅. The first de Rham cohomology group is one-dimensional and
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generated by dT
T . The first singular cohomology is also one-dimensional, and

generated by the dual of the unit circle in Xan = C∗. The comparison factor is
the period integral

∫
S1

dT
T = 2πi.

Relative cohomology of pairs is a common standard in algebraic topology. The
analogue on the de Rham side is much less so, in particular if X and Y are
not anymore smooth. Experts have been familiar with very general versions of
algebraic de Rham cohomology as by-products of advanced Hodge theory, but
no elementary discussion seems to be in the literature. One of our intentions is
to provide this here in some detail.

An even more conceptual point of view

An even better language to use is the language of motives. Motives are objects
in a universal abelian category attached to the category of algebraic varieties
whose most important property is to have cohomology: singular and de Rham
cohomology in our case. Every variety has a motive h(X) which should de-
compose into components hi(X) for i = 1, . . . , 2 dimX. Singular cohomology
of hi(X) is concentrated in degree i and equal to Hi

sing(Xan,Q) there. Unfor-
tunately, the picture still is largely conjectural. Grothendieck first introduced
motives in his approach to Weil conjectures. Pure motives – the ones attached
to smooth projective varieties – have an unconditional definition, but their ex-
pected properties depend on a choice of equivalence relations and hence on
standard conjectures. In the mixed case – all varieties – there are (at least)
three candidates for an abelian category of mixed motives (absolute Hodge mo-
tives of Deligne and Jannsen; Nori’s category; Ayoub’s category). There are
also a number of constructions of motivic triangulated categories (due to Hana-
muara, Levine and Voevodsky) which we think of as derived categories of the
true category of mixed motives. They turn out to be equivalent.

All standard properties of cohomology are assumed to be induced by properties
of the category of motives. The Künneth formula for the product of two vari-
eties is induced by a tensor structure on motives. Poincaré duality is induced
by the existence of strong duals on motives. In fact, every abelian category
of motives (conjectural or candidate) is a rigid tensor category. Singular coho-
mology is (supposed to be) a faithful and exact tensor functor on this tensor
category. Hence, we have a Tannaka category. By the main theorem of Tan-
naka theory, the category has a Tannaka dual: an affine pro-algebraic group
scheme whose finite dimensional representations are precisely mixed motives.
This group scheme is the motivic Galois group Gmot.

This viewpoint allows a reinterpretation of the period algebra: singular and de
Rham cohomology are two fibre functors on the same Tannaka category, hence
there is a torsor of isomorphisms between them. The period isomorphism is
nothing but a C-valued point of this torsor.

While the foundations of the theory of motives are still open, the good news
is that the definition of the period algebra does not depend on the particular
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definition chosen. This is in fact one of the main results in the present book, see
Chapter 10.5. Indeed, all variants of the definition yield the same set of numbers,
as we show in Part III. Among those are versions via cohomology of arbitrary
pairs of varieties, or only those of a smooth varieties relative to divisors with
normal crossings, or via semialgebraic simplices in Rn, and alternatively, with
rational differential forms or only regular ones, and with rational or algebraic
coefficients.

Nevertheless, the point of view of Nori’s category of motives turns out to be
particularly well-suited in order to treat periods. Indeed, the most natural
proof of the comparison results mentioned above is done in the language of Nori
motives, see Chapter 12. This approach also fits nicely with the formulation of
the period conjectures of Grothendieck and Kontsevich.

The period conjecture

Kontsevich in [K1] introduces a formal period algebra P̃eff where the Q-linear
generators are given by quadruples (X,Y, ω, γ) with X an algebraic variety over
Q, Y a closed subvariety, ω a class in Hn

dR(X,Y ) and γ ∈ Hsing
n (Xan, Y n,Q).

There are three types of relations:

1. linearity in ω and γ;

2. functoriality with respect to morphisms f : (X,Y )→ (X ′, Y ), i.e.,

(X,Y, f∗ω, γ) ∼ (X ′, Y ′, ω, f∗γ);

3. compatibility with respect to connecting morphisms, i.e., for Z ⊂ Y ⊂ X
and ∂ : Hn

dR(Y, Z)→ Hn+1
dR (X,Y )

(Y, Z, ω, δγ) ∼ (X,Y, ∂ω, γ).

This becomes an algebra using the cup-product on cohomology. The relations
are defined in a way such that there is a natural evaluation map

P̃eff → C, (X,Y, ω, γ) 7→
∫

γ

ω.

Actually this is a variant of the original definition, see Chapter 12. In a second
step, we localize with respect to the class of (A1 \ {0}, {1}, dT/T, S1), i.e., the
formal period giving rise to 2πi. Basically by definition, the image of P̃ is the
period algebra.

Conjecture 0.0.1 (Period Conjecture, Kontsevich [K1]). The evaluation map
is injective.

Again, we have nothing to say about this conjecture. However, it shows that
the elementary object P̃ is quite natural in our context.
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One of the main results in this book is the following result of Nori, which is
stated already in [K1]

Theorem 0.0.2 (See Theorem 12.1.3). The formal period algebra P̃ is a torsor
under the motivic Galois group in the sense of Nori, i.e., of the Tannaka dual
of Nori’s category of motives.

Under the period conjecture, this should be read as a deep structural result
about the period algebra.

Main aim of this book

We want to explain all the notions used above, give complete proofs, and discuss
a number of examples of particular interest.

We explain singular cohomology and algebraic de Rham cohomology and the
period isomorphism between them. We introduce Nori’s abelian category of
mixed motives and the necessary generalization of Tannaka theory going into
the definition. Various notions of period numbers are introduced and compared.
The relation of the formal period algebra to period numbers and the motivic
Galois group is explained. We work out examples like periods of curves, multiple
zeta-values, Feyman integrals and special values of L-functions.

We strive for a reasonably self-contained presentation aimed also at non-specialists
and graduate students.

Relation to the existing literature

Both periods and the theory of motives have a long and rich history. We prefer
not to attempt a historical survey, but rather mention the papers closest to the
present book.

The definition of the period algebra was folklore for quite some time. The
explicit versions we are treating are due to Kontsevich and Zagier in [K1] and
[KZ].

Nori’s theory of motives became known through a series of talks that he gave,
and notes of these talks that started to circulate, see [N], [N1]. Levine’s survey
article in [L1] sketches the main points.

Finally, we need to mention André’s monograph [A2]. Depending on the point
of view, one might say that we are looking at similar mathematics in the over-
lapping parts of both books, and at a completely disjoint part of the theory
otherwise.

We recommend that anyone interested in a deeper understanding also study his
exposition.

We now turn to a more detailed description of the actual contents of our book.
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0.1 Nori motives and Tannaka duality

Motives are supposed to be the universal abelian category over which all coho-
mology theories factor. In this context, ”cohomology theory” means a (mixed)
Weil cohomology theory with properties modeled on singular cohomology. A
more refined examples of a mixed Weil cohomology theories is the mixed Hodge
structure on singular cohomology as defined by Deligne. Another one is `-adic
cohomology of the base change of the variety to the algebraic closure of the
ground field. It carries a natural operation of the absolute Galois group of the
ground field. Key properties are for example a Künneth formula for the product
of algebraic varieties. There are other cohomology theories of algebraic varieties
which do not follow the same pattern. Examples are algebraic K-theory, Deligne
cohomology or étale cohomology over the ground field. In all these cases the
Künneth formula fails.

Coming back to theories similar to singular cohomology: they all take values in
rigid tensor categories, and this is how the Künneth formula makes sense. We
expect the conjectural abelian category of mixed motives also to be a Tannakian
category with singular cohomology as a fibre functor, i.e., a faithful exact tensor
functor to Q-vector spaces. Nori takes this as the starting point of his definition
of his candidate for the category of mixed motives. His category is universal for
all cohomology theories comparable to singular cohomology. This is not quite
what we hope for, but it does in fact cover all examples we have.

Tannaka duality is built into the very definition. The construction has to main
steps.

1. Nori first defines an abelian category which is universal for all cohomology
theories compatible with singular cohomology. By construction, it comes
with a functor on the category of pairs (X,Y ) where X is a variety and
Y a closed subvariety. Moreover, it is compatible with the long exact
cohomology sequence for triples X ⊂ Y ⊂ Z.

2. He then introduces a tensor product and establishes rigidity.

The first step is completely formal and rests firmly on representation theory. The
same construction can be made for any oriented graph and any representation in
a category of modules over a noetherian ring. The abstract construction of this
”diagram category” is explained in Chapter 6. Note that neither the tensor
product nor rigidity is needed at this point. Nevertheless, Tannaka theory
is woven into proving that the diagram category has the necessary universal
property: it is initial among all abelian categories over which the representation
factors. Looking closely at the arguments in Chapter 6, in particular Section 6.3,
we find the same arguments that are used in [DMOS] in order to establish the
existence of a Tannaka dual. In the case of a rigid tensor category, by Tannaka
duality it is equal to the category of representations of an affine group scheme or
equivalently co-representations of a Hopf algebra A. If we do not have rigidity,
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we do not have the antipodal map. If we do not have a tensor product, we do
not have a multiplication. We are left with a coalgebra. Indeed, the diagram
category can be described as the co-representations of an explicit coalgebra, if
the coefficent ring is a Dedekind ring or a field.

Chapter 7 aims at introducing a rigid tensor structure on the diagram category,
or equivalently a Hopf algebra structure on the coalgebra. The product is in-
duced by a product structure on the diagram and multiplicative representations.
Rigidity is actually deduced as a property of the diagram category. Nori has a
strong criterion for rigidity. Instead of asking for a unit and a counit, we only
need one of the two such that it becomes a duality under the representation.
This rests on the fact that every algebraic submonoid of an algebraic group is an
algebraic group. The argument is analogous to showing that every submonoid
of a finite abstract group is a group. Multiplication by an element is injective
in these cases, because it is injective on the group. If the monoid is finite, it
also has to be surjective. Everything can also be applied to the diagram defined
by any Tannaka category. Hence the exposition actually contains a full proof of
Tannaka duality.

The second step is of completely different nature. It uses on an insight on alge-
braic varieties. This is the famous Basic Lemma of Nori, see Section 2.5. As it
turned out, Beilinson and also Vilonen had independently found the lemmma
before. However, it was Nori who recognized its significance in such motivic
situations. Let us explain the problem first. We would like define the ten-
sor product of two motives of the form Hn(X,Y ) and Hn′(X ′, Y ′). The only
formula that comes to mind is

Hn(X,Y )⊗Hn′(X ′, Y ′) = HN (X ×X ′, X × Y ′ ∪ Y ×X ′)

with N = n + n′. This is, however, completely false in general. Cup-product
will give a map from the left to the right. By the Künneth formula, we get an
isomorphism when taking the sum over all n, n′ mit n+n′ = N on the left, but
not for a single summand.

Nori simply defines a pair (X,Y ) to be good, if its singular cohomology is con-
centrated in a single degree and, moreover, a free module. In the case of good
pairs, the Künneth formula is compatible with the naive tensor product of mo-
tives. The Basic Lemma implies that the category of motives is generated by
good pairs. The details are explained in Chapter 8, in particular Section 8.2.

We would like to mention an issue that was particularly puzzling to us. How
is the graded commutativity of the Künneth formula dealt with in Nori’s con-
struction? This is one of the key problems in pure motives because is causes
singular cohomology not to be compatible with the tensor structure on Chow
motives. The signs can be fixed, but only after assumeing the Künneth stan-
dard conjecture. Nori’s construction does not need to do anything about the
problem. So, how does it go away? The answer is the commutative diagram on
p. 163: the outer diagrams have signs, but luckily they cancel.
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0.2 Cohomology theories

In quite some detail, we cover singular cohomology and algebraic de Rham
cohomology of algebraic varieties and the period isomorphism between them.

In Chapter 2 we recall as much of the properties of singular cohomology that is
needed in the sequel. We view it primarily as sheaf cohomology of the analytic
space associated to a variety over a fixed subfield k of C. In addition to standard
properties like Poincaré duality and the Künneth formula, we also discuss more
special properties.

One such is Nori’s basic lemma: for a given affine variety X there is a closed
subvariety Y ⊂ such that relative cohomology is concentrated in a single degree.
As discussed above, this is a crucial input for the construction of the tensor
product on Nori motives. We give three proofs, two of them due to Nori, and
an earlier one due to Beilinson.

In addition, in order to compare different possible definitions of the set of periods
numbers, we need to understand triangulations of algebraic varieties by semi-
algebraic simplices defined over Q.

Finally, we give a description of singular cohomology in terms of a Grothendieck
topology (the h′-topology) on analytic spaces which is used later in order to
define the period isomorphism.

Algebraic de Rham cohomology is much less documented in the literature.
Through Hodge theory, the specialists have understood for a long time what
the correct definition in the singular case should be, but we are not aware of a
coherent exposition of algebraic de Rham cohomology by itself. This is what
Chapter 3 is providing. We first treat systematically the more standard case of
a smooth variety where de Rham cohomology is given as hypercohomology of
the de Rham complex. In a second step, starting in Section 3.2, we generalize
to the singular case. We choose the approach of the first author and Jörder in
[HJ] via the h-cohomology on the category of k-varieties, but also explain the
relation to Deligne’s approach via hypercovers and Hartshorne’s approach via
formal completion at the ideal of definition inside a smooth variety.

The final aim is to constract a natural isomorphism between singular cohomol-
ogy and algebraic de Rham cohomology. This is established via the intermediate
step of holomorphic de Rham cohomology. The comparison between singular
and holomorphic de Rham cohomology comes from the Poincaré lemma: the de
Rham complex is a resolution of the constant sheaf. The comparison between
algebraic and holomorphic de Rham cohomology can be reduced to GAGA.
This story is fairly well-known for smooth varieties. In our description with the
h-topology, the singular case follows easily.
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0.3 Periods

We have already periods at some length at the beginning of the introduction.
Roughly, a period number is the value of an integral of a differential form over
some algebraically defined domain. The definition can be made for any subfield
k of C. There are several versions of the definition in the literature and even
more folklore versions around. They fall into three classes:

1. ”Naive” definitions have as domains of integration semi-algebraic simplices
in RN , over which one integrates rational differential forms defined over k
(or over k̄), as long as the integral converges, see Chapter 11.

2. In more advanced versions, let X be an algebraic variety, and Y ⊂ X a
subvariety, both defined over k, ω a closed algebraic differential form on X
defined over k (or a de relative Rham cohomology class), and consider the
period isomorphism between de Rham and singular cohomology. Periods
are the numbers coming up as entries of the period matrix. Variants
include the cases where X smooth, Y a divisor with normal crossings, or
perhaps where X is affine, and smooth outside Y , see Chapter 9.

3. In the most sophisticated versions, take your favourite category of mixed
motives and consider the period isomorphism between their de Rham and
singular realization. Again, the entries of the period matrix are periods,
see Chapter 10.

It is one of the main results of the present book that all these definitions agree. A
direct proof of the equivalence of the different versions of cohomological periods
is given in Chapter 9. A crucial ingredient of the proof is Nori’s description
of relative cohomology via the Basic Lemma. The comparison with periods
of geometric Voevodsky motives, absolute Hodge motives and Nori motives is
discussed in Chapter 10. In Chapter 11, we discuss periods as in 1. and show
that they agree with cohomological periods.

The concluding Chapter 12 explains the deeper relation between periods of Nori
motives and Kontsevich’s period conjecture, as already ementioned earlier in the
introduction.

0.4 Recent developments

The ideas of Nori have been taken up by other people in recent years, leading
to a rapid development of understanding. We have refrained from trying to
incorporate all these results. It is to early to know what the final version of the
theory will be. However, we would like to give at least some indication in which
direction things are going.
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The construction of Nori motives has been generalized to categories over a base
S by Arapura in [Ara] and Ivorra [Iv]. Arapura’s approach is based on con-
structible sheaves. His categories allows pull-back and push-forward, the latter
being a deep result. Ivorra’s approach is based on perverse sheaves. Compati-
bility under the six functors formalism is open in his setting.

Harrer’s thesis [Ha] gives full proofs (based on the sketch of Nori in [N2]) of the
construction of the realization functor from Voevodsky’s geometric motives to
Nori motives.

A comparison result of a different flavour was obtained by Choudhury and Gal-
lauer [CG]: they are able to show that Nori’s motivic Galois group agrees with
Ayoub’s. The latter is defined via the Betti realization functor on triangulated
motives over an arbitrary base. This yields formally a Hopf object in a derived
category of vector spaces. It is a deep result of Ayoub’s that the cohomology of
this Hopf object is only concentrated in non-negative degrees. Hence its H0 is
a Hopf algebra, the algebra of functions on Ayoub’s motivic Galois group.

The relation between these two objects, whose construction is very different,
can be seen as a strong indication that Nori motives are really the true abelian
category of mixed motives. One can strengthen this to the conjecture that
Voevodsky motives are the derived category of Nori motives.

As usual, the case of 1-motives can be hoped to be more accessible and a very
good testing ground for this type of cenjecture. Ayoub and Barbieri-Viale have
shown in [AB] that the subcategory of 1-motives in Nori motives agrees with
Deligne’s 1-motives, and hence also with 1-motives in Voevodsky’s category.

There has also been progress on the period aspect of our book. Ayoub, in [Ay],
proved a version of the period conjecture in families. There is also independent
unpublished work of Nori on a similar question [N3].

0.5 Leitfaden

Part I, II, III and IV are supposed to be somewhat independent of each other,
whereas the chapters in a given part depend more or less linearly on each other.

Part I is mostly meant as a reference for facts on cohomology that we need in
the development of the theory. Most readers will skip this part and only come
back to it when needed.

Part II is a self-contained introduction to the theory of Nori motives, where all
parts build up on each other. Chapter 8 gives the actual definition. It needs
the input from Chapter 2 on singular cohomology.

Part III develops the theory of period numbers. Chapter 9 on cohomological
periods needs the period isomorphism of Chapter 5, and of course singular
cohomology (Chapter 2) and algebraic de Rham cohomology (Chapter 3). It
also develops the linear algebra part of the theory of period numbers needed in
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the rest of Part III. Chapter 10 has more of a survey character. It uses Nori
motives, but should be understandable based just on the survey in Section 8.1.
Chapter 11 is mostly self-contained, with some input from Chapter ??. Finally,
Chapter 12 relies on the full force of the theory of Nori motives, in particular
on the abstract results on the comparison of fibre functors in Section 7.4.

Part IV has a different flavour: Rather than developing theory, we go through
many examples of period numbers. Actually, it may be a good starting point
for reading the book or at least a good companion for the more general theory
developed in Part III.

I: Background Material

II: Nori Motives III: Periods

IV: Examples

Ch. 2

Ch. 2,3,5
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