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Preface, with an extended
Introduction

The aim of this book is to present the theory of period numbers and their
structural properties. The second main theme is the theory of motives and
cohomology which is behind these structural properties.

The genesis of this book is involved. Some time ago we were fascinated by a
theorem of Kontsevich [Kon99|, stating that his algebra of formal periods is a
pro-algebraic torsor under the motivic Galois group of motives. He attributed
this result to Nori, but no proof was indicated.

We came to understand that it would indeed follow more or less directly
from Nori’s unpublished description of an abelian category of motives. After
realising this, we started to work out many details in our preprint [HMS11]
from 2011.

Over the years we have also realised that periods themselves generate a lot
of interest, very often from non-specialists who are not familiar with all the
techniques going into the story. Hence we thought it would be worthwhile to
make this background accessible to a wider audience.

We started to write this monograph in a style suited also for non-expert
readers by adding several introductory chapters and many examples.

General introduction

So what are periods?

A naive point of view

Period numbers are complex numbers defined as values of integrals

xi
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Lw

of closed differential forms w over certain domains of integration . One
requires restrictive conditions on w and 7, i.e., that v is a region given by
(semi)algebraic equations with rational coefficients, and the differential form
w is algebraic over Q. An analogous definition can be made for other fields,
but we only consider the main case £ = Q in this introduction.

Many interesting numbers occuring in mathematics can be described in
this form:

2
1. log(2) is a period because [ ?’” log(2
1

2. 7 is a period because [ dxdy = .
249y2<1
3. The Cauchy integral yields a complex period

d
/ @ _ 271,
|z|=1 #

4. Values of the Riemann zeta function like

dxdydz
Sl e

<m<y<z<1 (1—-2)yz

are periods numbers as well.

5. More generally, all multiple zeta values (see Chapter are period num-
bers.

6. A basic observation is that all algebraic numbers are periods, e.g., v/5 can
obtained by integrating the differential form dx on the algebraic curve

Y= 22 over the real region where 0 <y <5 and x > 0.

Period numbers turn up in many parts of mathematics, sometimes in very
surprising situations. Of course, they are fundamental objects in number the-
ory and have been studied from different points of view. They also generate a
lot of interest in mathematical physics because Feynman integrals for rational
values of kinematical invariants are period numbers.

It is easy to write down periods. It is much harder to write down numbers
which are non-periods. This is surprising, given that the set of all period
numbers is a countable algebra containing Q. Indeed, we expect that 7!
and the Euler number e are non-periods, but this is not known. We refer to
Section for an actual, not too explicit example of a non-period.

It is as hard to understand linear or algebraic relations between periods.
This aspect of the story starts with Lindemann’s 1882 proof of the transcen-
dence of 7 and the transcendence of log(z) for x € Q \ {0, 1}. Grothendieck
formulated a conjecture on the transcendence degree of the field generated
by the periods of any smooth projective variety. Historical traces of his ideas
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seem to go back at least to Leibniz, see Chapter [I3] The latest development
is Kontsevich-Zagier’s formulation of a period conjecture for the algebra of
all periods: the only relations are the ones induced from the obvious ones,
i.e., from functoriality and long exact sequences in cohomology (see p. [xv|and
Chapter . The conjecture is very deep. As a very special case it implies
the transcendence of ((n) for n odd. This is wide open, the best available
results being the irrationality of ¢(3) and an infinity of irrational odd zeta
values.

While this aspect is interesting and important, we really have almost noth-
ing to say about it. Instead, we aim at explaining a more conceptual interpre-
tation of period numbers and shedding light on some structural properties of
the algebra of periods numbers.

As an aside: Periods of integrals are also used in the theory of moduli of
algebraic varieties. Given a family of projective varieties, Griffiths defined a
map into a period domain by studying the function given by varying period
numbers. We are not concerned with this point of view either.

A more conceptual point of view

The period integral fy w actually only depends on the class of w in de Rham
cohomology and on the class of v in singular homology. Integration generalises
to the period pairing between algebraic de Rham cohomology and singular
homology. It has values in C, and the period numbers are precisely its image.
Alternatively, one can formulate the relation as a period isomorphism between
algebraic de Rham cohomology and singular cohomology — after extension of
scalars to C. The period isomorphism is then described by a matrix whose
entries are periods. The most general situation one can allow here is relative
cohomology of a possibly singular, possibly non-complete algebraic variety
over Q with respect to a closed subvariety also defined over Q.

In formulas: For a variety X over Q, a closed subvariety Y over QQ, and
every i > 0, there is an isomorphism

per : Hix(X,Y) ®o C — HY

mg(‘X—an7 Yan; Q) ®Q (C,

where X3" denotes the analytic space attached to X. If X is smooth, X&"
is simply the complex manifold defined by the same equations as X. The
really important thing to point out is the fact that this isomorphism does
not respect the Q-structures on both sides. Indeed, consider X = Al \ {0} =
SpecQ[T, T~ and Y = (. The first de Rham cohomology group is one-
dimensional and generated by dTT. The first singular cohomology is also one-
dimensional, and generated by the dual of the unit circle in X** = C*. The

comparison factor is the period integral [ gt % = 2m1.
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Relative singular cohomology of pairs is a standard notion of algebraic
topology. The analogue on the de Rham side is much less known, in particular
if X and Y are not anymore smooth. Experts have been familiar with very
general versions of algebraic de Rham cohomology as by-products of advanced
Hodge theory, but no elementary discussion seems to be in the literature. One
of our intentions is to provide this here in some detail.

An even more conceptual point of view

An even better language to describe periods is the language of motives. The
concept was introduced by Grothendieck in his approach to the Weil con-
jectures. Philosophically, motives are objects in a universal abelian category
attached to the category of algebraic varieties whose most important prop-
erty is to have cohomology: singular and de Rham cohomology in our case.
Every variety has a motive h(X) which should decompose into components
hi(X) for i = 0,...,2dim X. Singular cohomology of h*(X) is concentrated
in degree i and equal to Hj, (X*",Q) there.

Impressive progress has been made. In particular, we now have uncondi-
tional constructions. However, the full picture remains conjectural. For pure
motives — the ones attached to smooth projective varieties — there is an un-
conditional construction due to Grothendieck, but their expected properties
depend on a choice of equivalence relations and hence on the standard con-
jectures. An alternative unconditional definition was given by André. His
category is abelian and has many of the expected properties, but the full
universal property is lacking unless one assumes the standard conjectures. In
the mixed case — considering all varieties whether smooth or not — there are
(at least) three candidates for an abelian category of mixed motives: absolute
Hodge motives of Deligne and Jannsen; Nori’s category; Ayoub’s category.
The categories of Nori and Ayoub are now known to agree. Moreover, pure
Nori motives are motives in the sense of André. There are also a number of
constructions of triangulated motivic categories (due to Hanamura, Levine
and Voevodsky) which we think of as derived categories of the true category
of mixed motives. They turn out to be equivalent. The relation between trian-
gulated and abelian categories of motives remains the biggest open question.

All standard properties of cohomology are assumed to be induced by prop-
erties of the category of motives: the Kiinneth formula for the product of two
varieties is induced by a tensor structure on motives; Poincaré duality is in-
duced by the existence of strong duals on motives. In fact, every abelian cate-
gory of motives (conjectural or candidate) is a rigid tensor category. Singular
cohomology is (supposed to be) a faithful and exact tensor functor on this
tensor category. Hence, we have a Tannaka category. By the main theorem
of Tannaka theory, the category has a Tannaka dual: an affine pro-algebraic
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group scheme whose finite-dimensional representations are precisely mixed
motives. This group scheme is the motivic Galois group Gmot.-

This viewpoint admits a reinterpretation of the period algebra: singular
and de Rham cohomology are two fibre functors on the same Tannaka cat-
egory, hence there is a torsor of isomorphisms between them. The period
isomorphism is nothing but a C-valued point of this torsor.

While the finer points of the theory of motives are still in development, the
good news is that at least the definition of the period algebra does not depend
on the particular definition chosen. This is in fact one of the main results in
the present book, see Chapter [I1.5] Indeed, all variants of the definition yield
the same set of numbers, as we show in Part ITII. Among those are versions via
cohomology of arbitrary pairs of varieties, or only those of smooth varieties
relative to divisors with normal crossings, or via semialgebraic simplices in
R™, and alternatively, with rational differential forms or only regular ones,
and with rational or algebraic coefficients.

Nevertheless, the point of view of Nori’s category of motives turns out
to be particularly well-suited to the treatment of periods. Indeed, the most
natural proof of the comparison results mentioned above is done in the lan-
guage of Nori motives, see Chapter This approach also fits nicely with
the formulation of the period conjectures of Grothendieck and Kontsevich.

The period conjecture

Kontsevich in [Kon99] introduces a formal period algebra P whose Q-
linear generators are given by quadruples (X,Y,w,v) with X an alge-
braic variety over Q, Y a closed subvariety, w a class in HJ(X,Y) and
v € Hsmeg(Xan yan Q). There are three types of relations:

1. linearity in w and ~;
2. functoriality with respect to morphisms f : (X,Y) — (X', Y), i.e.,

(XY, ffw,y) ~ (X", Y w, fi7);

3. compatibility with respect to connecting morphisms, i.e., for Z CY C X
and 6 : Hiz ' (Y, Z) — Hir(X,Y)

(Y, Z,w,07) ~ (X,Y, 6w, 7).

The set P becomes an algebra using the cup-product on cohomology. The
relations are defined in a such way that there is a natural evaluation map

P - C, (X,Y,w,'y)»—>/w.
v
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(Actually this is a variant of the original definition, see Chapter ) In a
second step, we localise with respect to the class of (A1 \ {0}, {1},dT/T, S'),
i.e., the formal period giving rise to 2mi. Basically by definition, the image of
P is the period algebra.

Conjecture (Kontsevich-Zagier Conjecture, or Period Conjecture)
The evaluation map is injective.

Again, we have nothing to say about this conjecture. However, it shows
that the elementary object P is quite natural in our context.

One of the main results in this book is the following result of Nori, which
is already stated in [Kon99.

Theorem [13.1.4) The formal period algebra P is a torsor under the mo-
tivic Galois group in the sense of Nori, i.e., of the Tannaka dual of Nori’s
category of motives.

Under the period conjecture, this should be read as a deep structural result
about the period algebra.

Main atm of this book

The main aims of this book are to explain all the notions mentioned above,
give complete proofs, and discuss a number of examples of particular interest.

e We explain singular cohomology, algebraic de Rham cohomology and the
period isomorphism.

e We introduce Nori’s abelian category of mixed motives and the necessary
generalisation of Tannaka theory needed for its definition.

e Various notions of period numbers are introduced and compared.

e The relation of the formal period algebra to period numbers and the mo-
tivic Galois group is explained.

e We work out examples like periods of curves, multiple zeta values, Feyn-
man integrals and special values of L-functions.

We strive for a reasonably self-contained presentation aimed also at non-
specialists and graduate students.
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Relation to the existing literature

Both periods and the theory of motives have a long and rich history. We prefer
not to attempt a historical survey, but rather mention the papers closest to
the present book.

The definition of the period algebra was folklore for quite some time. The
explicit versions we are treating are due to Kontsevich and Zagier in [Kon99]
and [KZ01].

Nori’s theory of motives became known through a series of talks that he
gave, and notes of these talks that started to circulate, see [Nor00], [Nora].
Levine’s survey article in [Lev05] sketches the main points.

The relation between (Nori) motives and formal periods is formulated by
Kontsevich [Kon99].

Finally, we would like to mention André’s monograph [And04]. Superfi-
cially, there is a lot of overlap (motives, Tannaka theory, periods). However,
as our perspective is very different, we end up covering a lot of disjoint mate-
rial as well. We recommend that anyone interested in a deeper understanding
also study his exposition.

Recent developments

The ideas of Nori have been taken up by other people in recent years, leading
to a rapid development of understanding. We have refrained from trying to
incorporate all these results. It is too early to know what the final version of
the theory will be. However, we would like to give at least some indication in
which direction things are going.

The category theoretical aspect of the construction of Nori motives has
been generalised. Ivorra in [[vold] establishes the existence of a universal
abelian category attached to the representation of a diagram in a Q-linear
abelian category satisfying finiteness assumptions. Barbieri-Viale, Caramello,
L. Lafforgue and Prest have taken the generalisation much further, see
[BVCL15], [BV15a], [BVP16].

The construction of Nori motives themselves has been generalised to cat-
egories over a base S by Arapura in [Aral3] and Ivorra [Ivold]. Arapura’s
approach is based on constructible sheaves. His categories allow pull-back and
push-forward functors, the latter being a deep result. The same paper also
constructs the weight filtration on Nori motives and establishes the equiva-
lence between Nori motives and Andrés pure motives. Ivorra’s approach is
based on perverse sheaves. Existence of the six functors formalism is open in
his setting.

Harrer’s thesis [Harl6] gives full proofs (based on the sketch of Nori in
[Nor02]) of the construction of the realisation functor from Voevodsky’s geo-
metric motives to Nori motives. A comparison result of a different flavour was
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obtained by Choudhury and Gallauer [CGAdS14]: they are able to show that
Nori’s motivic Galois group agrees with Ayoub’s. The latter is defined via
the Betti realisation functor on triangulated motives over an arbitrary base.
This formally yields a Hopf object in a derived category of vector spaces. It
is a deep result of Ayoub’s that the cohomology of this Hopf object is only
concentrated in non-negative degrees. Hence its H? is a Hopf algebra, the
algebra of functions on Ayoub’s motivic Galois group.

The relation between these two objects, whose construction is very differ-
ent, can be seen as a strong indication that Nori motives are really the true
abelian category of mixed motives. One can strengthen this to the conjecture
that Voevodsky motives are the derived category of Nori motives.

In the same way as for other questions about motives, the case of 1-motives
can be hoped to be more accessible and a very good testing ground for this
type of conjecture. Ayoub and Barbieri-Viale have shown in [ABV15] that
the subcategory of 1-motives in Nori motives agrees with Deligne’s 1-motives,
and hence also with 1-motives in Voevodsky’s category.

An application of Nori motives to quadratic forms was worked out by
Cassou-Nouges and Morin, see [CNM15].

There has also been progress on the period aspect of our book. Ayoub, in
[AyoT5], proved a version of the period conjecture in families. There is also
independent unpublished work of Nori on a similar question [Norb].

We now turn to a more detailed description of the actual contents of our
book.

Nori motives and Tannaka duality

Motives are supposed to be the objects of a universal abelian category through
which all cohomology theories factor. In this context, a cohomology theory
means a (mixed) Weil cohomology theory with properties modeled on singular
cohomology. A more refined example of a mixed Weil cohomology theory is
the mixed Hodge structure on singular cohomology as defined by Deligne.
Another one is f-adic cohomology of the base change of the variety to the
algebraic closure of the ground field. The ¢-adic cohomology carries a natural
operation of the absolute Galois group of the ground field. Key properties
are for example a Kiinneth formula for the product of algebraic varieties.
There are other cohomology theories of algebraic varieties which do not follow
the same pattern. Examples are Chow groups, algebraic K-theory, Deligne
cohomology or étale cohomology over the ground field. In all these cases the
Kiinneth formula fails.

Coming back to theories similar to singular cohomology: they all take
values in rigid tensor categories, and this is how the Kiinneth formula makes
sense. We expect the conjectural abelian category of mixed motives to also
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be a Tannakian category with singular cohomology as a fibre functor, i.e.,
a faithful exact tensor functor to Q-vector spaces. Nori takes this as the
starting point of his definition of his candidate for the category of mixed
motives. His category is universal for all cohomology theories comparable to
singular cohomology. This is not quite what we hope for, but it does in fact
cover all examples we have.

Tannaka duality is built into the very definition. The construction has two
main steps:

1. Nori first defines an abelian category which is universal for all cohomology
theories compatible with singular cohomology. By construction, it comes
with a functor from the category of pairs (X,Y) where X is a variety
and Y a closed subvariety. Moreover, it is compatible with the long exact
cohomology sequence for triples X C Y C Z.

2. He then introduces a tensor product and establishes rigidity.

The first step is completely formal and rests firmly on representation the-
ory. The same construction can be made for any oriented graph and any
representation in a category of modules over a noetherian ring. The abstract
construction of this diagram category is explained in Chapter [7} Note that
neither the tensor product nor rigidity is needed at this point. Nevertheless,
Tannaka theory is woven into proving that the diagram category has the
necessary universal property: it is initial among all abelian categories over
which the representation factors. Looking closely at the arguments in Chap-
ter [7] in particular Section we find the same arguments that are used in
IDMOSS82] in order to establish the existence of a Tannaka dual. In the case
of a rigid tensor category, by Tannaka duality it is equal to the category of
representations of an affine group scheme or equivalently co-representations
of a Hopf algebra A. If we do not have rigidity, we do not have the antipodal
map. We are left with a bialgebra. If we do not have a tensor product, we do
not have a multiplication. We are left with a coalgebra. Indeed, the diagram
category can be described as the co-representations of an explicit coalgebra,
if the coefficient ring is a Dedekind ring or a field.

Chapter [§] aims at introducing a rigid tensor structure on the diagram
category, or equivalently a Hopf algebra structure on the coalgebra. The
product is induced by a product structure on the diagram and multiplicative
representations. Rigidity is actually deduced as a property of the diagram
category. Nori has a strong criterion for rigidity. Instead of asking for a unit
and a counit, we only need one of the two such that it becomes a duality under
the representation. This rests on the fact that an algebraic submonoid of an
algebraic group is an algebraic group. The argument is analogous to showing
that a submonoid of a finite abstract group is a group. Multiplication by an
element is injective in these cases, because it is injective on the group. If the
monoid is finite, it also has to be surjective. Everything can also be applied to
the diagram defined by any Tannaka category. Hence the exposition actually
contains a full proof of Tannaka duality.
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The second step is of completely different nature. It uses an insight on
algebraic varieties. This is the famous Basic Lemma of Nori, see Section
As it turned out, Beilinson and also Vilonen had independently found
the lemma before. However, it was Nori who recognised its significance in
these kind of motivic situations. Let us explain the problem first. We would
like to define the tensor product of two motives of the form H"(X,Y) and
H™ (X', Y"). The only formula that comes to mind is

HYX,Y)o H'(X',)Y) = HV(X x X', X xY'UY x X')

with N = n + n’. This is, however, completely false in general. Cup-product
will give a map from the left to the right. By the Kiinneth formula, we get
an isomorphism when taking the sum over all n,n’ with n +n’ = N on the
left, but not for a single summand.

Nori simply defines a pair (X,Y") to be good, if its singular cohomology is
concentrated in a single degree and, moreover, a free module. In the case of
good pairs, the Kiinneth formula is compatible with the naive tensor product
of motives. The Basic Lemma implies that the category of motives is gen-
erated by good pairs. The details are explained in Chapter ] in particular
Section

We would like to mention an issue that was particularly puzzling to us.
How is the graded commutativity of the Kiinneth formula dealt with in Nori’s
construction? This is one of the key problems in pure motives because it
causes singular cohomology not to be compatible with the tensor structure on
Chow motives. The signs can be fixed, but only after assuming the Kiinneth
standard conjecture. Nori’s construction seems to ignore this problem. So,
how does it go away? The answer is the commutative diagram on page
the outer diagrams have signs, but luckily they cancel.

Once the category is constructed as a category, the most important prop-
erty to check is rigidity. We give the original proof of Nori and also explain
an alternative argument using the comparison with the rigid category of Vo-
evodsky motives. The same comparison functor also allows one to define the
weight filtration motivically, see Chapter As first shown by Arapura, the
category of pure Nori motives turns out to be equivalent to André’s category
of pure motives via motivated cycles.

Cohomology theories

In Part I, we develop singular cohomology and algebraic de Rham cohomology
of algebraic varieties and the period isomorphism between them in some
detail.

In Chapter [2] we recall as much of the properties of singular cohomology
as is needed in the sequel. We view it primarily as sheaf cohomology of the
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analytic space associated to a variety over a fixed subfield k of C. In addition
to standard properties like Poincaré duality and the Kiinneth formula, we
also discuss more special properties.

One such property is Nori’s Basic Lemma: for a given affine variety X there
is a closed subvariety Y such that relative cohomology is concentrated in a
single degree. As discussed above, this is a crucial input for the construction
of the tensor product on Nori motives. We give three proofs, two of them due
to Nori, and an earlier one due to Beilinson.

In addition, in order to compare different possible definitions of the set of
periods numbers, we need to understand triangulations of algebraic varieties
by semi-algebraic simplices defined over Q.

Finally, we give a description of singular cohomology in terms of a
Grothendieck topology (the h’-topology) on analytic spaces which is used
later in order to define the period isomorphism.

Algebraic de Rham cohomology is much less documented in the literature.
Through Hodge theory, the specialists have understood for a long time what
the correct definitions in the singular case are, but we are not aware of a
coherent exposition of algebraic de Rham cohomology. This is what Chap-
ter [3| provides. First we first systematically treat the more standard case of a
smooth variety where de Rham cohomology is given as hypercohomology of
the de Rham complex. In a second step, starting in Section we generalise
to the singular case. We choose the approach of the first author and Jorder in
[HJ14] via the h-cohomology on the category of k-varieties, but also explain
the relation to Deligne’s approach via hypercovers and Hartshorne’s approach
via formal completion at the ideal of definition inside a smooth variety.

The final aim is to construct a natural isomorphism between singular coho-
mology and algebraic de Rham cohomology. This is established via the inter-
mediate step of holomorphic de Rham cohomology. The comparison between
singular and holomorphic de Rham cohomology comes from the Poincaré
lemma: the de Rham complex is a resolution of the constant sheaf. The com-
parison between algebraic and holomorphic de Rham cohomology can be
reduced to GAGA. This story is fairly well-known for smooth varieties. In
our description with the h-topology, the singular case follows easily.

Periods

We have already discussed periods at some length at the beginning of the
introduction. Roughly, a period number is the value of an integral of a dif-
ferential form over some algebraically defined domain. The definition can be
made for any subfield k of C. There are several versions of the definition in
the literature and even more folklore versions around. They fall into three
classes:
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1. In naive definitions the domains of integration are semi-algebraic simplices
in RN, over which one integrates rational differential forms defined over k
(or over k), as long as the integral converges, see Chapter

2. In more advanced versions, let X be an algebraic variety, and let Y C X
be a subvariety, both defined over k, let w be a closed algebraic differential
form on X defined over k (or a relative de Rham cohomology class), and
consider the period isomorphism between de Rham and singular cohomol-
ogy. Periods are the numbers coming up as entries of the period matrix.
Variants include the cases where X is smooth, Y is a divisor with nor-
mal crossings, or perhaps where X is affine, and smooth outside Y, see
Chapter

3. In the most sophisticated versions, take your favorite category of mixed
motives and consider the period isomorphism between their de Rham and
singular realisation. Again, the entries of the period matrix are periods,
see Chapter [0}

It is one of the main results of the present book that all these definitions
agree. A direct proof of the equivalence of the different versions of cohomo-
logical periods is given in Chapter A crucial ingredient of the proof is
Nori’s description of relative cohomology via the Basic Lemma. The compar-
ison with periods of geometric Voevodsky motives, absolute Hodge motives
and Nori motives is discussed in Chapter[6] In Chapter [I2] we discuss periods
as in 1. above and show that they agree with cohomological periods.

The concluding Chapter [L3] explains the deeper relation between periods
of Nori motives and Kontsevich’s period conjecture, as already mentioned
earlier in the introduction. We also discuss the period conjecture itself.

Leitfaden

Part I, IT, IIT and IV are supposed to be somewhat independent of each other,
whereas the chapters in each part depend more or less linearly on each other.
In fact, Part IV may be a good starting point for reading the book or at least
a good companion for the more general theory developed elsewhere.

Part I is mostly meant as a reference for facts on cohomology that we
need in the development of the theory. Chapter [f]is a survey on the different
notions of motives that will play a role. Most readers will skip this part and
only come back to it when needed.

Part II is a self-contained introduction to the theory of Nori motives.
Chapter [J] gives the actual definition. It needs the input from Chapter [2] on
singular cohomology.

Part IIT develops the theory of period numbers. Chapter on cohomo-
logical periods needs the period isomorphism of Chapter [5] and of course
singular cohomology (Chapter [2) and algebraic de Rham cohomology (Chap-
ter. Chapter [11]also develops the linear algebra part of the theory of period
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numbers needed in the rest of Part III. Chapter uses Nori motives, but
should be understandable based just on the survey in Section[0.1} Chapter
on the alternative notion Kontsevich-Zagier periods is mostly self-contained,
with some input from Chapter [L1} Finally, Chapter[I3on formal periods relies
on the full force of the theory of Nori motives, in particular on the abstract
results on the comparison of fibre functors in Section

Part IV has a different flavor: Rather than developing theory, we go
through many examples of period numbers. The following picture summarises
a bit the dependencies inside the book. An arrow denotes that the previous
material has a considerable effect on the chapter towards it is pointing.

I: Background Material

|II: Nori Motives——>|III: Period Numbers)|

Y

IV: Examples
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Chapter 1
General Set-up

In this chapter we collect some standard notation used throughout the book.

1.1 Varieties

Let k& be a field. It will almost always be of characteristic zero or even a
subfield of C.

By a scheme over k we mean a separated scheme of finite type over k.
Let Sch be the category of k-schemes. By a variety over k we mean a quasi-
projective reduced scheme of finite type over k. Let Var be the category of
varieties over k. Let Sm and Aff be the full subcategories of smooth varieties
and affine varieties, respectively.

1.1.1 Linearising the category of varieties

We also need the additive categories generated by these categories of varieties.
More precisely:

Definition 1.1.1. Let Z[Var] be the category with objects the objects of
Var. f X = X3 U---UX,, Y =Y, U---UY,, are varieties with connected
components X;, Y;, we put

MOFZ[Var](Xa Y) = @@ {Zakfk|ak S Za fk S MorVar<XiaY—j)}
k

i=1 j=1

with the addition of formal linear combinations. Composition of morphisms
is defined by extending composition of morphisms of varieties Z-linearly.
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Analogously, we define Z[Sm], Z[Aff] from Sm and Aff. Moreover, let
Q[Var], Q[Sm] and Q[Aff] be the analogous Q-linear additive categories where
morphisms are formal Q-linear combinations of morphisms of varieties.

Let F =3 apfr : X = Y be a morphism in Z[Var]. The support of F is
the set of fi with ay # 0.

Z[Var] is an additive category with direct sum given by the disjoint union
of varieties. The zero object corresponds to the empty variety (which does
not have any connected components).

We will also need the category of smooth correspondences SmCor. It has
the same objects as Sm and as morphisms finite correspondences

Morgmcor(X,Y) = Cor(X,Y),

where Cor(X,Y) is the free Z-module with generators integral subschemes
I' ¢ X xY such that I' — X is finite and dominant over a component of X.

Remark 1.1.2. Z[Var] satisfies a universal property with respect to functors
F : Var — A into additive categories such that disjoint unions are mapped
to direct sums.

1.1.2 Divisors with normal crossings

Definition 1.1.3. Let X be a smooth variety of dimension n and D C X
a closed subvariety of codimension 1. The subvariety D is called divisor with
normal crossings, if for every point of D there is an affine neighborhood U of
x in X which is étale over A" via coordinates t1,...,t, and such that D|y
has the form

Dly = V(tits---t,)

for some 1 <r <n.
D is called a divisor with simple normal crossings if in addition the irre-
ducible components of D are smooth.

In other words, D looks étale locally like an intersection of coordinate
hyperplanes.

Example 1.1.4. Let D C A2 be the nodal curve, given by the equation
y? = 22(x — 1). It is smooth in all points different from (0, 0) and looks étale
locally like zy = 0 in the origin. Hence it is a divisor with normal crossings
but not a simple normal crossings divisor.
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1.2 Complex analytic spaces

A classical reference for complex analytic spaces is the book of Grauert and
Remmert [GRT77].

Definition 1.2.1. A complex analytic space is a locally ringed space (X, O5°")
with X paracompact and Hausdorff, and such that (X, Og}ol) is locally iso-
morphic to the vanishing locus Z of a set S of holomorphic functions in some
open U C C" and O%°! = O%!/(S), where OF! is the sheaf of holomorphic
functions on U.

A morphism of complex analytic spaces is a morphism f : (X, O%!) —
(Y, 0% of locally ringed spaces, which is given by a morphism of sheaves
f O — f,0%' that sends a germ h € 059, of a holomorphic function
h near y to the germs h o f, which are holomorphic near z for all x with
f(z) = y. A morphism will sometimes simply be called a holomorphic map,
and will be denoted in short form as f: X — Y.

Let An be the category of complex analytic spaces.

Example 1.2.2. Let X be a complex manifold. Then it can be viewed as a
complex analytic space. The structure sheaf is defined via the charts.

Definition 1.2.3. A morphism X — Y between complex analytic spaces is
called proper, if the preimage of any compact subset in Y is compact.

1.2.1 Analytification

Polynomials over C can be viewed as holomorphic functions. Hence an affine
variety X immediately defines a complex analytic space X2". If X is smooth,
X3 is even a complex manifold. This assignment is well-behaved under gluing
and hence it globalises. A general reference for this is [Gro71], exposé XII by
M. Raynaud.

Proposition 1.2.4. There is a functor
(-)*" : Sche — An

which assigns to a scheme of finite type over C its analytification. There is a
natural morphism of locally ringed spaces

a: (X 0%L) — (X,0x)

and ()" is universal with this property. Moreover, « is the identity on closed
points.

If X is smooth, then X" is a complex manifold. If f : X — Y is proper,
then so is fa".
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Proof. By the universal property it suffices to consider the affine case where
the obvious construction works. Note that X" is Hausdorff because X is
separated, and it is paracompact because it has a finite cover by closed subsets
of some C". If X is smooth then X°" is smooth by [Gro71], Prop. 2.1 in
exposé XII, or simply by the Jacobi criterion. The fact that f2" is proper if
f is proper is shown in [Gro71], Prop. 3.2 in exposé XII. O

1.3 Complexes

1.3.1 Basic definitions

Let A be an additive category. Unless specified otherwise, a compler will
always mean a cohomological complex, i.e., a sequence A°* for i € Z of ob-
jects of A with ascending differential d* : A® — A*! such that d"t! od’ =0
for all ¢ € Z. The category of complexes is denoted by C(A). We denote
C*(A), C~(A) and C?(A) the full subcategories of complexes bounded be-
low, bounded above and bounded, respectively.

If K* € C(A) is a complex, we define the shifted complex K*[1] with

(K*[1)' = K™, diayy = —difl

If f: K* — L*® is a morphism of complexes, its cone is the complex Cone(f)*®
With . . . . . . .
Cone(f)" = Kt L, dZCone(f) = (7d?_1a thl +dp,).

By construction there are morphisms
L* — Cone(f) — K°*[1].

Let K(A), K*(A), K~ (A) and K°(A) be the corresponding homotopy cate-
gories where the objects are the same and morphisms are homotopy classes of
morphisms of complexes. Note that these categories are always triangulated
with the above shift functor and the class of distinguished triangles are those
homotopy equivalent to

K* L L* — Cone(f) — K*[1]

for some morphism of complexes f. Now recall:

Definition 1.3.1. Let A be an abelian category. A morphism f®: K* — L*®
of complexes in A is called quasi-isomorphism if

H(f): H(K®) — H'(L®)

is an isomorphism for all ¢ € Z.
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We will always assume that an abelian category has enough injectives, or is
essentially small, in order to avoid set-theoretic problems. If A is abelian, let
D(A), D*(A), D=(A) and D°(A) be the induced derived categories where
the objects are the same as in K’(A) and morphisms are obtained by lo-
calising K’(A) with respect to the class of quasi-isomorphisms. A triangle
is distinguished if it is isomorphic in D?(A) to a distinguished triangle in

K'(A).

Remark 1.3.2. Let A be abelian. If f : K®* — L® is a morphism of com-
plexes, then
0— L* — Cone(f) » K°[1] = 0

is an exact sequence of complexes. Indeed, it is degreewise split-exact.

1.3.2 Filtrations

Filtrations on complexes are used in order to construct spectral sequences.
We mostly need two standard cases.

Definition 1.3.3. Let A be an additive category, K*® a complex in A.
1. The trivial filtration (filtration béte in the French literature) FZPK® on

K* is given by
F2PK® — Kt izp,
0 1 < p.
The quotient K*/FZPK?* is given by

0 ¢2>p,

F<PK® = .
K" i <p.

2. The canonical filtration T7<,K* on K* is given by

K? i< p,
T<pK*® = { Ker(dP) i=p,
0 > p.

The quotient K*®/7<,K* is given by

0 i <P,
TspK® = ¢ KP/Ker(dP) i=np,
K’ 7> p.

The associated graded pieces of the trivial filtration are given by
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F2PK®/F2PTIKS = KP.
The associated graded pieces of the canonical filtration are given by

T<pK*/T<p_1K* = HP(K?®).

1.3.3 Total complexes and signs

We return to the more general case of an additive category A. We consider
double complexes K** € C(A), i.e., double complexes consisting of a set of
objects K € A for i,j € 7 with differentials

di’j KBy gbItL , dg’j K6 y KTLI
such that (K%, d5®) and (K*7,d}7) are complexes and the diagrams

i,j+1
i+l %2 KitLi+1

dith Tdi+1‘j

i
d2

Kid % it

commute for all 7,5 € Z. The associated simple complex or total complex

Tot(K**) is defined as
Tot(K**)" = @ K5 ey = Z (d5? + (=1)dy”).
i+j=n i+j=n

In order to take the direct sum, either the category has to allow infinite direct
sums or we have to assume boundedness conditions to make sure that only
finite direct sums occur. This is the case if K7 = 0 unless 4,5 > 0.

Examples 1.3.4. 1. Our definition of the cone is a special case: for f : K* —
L.
Cone(f) = Tot(K**) , K4 =K K0 =L*dy™" = f'.

2. Another example is given by the tensor product. Given two complexes
(F*,dr) and (G*,dg), the tensor product

(Free)'=@ Flod
i+j=n

has a natural structure of a double complex with K%/ = F*® G, and the
differential is given by d = idr ® dg + (—1)'dr ® idg.
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Remark 1.3.5. There is a choice of signs in the definition of the total com-
plex. See for example [Hub95l §2.2] for a discussion. We use the convention
opposite to the one of loc. cit. For most formulae it does not matter which
choice is used, as long as it is used consistently. However, it does have an
asymmetric effect on the formula for the compatibility of cup-products with
boundary maps. We spell out the source of this asymmetry.

Lemma 1.3.6. Let F*, G* be complexes in an additive tensor category.
Then:

1. F* @ (G*[1]) = (F* @ G*)[1]. ' , 4

2. ¢: (F*1]) @ G* — (F* ® G*)[1] with e = (=1)? on F* ® G? (in degree
i+ 7 — 1) is an isomorphism of complexes.

Proof. We compute the differential on F* ® G’ in all three complexes. Note

that
FloG =(FI) o6 = F o (G)

For better readability, we drop ®id and id® and
we have

riggs everywhere. Hence

i+7—1 i+
- (d@- +(=1)d)

= —dL. + (—1)7'dpe

i+7—1 17t
dF.J®(G.[ ) dG°[1] + (- 1)J d%e
= —dé. ( )] 1dl .
i+ 1 ] 71— 1
A meae = doe + (-1 dp.

(1) '

We see that the first two complexes agree, whereas the di_fferential of the third
is different. Multiplication by (—1)? on the summand F* ® G? is a morphism
of complexes. a

1.4 Hypercohomology

Let X be a topological space and Sh(X) the abelian category of sheaves of
abelian groups on X.

We want to extend the definition of sheaf cohomology on X to complexes
of sheaves, as explained in [Har77, Chapter III].



10 1 General Set-up

1.4.1 Definition

Definition 1.4.1. Let F* be a bounded below complex of sheaves of abelian
groups on X. An injective resolution of F*® is a quasi-isomorphism

F* —1I°

where Z°® is a bounded below complex with Z™ injective for all n, i.e.,
Hom(—,Z") is exact.
Sheaf cohomology of X with coefficients in F* is defined as

HY(X,F*)=H (I'(X,I°) icZ
where F* — Z° is an injective resolution.

Remark 1.4.2. In the older literature, it is customary to write H*(X, F*)
instead of H*(X, F*) and call it hypercohomology. We do not see any need for
this. Note that in the special case F* = F|[0] of a sheaf viewed as a complex
concentrated in degree 0, the notion of an injective resolution in the above
sense agrees with the ordinary one in homological algebra.

Remark 1.4.3. In the language of derived categories, we have
H'(X,F*) = Homp+ sn(x)) (Z, F*li])

because I'(X, -) = Homgy(x)(Z, -).
Lemma 1.4.4. H'(X, F*) is well-defined and functorial in F*.

Proof. We first need the existence of injective resolutions. Recall that the cat-
egory Sh(X) has enough injectives. Hence every sheaf has an injective resolu-
tion. This extends to bounded below complexes in A by [Wei94] Lemma 5.7.2]
(or rather, its analogue for injective rather than projective objects).

Let F* — Z°® and G* — J° be injective resolutions. By loc.cit. Theorem
10.4.8

Homp+(sn(x))(F*,G°) = Homp+ (sn(x)) (2%, T°)-

This means in particular that every morphism of complexes lifts to a mor-

phism of injective resolutions and that the lift is unique up to homotopy of
complexes. Hence the induced maps

H'(I'(X,I%)) » H(I'(X,J*))
agree. This implies that H*(X, F*) is well-defined and a functor. O

Remark 1.4.5. Injective sheaves are abundant (by our general assumption
that there are enough injectives), but not suitable for computations. Every
injective sheaf F is flasque [Har75, III. Lemma 2.4], i.e., the restriction maps
F(U) — F(V) between non-empty open sets V C U are always surjective.
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Below we will introduce the canonical flasque Godement resolution for any
sheaf F. More generally, every flasque sheaf F is acyclic, i.e., H(X,F) =
0 for ¢ > 0. One may compute sheaf cohomology of F using any acyclic
resolution F'®. This follows from the hypercohomology spectral sequence

EPY = HP(HY(F*)) = HP (X, F)

which is supported entirely on the line ¢ = 0.

Special acylic resolutions on X are the so-called fine resolutions. See
[War83, p. 170] for a definition of fine sheaves involving partitions of unity.
Their importance comes from the fact that sheaves of C*°-functions and
sheaves of C*°-differential forms on X are fine sheaves.

1.4.2 Godement resolutions

For many purposes, it is useful to have functorial resolutions of sheaves. One
such is given by the Godement resolution, introduced in [God58, Chapter II,

83].

Let X be a topological space. Recall that a sheaf on X vanishes if and
only the stalks at all x € X vanish. For all x € X we denote i, :  — X the
natural inclusion.

Definition 1.4.6. Let F € Sh(X). Put
I(F) = [ iweFou-
reX
Inductively, we define the Godement resolution Gd®(F) of F by
Gd°(F) = I(F),
Gd'(F) = I(Coker(F — Gd°(F))),
Gd" Y (F) = I(Coker(Gd" ' (F) — Gd™(F))) n>0.

Lemma 1.4.7. 1. Gd® is an exact functor with values in CT(Sh(X)).
2. The natural map F — Gd*(F) is a flasque resolution.

Proof. Functoriality is obvious. The sheaf I(F) is given by

Uw— H Ty o
zeU

All the sheaves involved are flasque, hence acyclic. In particular, taking the
direct products is exact (it is not in general), turning I(F) into an exact
functor. F — I(F) is injective, and hence by construction, Gd®(F) is then a
flasque resolution. O
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We extend this to a functor on complexes:

Definition 1.4.8. Let F7* € C*(Sh(X)) be a complex of sheaves. We call
Gd(F*®) := Tot(Gd* (F*))
the Godement resolution of F*.
Corollary 1.4.9. The natural map
F* — Gd(F*)
i$ a quasi-isomorphism and
HY(X,F*) = H" (I'(X,Gd(F"))).

Proof. By Lemma the first assertion holds if F* is concentrated in
a single degree. The general case follows by the hypercohomology spectral
sequence or by induction on the length of the complex using the trivial fil-
tration.

All terms in Gd(F*) are flasque, hence acyclic for I'(X, ). O

We now study functoriality of the Godement resolution. For a continuous
map f : X — Y we denote by f~! the pull-back functor on sheaves of abelian
groups. Recall that it is exact.

Lemma 1.4.10. Let f : X — Y be a continuous map between topological
spaces, F* € CT(Sh(Y)). Then there is a natural quasi-isomorphism

fl1Gdy (F*) — Gdx (f~*F*).

Proof. First consider a single sheaf F on Y. We want to construct

FUF) S IEF) = ] il F)a = ] ianFria)-

reX reX

By the universal property of the direct product and adjunction for f~!, this
is equivalent to specifying for all x € X

11 ivFy = I(F) = feinaF i) = ip@pFr:
yey

For this, we use the natural projection map. By construction, we have a
natural commutative diagram

fIF —— fU(F) —— Coker (f~1F — f~UI(F))

H !

fYF —— I(f7'F) —— Coker (f_l]:—>I(f_1]:)).
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It induces a map between the cokernels. Proceeding inductively, we obtain a
morphism of complexes

fIGAY (F) — Gdx (fF).

It is a quasi-isomorphism because both are resolutions of f~!F. This trans-
formation of functors extends to double complexes and hence defines a trans-
formation of functors on C*(Sh(Y)). O

Remark 1.4.11. We are going to apply the theory of Godement resolutions
in the case where X is a variety over a field k£, a complex manifold or more
generally a complex analytic space. The continuous maps that we need to
consider are those in these categories, but also the maps of schemes X — X,
for the change of base field K/k and a variety over k; and the continuous map
X — X for an algebraic variety over C and its analytification.

1.4.3 Cech cohomology

Neither the definition of sheaf cohomology via injective resolutions nor Gode-
ment resolutions are convenient for concrete computations. We introduce
Cech cohomology for this task. We follow [Har77, Chapter III, §4], but ex-
tend to hypercohomology.

Let k be a field. We work in the category of varieties over k. Let I =
{1,...,n} as ordered set and & = {U;|i € I} an affine open cover of X
indexed by I. For any subset J C {1,...,n} we denote

Uy = (U
jeJ
As X is separated, these intersections are all affine.

Definition 1.4.12. Let X and il be as above. Let F € Sh(X). We define
the Cech complex of F as

crwF) =[] Fwn, p=o0
JCI,|J|=p+1

with differential 67 : CP (4, F) — CPT1(8h, F) given by

p+1
Po)s oy = E 1y N
(5 a)(ioazlv"ﬂp) - ( 1) a(io,“.,ij7...,ip+1) Uio.“ij.‘.ip+17
Jj=0
where, as usual, (ig,...,%;,...,Ip4+1) means the tuple with i; removed.

We define the p-th Cech cohomology of X with coefficients in F as
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HP (4, F) = HP(C*(4, F), 6).

Remark 1.4.13. In the literature, we often find the version where only
strictly ordered tuples are used. The two complexes are homotopy equivalent.
The full complex has better functorial properties because it does not depend
on an ordering of the indices. On the other hand, the restricted complex has
the advantage of being bounded for finite index sets.

Proposition 1.4.14 ([Har77, Chapter ITI, Theorem 4.5]). Let X be a variety,
L an affine open cover as before. Let F be a coherent sheaf of Ox-modules
on X. Then there is a natural isomorphism

HP(X,F) = HP(U, F).

We now extend to complexes. We can apply the functor C*(4L,-) to all
terms in a complex F* and obtain a double complex C* (L, F*).

Definition 1.4.15. Let X and i as before. Let * € CT(Sh(X)). We define
the Cech complex of §f with coefficients in F* as

C* (U, F*) =Tot (C*(U, F*)),
and Cech cohomology as
HP (8, F®) = HP(C*(U, F*)).

Proposition 1.4.16. Let X be a variety, 3 as before an open affine cover of
X. Let F* € C*(Sh(X)) be a complex such that all F" are coherent sheaves
of Ox-modules. Then there is a natural isomorphism

HP(X,F*) = HP (4, F*).

Proof. The essential step is to define the map. We first consider a single
sheaf G. Let C* (4, G) be a sheafified version of the Cech complex for a sheaf
G. By [Har77, Chapter ITI, Lemma 4.2], it is a resolution of G. We apply the
Godement resolution and obtain a flasque resolution of G by

G—C(UG) = Gd(C*(U,G)).
By Proposition the induced map
C*(4,G) = I'(X,Gd (C*(U,G))

is a quasi-isomorphism as both sides compute H*(X,G).

The construction is functorial in G, hence we can apply it to all components
of a complex F* and obtain double complexes. We use the previous results
for all /™ and take total complexes. Hence

F* = TotC* (4, F*) — Gd (C* (41, F*))
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are quasi-isomorphisms. Taking global sections we get a quasi-isomorphism
TotC*® (i, F*) — TotI'(X, Gd (C* (U, F*))).

By definition, the complex on the left computes Cech cohomology of F* and
the complex on the right computes hypercohomology of F*. a

Corollary 1.4.17. Let X be an affine variety and F* € Ct(Sh(X)) such
that all F™ are coherent sheaves of Ox-modules. Then

HY(I'(X,F*)) = H(X,F*).

Proof. We use the affine covering { = { X} and apply Proposition|l.4.16, O

1.5 Simplicial objects

We introduce simplicial varieties in order to carry out some of the construc-
tions in [Del74b]. Good general references on the topic are [May67] or [Wei94,
Chapter 8].

Definition 1.5.1. Let A be the category whose objects are finite ordered
sets
[n] ={0,1,....,n} neNg

with morphisms non-decreasing monotone maps. Let Ay be the full subcat-
egory with objects the [n] with n < N.

If C is a category, we denote by C? the category of simplicial objects in C
defined as contravariant functors

Xe: A—=C

with transformation of functors as morphisms. We denote by C4” the category
of cosimplicial objects in C defined as covariant functors

X*:A—=C.

Similarly, we define the categories CA¥ and CAN of N-truncated simplicial
and cosimplicial objects.

Example 1.5.2. Let X be an object of C. The constant functor
A° = C

which maps all objects to X and all morphism to the identity morphism is a
simplicial object. It is called the constant simplicial object associated to X.

In A, we have in particular the face maps
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€:[n—1—1[n] i=0,...,n,

the unique injective map leaving out the index ¢, and the degeneracy maps
n:n+1 —[n] i=0,...,n,

the unique surjective map with two elements mapping to . More generally, a
map in A is called face or degeneracy if it is a composition of €;s or 7;’s, re-
spectively. Any morphism in A can be decomposed into a degeneracy followed
by a face ([Wei94, Lemma 8.12]).
For all m > n, we denote S,, ., the set of all degeneracy maps [m] — [n].
A simplicial object X, is determined by a sequence of objects

Xo, X1, ...
and face and degeneracy morphisms between them. In particular, we write
6i : Xn — Xn—l

for the image of ¢; and
S - Xn — Xn+1

for the image of n;.

Example 1.5.3. For every n, there is a simplicial set A[n] with
A[n]m = MOI‘A([TL], [m])

and the natural face and degeneracy maps. It is called the simplicial n-
simplex. For n = 0, this is the simplicial point, and for n = 1 the simplicial
interval. Functoriality in the first argument induces maps of simplicial sets.
In particular, there are

do = €, 01 = €] : A[1] = A[0].

Definition 1.5.4. Let C be a category with finite products and coproducts.
Let X,, Y, be simplicial objects in C and S, a simplicial set

1. X, x Y, is the simplicial object with

(Xe xYe)n =X xY,

with face and degeneracy maps induced from X, and Y,.
2. Xq X S, is the simplicial object with

(Xe x So)n =[] Xn

sES,

with face and degeneracy maps induced from X, and S,.
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3. Let f,g : X¢ — Y, be morphisms of simplicial objects. Then f is called
homotopic to g if there is a morphism

h:Xex All] =Y,

such that hody = f and hod; = g.

The inclusion Ay — A induces a natural restriction functor
sqy : CA — CAV,

For a simplicial object X,, we call sqyXe its N-skeleton. If Y, is a fixed
simplicial object, we also denote sq; the restriction functor from the category
C4 /Y, of simplicial objects over Y, to the category C4¥ /sqyYs of truncated
simplicial objects over sq Y.

Remark 1.5.5. The skeleta sq, Xe define the skeletal filtration, i.e., a chain
of maps
sqoXe — 51 Xe = -+ = sqyXe = Xo.

Later, in Section we will define the topological realisation | X,| of a sim-
plicial set X,. The skeletal filtration then defines a filtration of | X,| by closed
subspaces.

An important example in this book is the case when the simplicial set X,
is a finite set, i.e., all X, are finite sets, and completely degenerate for n > N
sufficiently large. See Section |2.3]

Lemma 1.5.6. Let C be a category with finite limits. Then the functor sqy
has a right adjoint
cosqy : CAN — ¢4,

If Y, is a fized simplicial object, then
cosq}(,‘ (Xeo) = cosqyXe XcosqysayYe Yo
is the right adjoint of the relative version of sqy .

Proof. The existence of cosqy is an instance of a Kan extension. We refer to
[Mac71l, Chapter X] or [AMG9, Chapter 2] for its existence. The relative case
follows from the universal properties of fibre products. a

If X, is an N-truncated simplicial object, we call cosqy X, its coskeleton.

Remark 1.5.7. We apply this in particular to the case where C is one of the
categories Var, Sm or Aff over a fixed field k. The disjoint union of varieties
is a coproduct in these categories and the direct product a product.

Definition 1.5.8. Let S be a class of maps of varieties containing all identity
morphisms. A morphism f : X, — Y, of simplicial varieties (or the simplicial
variety X, itself) is called an S-hypercovering if the adjunction morphisms
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Q Ye
X, — (cosq,* 150, _1Xe)n

are in S.
If S is the class of proper, surjective morphisms, we call X, a proper
hypercover of Y,.

Definition 1.5.9. A simplicial variety X, is called split if for all n € Ny
n—1
N(X,) := Xn ~ U 5:(Xp_1)
i=0

is an open and closed subvariety of X,,.

We call N(X,,) the non-degenerate part of X,,. If X, is a split simplicial
variety, we have a decomposition as varieties

X, =N T JT sV (X,

m<n s€Smy, n

where Sy, ,, is the set of degeneracy maps from X, to X,.

Theorem 1.5.10 (Deligne). Let k be a field and Y a variety over k. Then
there is a split simplicial variety Xo with all X,, smooth and a proper hyper-
cover Xe¢ — Y.

Proof. The construction is given in [Del74bl Section (6.2.5)]. It depends on
the existence of resolutions of singularities. In positive characteristic, we may
use de Jong’s result on alterations [dJ96] instead. O

The other case we are going to need is the case of additive categories.

Definition 1.5.11. Let A be an additive category. We define a functor
C: A2 = C(A)
by mapping a simplicial object X4 to the cohomological complex
X Ln}X,(n,l) — - =Xy —0

with differential

We define a functor

C:AY = CH(A)

by mapping a cosimplicial object X*® to the cohomological complex

p
0-X%— . . X" 5 X0 — ...
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with differential

n

d" = "(~1)'0,.

=0

Let A be an abelian category. We define a functor
N: A* = CH(A)

by mapping a cosimplicial object X*® to the normalised complex N(X*®) with

and differential d"|y(xe).

Proposition 1.5.12 (Dold-Kan correspondence). Let A be an abelian cate-
gory, X* € A2° a cosimplicial object. Then the natural map

N(X*) = C(X*)
1S a quast-isomorphism.
Proof. This is the dual result of [Wei94 Theorem 8.3.8]. O

Remark 1.5.13. We are going to apply this in the case of cosimplicial com-
plexes, i.e., to C(A)?, where A is abelian, e.g., a category of vector spaces.

1.6 Grothendieck topologies

Grothendieck topologies generalise the notion of open covers in topological
spaces. Using them one can define cohomology theories in more abstract
settings. To define a Grothendieck topology, we need the notion of a site, or
situs. Let C be a category. A basis for a Grothendieck topology on C is given
by covering families in the category C satisfying the following definition.

Definition 1.6.1. A site/situs is a category C together with a collection of
morphisms in C

(pi: Vi — U)ie]»

the covering families.
The covering families satisfy the following axioms:

e Any isomorphism ¢ : V — U is a covering family with an index set
containing only one element.

o If (¢; : V; — U)ey is a covering family, and f : V — U a morphism in
C, then for each ¢ € I there exists the pullback diagram
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VxpV; —2s v

o |#

V BN
in C, and (@; : V xy V; = V), is a covering family of V.
o If (¢;: Vi — U),c; is a covering family of U, and for each V; there is
given a covering family (apg : Vf — ‘/i)je,](z’)’ then

(pio@f Vi = U)icjesin

is a covering family of U.

Example 1.6.2. Let X be a topological space. Then the category of open sets
in X together with inclusions as morphisms form a site, where the covering
maps are the families (U;);e; of open subsets of U such that U;c;U; = U.
Thus each topological space defines a canonical site. For the Zariski open
subsets of a scheme X this is called the (small) Zariski site of X.

Definition 1.6.3. A presheaf F of abelian groups on a situs C is a con-
travariant functor
F:C— Ab, U~ F(U).

A presheaf F is a sheaf if for each covering family (p; : V; — U) the

difference kernel sequence

el

0-FO) = [[Fv)= ] FWixoVy)

iel (i,5)eIxI

is exact. This means that a section s € F(U) is determined by its restrictions
to each V;, and a tuple (s;);er of sections comes from a section on U, if one
has s; = s; on pullbacks to the fibre product V; xy V;.

Once we have a notion of sheaves in a certain Grothendieck topology, then
we may define cohomology groups H*(X,F) by using injective resolutions
as in Section as the right derived functor of the left-exact global section
functor X — F(X) = H°(X,F).

Example 1.6.4. The (small) étale site over a smooth variety X consists of
the category of all étale morphisms ¢ : U — X from a smooth variety U to
X. See [Har77, Chapter III] for the notion of étale maps. We just note here
that étale maps are quasi-finite, i.e., have finite fibres, are unramified, and
the image ¢(U) C X is a Zariski open subset.

A morphism in this site is given by a commutative diagram
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v L LU

Lol

x 4 X
Let U be étale over X. A family (yp; : V; — U),; of étale maps over X
is called a covering family of U if | J;.; wi(V;) = U, i.e., the images form a
Zariski open covering of U.
This category has enough injectives by Grothendieck [AGV72], and thus
we can define étale cohomology H (X, F) for étale sheaves F.

Example 1.6.5. In Sectionwe are going to introduce the h’-topology on
the category of analytic spaces.

Definition 1.6.6. Let C and C’ be sites. A morphism of sites f : C — C’
consists of a functor F': C" — C (sic) which preserves fibre products and such
that F applied to a covering family of C’ yields a covering family of C.

A morphism of sites induces an adjoint pair of functors (f*, f.) between
sheaves of sets on C and C'.

Example 1.6.7. 1. Let f : X — Y be a continuous map of topological
spaces. As in Example we view them as sites. Then the functor F,
mapping an open subset U of Y to its preimage f~1(U), defines a mor-
phism of sites.

2. Let X be a scheme. Then there is a morphism of sites from the small étale
site of X to the Zariski site of X. The functor views an open subscheme
U C X as an étale X-scheme. Open covers are in particular étale covers.

Definition 1.6.8. Let C be a site. A C-hypercover is an S-hypercover in the
sense of Definition [1.5.8 with S the class of morphisms

e [[vi—U
iel i€l
for all covering families {¢; : U; — U};er in the site.

If X, is a simplicial object and F is a presheaf of abelian groups, then
F(X,) is a cosimplicial abelian group. By applying the functor C' of Defini-
tion [1.5.11] we get a complex of abelian groups.

Proposition 1.6.9. Let C be a site closed under finite products and fibre
products, F a sheaf of abelian groups on C, X € C. Then

Hl(X»]:) = lim H* (C(F(X.))),

Xe—X
where the direct limit runs through the system of all C-hypercovers of X .
Proof. This is [Ver72, Théoréme 7.4.1]. O
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Example 1.6.10. If X is a scheme viewed as a site as in Example
this generalises the results of Section If {Uy,...,U,} is an open cover
of X, put p = [\, ji. Then cosqy(p) (the C-nerve) is an example of a
hypercover. In the coherent situation, is suffices to take the limit over these
special hypercovers in Proposition Moreover, the limit stabilises if we
choose the cover affine.

1.7 Torsors

Informally, a torsor is a group without a unit. The standard definition in
algebraic geometry is sheaf theoretic: a torsor under a sheaf of groups G is
a sheaf of sets X with an operation G x X — X such that there is a cover
over which X becomes isomorphic to G and the action becomes the group
operation. This makes sense on any site.

In this section, we are going to discuss a variant of this idea which does
not involve sites or topologies but rather schemes. This approach fits well
with the Tannaka formalism that will be discussed in chapters and

It is used by Kontsevich in [Kon99]. This notion at least goes back to a
paper of R. Baer [Bae29] from 1929, see the footnote on page 202 of loc. cit.
where Baer explains how the notion of a torsor comes up in the context of
earlier work of H. Priifer [Pri24]. In yet another context, ternary operations
satisfying these axioms are called associative Malcev operations, see [Joh89]
for a short account.

1.7.1 Sheaf theoretic definition

Definition 1.7.1. Let C be a category equipped with a Grothendieck topol-
ogy t. Assume S is a final object of C. Let G be a group object in C. A (left)
G-torsor is an object X with a (left) operation

nw:Gx X —X

such that there is a t-covering U — S trivialising GG. This means that the
restriction of G and X to U is the trivial torsor, i.e., X (U) is non-empty, and
the choice of any x € X (U) induces a natural isomorphism

u(-x) : GU') = X (U')
g+ wg, ).
foral U' = U.

This condition can also be formulated by asking the natural map
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GxU—XxU
(9,u) = (g(u),u)

to be an isomorphism.

Remark 1.7.2. 1. As p is an operation, the isomorphism of the definition
is compatible with the operation as well, i.e., the diagram

GU) x X(U") L— x (U

(idyu(ww))T TM(‘J)

G(U") x G(U") —= G(U")

commutes.

2. If, moreover, X — S is a t-cover, then X (X) is always non-empty and
we recover a version of the definition that often appears in the literature,
namely that

GxX—>XxX

has to be an isomorphism.

We are interested in the topology that is in use in Tannaka theory. It is
basically the flat topology, but we have to be careful what we mean by this
because the schemes involved are not of finite type over the base.

Definition 1.7.3. Let S be an affine scheme and C the category of affine
S-schemes. The fpgc-topology on C is generated by covers of the form X — Y
with O(X) faithfully flat over O(Y).

The letters fpgc stand for ”fidelement plat quasi-compact”. Recall that
SpecA is quasi-compact for all rings A.

We do not discuss the non-affine case at all, but see the survey [Vis05]
by Vistoli for the general case. The topology is discussed in loc. cit. Section
2.3.2. The above formulation follows from loc. cit. Lemma 2.60.

Remark 1.7.4. If, moreover, S = Spec(k) is the spectrum of a field, then
any non-trivial morphism Spec(A) — Spec(k) is an fpgc-cover. Hence, we are
in the situation of Remark Note that X still has to be non-empty!

The importance of the fpgc-topology is that all representable presheaves
are fpgc-sheaves, see [Vis05, Theorem 2.55].

1.7.2 Torsors in the category of sets

There is another amazingly simple definition of torsors as sets.
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Definition 1.7.5 ([Bae29] p. 202, [Kon99] p. 61, [Eri04] Definition 7.2.1). A
torsor is a set X together with a map

() XxXxX—oX

satisfying:

L (z,y,9) = (y,y,z) =z forall z,y € X
2. (z,y,2),u,v) = (z,(u, z,y),v) = (z,y, (z,u,v)) for all z,y, z,u,v € X.

Morphisms are defined in the obvious way, i.e., maps X — X’ of sets com-
muting with the torsor structure.

Lemma 1.7.6. Let G be a group. Then (g,h,k) = gh~'k defines a torsor
structure on G.

Proof. This is a direct computation:

(z,yy) =2y ly=z=yy 'z = (y,y,2),

((z,y,2),u,v) = (zy ! -1

Z’ u’ U) = zy7 Zu7 U= (x’ y7 Zuilv) = (:1:7y7 (Z7u7 U))’
(z, (u, z,y),v) = (z,uz" y,v) = 2(uz”

L)~ = ay~tau M.
O

Lemma 1.7.7 ([Bae29] page 202). Let X be a torsor, e € X an element.
Then G := X carries a group structure via

gh:=(g.e,h), g ':=(e,g.e).

Moreover, the torsor structure on X is given by the formula (g, h, k) = gh™'k
n Ge.

Proof. First we show associativity:
(gh)k = (g.e,h)k = (g, e, h), e, k) = (g,¢€, (h,e,k)) = g(h, e, k) = g(hk).
e becomes the neutral element:

eg = (e,e,9) =g ge=(g,e,e)=g.

1

We also have to show that g7 is indeed the inverse element:

997" =g(e.g,e) = (g,¢,(e,9,¢)) = ((9,¢,¢),9.€) = (g, 9,¢) = e.
Similarly one shows that g~'g = e. One gets the torsor structure back, since

ghilk = g(evhve)k = (gvea (6, h76))k = ((g,e, (8, h,e)),e,k)
= (g, (e, (e, h,e),e), k) = (g, ((e,;e, h),e,e), k)
= (g, (h7e,e),k) = (g7h,k).
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O

Proposition 1.7.8. Let X be a torsor. Let y; : X? x X? = X2 be given by

M ((a> b)v (07 d)) = ((a,b, C), d).

Then w; is associative and has (z,x) for x € X as left-neutral elements. Let
G! = X%/ ~; where (a,b) ~; ju; ((a,b), (z,2)) for all x € X is an equivalence
relation. Then y; is well-defined on G and turns G' into a group. Moreover,
the torsor structure map factors via a simply transitive left G*-operation on

X which is defined by
(a,b)x := (a,b, ).

Let e € X. Then
ie: Ge — G, z— (z,e)

is a group isomorphism inverse to (a,b) — (a,b,e).

In a similar way, using p. ((a,b), (¢, d)) := (a, (b, c,d)) we obtain a group G"
with analogous properties acting transitively on the right on X and such that
e factors through the action X x G" — X.

Proof. First we check associativity of p; (skipping p; in notation):

(av b)[(ca d)(ev f)} (aa b)((c7 d, 6)7 f) = ((CL, b, (07 d, 6))7 f) = (((CL7 b, C)? d, 6)7 f)
[(a,b)(c, d)](e, ) = ((a,b,c), d)(e, ) = (((a,b,¢),d,e), f)

(x,x) is a left neutral element for every z € X:

(z,2)(a,b) = ((x,2,a),b) = (a,b)

We also need to check that ~; is an equivalence relation: ~; is reflexive, since
one has (a,b) = ((a,b,b),b) = (a,b)(b,b) by the first torsor axiom and the
definition of y;. For symmetry, assume (¢, d) = (a,b)(x,x). Then

(a,b) = ((a,b,b),b) = ((a,b, (z,z,b)),b) = (((a, b, z),x,b),b)
= ((a,b,2),z)(b,b) = (a,b)(x,z)(b,b) = (¢,d)(b,b)

again by the torsor axioms and the definition of y;. For transitivity observe
that

(av b)(x, x)(y, y) = (av b)((l‘, €, y)v y) = (a, b)(yv y)
Now we show that s is well-defined on G':

[(a, b)(z, 2)][(c, d)(y, y)] = (a,b)[(x, z)(c, d)](y, y) = (a,b)(c, d)(y, y)-

The inverse element to (a,b) in G! is given by (b, a), since
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(a,b)(b,a) = ((a,b,0),a) = (a,a).

Define the left G'-operation on X by (a,b)x := (a,b,r). This is compatible
with gy, since

[(av b)(cv d)]fv = ((a7 b, C)v d)x = ((a7 b, C)v d, ‘T)v
(a,b)[(c,d)z] = (a,b)(c,d,z) = ((a,b, (c,d,x))

are equal by the second torsor axiom. The left G!-operation is well-defined
with respect to ~:

[(a,0)(z, x)]y = ((a, b, x), 2)y = ((a,b,7),2,y) = (a, (x,2,b),y) = (a,b,y) = (a,0)y.
Now we show that i, is a group homomorphism:
ab = (a,e,b) — ((a,e,b),e) = (a,e)(b,e)
The inverse group homomorphism is given by
(a,b)(¢c,d) = ((a,b,¢),d) — ((a,b,c),d,e).
On the other hand, one has in G,:
(a,b,e)(c,d,e) = ((a,b,€),e,(c,d,e)) = (a,b, (e, e, (c,d,e))) = (a,b, (c,d, e)).

This shows that i, is an isomorphism. The fact that G, is a group implies that
the operation of G! on X is simply transitive. Indeed the group structure on
G. = X is the one induced by the operation of G!. The analogous group G"
is constructed using u, and an equivalence relation ~,. with opposite order,
ie., (a,b) ~, (z,2)(a,b) for all x € X. The properties of G" can be verified
in the same way as for G! and are left to the reader. O

1.7.8 Torsors in the category of schemes (without
groups)

Definition 1.7.9. Let S be a scheme. A torsor in the category of S-schemes
is a non-empty scheme X and a morphism

XxXxX—=>X

which on T-valued points is a torsor in the sense of Definition for all T
over S.
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This simply means that the diagrams of the previous definition commute
in the category of schemes. The following is the scheme theoretic version of
Lemma [L7.8

Recall the fpgce-topology of Definition [1.7.3

Proposition 1.7.10. Let S be affine. Let X be a torsor in the category
of affine schemes. Assume that X/S is faithfully flat. Then there are affine
group schemes G' and G" operating from the left and right on X, respectively,
such that the natural maps

G'xX - XxX (g9,2) — (gz,2)
XXxG - XxX (x,g) (z,29")

are isomorphisms.
Moreover, X is a left G'- and right G"-torsor with respect to the fpqc-
topology on the category of affine schemes.

Proof. We consider G'. The arguments for G are the same. We define G' as
the fpgc-sheafification of the presheaf

T X*(T)/ ~

We are going to see below that it is representable by an affine scheme. The
map of presheaves j; defines a multiplication on G!. It is associative as it is
associative on the presheaf level.

We construct the neutral element. Recall that X — S is an fpgc-cover. The
diagonal A : X — X?/ ~; induces a section e € G'(X). It satisfies descent
for the cover X/S by the definition of the equivalence relation ~;. Hence it
defines an element e € G'(S). We claim that it is the neutral element of G.
This can be tested fpgc-locally, e.g., after base change to X. For T/X the set
X (T) is non-empty, hence X2/ ~; (T) is a group with neutral element e by
Proposition [T.7.8

The inversion map ¢ exists on X2(T)/ ~; for T/X, hence it also exists
and is the inverse on G'(T') for T/X. By the sheaf condition this gives a
well-defined map with the correct properties on G.

By the same arguments, the action homomorphism (X?(T)/ ~;)x X(T) —
X (T) defines a left action G x X — X. The induced map G! x X — X x X is
an isomorphism because it as an isomorphism on the presheaf level for 7'/ X.
In particular, X is a left G'-torsor.

We now turn to representability.

We are going to construct G* by flat descent with respect to the faithfully
flat cover X — S following [BLR90, Section 6.1]. In order to avoid confusion,
put T'= X and Y = X x X viewed as T-scheme over the second factor. A
descent datum on Y — T consists of the choice of an isomorphism

¢:plY — poY
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subject to the cocycle condition
Pi3® = Pa3® 0 piad

with the obvious notation. We have pjY =Y x T = X? x X and p3Y =
TxY =X x X% and use

¢(I1ax27x3) = (I27p(131,$2,$3),l’3)

where p : X3 — X is the structural morphism of X. We have p},p;Y =
X2 x X x X etc. and

Plad(x1, T2, T3, x4) = (22, p(T1, T2, 23), T3, T4)
p§3¢(x1,x2,x3,x4) = (5517553»/)(5327%37554),%4)

pTS(rb(xl; 172,13,504) = ($27l’3,p(I1,$371’4)71‘4)

and the cocycle condition is equivalent to

P(p($1,$27$3),$379€4) = p($1,$2,9€4)7

which is an immediate consequence of the properties of a torsor. In the affine
case (that we are in) any descent datum is effective, i.e., induced from a
uniquely determined S-scheme G'. In other words, it represents the fpgc-
sheaf defined as the coequaliser of

X?x X = X2

with respect to the projection p; mapping (1, z2,23) to (z1,z2) and pso ¢ :
X?x X = X x X? - X2 mapping

(z1,22,23) = (2, p(x1,22,23),x3) — (p(x1, X2, 23),T3).
This is precisely the equivalence relation ~;. Hence
Gl = X%/~
as fpqc-sheaves. O

Remark 1.7.11. If S is the spectrum of a field, then the flatness assumption
is always satisfied. In general, some kind of assumption is needed, as the
following example shows. Let S be the spectrum of a discrete valuation ring
with closed point €. Let G be an algebraic group over £ and X = G the trivial
torsor defined by G. In particular, we have the structure map

XX&XXgX—)X.

We now view X as an S-scheme. Note that
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XXSXXSX:XX5XX5X,

hence X is also a torsor over S in the sense of Definition However, it
is not a torsor with respect to the fpge-topology (or any other reasonable
Grothendieck topology) as X (T) is empty for all T — S surjective.






Chapter 2
Singular Cohomology

In this chapter we give a short introduction to singular cohomology. Many
properties are only sketched, as this theory is considerably better known than
de Rham cohomology for example.

2.1 Relative cohomology

Let X be a topological space. Sometimes, if indicated, X will be the under-
lying topological space of an analytic or algebraic variety also denoted by
X. To avoid technicalities, X will always be assumed to be a paracompact
space, i.e., locally compact, Hausdorff, and satisfying the second countability
axiom.

From now on, let F be a sheaf of abelian groups on X and consider sheaf
cohomology H'(X,F) from Section Mostly, we will consider the case of
the constant sheaf F = Z. All statements also hold with Z replaced by Q or
C.

Definition 2.1.1 (Relative Cohomology). Let A C X be a closed subset,
U = X \ A the open complement, i : A < X and j : U < X be the inclusion
maps. We define relative cohomology as

HZ(Xa A7Z) = Hz(X7 j'Z)a

where j) is the extension by zero, i.e., the sheafification of the presheaf

VH{Z VU,

0 else.

Convention 2.1.2. If X is an algebraic variety defined over a field k& con-
tained in C and A C X a closed subvariety defined over k, we abbreviate

31
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HY (X, A;Z) = H (X™, A™, 7)
where X" and A*" are the analytifications of X x;C and A x;C, respectively.

Remark 2.1.3 (Functoriality and homotopy invariance). The association
(X,A) — H (X, A;7)

is a contravariant functor from pairs of topological spaces to abelian groups.
In particular, for every continuous map f : (X,A4) — (X', A’) of pairs,
i.e., satisfying f(A) C A’, one has a homomorphism f* : H (X' A;Z) —
H(X, A;Z). Given two homotopic maps f and g, then the homomorphisms
f*, g* are equal. As a consequence, if two pairs (X, A) and (X', A") are homo-
topy equivalent, then the cohomology groups H* (X', A’;Z) and H'(X, A;7Z)
are isomorphic.

Proposition 2.1.4. There is a long exact sequence
oo HY(X, A7) — HY(X,Z) — HY(A,Z)SH (X, A Z) — -
Proof. This follows from the exact sequence of sheaves
0—=>HZ—7Z — 1,7 — 0.

O

Note that by our definition of cones, see Section [[.3] one has a quasi-
isomorphism jiZ = Cone(Z — i.Z)[—1]. For Nori motives we need a version
for triples, which can be proved using iterated cones by the same method:

Corollary 2.1.5. Let X D A D B be a triple of relative closed subsets. Then
there is a long exact sequence

oo HY(X, A Z) — HY(X,B;Z) — H'(A, B;Z) S H Y (X, A Z) — -+

Here, ¢ is the connecting homomorphism, which in the cone picture is
explained in Section [T.3]
Proposition 2.1.6 (Mayer-Vietoris). Let {U,V} be an open cover of X. Let
A C X be closed. Then there is a natural long exact sequence

o= HY(X, A7) = H(U,UNA;Z) S H(V,V N A;Z)

S HUNV,UNVNAZ) — HTH X, AZ) — -

Proof. Pairs (U, V) of open subsets form an excisive couple in the sense of

[Spa66, p. 188], and therefore the Mayer-Vietoris property holds by [Spa66,
p. 189-190]. 0
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Theorem 2.1.7 (Proper base change). Let m: X — Y be proper, i.c., the
preimage of a compact subset is compact. Let F be a sheaf on X. Then the
stalk in y € Y is computed as

(Riﬂ'*]:)y = Hi(ny-HXy)-
Proof. See [KS90, Proposition 2.6.7]. As 7 is proper, we have Rr, = Rm. O

Now we list some properties of the sheaf cohomology of algebraic varieties
over a field k£ — C. As usual, we will not distinguish in notation between
a variety X and the topological space of the analytification X?". The first
property is:

Proposition 2.1.8 (Excision, or abstract blow-up). Let f : (X',D’) —
(X, D) be a proper, surjective morphism of algebraic varieties over C, which
induces an isomorphism f: X'\ D' — X \ D. Then

f* H*(X,D;Z7) = H*(X',D'; 7).

Proof. This fact goes back to A. Aeppli [Aep57]. It is a special case of proper-
base change: let 7 : U — X be the complement of D and j' : U — X’ its
inclusion into X’. For all z € X, we have

(R'fujiZ)y = H' (X4, i Z] x1).

For x € U, the fibre is one point. It has no higher cohomology. For z € D,
the restriction of j{Z to X is zero. Together this means

RfJIZ = jiZ.
The statement then follows from the Leray spectral sequence [Spa66]. a

We will later prove a slightly more general proper base change theorem
for singular cohomology, see Theorem [2.5.12)
The second property is:

Proposition 2.1.9 (Gysin isomorphism, localisation, weak purity). Let X
be an irreducible variety of dimension n over k, and Z a closed subvariety of
pure codimension r. Then there is an exact sequence

o= HY(X,Z) — H(X,Z) - H(X\ Z,Z) - H;'(X,Z) — - -

where Hy (X, Z) is cohomology with supports in Z, defined as the cohomology
of Cone(Z — Rj.Z)[—1] for the open immersion j : X \ Z — X.
If, moreover, X and Z are both smooth, then one has the Gysin isomor-
phism
HY(X,Z) = H"*"(Z,7).

In particular, one has weak purity:
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HY(X,Z) =0 fori < 2r,

and HZ' (X,Z) = H(Z,7Z) is free of rank equal to the number of components

of Z.

Proof. A modern presentation of such properties of cohomology theories is
given in [Pan03, Section 2|. It contains other examples of cohomology theories
and an axiomatic treatment with more general properties. a

2.2 Singular (co)homology

Let X be a topological space satisfying the same general assumptions as
in Section The definition of singular homology and cohomology uses
topological simplexes.

Definition 2.2.1. The topological n-simplex A, is defined as
Api={(to,rtn) | Y _ti =1, t; > 0}.
i=0

A, has natural codimension one faces defined by t; = 0.
Singular (co)homology is defined by looking at all possible continuous maps
from simplices to X.

Definition 2.2.2. A singular n-simplex is a continuous map
f:4,—X.

In the case where X is a differentiable manifold, a singular simplex f is called
differentiable if the map f can be extended to a C*°-map from a neighborhood
of A, C R"! to X. The group of singular n-chains is the free abelian group

Sp(X) :=2Z[f: A, = X | f singular n-simplex].

In a similar way, we denote by S°(X) the free abelian group of differentiable
singular n-chains by requiring that all f are differentiable. The boundary
map 0Oy, : Sp(X) = Sp—1(X) is defined as

n

Ou(f) =D (=1)flmo.

=0

It respects the subgroups S3°(X). The group of singular n-cochains is the
free abelian group
S™(X) := Homy(S,(X),Z).

The group of differentiable singular n-cochains is the free abelian group
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S (X) :=Homg(S:X(X),Z).
The adjoint of 9,41 defines the boundary map

dy Sy (X) = S{SEH(X).
Lemma 2.2.3. One has 8,10, =0 and d,+1d, = 0, i.e., the groups Se(X)
and S*(X) define complexes of abelian groups.

The proof is left to the reader as an exercise.
Definition 2.2.4. Singular homology and cohomology with values in Z are
defined as

H;‘;ing(

X,Z) = H'(S*(X),ds), HI™(X,Z) := H;(Se(X), ).

In a similar way, we define (for X a manifold) the differentiable singular
(co)homology as

)z K

sing,c0

(X,Z) == H'(S%,(X),ds), Hfing’oo(X, Z) := H;(S°(X), ).

Theorem 2.2.5. Assume that X is a locally contractible topological space,
i.e., every point has an open contractible neighborhood. In this case, sin-
gular cohomology Hsiing(X, 7) agrees with sheaf cohomology H(X,Z) with
coefficients in Z. If Y is a differentiable manifold, differentiable singular
(co)homology agrees with singular (co)homology.

Proof. Let 8™ be the sheaf associated to the presheaf U — S™(U). One shows
that Z — S* is a fine resolution of the constant sheaf Z [War83, p. 196]. In
the proof it is used that X is locally contractible, see [War83| p. 194]. If X is a
manifold, differentiable cochains also define a fine resolution [War83, p. 196].
Therefore, the inclusion of complexes S$°(X) < Se(X) induces isomorphisms

Hiw oo(X,7) = H

sing,c0 sing

(X,Z) and HI"®>®(X,7) = H'™8(X, 7).
O

Of course, topological manifolds satisfy the assumption of the theorem.

2.3 Simplicial cohomology

In this section, we want to introduce simplicial (co)homology and its rela-
tion to singular (co)homology. Simplicial (co)homology can be defined for
topological spaces with an underlying combinatorial structure.

The literature contains various notions of such spaces. In increasing or-
der of generality, these are: geometric and abstract simplicial complexes, A-
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complexes (sometimes also called semi-simplicial complexes), and topological
realisations of simplicial sets. A good reference with a discussion of various
definitions is the book by Hatcher [Hat02], or the introductory paper [Fril2]
by Friedman. We will only look at finitely generated spaces.

By construction, such spaces are built from topological simplices 4,, in
various dimensions n.

Definition 2.3.1. A geometric n-simplex is the convex hull of n + 1 points

0, - .., Uy in some Euclidean space RY, such that v; — vg are linearly inde-
pendent for ¢ = 1,...,n. The standard (ordered) n-simplex A, is the convex
hull of the standard basis eg, ..., e, of Rt

A finite geometric simplicial complex X C RY is the collection of finitely
many geometric simplices in RY, such that

e Every face of a simplex of X is again a simplex of X (i.e., contained in
X).

e The intersection of two simplices of X is a face of each of them and con-
tained in X.

Using this definition, a finite geometric simplicial complex X induces a
topological space also denoted by X, which is a topological quotient of the
finite set of geometric simplices of X which are glued along common faces,
see [Fril2l Section 2] or [Hat02] Section 2.1]. It can be built up inductively by
adjoining simplices of increasing dimensions. The topological space X, i.e.,
the union of all faces, is not distinguished in notation from the collection X.
The restriction to finitely many simplices is not necessary in this definition,
but it is enough for our purposes. Geometric simplicial complexes come up
more generally in geometric situations in the triangulations of real manifolds
or algebraic varieties defined over C:

Example 2.3.2. An example is the case of an analytic space X®" where
X is an algebraic variety defined over R. There one can always find a semi-
algebraic triangulation by a result of Lojasiewicz, cf. Hironaka [Hir75, p. 170]
and Proposition 2.6.9] See Section [2.6.2] for the notion of a semi-algebraic
triangulation.

A little bit more general is the notion of an abstract simplicial complex:

Definition 2.3.3. An finite abstract simplicial complex X consists of a finite
set of vertices X° together with — for each integer n — a set X™ of subsets of
n+1 points in X°. Subsets of k+ 1 elements in a set of n+ 1 elements in X°,
i.e., k-dimensional faces of n-dimensional faces of X are contained in X*. A
simplicial complex X is called ordered if there is a chosen ordering on X©.

Every finite geometric simplicial complex is an abstract finite simplicial
complex and can be ordered. Vice versa, one can associate to an abstract
simplicial complex a geometric one up to homeomorphism, by associating to
each point in X™ an n-simplex and gluing these sets along common faces.
Thus, we will only speak of simplicial complexes. The natural morphisms



2.3 Simplicial cohomology 37

f: X — Y in the category of (abstract, finite) simplicial complexes are the
simplicial maps which take the vertices in X° to vertices in Y° and every
k-face of X to a k-face of Y under this map [Fril2l Section 2.2]. A similar
definition of morphisms applies to ordered simplicial complexes.

Example 2.3.4. A tetrahedron X = 0As is a geometric simplicial complex
with four vertices (0-simplices), six non-degenerate edges (1-simplices), and
four non-degenerate faces (2-simplices).

A torus T? has a well-known minimal triangulation with 14 vertices, 21
edges and 7 faces (triangles). The graph formed by the edges and vertices is
called Heawood graph. It divides the torus into 7 mutually adjacent regions.

Remark 2.3.5. There is also the slightly more abstract notion of a A-
complex, which is intermediate between simplicial complexes and simplicial
sets, see [Fril2l Section 2.4], [Hat02] Section 2.1]. Every A-complex is home-
omorphic to a simplicial complex [Hat02], Section 2.1].

Even more generaly, one can think of a simplicial space as the topological
realisation of a finite simplicial set: Let X, be a finite simplicial set in the
sense of Remark Then one has the face maps

81' : Xn — anl,
and the degeneracy maps
S; . XTL — Xn+1.

Every finite simplicial set gives rise to a topological space | X,|:

Definition 2.3.6. The topological realisation | Xe| of X, is defined as

| Xo| := ﬁ Xn x Ap/ ~,

n=0

where each X, carries the discrete topology, A, is the topological n-simplex,
and the equivalence relation is given by the two relations

(xaal(y)) ~ (al(x ay>7 RS Xn—h ye Ana
(x/asi(y/)) ~ (Si(x/)ay/)a I/ € X'rla ye An—l-
(Note that we denote the face and degeneracy maps for the n-simplex by the

same letters 0;, s;.)

To work with finite simplicial complexes or realisations of finite simplicial
sets is not an essential difference:

Proposition 2.3.7. Let X be a finite simplicial complex. Then there is a
finite simplicial set Xo associated to it by adding degeneracies. The spaces
| Xe| and X are homeomorphic.
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Proof. See [Fril2, Example 3.3], [Hat02, Appendix A]. O

Remark 2.3.8. For a finite simplicial set X,, it is known that the realisation
| Xe| is a compactly generated CW-complex [Hat02, Appendix A]. In fact,
every finite CW-complex is homotopy equivalent to a finite simplicial complex
of the same dimension by [Hat02] Theorem 2C.5].

The skeletal filtration from Remark defines a filtration of | X,
[sdoXe| C [sqy Xe| © -+ C [sqnXe| = | X

by closed subspaces, if X,, is degenerate for n > N.

There is finite number of simplices in each degree n. Associated to each of
them is a continuous map o : 4A,, — | X.|. We denote the free abelian group
of all such o of degree n by C4(X,) and the maps

On : CA(X,) = CA [(X,)

are given by alternating restriction maps to faces, as in the case of singular
homology. Note that the vertices of each simplex are ordered, so that this is
well-defined.

Definition 2.3.9. Simplicial homology of the topological space X = | X,| is
defined as .
H"P (X, Z) := Hp(C2(Xa), 0.),

and simplicial cohomology as

mpl (X, Z) := H"(C4(Xs), du),

simpl
where C% (X,) = Hom(C4(X,),Z) and d,, is adjoint to 9.

In a similar way, one can define the simplicial (co)homology of a pair
(X,D) = (| Xs|,|Ds]|), where Dy C X, is a simplicial subobject. The associ-
ated chain complex is given by the quotient complex C2(X,)/CA(D,). The
same proof will then show that the singular and simplicial (co)homology of
pairs coincide.

This definition does not depend on the representation of a topological
space X as the topological realisation of a simplicial set, since one can prove
that simplicial (co)homology coincides with singular (co)homology:

Theorem 2.3.10. Singular and simplicial (co)homology of X are equal.

Proof. (For homology only.) The chain of closed subsets
[sdoXe| C [sqy Xe| € -+ C [sqnXe| = | X

gives rise to long exact sequences of simplicial homology groups
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s = HYP(|sq,, g Xl Z) = HY™ (s, X |, Z)
— HTSLimpl(|SQn—1X'|a |San°|7Z) —

A similar sequence holds for singular homology, and there is a canonical map
CA(X) = Cp(X) from simplicial to singular chains. The result is then proved
by induction on n. We use that the relative complex C4 (|sq,,_; Xe|, |50, Xe|)
has zero differential and is a free abelian group of rank equal to the cardinality
of X,. Therefore, one concludes by computing that the singular (co)homology
of A, is given by H'(A,,,Z) = 7Z for i = 0 and zero otherwise. O

Example 2.3.11. For the tetrahedron X = 0Ags, a computation shows that
H;(X,Z) = Z for i = 0,2 and zero otherwise. This was a priori clear, since
X is topologically a sphere.
For the torus T2, one computes Hy(T?,Z) = Z @ Z, and Hy(T?,Z) =
Ho(T?,7Z) = 7. Also this is obvious, as T? is topologically a product S* x S*.
In the special case, when X is the topological space underlying the analytic

space attached to an affine algebraic variety X over C, or more generally a
Stein manifold, then one can show:

Theorem 2.3.12 (Artin vanishing). Let X be an affine variety over C of
dimension n. Then HY(X?*Z) = 0 for ¢ > n. In fact, X*™ is homotopy
equivalent to the topological realisation of a finite simplicial set where all
non-degenerate simplices are of dimension at most n.

Proof. The proof was first given by Andreotti and Fraenkel [AF59] for Stein
manifolds. For Stein spaces, i.e., allowing singularities, this is a theorem of
Kaup, Narasimhan and Hamm, see [Ham83, Satz 1] and the correction in
[Ham86]. An algebraic proof was given by M. Artin [Art73, Corollaire 3.5,
tome 3]. O

The choice of such a triangulation implies the choice of a skeletal filtration.

Corollary 2.3.13 (Good topological filtration). Let X be an affine variety
over C of dimension n. Then there is a filtration of X*" given by

XM =X,D>X,_1D---DXp

where the pairs (X;, X;_1) have only cohomology in degree i.

Remark 2.3.14. The Basic Lemma of Nori and Beilinson, see Thm.
shows that there is even an algebraic variant of this topological skeletal fil-
tration.

Corollary 2.3.15 (Artin vanishing for relative cohomology). Let X be an
affine variety of dimension n and Z C X a closed subvariety. Then

HY(X™ Z*™7) =0 fori>n.
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Proof. Consider the long exact sequence for relative cohomology and use
Artin vanishing for X and Z from Thm[2:3.12] O

The following theorem is strongly related to the Artin vanishing theorem.

Theorem 2.3.16 (Lefschetz hyperplane theorem). Let X C ]P’g be an in-
tegral projective variety of dimension n, and H C Pg a hyperplane section
such that H N X contains the singularity set Xgng of X. Then the inclu-
sion HNX C X is (n — 1)-connected. In particular, one has HY1(X,Z) =
HY(X NH,Z) for g <n.

Proof. See for example [AF59]. O

2.4 Kiinneth formula and Poincaré duality

Assume that we are given two topological spaces X and Y, and two closed
subsets i : A — X, and i : C < Y. By the above, using the inclusions
j: X\A= X, and j/: Y\ C =Y, we have

H*(XvAaZ) = H*(Xaj'Z)a

and
H*(Y,C;Z) = H*(Y, jZ).

The relative cohomology group
H(XXxY,XxCUAXY;Z)
can by definition be computed as H*(X x Y, j1Z), where
FXXY)\(XXxCUAXY)—= X xY

is the inclusion map. One has j, = ji X ji where X denotes external tensor
product of sheaves. Hence, we have a natural exterior product map

HY(X,A;Z)® H (Y,C;Z)"SHY (X xY,X x CUAXY;Z).

This is related to the so-called Kunneth formula:
Theorem 2.4.1 (Kiinneth formula for pairs). Let A C X and C C Y be
closed subsets. The exterior product map induces a natural isomorphism
P H(X,A4Q @ H (Y,C;Q-—H"(X xY,X x CUA X Y;Q).
i+j=n

The same result holds with Z-coefficients, provided all cohomology groups of
(X, A) and (Y, C) in all degrees are free.
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Proof. Using the sheaves of singular cochains, see the proof of Theorem [2.2.5]
one has fine resolutions #Z — F*® on X, and j{Z — G* on Y. The exterior
tensor product F* X G* is thus a fine resolution of jZ = jZ X JiZ. Here
one uses that the tensor product of fine sheaves is fine [War83| p. 193]. The
cohomology of the tensor product complex F'® ® G* induces a short exact
sequence

0~ @ H'X, AZ)@ H(Y,C;Z) - H"(X x Y, X x CUA XY Z)

i+j=n
- P Tol(H(X,A:Z),H (Y,C;Z)) =0
i+j=n+1
by [God58, Théoréme 5.5.1] or [Wei94, Theorem 3.6.3]. If all cohomology
groups are free, the last term vanishes. a

The following is a standard consequence of the definition of the Kiinneth
isomorphism for complexes of abelian groups:

Proposition 2.4.2. The Kinneth isomorphism of Theorem[2.4.1]is associa-
tive and graded commutative.

In later constructions, we will need a certain compatibility of the exterior
product with coboundary maps.

Proposition 2.4.3. Assume that X D A D B andY D C are closed subsets.
The diagram involving coboundary maps for the triples X D A D B and
XXY DX XCUAXY DX xCUB XY combined with the excision
isomorphism

HY(A,B;Z)® H(Y,C;Z) ——— HM(AxY,AxCUBXY;Z)
seid | |s
HFY X, A;Z) @ H(Y,C;Z) ——— HHHY X xY, X xCUAXY;Z)
commutes up to a sign (—1)7. The diagram

H(Y,C;Z)® HI(A,B;Z) —— H™W (Y xAY x BUC x A;7Z)

s | ls

HUY,C;Z) @ HTN (X, A Z) —— HH (Y x X,Y x AUC x X;Z)
commutes (without a sign).

Proof. We indicate the argument, without going into full details. Let G*® be
a complex computing H*(Y,C;Z) Let F? and Fs be complexes computing
H*(A,B;Z) and H*(X, A;Z). Let K7 and K3 be the complexes computing
cohomology of the corresponding product varieties. Cup product is induced
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from maps of complexes F* ® G* — K?. In order to get compatibility with
the boundary map, we have to consider the diagram of the form

FPoG —— K
(F5[1]) @ G* —— K3[1]

However, by Lemma the complexes (Fs[1]) ® G* and (Fy ® G*)[1] are

not equal. We need to introduce the sign (—1)? in bidegree (4, j) to make the
identification and get a commutative diagram.

The argument for the second type of boundary map is the same, but does
not need the introduction of signs by Lemma [1.3.6 a

Assume now that X =Y and A = C. Then, jiZ has an algebra structure,
and we obtain the cup product maps:

HY(X,A;7Z)® HI (X, A;Z) — H™ (X, A;7)
via the multiplication maps
H™(X x X, jiZ) — H™(X, jiZ),

induced by ~
=705 =
In the case where A = (), the cup product induces Poincaré duality:

Proposition 2.4.4 (Poincaré duality). Let X be a compact, orientable topo-
logical manifold of dimension m. Then the cup product pairing

H'(X,Q) x H"(X,Q) — H™(X,Q) = Q
is non-degenerate. With Z-coefficients, the map
H'(X,Z)/torsion x H™ (X, Z)/torsion — H™(X,Z) = 7Z
s mon-degenerate.

Proof. We will give a proof of a slightly more general statement in the alge-
braic situation below. A proof of the stated theorem can be found in [GHTS,
p. 53], although it is stated in a homological version. There it is shown that
H?"(X,7) is torsion-free of rank one, and the cup-product pairing is unimod-
ular modulo torsion, using simplicial cohomology, and the relation between
Poincaré duality and the dual cell decomposition. O

We will now prove a relative version in the algebraic case. It implies the
version above in the case where A = B = (). By abuse of notation, we again



2.4 Kiinneth formula and Poincaré duality 43

do not distinguish between an algebraic variety over C and its underlying
topological space.

Theorem 2.4.5 (Poincaré duality for algebraic pairs). Let X be a smooth
and proper complex variety of dimension n and A, B C X two normal cross-
ing divisors, such that AU B is also a normal crossing divisor. Then there is
a non-degenerate duality pairing

HY(X\ 4, B\(ANB);Q) x H*~4(X\ B, A\(ANB); Q) — H¥(X,Q) = Q.
Again, with Z-coefficients this is true modulo torsion.

Proof. We give a sheaf theoretic proof using Verdier duality and some formu-
las and ideas of Beilinson (see [Bei87]). Look at the commutative diagram:

U=X\(AUB) —2 X\ 4
X\B LI ¢

Note that the involved morphisms are affine. Assuming A U B is a normal
crossing divisor, we want to show first that the natural map

O Rky«Qu — R L01Qu,

extending id : Qy — Qu, is an isomorphism. This is a local computation.
We look without loss of generality at a neighborhood of an intersection point
x € AN B (in the analytic topology), since the computation at other points is
even easier. Hence, we may choose a polydisk neighborhood D in X around
x such that D decomposes as

D =Dy x Dp
and such that
AND=Ayx D, BND=Dy x By

for some suitable topological spaces Ag, By. Using the same symbols for the
maps as in the above diagram, the situation looks locally like

(Da\ Ag) x (D \ By) —Z— (D4 \ Ay) x Dg
Dax (Dp\By) ———> D=DsxDg.

Using the Kiinneth formula, one concludes that both sides ¢ Rky.Qp and
Rk.L1Qp are isomorphic to
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Rey«Qpa\a, XOQp 1\ B,

near the point x, and the natural map provides an isomorphism.
Now, one has

HY X\ A,B\ (AN B);Q) = H (X, tky.Qu),
(using that the maps involved are affine), and
H*" X\ B,A\ (AN B);Q) = H*" %X, k/ly.Qu).
We have to show that there is a perfect pairing
HYX\ A,B\ (ANB);Q) x H*""*(X \ B,A\ (AN B);Q) — Q.
However, by Verdier duality, we have a perfect pairing

H*" %X\ B,A\ (AN B);Q)" = H*" (X, kily,Qu)”
~ 0~NX, kily.DQu)
=~ H™ (X, D(k.lnQu))
=~ HY(X, k.l Qu)
=~ HY(X, 6ku.Qu)
=HY X\ A,B\ (AN B)):Q).
In this computation, D is Verdier’s duality operator on the derived category
of constructible sheaves in the analytic topology.

The statement on integral cohomology follows again by unimodularity of
the cup-product pairing. a

Remark 2.4.6. The normal crossing condition is necessary, as one can see
in the example of X = P2, where A consists of two distinct lines meeting in
a point, and B a line different from A going through the same point.

2.5 The Basic Lemma

In this section we prove the basic lemma of Nori [Nor00, Noral Nor02], a
topological result, which was also known to Beilinson [Bei87] and Vilonen
(unpublished). Let k& C C be a subfield. The proof of Beilinson works more
generally in positive characteristics as we will see below.
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2.5.1 Formulations of the Basic Lemma

Convention 2.5.1. We fix an embedding k& <— C. All sheaves and all coho-
mology groups in the following section are to be understood in the analytic
topology on X (C).

Theorem 2.5.2 (Basic LemmaI). Let k C C. Let X be an affine variety over
k of dimension n and W C X be a Zariski closed subset with dim(W) < n.
Then there exists a Zariski closed subset Z C X defined over k with dim(Z) <
n such that Z contains W and

HYX,Z;7Z) =0, forq#n

and, moreover, the cohomology group H™(X, Z;Z) is a free Z-module.

We formulate the Lemma for coefficients in Z, but by the universal coef-
ficient theorem [Wei94, Theorem 3.6.4] it will hold with other coefficients as
well.

Example 2.5.3. There is an example where there is an easy way to obtain
Z. Assume that X is of the form X \ H for some smooth projective X and
a hyperplane H (with respect to a fixed embedding of X into a projective
space) and W = (). Then take another hyperplane section H’' meeting X and
H transversally. Then Z := H'NX will have the property that H4(X, Z;Z) =
0 for ¢ # n by the Lefschetz hyperplane theorem, see Thm. [2:3.16] This
argument will be generalised in two of the proofs below.

An inductive application of this Basic Lemma starting with the case W = (
yields a filtration of X by closed subsets

XZXnDanlD--~DXoDX71=@

with dim(X;) = 4 such that the complex of free Z-modules
T (X, X ) S H T (X, X))

where the maps J, arise from the coboundary in the long exact sequence
associated to the triples X;11 D X; D X;_1, computes the cohomology of X.

Remark 2.5.4. This means that we can understand this filtration as an
algebraic analogue of the skeletal filtration of (the topological realisation)
of a simplicial set, see Corollary Note that the filtration is not only
algebraic, but even defined over the base field k.

The Basic Lemma is deduced from the following variant, which was also
known to Beilinson [Bei87]. To state it, we need the notion of a (weakly)
constructible sheaf, which omits the finite generation condition for the stalks
of constructible sheaves. This is often useful.
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Definition 2.5.5. A sheaf of abelian groups on a variety X over k is weakly
constructible if there is a decomposition of X into a disjoint union of finitely
many Zariski locally closed subsets Y; defined over k, and such that the
restriction of F' to Y; is locally constant. It is called constructible if, in ad-
dition, the stalks of F' are finitely generated abelian groups. We call such a
decomposition a stratification if in addition all strata S = Y; are smooth and
connected.

Remark 2.5.6. This combination of sheaves in the analytic topology to-
gether with strata algebraic and defined over k is not very much discussed in
the literature. In fact, the formalism works in the same way as with algebraic
strata over k. What we need are enough Whitney stratifications algebraic
over k. That this is possible can be deduced from [Tei82, Théoréme 1.2 p.
455] (characterisation of Whitney stratifications) and [Tei82], Proposition 2.1]
(Whitney stratifications are generic).

Theorem 2.5.7 (Basic Lemma II). Let X be an affine variety over k of
dimension n and F be a weakly constructible sheaf on X. Then there exists
a Zariski open subset j : U — X such the following three properties hold:

1. dim(X \U) < n.

2. HY(X,F') =0 for q # n, where F' := jjj*F C F.

3. If F is constructible then H™(X, F") is finitely generated.

4. If the stalks of F are torsion free, then H™(X, F') is torsion free.

In order to relate the two versions of the Basic Lemma, we will also need
some basic facts about sheaf cohomology. If j : U — X is a Zariski open
subset with closed complement ¢ : W < X and F a sheaf of abelian groups
on X, then there is an exact sequence of sheaves

0= jij*F - F —i,"F — 0.

In addition, for the constant sheaf F' = Z on X, one has HY(X, jj*F) =
HY(X,W;Z) and HY(X,i.i*F) = HY(W,Z), see Section [2.1]

Version II of the Lemma implies version I. Let V. = X \ W with open im-
mersion h : V — X, and the sheaf F' = hyh*Z on X. Version II for F' gives
an open subset £ : U — X such that the sheaf F’ = {,¢*F has non-vanishing
cohomology only in degree n. Let W’ = X \ U. Since F was zero on W, we
have that F” is zero on Z := W U W’ and it is the constant sheaf on X \ Z,
ie, F' = jij*F for j : X\ Z — X. In particular, F’ computes the relative
cohomology HY(X,Z;Z) and it vanishes for ¢ # n. Freeness follows from
property (3) and (4). O

We will give two proofs of the Basic Lemma II in Sections and
below.
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2.5.2 Direct proof of Basic Lemma I

We start by giving a direct proof of Basic Lemma I. It was given by Nori
in the unpublished notes [Nora]. Close inspection shows that it is actually a
variant of Beilinson’s argument in this very special case.

Lemma 2.5.8. Let X be affine, W C X closed. Then there exist

1. X smooth projective;

2. Dy, Do C X closed such that DoUDy is a simple normal crossings divisor
and X \ Dy is affine;

8o X \ Doo — X proper surjective, an isomorphism outside of Do such
that Y := m(Dg \ Do N Dy) contains W and m=*(Y) = Do \ Doo N Dy.

Proof. By enlarging W, we may assume without loss of generality that X \W
is smooth. Let X be a projective closure of X and W the closure of W in
X. By resolution of singularities, there is X — X proper surjective and an
isomorphism above X \ W such that X is smooth. Let Doe C X be the
complement of the preimage of X. Let W be the closure of the preimage
of W. By resolution of singularities, we can also assume that W U Dy is a
divisor with normal crossings.

Note that X and hence also X are projective. We choose a generic hyper-
plane H such that WU Dy UH is a divisor with normal crossings on X . This
is possible as the ground field & is infinite and the condition is satisfied in a
non-empty Zariski open subset of the space of hyperplane sections. We put
Dy=HUW.As His a hyperplane section, it is an ample divisor. Therefore,
Do = HUW is the support of the ample divisor H +mW for m sufficiently
large [Har77, Exercise II 7.5(b)]. Hence X \ Dy is affine, as the complement
of an ample divisor in a projective variety is affine. a

Proof of Basic Lemma I. We prove the Basic Lemma for cohomology with
coefficients in a field K. We use the varieties constructed in the last lemma.
We claim that Y has the right properties. We have Y D W. From Artin van-
ishing, see Corollary we immediately have vanishing of H(X,Y; K)
for i > n.

By excision, see Proposition
HY(X,Y;K) = H(X \ Do, Do \ (Do N Dso); K).
By Poincaré duality for pairs, see Theorem [2.4.5] it is dual to
H*"Y(X \ Dy, Do \ (Do N Do ); K).

The variety X \ Dy is affine. Hence, by Artin vanishing, the cohomology group
HY(X,Y; K) vanishes for all i # n and any coefficient field K.
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It remains to treat the case of integral coefficients. Let 7 be the smallest
index such that H*(X,Y;Z) is non-zero. By relative Artin vanishing for Z-
coefficients, see Corollary we have i < n.

If i < n, then the group H*(X,Y;Z) has to be torsion because the coho-
mology vanishes with Q-coefficients. The short exact sequence

0252 F,—0
induces an exact sequence
0— H"YX,Y;F,) - H(X,Y;Z) % H\(X,Y;Z)

which implies that H~1(X , Y F,) is non-trivial for the occurring torsion
primes. This is a contradiction to the vanishing for K = IF,,. Hence ¢ = n.
The same argument shows that H™(X,Y;Z) is torsion-free. O

2.5.3 Nori’s proof of Basic Lemma II

We now present the proof of the stronger Basic Lemma II published by Nori
in [Nor02].
We start with a couple of lemmas on weakly constructible sheaves.

Lemma 2.5.9. Let 0 — F} — Fy, — F3 — 0 be a short exact sequence of
sheaves on X with Fy, F3 (weakly) constructible. Then Fy is (weakly) con-
structible.

Proof. By assumption, there are stratifications of X such that F; and Fj3
become locally constant, respectively. We take a common refinement. We re-
place X by one of the strata and are now in the situation that F} and Fj3
are locally constant on a smooth connected variety. Then F5 is also locally
constant. Indeed, by passing to a suitable open cover (in the analytic topol-
ogy), F1 and F3 become even constant. We restrict to a contractible open
U, which exists because X?" is locally contractible. If V' C U is an inclu-
sion of an open connected subset, then the restrictions Fy(U) — Fy (V) and
F5(U) — F53(V) are isomorphisms. This implies the same statement for Fs,
because H!(U, F}) = 0, as constant sheaves do not have higher cohomology
on contractible sets. O

Lemma 2.5.10. The notion of (weak) constructibility is stable under j for
j an open immersion and T, for w finite.

Proof. The assertion for j, is obvious, same as for i, for closed immersions.
Now assume 7 : X — Y is finite and in addition étale. Let F' be (weakly)
constructible on X. Let Xy, ..., X,, C X be a stratification such that F|x, is
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locally constant. Let Y; be the image of X;. These are locally closed subvari-
eties of Y because 7 is closed and open. We refine them into a stratification of
Y. As 7 is finite étale, it is locally in the analytic topology of the form I x B
with I finite and B C Y (C) an open set in the analytic topology. Obviously
7 F| g is locally constant on the strata we have defined.

Now let m be finite. As we have already discussed closed immersions, it
suffices to assume that 7 is surjective. There is an open dense subscheme
U C Y such that 7 is étale above U. Let U’ = 7= (U), Z = Y \ U and
Z' = X\ U'. We consider the exact sequence on X

0 — junginF = F — igniy F — 0.
As 7 is finite, the functor m, is exact and hence
0 — mjunjin F — mF — myigniy F — 0.
By Lemma [2.5.9] it suffices to consider the outer terms. We have
mjunii F = jomludi Fy

and this is (weakly) constructible by the étale case and the assertion on open
immersions. We also have

W*izl*i*Z/F = iZ*7T|Z/*i*Z/F,

and this is (weakly) constructible by noetherian induction and the case of
closed immersions. O

Nori’s proof of Basic Lemma II. The argument will show a more precise ver-
sion of property (3) and (4): there exists a finite subset E C U(C) such that
HI™MX) (X F') is isomorphic to a direct sum @, F, of stalks of F' at points
of E.

Let n := dim(X). In the first step, we reduce to X = A™. We use Noether
normalisation to obtain a finite morphism 7 : X — A™. By Lemma [2.5.10]
the sheaf 7, F is (weakly) constructible.

Let then v : V < A"™ be a Zariski open set with the property that F’ :=

vv*m, F satisfies the Basic Lemma II on A”. Let U := W’l(V)fi>X be the
preimage in X. One has an isomorphism of sheaves:

meij B = oo, F.

Therefore, H1(X, ij*F) = HI1(A", vw*m, F) for all ¢ and the latter vanishes
for ¢ < n. The formula for the n-cohomology on A™ implies the one on X.
So let us now assume that F' is weakly constructible on X = A™. We argue
by induction on n and all F'. The case n = 0 is trivial.
By replacing F' by jj*F for an appropriate open j : U — A", we may
assume that F is locally constant on U and that A"\ U = V(f). By Noether
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normalisation or its proof, there is a surjective projection map m : A® — A"~!
such that 7|y () : V(f) — A""! is surjective and finite.

We will see in Lemma, that Rin,F = 0 for ¢ # 1 and R'w,F is
weakly constructible. The Leray spectral sequence now gives that

HY(A™, F) = H" (A" ! R'7,F).

In the induction procedure, we apply the Basic Lemma I to R'7, F on A" 1.
By induction, there exists a Zariski open h : V < A"~! such that hh* R, F
has cohomology only in degree n — 1. Let U := 7~ 1(V) and j : U < A™ be
the inclusion. Then j5*F has cohomology only in degree n. The explicit
description of cohomology in degree n follows from the description of the
stalks of R'7, F in the proof of Lemma O

Lemma 2.5.11. Let 7 : A" — A" be a coordinate projection. Let V(f) C
A" such that w|y () is finite surjective. Let F' on A" be locally constant on
U=A"\V(f) and vanish on V(f).

Then Rim,F =0 for ¢ # 1 and R'7,F is weakly constructible. Moreover,
for every y € A"~Y(C) there is a finite set E C 7~ '(y) such that (R'm, F), =

eaeGE Fe‘

Proof. This is a standard fact, but Nori gives a direct proof.

The stalk of Rim,F at y € A" ! is given by HY({y} x A', F|(y3xa1) by
the variation of proper base change in Theorem [2.5.12] below.

Let, more generally, G be a sheaf on A' which is locally constant outside
a finite, non-empty set S where it vanishes. Let T be a finite embedded tree
in A1(C) = C with vertex set S. Then the restriction map to the tree defines
a retraction isomorphism H?(A',G) = HY(T,Gr) for all ¢ > 0. Using Cech
cohomology, we can compute HY(T,Gr): for each vertex v € S, let U, be
the open star of all outgoing half open edges at the vertex v. Then U, and
Uy only intersect if the vertices a and b have a common edge e = e(a,b).
The intersection U, N U, is contractible and contains the center t(e) of the
edge e. There are no triple intersections. Hence HY(T,Gr) = 0 for ¢ > 2.
We have G(Us) = 0 because G is zero on S, locally constant away from S
and U is simply connected. Therefore also H°(T,Gr) = 0 and H' (T, Gr) is
isomorphic to @, Gy(c)-

This implies already that Rim,F = 0 for g # 1.

To show that R'n, F is weakly constructible means to show that it is locally
constant on some stratification. We see that the stalks (R'm,F), depend only
on the set of points in {y} x A' = 77!(y) where F|f,3a1 vanishes. But
the sets of points where the vanishing set has the same degree (cardinality)
defines a suitable stratification. Note that the stratification only depends on
the branching behaviour of V(f) — A"~ hence the stratification is algebraic
and defined over k. O
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Theorem 2.5.12 (Variation of Proper Base Change). Let m: X — Y be a
continuous map between locally compact, locally contractible topological spaces
which is a fibre bundle and let G be a sheaf on X. Assume W C X is closed
and such that G is locally constant on X \W and 7 restricted to W is proper.
Then (Rim,G), = H1(7m 1 (y), Gr-1(y)) for all g and ally € Y.

Proof. The statement is local on Y, so we may assume that X = T x Y
is a product with 7 the projection. Since Y is locally compact and locally
contractible, we may assume that Y is compact by passing to a compact
neighbourhood of y. As W — Y is proper, this implies that W is compact.
By enlarging W, we may assume that W = K x Y is a product of compact
sets for some compact subset K C 7. Since Y is locally contractible, we
replace Y be a contractible neighbourhood. (We may lose compactness, but
this does not matter anymore.) Let ¢ : K x Y — X be the inclusion and
j:(T'\K)xY — X the complement.
Look at the exact sequence

0— j!G(T\K)xY — G — i*GKXy — 0.

The result holds for Gg«y by the usual proper base change, see [KS90),
Proposition 2.5.2].

Since Y is contractible, we may assume that G\ g)xy is the pull-back of
the constant sheaf on 7"\ K. Now the result for jiG(p\ k)xy follows from the
Kiinneth formula. O

2.5.4 Beilinson’s proof of Basic Lemma II

We follow Beilinson [Bel87, Proof 3.3.1], who even proves a more general
result. Note that Beilinson works in the setting of étale sheaves, independent
of the characteristic of the ground field. We have translated it to weakly
constructible sheaves. The argument is intrinsically about perverse sheaves,
and the perverse t-structure, even though we have downplayed their use as
far as possible. For an extremely short introduction, see Section

Let X be affine and reduced of dimension n over a field k C C. Let F be a
(weakly) constructible sheaf on X. We choose a projective compactification
k : X < X such that & is an affine morphism. Let W be a divisor on X
such that F' is a locally constant sheaf on X \ W and X \ W is smooth. Let
h: X\ W < X be the open immersion. Then define M := hh*F.

Let H C X be a generic hyperplane. We will see in the proof of
Lemma [2.5.13 below what the conditions on H are. Let H = X N H be
the corresponding hyperplane in X.

We denote by V = X \ H the complement and by ¢ : V <+ X the open
inclusion. Furthermore, let kyy : VN X — V and £x : VN X < X be the
open inclusion maps, and i : H < X and ix : H < X the closed immersions.
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We set U := X \ (WU H) and consider the open inclusion j : U — X with
complement Z = W U H. Let Mynx be the restriction of M to V N X.
Summarising, we have a commutative diagram

U
lj
VX X x X @

o] B |7

v —L X" q

Lemma 2.5.13. For generic H in the above set-up, there is an isomorphism
00 R M =5 Rrlx . Mynx
extending naturally id : Myax — Mynx.

Proof. We consider the map of distinguished triangles
Ol*Re M — Rk, M —— i, i*Rr.M
| al |
RelxiMyanx —— Re,M —— . RE. M

The existence of the arrows follows from standard adjunctions together with
proper base change in the simple formulas xk*y = {x k], and K*i, = ix.R",
respectively.

Hence it is sufficient to prove that

i* Rrey M~ RF.i% M. (2.1)

To prove this, we make a base change to the universal hyperplane section.
In detail: Let P be the space of hyperplanes in X. Let

ﬁp — P
be the universal family. It comes with a natural map
ip : ﬁ]p - X.

By [Grdl p. 9] and [Jou83| Théoréme 6.10] there is a dense Zariski open subset
T C P such that the induced map

ir:Hr = XxT — X

is smooth. Let Hp be the preimage of X.
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We apply smooth base change in the square

Hr —)iX’T X

RTJ/ lfi
Hr —T 5 X
and obtain a quasi-isomorphism
ip Riso M — Risqi 2 M

of complexes of sheaves on Hr.

We specialise to some ¢ € T'(k) and get a hyperplane t : H C Hr to which
we restrict. The left-hand side turns into i* Rk, M

We apply the generic base change theorem to Kr over the base T
and § = i oM. Hence after shrinking T further, the right-hand side turns
into

t"REr«ix p M = RE.ty iy o M = RRi’ M.

Putting these equations together, we have verified equation O

Proof of Basic Lemma II. We keep the notation fixed at the beginning of the
present Subsection [2.5.4] Let H C X be a generic hyperplane in the sense of
Lemma 2513

By Artin vanishing for constructible sheaves (see Theorem , the
group H*(X, jij*F) vanishes for i > n. It remains to show that H*(X, jij*F)
vanishes for i < n. We obviously have jij*F = ¢x 1My nx. Therefore,

H* (X gt F) NHl(X Lxi1Mynx)
~H (X R/i*glevmx)
~ HY(X,00*Rr. M) by [2.5.13
(V. (R M)y ).

The last group vanishes for ¢ < n by Artin’s vanishing theorem for
compact supports once we have checked that Rk, My [n] is perverse for the
middle perversity, see Definition 2.5.21] Recall that M = hh*F. The restric-
tion F'|x\p is a locally constant sheaf and X \ W smooth. Hence F'|x\w[n] is
perverse. Both h and & are affine, hence the same is true for Re.hF|x\w[n]
by Theorem (3).

If, in addition, F' is constructible, then by the same theorem, the complex
Rl F|x\w[n] is in DZ°(X). Hence our cohomology with compact support
is also finitely generated.

If the stalks of I are torsion-free, then by the same theorem Rk, F|x\w
is in TDZ(X). Hence H(X, R hiFx\w) is torsion free as well. O
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Theorem 2.5.14 (Generic base change). Let S be a separated scheme of
finite type over k, f : X — Y a morphism of separated S-schemes of finite
type over S. Let F be a (weakly) constructible sheaf on X. Then there is a
dense open subset U C S such that:

1. over U, the sheaves R f.F are (weakly) constructible and vanish for almost
all i;
2. the formation of R'f.F is compatible with any base change S’ — U C S.

This is the analogue of [Del77, Théoréme 1.9 in sect. Thm. finitude], which
is for constructible étale sheaves in the étale setting.

Proof. The case S =Y was treated by Arapura, see [Aral3| Theorem 3.1.10].
We explain the reduction to this case, using the same arguments as in the
étale case.

All schemes can be assumed reduced.

Using Nagata, we can factor f as a composition of an open immersion and
a proper map. The assertion holds for the latter by the proper base change
theorem, hence it suffices to consider open immersions.

As the question is local on Y, we may assume that it is affine over S. We
can then cover X by affines. Using the hypercohomology spectral sequence
for the covering, we may reduce to the case X affine. In this case (X and Y
affine, f an open immersion) we argue by induction on the dimension of the
generic fibre of X — S.

If n = 0, then, at least after shrinking S, we are in the situation where f
is the inclusion of a connected component and the assertion is trivial.

We now assume the case n — 1. We embed Y into AY and consider the
coordinate projections p; : Y — AL. We apply the inductive hypothesis to
the map f over Ag. Hence there is an open dense U; C Ay such that the
conclusion is valid over p~1U;. Hence the conclusion is valid over their union,
i.e., outside a closed subvariety Y7 C Y finite over S. By shrinking S, we may
assume that it is finite étale.

We fix the notation in the resulting diagram as follows:

X%yéyl
\J/’/
a b1
S

Let j be the open complement of i. We have checked that j*Rf.G is (weakly)
constructible and compatible with any base change. We apply Rb. to the
triangle defined by the sequence

Ji*RfsG — Rf.G — i,.i"Rf.G

and obtain
Rb,.j17*Rf.G — Ra,G — b1,i"Rf.G.
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The first two terms are (possibly after shrinking S) (weakly) constructible by
the previous considerations and the case S = Y. We also obtain that they are
compatible with any base change. Hence the same is true for the third term.
As by is finite étale this also implies that i*Rf.G is (weakly) constructible
and compatible with base change. Indeed, this follows because a direct sum
of sheaves is constant if and only if every summand is constant. The same
is true for j1i7*Rf+G by the previous considerations and base change for ji.
Hence the conclusion also holds for the middle term of the first triangle and
we are done. ad

2.5.5 Perverse sheaves and Artin vanishing

We clarify the setting used in Beilinson’s proof of the Basic Lemma II above.
Our aim is to formulate and prove the version of Artin vanishing that we
need. Note that the notion of a perverse sheaf and the perverse t-structure is
not needed for this purpose. We choose to explain the notion anyway because
this is the real story behind the story. For a complete introduction into the
theory of perverse sheaves see the original reference [BBD82] by Beilinson,
Bernstein and Deligne. For the more specific aspects we refer to Schiirmann’s
monograph [Sch03].

Definition 2.5.15 ([BBD82] Définition 1.3.1]). Let D be a triangulated cat-
egory. A t-structure on D consists of a pair (D<% D=%) of full subcategories
such that

1. D=1:= D=[1] c D=Y D=!:= D=%[-1] c D=9,
2. Homp(X,Y) =0 forall X € DSV Y € D!,
3. for any object X € D there is a distinguished triangle

X0 5 X = X7 — X=0[1]

with X<0 ¢ D<O. X1 ¢ p=1.
We call A= D=9 D=9 the heart of the ¢-structure. For n € Z we put

D=" = D=0[—p], D=" = D=%[-n).

Example 2.5.16. Let A be an abelian catgegory, D = D(A) its derived
category. We put D=Y and DZ° the subcategory with objects concentrated
in non-positive and non-negative degrees, respectively. This is a t-structure
with heart A. Indeed, the axioms mimic the properties of this example.

Example 2.5.17 ([BBDS82, Section 3.3], [Sch03, Example 6.0.2. 3., p. 378]).
Let D(Z) be the derived category of abelian groups. Let ¥ D<Y be the sub-
catgory of complexes K*® such that H(K®) vanishes for i > 2 and is torsion
for i = 1. Let T D= be the subcategory of complexes K* such that H(K*®)
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vanishes for i < 0 and is torsion free for i = 0. Then (T D<0,+*D29) is a
t-structure, because Hom(T', F') = 0 for any torsion group T and F torsion
free.

Theorem 2.5.18 ([BBD82, Théoreme 1.3.6] ). The heart of a t-structure is
an abelian category.

Probably the best-known non-trivial example is the following:

Example 2.5.19 ([BBDS82| Section 2.1 and 2.2]). Let # : X — C be an
algebraic variety. Let S(X?®",7Z) be the category of abelian sheaves of on X"
and let

Dg(X,Z) € D(S(X™,Q))

be the subcategory of complexes whose cohomology objects are all con-
structible, see Definition [2.5.5] and almost all zero. Then we obtain a t-
structure as follows:

e The full subcategory D<°(X) is given by the complexes F* such that there
is a stratification of X such that for the inclusion ig : S — X of a stratum
the sheaves H'i§F*® are locally constant and vanish for i > —dim¢ S.

e The full subcategory DZ°(X) is given by the complexes F*® such that there
is a stratification of X such that for the inclusion ig : S — X of a stratum
the sheaves H ’z's]-' ® are locally constant and vanish for i < —dim¢ S.

It goes by the name of ¢-structure for the middle perversity. Its heart is called
the category of perverse sheaves (for the middle perversity). If X is smooth,
then a locally constant sheaf of finitely generated abelian groups viewed as a
complex concentrated in degree — dim X is a perverse sheaf.

Recall from Definition 2.5.5] that the strata of stratification are assumed
algebraic and in addition smooth and connected.

We have been working in a more general setting setting: Let & C C be
a subfield, X an algebraic variety over k. Let S(X?",Z) be the category of
sheaves of abelian groups on X?2".

Definition 2.5.20. Let X and S(X?*,Z) be as just defined.

1. Let
D,.(X,Z) C D(S(X*",7Z))

be the full subcategory of complexes such that there is a stratification
of X by locally closed algebraic subvarieties over k such that the restric-
tion of the cohomology sheaves whose cohomology objects are weakly con-
structible with respect to this stratification, see Definition [2.5.5
2. Let
DY%(X,Z) Cc D(S(X™,7Z)).

the full subcategory of complexes whose cohomology objects are con-
structible and almost all zero.
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Note that the condition on objects of D,,.(X,Z) is stronger than the as-
sumption that all cohomology sheaves are weakly constructible.

The six functor formalism is available in these settings by [Sch03l Proposi-
tion 4.0.2 on p. 214 and Proposition 6.0.1 on p. 379]. The necessary properties
of the stratifications by algebraic subvarieties over k hold, see Remark[2.5.6] It
turns out that there are two choices of ¢t-structure for the middle perversity on
Dye(X,Z) and D%(X,Z), the standard one and one based on Example

Definition 2.5.21. 1. Let D5%(X) and DZ2%(X) be the subcategories of
Dy(X,Z) defined by the same condition as in Example but with
strata defined over k.

2. Let *DS0(X) be the full subcategory of D.,.(X,Z) that contains the com-
plexes F* such that there is a sufficiently fine stratification of X by locally
closed algebraic strata such that for the inclusion ig : S — X of a stratum
the sheaves H'i%F* is locally constant and for some (and hence every)
point « € S with inclusion iy : s — S

itis F*[—dime S] € TD=0(Z).

3. Let *DZ0(X) be the full subcategory of D.,.(X,Z) that contains the com-
plexes F* such that there is a sufficiently fine stratification of X by locally
closed algebraic strata such that for the inclusion ig : S — X of a stratum
the sheaves H'ix F*® is locally constant and for some (and hence every)
point z € S with inclusion i, : x — S

iti'sF*[—dime S] € TD2%(Z).

4. Let D=%(X) = Ds(X) N DY%(X,Z)(X) and analoguously for the other
cases.
In any of these settings, we call the intersection ?D?SO(X) N 7D720(X) the
category of perverse sheaves.

Remark 2.5.22. It is not hard to deduce from the stability results of
Schiirmann in [Sch03] Section 6.0.1] and the methods of [BBD82l, Chapter 2
and Section 3.3] that the pairs (*D5°(X),” D7%(X)) define a t-structure in
each of the four cases above. However, we are not going to give details be-
cause we are not aware of a readibly availble reference and we do not need
these facts.

If X is an algebraic variety over k, and j : X < X an arbitrary com-
pactification, then cohomology with supports with coefficients in a weakly
constructible sheaf G is defined by

HI(X,G) == H'(X, Q).

It follows from proper base change that this is independent of the choice of
compactification.
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Theorem 2.5.23 (Schiirmann, Artin vanishing for weakly constructible
sheaves). Let X be a variety over k C C.

1. Let X be affine of dimension n. Let G be weakly constructible on X. Then
HY(X,G) =0 for g >n;

2. Let X be affine of dimension n. Let F* be a perverse sheaf on X. Then
Hi(X,F*)=0 forqg<0.
More precisely, if F* is an object of the category D22(X), or DZ%(X),
or TD20(X), or *DZ°(X), then the complex RI.(X,F*) computing co-
homology with compact support also belongs to DZ0(pt), or DZ%(pt), or
+D20(pt), or *DZ0(pt), respectively. This means it vanishes in negative
degrees, or is bounded with finitely generated cohomology, or also has tor-
sion free H®, or all of this together, respectively.

3. Let X a variety over k and g : U — X be an affine open immersion and

Feo a perverse sheaf on U. Then both giF® and Rg.Fe are perverse on X.
The word perverse refers to any of the four setting of Definition [2.5.21

Proof. The first two statements are [Sch03|, Corollary 6.0.4, p. 391]. Note that
a weakly constructible sheaf lies in ™ D="(X) in the notation of loc.cit.

The last statement combines the vanishing results for affine morphisms
[Sch03, Theorem 6.0.4, p. 409] with the standard vanishing for all compact-
ifiable morphisms [Sch03, Corollary 6.0.5, p. 397] for a morphism of relative
dimension 0.

The way the theory in loc. cit. is set up, it holds relative to a choice of a
suitable subcategory B of the subcategory of the derived category of abelian
groups, e.g. B = +D?S0 or B = 7D?§0 see [Sch03, Example 6.0.2, p. 388].
Hence we get all versions of Artin vanishing in parallel. a

Example 2.5.24. Let X be a variety over k. Let 7 : U C X be a smooth
open subvariety, equidimensional of dimension d. Assume that j is affine. Let
F be a locally constant sheaf of U*". We consider

j!f[d]v R]*-F[d]

1. These complexes are in D52(X) N D20(X).

2. If the stalks of F are finitely generated, then these complexes are even in

D9(X)NDZ(X).

If the stalks are torsion free, these complexes are in T DS2(X)N+D20(X).

4. If the stalks are finitely generated and torsion free, then these complexes
are even in TD=9(X)N+tDZ%(X).

&

Proof. We have F[d] € *D3%(U)N*D5°(U). We then apply Theorem [2.5.23
O
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2.6 Triangulation of algebraic varieties

If X is a variety defined over Q, we may ask whether any singular homol-
ogy class v € H;"8(X?";Q) can be represented by an object described by
polynomials. This is indeed the case. For a precise statement we need several
definitions. The result will be formulated in Proposition |2.6.9

This section follows closely the Diploma thesis of Benjamin Friedrich, see
[Eri04]. The results are due to him.

Let K C R be a subfield. We are mostly intersted in the cases K = Q and
K = Q where is the integral closure of Q in R. Note that Q is a field.

In this section, we use X to denote a variety over Q, and X?®" for the
associated analytic space over C (cf. Subsection .

2.6.1 Semi-algebraic Sets

Definition 2.6.1 ([Hir75 Definition 1.1., p.166]). Let K C R be a subfield.
A subset of R" is said to be K-semi-algebraic, if it is of the form

{z e R"|f(z) > 0}

for some polynomial f € K[zy,...,z,], or can be obtained from sets of this
form in a finite number of steps, where each step consists of one of the fol-
lowing basic operations:

1. complementary set,
2. finite intersection,
3. finite union.

A K-semi-algebraic set is called bounded if it is bounded as a subset of R".

As the name suggests, any algebraic set should in particular be @—Semi—
algebraic. We also need a definition for maps:

Definition 2.6.2 (K-semi-algebraic map [Hir75, p. 168]). Let K C R be a
subfield. A continuous map f between K-semi-algebraic sets A C R™ and
B C R™ is said to be K-semi-algebraic, if its graph

Iy = {(a,f(a)) \aGA} CAx BCRMY™
is K-semi-algebraic.
Example 2.6.3. Any polynomial map

f:A— B

(a1, ... an) = (fi(a1, ... an), ..., fm(ar, ... an))
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between K-semi-algebraic sets A C R” and B C R™ with f; € K[zy,..., 2]
for i = 1,...,m is K-semi-algebraic, since it is continuous and its graph
I'y CR™™ is cut out from A x B by the polynomials

yi — filx1, .., xn) €Q[e1, ..o, Tny Y1, -5 Ym] for i=1,....m. (2.2)
We can even allow f to be a rational map with rational component functions
fieK(zr,...,zn), i=1,...,m

as long as none of the denominators of the f; vanish at a point of A. The argu-
ment remains the same except that the expression (2.2]) has to be multiplied
by the denominator of f;.

Fact 2.6.4 (Tarski-Seidenberg). The image (respectively preimage) of a Q-
semi-algebraic set under a @-semi-algebmic map is again @-semi-algebmic.
The same holds for the image of a Q-semi-algebraic set under a Q-semi-
algebraic map.

Proof. Historically, this was first observed by Tarski. A proof over R can be
found in [Hir75, Proposition II, p. 167]. A proof over Q, or any extension
as for example Q, can be found in [Sei54l, Theorem 3, p. 370] or [BCRIS,
Theorem 1.4.2 and Corollary 1.4.7]. O

The Tarski-Seidenberg theorem is related to the principle of quantifier
elimination, see [BCRI8, Proposition 5.2.2].

Throughout the theory, it does not matter whether we work with @—
coefficients or Q-coefficients. The proof of the following result was suggested
to us by C. Scheiderer.

Proposition 2.6.5. Let G C R" be a @-semi-algebmic set. Then G is even
Q-semi-algebraic. More precisely, the defining inequalities in R™ can be cho-
sen with Q-coefficients.

Proof. Assume that G is defined by inequalities h; < 0 for h; € @[xl, -
fori =1,..., m. The coefficients are already contained in a field X C R which
is finite over Q. Let u be a primitive element of K with f € Q[y] a minimal
polynomial. Write the polynomials as h;(z1, ..., z,) = H;(21,...,z,,u) with
H; € Q[z1,...,2Zn,u]. Choose rational numbers a,b € Q such that u is the
only root of f between a and b. Then G can be described by

G={(z1,...,2,) € R" | Jy with f(y) =0 and a < y < b such that
Hi(z1,...,2n,y) <0Vi=1,...,m}.

Hence G is the image of the Q-semi-algebraic set
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G={(x1,...,20,9) €ER"™ | f(y) =0and a < y < b and
Hi(x1,...,2n,y) <0Vi=1,...,m}.

By the Q-version of Fact this implies that G is defined by polynomial
equations with rational coefficients. a

As the terminology suggest, algebraic varieties are semi-algebraic. Indeed,
this is even true for the associated complex analytic space.

Lemma 2.6.6. Let X be a quasi-projective algebraic variety defined over @
(or Q). Then we can regard the complex analytic space X associated to the
base change X¢c = X X5 C (or X¢ = X xg C as a bounded @—semi—algebmz'c
subset (or Q-semi-algebraic subset).

X C RN (2.3)

for some N. Moreover, if f : X —Y is a morphism of varieties defined over
Q, we can consider fa" : X?" — Y?" as a Q-semi-algebraic map with respect
to these embeddings.

Remark 2.6.7. We will mostly need the case when X is even affine. Then
X C C" is defined by polynomial equations with coefficients in Q. We identify
C" = R?*" and rewrite the equations for the real and imaginary part. Hence
X is obviously Q-semi-algebraic. In the lemma, we will show in addition that
X can be embedded as a bounded Q-semi-algebraic set.

Proof of Lemma|2.6.6.. The case for Q follows from the case @ as the two
notions agree. Alternatively, the proof given below works without changes
over other fields than Q.

First step X = P(% : Consider

o P = (IP’% X5 C)® with homogeneous coordinates xg, ..., T,, which we
split as x,,, = am, + @by, with a,,, b, € R in real and imaginary part, and
. RN, N = 2(n + 1)2, with coordinates {ykl: Zkl}k,l:O,..A,n~

We define an explicit map

Y PL— RN

[l‘o . - ] s ( Rexr7; Im z,7; )
" ’ 22:0 ‘xm|2’ Z:'L:O |5'3M|27
Ykl 2Kl
. ) ara; + bib bra; — arby
[ao—i—zboz...:an—i—zbn]H(..., = ) = R
Zm:O(agn +02,) Zm:O(a’%n +02,)

Ykl 2kl
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We can understand this map as a section of a natural fibre bundle on P¢.
Its total space is given by the set E of hermitian (n + 1) X (n + 1)-matrices
of rank 1. The map

¢: E—P¢

takes a linear map M to its image in C"*1. We get a section of ¢ by mapping a
1-dimensional subspace L of C**! to the matrix of the orthogonal projection
from C™*! to L with respect to the standard hermitian product on C***. We
can describe this section in coordinates. Let (o, ...,7,) € C"*! be a vector
of length 1. Then an elementary computation shows that M = (x;%;); ; is
the hermitian projector to the line L = C(xo,...,z,). Writing the real and
imaginary part of the matrix M separately gives us precisely the formula for
1. In particular, v is injective.

Therefore, we can consider P¢ via 1 as a subset of RY. It is obvious from
the explicit formula that it takes values in the unit sphere S N=1 ¢ RV, hence
it is bounded. We claim that 1 (P¢) is also Q-semi-algebraic. The composition
of the projection

7 R2HDN {(0,...,0)} — P2
(ao,bo,...,an,bn)F—) [a0+ib0 : an+zbn]

with the map ) is a polynomial map, hence it is @—semi—algebraic by Example

2631 Thus
Im(yp o) =Imey CRY

is @—semi—algebraic by Fact [2.6.4
Second step (zero set of a polynomial): We use the notation

V(g) :={z € P¢|g(z) =0} for g€ Clxo,...,z,] homogeneous, and
W(h) :={t e RN |n(t) =0} for h € Clyoo,- - 2nn)-

Let X* = V/(g) for some homogencous g € Q[zo, .. .,x,]. Then (X)) C

RY is a Q-semi-algebraic subset, as a little calculation shows. Setting for
k=0,...,n

g = “g(&@)”
= 9(20Tk, . .., TnTk)

= g((aoak + boby) + i(boar, — agbg), - - ., (anag + bpby) + i(bpar — anbk)),
where z; = a; +ib; for j =0,...,n, and

hy, = g(yok + 120k, - - -y Ynk + iznk)»

we obtain
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Final step: We can choose an embedding
n
X C ]P’@,
thus getting
X C Pg.
Since X is a locally closed subvariety of IE”%, the space X" can be expressed

in terms of subvarieties of the form V(g) with g € @[azo, .., Zp], using only
the following basic operations

1. complementary set,
2. finite intersection,
3. finite union.

Now @—semi—algebraic sets are stable under these operations as well, hence
the first assertion is proved. _

Second assertion: The first part of the lemma provides us with Q-semi-
algebraic inclusions

P X CPECRY,
¢: Y™ CPICRM,

We use the complex coordinates = [zg : ... : zp] and uw = [ug : ... : Uy on
Pg and P, respectively, and the real coordinates (Yoo, 200; - - - s Ynns Znn) and
(V005 W00 - - - » Vrms Winm ) on RY and RM | respectively. We use the notation

Vi(g) = {(z,u) € P¢ x P¢ [ g(z,u) = 0}
for g € Clzo,...,2n,uo,. .., U] homogeneous in both  and w, and
W(h) := {t € RN*M | h(t) = 0}

for h € Clyoo, - - - s Znn, V00s - - - s Winm|. Let {U; } be a finite open affine covering
of X such that f(U;) satisfies

e f(U;) does not meet the hyperplane {u; = 0} C ]P’g for some j, and
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e f(U;) is contained in an open affine subset V; of Y.

This is always possible, since we can start with the open covering YN {u; # 0}
of Y, take a subordinate open affine covering {V;/}, and then choose a finite
open affine covering {U;} subordinate to {f~!(V;:)}. Now each of the maps

fz = fan‘Ui . U:i.l’l — Yan

has image contained in V*" and does not meet the hyperplane {u € P |u; =
0} for an appropriate j. Being associated to an algebraic map between affine
varieties, this map is rational

o e@ @ Ga@) g
Jorz [96’(9:) g (@) 55 glha@) T g |

with g, g € @[330, ce Xy, k=0, .. ..., m. Since the graph I'gan of f2"
is the finite union of the graphs Iy, of the f;, it is sufficient to prove that
(¢ x ¢)(I'},) is a Q-semi-algebraic subset of RN M. Now

n

an an = yk" gl l an an
Iy, = U < Ve ) v(,— A ))zwi < VN () Vgl () —v54(2),
k=0 i 9i(z) k=0

ki kit

so all we have to deal with is

V{(ygr () — yigi(z))-

Again a little calculation is necessary. Setting

9pq = ““kﬂqgg@fp) - Ujﬂqgfc@fp)”
= UGy (T0Tp, - - - s TnTp) — UjUgqs (ToTp, - - - s TnTp)
= ((ckcq + dkdq) + i(dkcq — deq))
gg((aoap + bobp) +i(boap — aoby), ..., (anap + brby) +i(bray — anbp))
— ((¢jeq + djdy) +i(djcq — ¢jdy))
/ . .
9% ((aoap + boby) + i(boa, — aoby), - . ., (anay + bpby) + i(bya, — anby)),

where x; = a; +1tb; for [ =0,...,n, uy = ¢ +1id; for [ =0,...,m, and
hpq = (qu+iwkq)g;cl(y0p+iZ0pv cees ynp+iznp)_(vjq+iqu)g;c (y0p+7;20pa cee aynp'i‘iznp)a

we obtain
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(¥ x @) (V(ykgfé (z)—ngk(z))) =

I
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IDE

(¥ x @) (V(9pq))
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2.6.2 Semi-algebraic singular chains

We need further prerequisites in order to state the promised Proposition
2.6.9

Definition 2.6.8 ( [Hir75, p. 168]). By an open simplex /\’ we mean the
interior of a simplex (i.e., the convex hull of r+ 1 points in R™ which span an
r-dimensional subspace). For convenience, a point is considered as an open
simplex as well.

The notation Ay will be reserved for the closed standard simplex spanned
by the standard basis

{e;=(0,...,0,1,0,...,0)|i=1,...,d+ 1}

of R4+1,
Consider the following data (x):

e X a variety defined over @,
e D a divisor in X with normal crossings,
e and v € H;ing(Xa“,Dan;Q), p € Np.
As before, we have denoted by X" and D" the complex analytic space
associated to the base change X¢ = X X@(C and D¢ = D X C), respectively.
By Lemma we may consider both X" and D*" as bounded @—Semi—

algebraic subsets of RV,
We are now able to formulate the main result of Section 2.0l

Proposition 2.6.9. With data (x) as above, we can find a representative of
~ that is a rational linear combination of singular simplices each of which is
Q-semi-algebraic.

The proof of this proposition relies on the following proposition due to
Lojasiewicz which has been written down by Hironaka.
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Proposition 2.6.10 ([Hir75, p. 170])). For {X;} a finite system of bounded
Q-semi-algebraic sets in R™, there exists a simplicial decomposition

R" =[] 2%
J

by open simplices Aoj of dimensions d(j) and a @—semi—algebmic automor-
phism

k:R" — R"
such that each X; is a finite union of some of the r(L;).

Note 2.6.11. Although Hironaka considers R-semi-algebraic sets, we can
safely replace R by Q in this result (including the fact he cites from [Seib4]).
The only problem that could possibly arise concerns a “good direction
lemma”:

Lemma 2.6.12 (Good direction lemma for R, [Hir75, p. 172], [KB32, The-
orem 5.1, p. 242]).

Let Z be an R-semi-algebraic subset of R™, which is nowhere dense. A direc-
tion v € ]P’]g*l(R) is called good if any line | in R™ parallel to v meets Z in
a discrete (possibly empty) set of points; otherwise v is called bad. Then the
set B(Z) of bad directions is a Baire category set in Py ' (R).

This gives immediately good directions v € PE~*(R)\ B(Z), but not neces-
sarily v € P%_l(@) \ B(Z). However, in Remark 2.1 of [Hir75], which follows
directly after the lemma, the following statement is made: If Z is compact,
then B(Z) is closed in PE~(R). In particular, P%fl((@) \ B(Z) will be non-
empty. Since we only consider bounded @—semi—algebraic sets Z', we may take
Z = 7' (which is compact by Heine-Borel), and thus find a good direction
ve %—1(@) \ B(Z') using B(Z') C B(Z). Hence:

Lemma 2.6.13 (Good direction lemma for @) Let Z' be a bounded Q-semi-
algebraic subset of R™, which is nowhere dense. Then the set P%_l(Q)\B(Z)
of good directions is non-empty.

Proof of Proposition[2.6.9. Applying Proposition [2.6.10]to the two-element
system of Q-semi-algebraic sets X", D** C R¥ we obtain a Q-semi-algebraic

decomposition
N o
RY =] &%
J

of RN by open simplices N and a @—semi—algebraic automorphism
kRN 5 RV,

We write A; for the closure of Aoj. The sets
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K = {X k(&) C X*} and L= {A%| k(&%) C D>}

can be thought of as finite simplicial complexes, but built out of open sim-
plices instead of closed ones. We define their geometric realisations

K|:= |J &% and |L|:= (] &Y.
KeK LeL

J J

Then Proposition [2.6.10| states that x maps the pair of topological spaces
(|K|,|L]) homeomorphically to (X", D).

Easy case: If X is complete, so is X¢ by [Har77, Corollary I1.4.8(c), p.
102], hence X?* and D*" will be compact by [Har77, Appendix B.1, p. 439].
In this situation,

K :={A;|k(A;) CX*™} and L:={A;|k(4;) C D™}

are (ordinary) simplicial complexes (see Definition2.3.3)), whose geometric
realisations coincide with those of K and L, respectively. In particular,
HI"™ (K, L;Q) = HI"(|K|,|L]: Q)
> Hy"8(|K],|L]; Q) (2.4)
o~ H:ing(Xan’ Dan; Q)

Here HS™' (K, T; Q) denotes simplicial homology of course.

We write Ysimpl € H3™P (K, L; Q) and ysing € H;ing(‘F , ‘f‘ ;Q) for the
image of v under this isomorphism. Any representative I mpi of Ysimpl is a
rational linear combination

FsimpIZZja]'Aj’ aje@

of closed simplices A; € K. We orient them according the global orienta-
tion of X?". We can choose orientation-preserving affine-linear maps of the
standard simplex A, to A;

0j: Ap — A]’ for Aj S Fsimp]'
These maps yield a representative

Lsing == 3, a0

of Ysing. Composing with x yields I" := k.[4ing € 7y, where I" has the desired
properties.

In the general case, we perform a barycentric subdivision B on K twice
(once is not enough) and define |K| and |L| not as the “closure” of K and L,
but as follows (see Figure
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K :={A|N € B*K)and A C |K|},
L:={A|N€B*K)and A C|L|}.

(2.5)

ASSSUNRNNNNNNNNNNNNNNNY
Hil(Xan)ﬂAj KﬂAj
Intersection of x~1(X2%) with a
closed 2-simplex Aj, where we as- Open simplices of K contained in
sume that part of the boundary A;
O/ ; does not belong to k™1 (X2")

Intersection of ‘?| with A (the
dashed lines show the barycentric
subdivision)

Fig. 2.1 Definition of K

The point is that the pair of topological spaces (|F ,}f{) is a strong
deformation retract of (|K|,|L|). Assuming this, we see that in the general
case with K, L defined as in , the isomorphism still holds and we
can proceed as in the easy case to prove the proposition.

We define the retraction map

p+ (IK]x [0,1], |L] x [0,1]) — (|[K

L)

)

as follows: Let Aoj € K be an open simplex which is not contained in the
boundary of any other simplex of K and set

inner :== A;NK, outer := A; \ K.

Note that inner is closed. For any point p € outer the ray c? from the
center ¢ of Aoj through p “leaves” the set inner at a point gy, i.e. @Oinner
equals the line segment cg,; see Figure The map

ijAj X[O,l]*)ﬂj

() > p if p € inner,
b gp+t-(p—qp) if pe€outer

retracts AA; onto inner.
Now these maps p; glue together to give the desired homotopy p. O

We want to state one of the intermediate results of this proof explicitly:
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Fig. 2.2 Definition of ¢,

Corollary 2.6.14. Let X and D be as above. Then the pair of topologi-
cal spaces (X D?) is homotopy equivalent to a pair of (realisations of)
simplicial complezes (| X 5P| | Dsimpl)),

2.7 Singular cohomology via the h’-topology

In order to give a simple description of the period isomorphism for singular
varieties, we are going to need a more sophisticated description of singular
cohomology.

We work in the category An of complex analytic spaces with morphisms
given by holomorphic maps.

Definition 2.7.1. Let X be a complex analytic space. The h’-topology on
the category (An/X)y of complex analytic spaces over X is the smallest
Grothendieck topology such that the following are covering maps:

1. proper surjective morphisms;
2. open covers.

If F is a presheaf of An/X we denote JFy its sheafification in the h’-topology.

Remark 2.7.2. This definition is inspired by Voevodsky’s h-topology on
the category of schemes, see Section [3.2] We are not sure if it is the correct
analogue in the analytic setting. However, it is good enough for our purposes.

Lemma 2.7.3. ForY € An let Cy be the (ordinary) sheaf associated to the
constant presheaf C. Then
Y — Cy (Y)

is an h'-sheaf on An.

Proof. We have to check the sheaf condition for the generators of the topol-
ogy. By assumption, it is satisfied for open covers. Let Y — Y be a proper
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surjective morphism. Without loss of generality, we can assume that Y is
connected. Let Y; for ¢ € I be the collection of connected components of Y.

Then R ~ ~ R
xyY = ] Vixy ;.
ijel
We have to compute the kernel of

[[co) = J[cw: xy V)

el 4,3

via the difference of the two natural restriction maps. Comparing a; and a;

in (C(f/; Xy }7}) we see that they agree. Hence the kernel is just one copy of
C=Cy (Y) O

Proposition 2.7.4. Let X be an analytic space and v : Z C X a closed
subspace. Then there is a morphism of sites p : (An/X)p — X. It induces
an isomorphism

H W (X, Z;C) — Hi (An/X)w, Ker(Cr — 4,.Cyy))

sing

compatible with long exact sequences and products.

Remark 2.7.5. This statement and the following proof can be extended to
more general sheaves F on An.

The argument uses the notion of a hypercover, see Definition [T.5.8]

Proof. We first treat the absolute case with Z = (). We use the theory of
cohomological descent as developed in [SD72]. Singular cohomology satisfies
cohomological descent for open covers. Proper base change, see Theorem [2.7.6
implies cohomological descent for proper surjective maps. Hence it satisfies
cohomological descent for h’-covers. This implies that singular cohomology
can be computed as a direct limit

lgfl C(X.),

where X, runs through all h’-hypercovers. On the other hand, the same limit
computes h’-cohomology, see Proposition [1.6.9] For the general case, recall
that we have a short exact sequence

0—-jC—-C—i,C—0

of sheaves on X. Its pull-back to An/X maps naturally to the short exact
sequence
0— Ker((Ch/ — i*Ch/)) — (Ch/ — i*Ch/ — 0.

This reduces the comparison in the relative case to the absolute case once
we have shown that Ri,Cy = i,Cy/. The sheaf R™i,.Cy/ is given by the
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h/-sheafification of the presheaf

X' — HS/(Z X x XI,(Ch/) = Hgng(Z X x X/,(C)
for X’ — X in An/X. By resolution of singularities for analytic spaces we
may assume that X’ is smooth and Z’ = X’ xx Z a divisor with normal
crossings. By passing to an open cover, we may assume that Z’ is an open
ball in a union of coordinate hyperplanes, in particular contractible. Hence, its
singular cohomology is trivial. This implies that R":,Cyy =0 forn > 1. O

Theorem 2.7.6 (Descent for proper hypercoverings). Let D C X be a closed
subvariety and Dy — D a proper hypercovering (see Definition , such
that there is a commutative diagram

Dy — X,

I l

D — X.

Then one has cohomological descent for singular cohomology:
H*(X,D;Z) = H* (Cone(Tot(X.) — Tot(D,))[—1];Z) .

Here, Tot(—) denotes the total complex in Z[Var] associated to the corre-
sponding simplicial variety, see Definition[1.5.11].

Proof. The relative case follows from the absolute case. The essential ingre-
dient is proper base change, which allows us to reduce to the case where X
is a point. The statement then becomes a completely combinatorial assertion
on contractibility of simplicial sets. The results are summed up in [Del74b]
(5.3.5). For a complete reference see [SD72], in particular Corollaire 4.1.6. O






Chapter 3
Algebraic de Rham cohomology

Let k be a field of characteristic zero. We are going to define relative algebraic
de Rham cohomology for general varieties over k, not necessarily smooth.

3.1 The smooth case

In this section, all varieties are smooth over k. In this case, de Rham cohomol-
ogy is defined as hypercohomology of the complex of sheaves of differentials.

3.1.1 Definition

Definition 3.1.1. Let X be a smooth variety over k. Let 2% be the sheaf
of k-linear algebraic differentials on X. For p > 0 let

p
0% = \ 2k

be the exterior power in the category of Ox-modules. The universal k-
derivation d : Ox — Q}( induces

v OF — Q%

We call (£2%,d) the algebraic de Rham complex of X.

In more detail: if X is smooth of dimension n, the sheaf 2% is locally free
of rank n. This allows us to define exterior powers. Note that (2% vanishes
for ¢ > n. The differential is uniquely characterised by the properties:

1. d° =d on Ox;
2. dPT1dP =0 for all p > 0;

73
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3. d(wAW') =dwAw' + (=1)Pw A dw’ for all local sections w of 2% and w’
of 0%

Indeed, if ¢1,...,t, is a system of local parameters at x € X, then local
sections of 2% near x can be expressed as

1<iy <---<ip<n
and we have

d'w = Z dfil“'ip/\dtil/\"'/\dt-

Zp'
1<ig<--<ip<n

Definition 3.1.2. Let X be a smooth variety over a field k of characteristic
0. We define algebraic de Rham cohomology of X as the hypercohomology

Hgp (X) = H'(X, 25%).

For background material on hypercohomology see Section
If X is smooth and affine, this simplifies to

Hag(X) = H'(2%(X)).
Example 3.1.3. 1. Consider the affine line X = A} = Speck|t]. Then
20 (AY) = [km 4 k[t]dt} :
We have
Ker(d) = {P € k[t]|P' =0} =k, Im(d) = k[t]dt,
because we have assumed characteristic zero. Hence

, k i=0
Hig(AY) = ’
an(A) {0 i > 0.
2. Consider the multiplicative group X = G,, = Spec k[t,t~!]. Then
28 (Gp) = [k[t,t—l} 4, k[t,t‘l]dt] .

We have
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Ker(d) = {P € k[t]|P =0} =k,

N
Im(d) = {Z aitidt|a,1 = 0} ,

again because of characteristic zero. Hence

. k i=0,1,
Hin(Gm) = {0 i>1

A generator for H}(G,,) is given by dt/t and the isomorphism to k is
induced by the residue for meromorphic differential forms.

3. Let X be a connected smooth projective curve of genus g. We use the
trivial filtration on the de Rham complex

0 — 2%[-1] = 2% — Ox[0] — 0.

The sheaves 2% are locally free and hence in particular coherent. The
cohomological dimension of any variety X is the index ¢ above which the
cohomology H*(X, F) of any coherent sheaf F vanishes, see [Har77, Chap-
ter III, Section 4]. The cohomological dimension of a smooth, projective
curve is 1, hence the long exact sequence reads

0=H '(X,02%) — Hjy(X) - H(X,Ox)
% HO(X, Q%) — HI(X) = HY(X, Ox)
% HY(X, 02L%) = H%(X) = 0

This is a special case of the Hodge spectral sequence. It is known to degen-
erate (e.g. [Del71]). Hence the boundary maps 0 vanish. By Serre duality,
this yields

HO(X, Ox) = k Z:O7
I_If:IR(‘XF)g Hl(XaQ%()gHO(XaOX)v:k 2227
0 i> 2.

The most interesting group for ¢ = 1 sits in an exact sequence
0— HY(X,02%) — Hig(X) — H(X,02%)Y — 0,

and hence
dim Hjg(X) = 2g.

Remark 3.1.4. In these cases, the explicit computation shows that algebraic
de Rham cohomology computes the standard Betti numbers of these varieties.
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We are going to show in chapter [5| that this is always true. In particular, it
is always finite dimensional. A second algebraic proof of this fact will also be

given in Corollary [3.1.17]

Lemma 3.1.5. Let X be a smooth variety of dimension d. Then Hig(X)
vanishes for i > 2d. If in addition X is affine, it vanishes for i > d.

Proof. We use the trivial filtration on the de Rham complex. This induces a
system of long exact sequences relating the groups H'(X, 2%) to algebraic
de Rham cohomology.

Any variety of dimension d has cohomological dimension < d for coherent
sheaves [Har77, ibid.]. All £2% are coherent, hence H'(X, {2%) vanishes for
i > d. The complex (2% is concentrated in degrees at most d. This adds up
to cohomological dimension 2d for algebraic de Rham cohomology.

Affine varieties have cohomological dimension 0, hence H*(X, %) van-
ishes already for ¢ > 0. Again the complex (2% is concentrated in degrees at
most d, hence algebraic de Rham cohomology vanishes for ¢ > d in the affine
case. O

3.1.2 Functoriality

Let f: X — Y be a morphism of smooth varieties over k. We want to explain
the functoriality _ _
[T Hag(Y) = Hig(X).

We use the Godement resolution (see Definition and put
RIR(X) = I'(X, Gd(2%)).
The natural map f~'Oy — Ox induces a unique multiplicative map
iy — 0%.
By functoriality of the Godement resolution, we have
[ Gy (%) — Gdx (f~10%) — Gdx (2%).
Taking global sections, this yields
RI4r(Y) = RI4r(X).

It is easy to see that the assignment is compatible under composition. Hence:

Lemma 3.1.6. De Rham cohomology H'y(-) is a contravariant functor on
the category of smooth varieties over k with values in k-vector spaces. It is
induced by a functor
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RIyR : Sm — C*(k—Mod).

Note that Q C k, so the functor can be extended Q-linearly to Q[Sm)].
This allows us to extend the definition of algebraic de Rham cohomology to
complexes of smooth varieties in the next step. Explicitly: let X*® be an object
of C~(Q[Sm]). Then there is a double complex K** with

K™™ = D(X~",Gd™(2°)).

Definition 3.1.7. Let X* be an object of C~(Q[Sm]). We denote the total
complex by
RIR(X*®) = Tot(K**)

and set ‘ ‘
Hip(X*) = H'(RI4r(X®)).

We call this the algebraic de Rham cohomology of X°.

3.1.3 Cup product

Let X be a smooth variety over k. The wedge product of differential forms
turns 2% into a differential graded algebra:

Tot (2% @k 2%) — 2%.

See Definition for the compatibility of wedge products and differentials.

Lemma 3.1.8. H}(X) carries a natural multiplication
U+ Hig(X) @k Hip(X) = i (X)
induced from wedge product of differential forms.
Proof. We need to define
RIGR(X) @k RI4r(X) — RI4r(X)
as a morphism in the derived category. We have quasi-isomorphisms
N% @ N% = Gd(N%) @ Gd(02%),
and hence a quasi-isomorphism of flasque resolutions of 2% ® 2%
s: Gd(N2% ® 2%) — Gd(Gd(2%) ® Gd(£2%)) .

In the derived category, this allows the composition
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RIGr(X) @k RIGr(X) = I'(X, Gd(£2%)) @k I'(X, Gd(£2%))
— I(X,Gd(2°) ® Gd(2%))
— I'(X,Gd (Gd(2%) ® Gd(£2%)))
& DX, Gd(2% @ 02%))
— I'(X,Gd(2%)) = RI4r(X).

The same method also allows the construction of an exterior product.

Proposition 3.1.9 (Kiinneth formula). Let X, Y be smooth varieties. There
s a natural multiplication induced from wedge product of differential forms

Hip(X) @ Hip (V) = Hyf! (X x V).
It induces an isomorphism

Hip (X xY) = @ Hig (X) @k Hig (V).

i+j=n

Proof. Let p: X xY — X and ¢: X XY — Y be the projection maps. The
exterior multiplication is given by
Hip(X) @ HIL (V) 225 HiL (X x YV) @ Hig (X x V) 2 HF (X < Y).

The Kiinneth formula is most easily proved by comparison with singular
cohomology. We postpone the proof to Lemma [5.3.3] in chapter 0

Corollary 3.1.10 (Homotopy invariance). Let X be a smooth variety. Then
the natural map
Hijp(X) = Hip(X x AY)

is an isomorphism.

Proof. We combine the Kiinneth formula with the computation in the case

of Al in Example O

3.1.4 Change of base field

Let K/k be an extension of fields of characteristic zero. We have the corre-
sponding base change functor

X = Xg

from (smooth) varieties over k to (smooth) varieties over K. Let
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m: Xg — X
be the natural map of schemes. By standard calculus of differential forms,
ek ET ) =7 2% ) O K.

Lemma 3.1.11. Let K/k be an extension of fields of characteristic zero. Let
X be a smooth variety over k. Then there are natural isomorphisms

Hip(X) @ K = Hig(Xk).
They are induced by a natural quasi-isomorphism
RFdR(X) Rk K — RFdR(XK).

Proof. By functoriality of the Godement resolution (see Lemma [1.4.10]) and
k-linearity, we get natural quasi-isomorphisms

W_lde( ;{/k) O K — GdXK(ﬂ-_lg;(/k) - GdXK( ;(K/K)'

As K is flat over k, taking global sections induces a sequence of quasi-
isomorphisms

RIGr(X) @k K = I'(X, Gdx (2% ) @x K
= DXk, 7 'Gdx (2% 1)) Ok K
= I( Xk, 1Gdx (%) @1 K)
= I'( Xk, Gdx, (2%, /x))
= RIyr(Xk).
O

Remark 3.1.12. This immediately extends to algebraic de Rham cohomol-
ogy of complexes of smooth varieties.

Conversely, we can also restrict scalars.

Lemma 3.1.13. Let K/k be a finite field extension. Let Y be a smooth
variety over K. Then there is a natural isomorphism

Hap (Y/k) = Hag (Y/K).
It is induced by a natural isomorphism of complexes k-vector spaces
RI4r(Y/k) —» RI4r(Y/K).
Proof. We use the sequence of sheaves on Y (see [Har77, Proposition 8.11])
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where 7 : Y — SpecK is the structural map. As we are in characteristic 0,
we have Q}( k= 0. This implies that we actually have identical de Rham
complexes

Q;//K = Q}.’/k

and identical Godement resolutions. O

3.1.5 Etale topology

In this section, we give an alternative interpretation of algebraic de Rham co-
homology using the étale topology. The results are not used in our discussions
of periods.

Let X be the small étale site on X, see Section The complex of
differential forms (2% can be viewed as a complex of sheaves on X, see
[Mil80, Chapter II, Example 1.2 and Proposition 1.3]. We write 2% = for
distinction.

Lemma 3.1.14. There is a natural isomorphism
Hig(X) = H' (Xe, 02%.,)-
Proof. The map of sites s : Xt — X induces a map on cohomology
HY (X, 02%) = H' (Xet, 2%.,)-
We filter §2% by the trivial filtration FP{2%
0— FPTL0% — FPQ% — Q% [—p] = 0

and compare the induced long exact sequences in cohomology on X and Xe.
As the (25 are coherent, the comparison maps

HY(X, Q%) = H'(Xet, 2% )

are isomorphisms by [Mil80, Chapter III, Proposition 3.7]. By descending
induction on p, this implies that we have isomorphisms for all FP{2%, in
particular for (2% itself. O

3.1.6 D:ifferentials with log poles

We give an alternative description of algebraic de Rham cohomology using
differentials with log poles as introduced by Deligne, see [Del71l Chapter 3].
We are not going to use this point of view in our study of periods.
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Let X be a smooth variety and j : X — X an open immersion into a
smooth projective variety such that D = X ~\ X is a divisor with simple
normal crossings (see Definition |1.1.3)).

Definition 3.1.15. Let
2% (D) C j. 0%

be the locally free O gz-module with the following basis: if U C X is an affine
open subvariety étale over A" via coordinates t1,...,t, and D|y is given by
the equation ¢; ...t, = 0, then Q}(<D>|U has O g-basis

dt dt
?,...,t—’”,dtrﬂ,...,dtn.
T

For p > 1 let
P
2%(D) = \ 2%(D).
We call the 2%(D) the complex of differentials with log poles along D.

Note that the differential of j.2% respects 2% (D), so that this is indeed
a subcomplex.

Proposition 3.1.16. The inclusion induces a natural isomorphism
H'(X, 2%(D)) — H'(X, 2%).

Proof. This is the algebraic version of [DelT1l, Proposition 3.1.8]. We indicate
the argument. Note that j : X — X is affine, hence j, is exact and we have

H(X, 2%) = H'(X, 1.2%).

It remains to show that
L2 %(D) — J. 2%

is a quasi-isomorphism, or, equivalently, that Coker(¢) is exact. We can work
in the étale topology by Lemma It suffices to check exactness on stalks
in geometric points of X over closed points. As X is smooth and D a divisor
with normal crossings, it suffices to consider the case D = V (¢1...t,) C A"
and the stalk in 0. As in the proof of the Poincaré lemma, it suffices to
consider the case n = 1. If r = 0, then there is nothing to show.

In remains to consider the following situation: let k = k, O be the henseli-
sation of k[t] with respect to the ideal (¢). We have to check that the complex

Oft™1/0 — ot~ /t 71 Odt

is acyclic. The term in degree 0 has the O-basis {t~*|i > 0}. The term in
degree 1 has the O-basis {t~%dt|i > 1}. In this basis, the differential has the
form
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f H{ rdb ot s,

| —rd i=1
It is injective because char(k) = 0. By induction on i we also check that it is
surjective. 0

Corollary 3.1.17. Let X be a smooth variety over k. Then the algebraic de
Rham cohomology groups Hix (X) are finite dimensional k-vector spaces.

Proof. By resolution of singularities, we can embed X into a projective X
such that D is a divisor with simple normal crossings. By Proposition|3.1.16

Hap(X) = H'(X, 2%(D)).

Note that all _Q;—(<D> are coherent sheaves on a projective variety, hence the
cohomology groups H?(X, 2% (D)) are finite dimensional over k. We use the
trivial filtration on 2% (D) and the induced long exact cohomology sequence.
By induction, all H?(X, FP2% (D)) are finite dimensional. O

Remark 3.1.18. The complex of differentials with log poles is studied in-
tensively in the theory of mixed Hodge structures. Indeed, Deligne uses it in
[DelT1] in order to define the Hodge and the weight filtration on the coho-
mology of a smooth variety X. We are not going to use Hodge structures in
the sequel though.

3.2 The general case: via the h-topology

We now want to extend the definition of algebraic de Rham cohomology to
the case of singular varieties and even to the relative setting. The most simple-
minded idea — using Definition — does not give the desired dimensions.
It is surprisingly difficult to write down explicit counterexample. Neither the
standard nodal curve nor the cuspidal curve Y2 = X3 are counterexamples.

Example 3.2.1 (Arapura, Kang). By [AK11l Example 4.4], the dimension
of the first naive de Rham cohomology group of the singular planar curve
given by the equation

X°4+Y +X*Y? =0
is strictly bigger than the dimension of the first singular cohomology.

There are different ways of adapting the definition in order to get a well-
behaved theory.

The h-topology introduced by Voevodsky makes the handling of singular
varieties straightforward. In this topology, any variety is locally smooth by
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resolution of singularities. The h-sheafification of the presheaf of Kahler dif-
ferentials was studied in detail by Huber and Joérder in [HJ14]. The weaker
notion of eh-differential was already introduced by Geisser in [Gei06].

We review a definition given by Voevodsky in [Voe96].

Definition 3.2.2 ([Voe96, Section 3.1]). A morphism of schemesp: X — Y
is called topological epimorphism if the topology on Y is the quotient topology
with respect to p. It is a universal topological epimorphism if any base change
of p is a topological epimorphism.

The h-topology on the category (Sch/X);, of separated schemes of finite
type over X is the Grothendieck topology with coverings finite families {p; :
U; — Y} such that |J, U; = Y is a universal topological epimorphism.

By [Voe96], the following are h-covers:

1. flat covers with finite index set (in particular étale covers);
2. proper surjective morphisms;
3. quotients by finite groups actions.

For all X € Sch/k, the natural reduction map X! — X is not only an
h-cover, but for all h-sheaves F we have F(X) = F(X*d),
The assignment X — 2% /1(X) is a presheaf on Sch/k. We denote by o

(resp. Qﬁ/xv if X needs to be specified) its sheafification in the h-topology,

and by 2F(X) its value as abelian group.

Definition 3.2.3. Let X be a separated k-scheme of finite type over k. We
define _ '
Har(Xn) = H'((Sch/X)n, £23).

Proposition 3.2.4 ([HJ14, Theorem 3.6, Proposition 7.4]). Let X be smooth
over k. Then
(X)

QRX) = 2,

and 4 4
HéR(Xh) = HéR(X)'

Proof. The statement on (27 (X) is [HJ14, Theorem 3.6]. The statement on
the de Rham cohomology is loc.cit., Proposition 7.4., together with the com-
parison of loc. cit., Lemma 7.22. a

Remark 3.2.5. The main ingredients of the proof are a normal form for
h-covers established by Voevodsky in [Voe96, Theorem 3.1.9], an explicit
computation for the blow-up of a smooth variety in a smooth center and
étale descent for the coherent sheaves (27, Ik

A particular useful example of an h-cover are abstract blow-ups, i.e., covers
of the form (f : X’ — X,i: Z — X) where Z is a closed immersion and f is
proper and an isomorphism above X — Z.

Then, the above implies that there is a long exact blow-up sequence
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o= Hig (Xn) = Hig(X3) © Hig(Zn) = Hir(f~H(Z)n) = ..
Definition 3.2.6. Let X € Sch and i : Z7 — X a closed subscheme. Put

— 028, )

Qﬁ/(x,z) = Ker(£2 bz

»
h/X
in the category of abelian sheaves on (Sch/X)y.

We define relative algebraic de Rham cohomology as

HgR(Xv Z)= Hﬁ'(X, ‘Q}:/(X,Z))'

Lemma 3.2.7 ([HJ14, Lemma 7.26]). Leti: Z — X be a closed immersion.

1. Then

Ri. @, =000,

and hence

HY (X, 1.020,,) = H(Z, ).
2. The natural map of sheaves of abelian groups on (Sch/X)y

Qﬁ/x —>i*Qﬁ/Z

18 surjective.
Remark 3.2.8. The main ingredient of the proof is resolution of singularities

and the computation of 2! (Z) for Z a divisor with normal crossings: it is
given as Kéahler differentials modulo torsion, see [HJ14, Proposition 4.9].

Proposition 3.2.9 ((Long exact sequence) [HJ14, Proposition 2.7]). Let
Z CY C X be closed immersions. Then there is a natural long exact sequence

s HIR(X,Y) = HIR (X, Z) — HIL (Y, Z) — HEH(X,)Y) — -

Remark 3.2.10. The sequence is the long exact cohomology sequence at-
tached to the exact sequence of h-sheaves on X

— P

0— 2? h(X.2)

h/(X,Y) — iy*Q

ﬁ/(y,z) =0,

where 7y : Y — X is the closed immersion.

Proposition 3.2.11 ((Excision) [HJ14, Proposition 7.28]). Let 7: X — X
be a proper surjective morphism, which is an isomorphism outside of Z C X.

Let Z = nY(Z). Then
HI (X, Z) = HI (X, Z).

Remark 3.2.12. This is an immediate consequence of the blow-up triangle.

Proposition 3.2.13 ((Kiinneth formula) [HJ14, Proposition 7.29]). Let Z C
X and Z' C X' be closed immersions. Then there is a natural isomorphism
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Hip(X x X' X xZ'0ZxX')= @ Hix(X,Z) @ Hig(X', 2).
a+b=n

Proof. We explain the construction of the map. We work in the category
of h-sheaves of k-vector spaces on X x X’. Note that h-cohomology of an
h-sheaf of k-vector spaces computed in the category of sheaves of abelian
groups agrees with its h-cohomology computed in the category of sheaves of
k-vector spaces because an injective sheaf of k-vector spaces is also injective
as sheaf of abelian groups.

We abbreviate T'= X x Z' U Z x X'. By h-sheafification of the product of
Kahler differentials, we have a natural multiplication

* * b +b
Pry 24 x @ Pr 2y, x — QE/XXX,.

It induces, with iz : Z -+ X, iz : Z' - X', and i : T — X x X’
priyKer(2], v = iz 02 ;) ®u pr},Ker(Qﬁ/X,iZ/*Qﬁ/Z,)

!

Ker(Qﬁj)?Xx, — Z*Qﬁﬁf)

The resulting morphism

PrX {20/ (x,2) Ok PUXAR xr 20y = S8 ) (x < x7 1)
induces a natural Kiinneth morphism
@ HgR(Xa Z) ®k? H(?R(le Z/) — H(;LR(X X X/7T)'
a+b=n

We refer to the proof of [HJ14, Proposition 7.29] for the argument that this
is an isomorphism. a

Lemma 3.2.14. Let K/k be an extension of fields of characteristic zero.
Let X be a variety over k and Z C X a subvariety. Then there are natural
isomorphisms

HéR(X, Z) R K — H(’LiR(XKy ZK).

They are induced by a natural quasi-isomorphism

RIGR(X) ®r K = RI4r(Xk).

Proof. Via the long exact cohomology sequence for pairs, and the long exact
sequence for a blow-up, it suffices to consider the case when X is a single
smooth variety, where it follows from Lemma [3.1.11] O
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Lemma 3.2.15. Let K/k be a finite extension of fields of characteristic 0.
LetY be variety over K and W CY a subvariety. We denote Yy, and Wy, the
same varieties when considered over k.

Then there are natural isomorphisms

Hip (Y, W) — Hip(Ye, W)
They are induced by a natural quasi-isomorphism
RIGR(Yn) = RIGR((Y)n)-

Proof. Note that if a variety is smooth over K, then it is also smooth when
viewed over k.

The morphism on cohomology is induced by a morphism of sites from the
category of k-varieties over Y to the category of K-varieties over k, both
equipped with the h-topology. The pull-back of the de Rham complex over
Y maps to the de Rham complex over Yj. As in the proof of Lemma [3.2.14]
via the long exact sequence for pairs and the blow-up sequence, it suffices
to show the isomorphism for a single smooth Y. This was settled in Lemma
o. 1. 15 O

3.3 The general case: alternative approaches

We are now going to present a number of earlier definitions of algebraic de
Rham cohomology for singular varieties in the literature. They all give the
same results in the cases where they are defined.

3.3.1 Deligne’s method

We present the approach to de Rham cohomology of singular varieties used
by Deligne in [Del74b]. A singular variety is replaced by a suitable simplicial
variety whose terms are smooth.

3.3.1.1 Hypercovers

See Section for basics on simplicial objects. In particular, we have the
notion of an S-hypercover for a class S of covering maps of varieties.
We will need two cases:

1. S is the class of open covers, i.e., X = [[I", U; with U; C Y open and
such that J;_, U; =Y.
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2. S the class of proper surjective maps.

Lemma 3.3.1. Let X — Y bein S. We put
Xe = cosqu.
In explicit terms,
X, =XXxy---xy X (p+1 factors)

where we number the factors from O to p. The face map 0; is the projection
forgetting the factor number i. The degeneration s; is induced by the diagonal
from the factor i into the factors i and i + 1.

Then Xo — Y is an S-hypercover.

Proof. By [AGVT72] Exposé V, Proposition 7.1.2, the morphism
€OSqy — €08q,,_15q,,_1C08q

is an isomorphism of functors for n > 1. Indeed, this follows directly from the
adjunction properties of the coskeleton functor for simplicial varieties. Hence
the condition on X, is satisfied trivially for n > 1. In degree 0 we consider

Xo =X — (cosq¥ sq_,cosql )o = Y.
By assumption, it is in S. a

It is worth spelling this out in complete detail in two special cases.

Example 3.3.2. Let X = [[I_,U; with U; C Y open. For ig,...,i, €
{1,...,n} we abbreviate

Uig,....i, = Uiy NN U,

Then the open hypercover X, is nothing but

with face and degeneracy maps given by the natural inclusions. Let F be a
sheaf of abelian groups on X. Then the complex associated to the cosimplicial
abelian group F(X,) is given by

é}-(Uz) — é f(Ui07il) — é ]:(Uio,h,iz) — ...
i=1

i0,41=1 0,%1,12=1

with differential
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6p(a>i03"'77;pzz(_1)jaio ..... reipan

i.e., the differential of the Cech complex. Indeed, the natural projection
F(Xe) — C*(L,F)

to the Cech complex (see Definition [1.4.12)) is a quasi-isomorphism.

Definition 3.3.3. We recall from Definition that Xo — Y, is a smooth
proper hypercover, if it is a proper hypercover with all X,, smooth.

Example 3.3.4. Let Y =Y, U---UY, with Y; C Y closed. For 4, ...,i, =
1,...,n put
Y; =Y, N---NY; .

05-eeyt

Assume that all Y; and all Yi,....,i, are smooth.
Then X =[], Y; — Y is proper and surjective. The proper hypercover
X, is nothing but

Xo= ][I Yun---nv

’Lo,...,inzl

with face and degeneracy maps given by the natural inclusions. Hence X, —
Y is a smooth proper hypercover. As in the open case, the projection to the
Cech complex of the closed cover 9 = {Y;}?_; is a quasi-isomorphism.

Proposition 3.3.5. Let Y, be a simplicial variety over a perfect field. Then
the system of all proper hypercovers of Y, is filtered up to simplicial homotopy.
It is functorial in Y. The subsystem of smooth proper hypercovers is cofinal.

Proof. The first statement is [AGV72], Exposé V, Théoréme 7.3.2. For the
second assertion, it suffices to construct a smooth proper hypercover for any
Y.. Recall that by Hironaka’s resolution of singularities [Hir64], or by de
Jong’s theorem on alterations [dJ96], we have, for any variety Y, a proper
surjective map X — Y with X smooth. By the technique of [AGV72], Exposé
Vbis, Proposition 5.1.3 (see also [Del74bl 6.2.5]), this allows us to construct
Xo. O

3.3.1.2 Definition of de Rham cohomology in the general case

Let again k be a field of characteristic 0.

Definition 3.3.6. Let X be a variety over k and X, — X a smooth proper
hypercover. Let C'(X,) € ZSm be the associated complex. We define Deligne’s
algebraic de Rham cohomology of X by

Hir(X) = H' (RI4r(X.))
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with RI4r as in Definition Let D C X be a closed subvariety and
De — D a smooth proper hypercover such that there is a commutative
diagram

Dy, — X,

! !

D —— X

We define Deligne’s relative algebraic de Rham cohomology of the pair (X, D)
by
Hir(X,D) = H' (Cone(RIyr(Xe) = RI4r(Ds))[-1]).

Note that such hypercovers exist by Proposition [3:3.5]

Proposition 3.3.7. Deligne’s algebraic de Rham cohomology agrees with al-
gebraic de Rham cohomology in the sense of Definitions and[3.2.6, In
particular, it is a well-defined functor, independent of the choice of hypercov-
erings of X and D.

Remark 3.3.8. It is only the cohomology, not the complex RIygr, which is
well-defined. The above construction defines a functor

RIyR : Var — K1 (k—Vect)

but not to C*(k—Vect). Hence it does not extend directly to C*(Q[Var]). We
avoid addressing this point by the use of the h-topology instead.

Proof. This is a special case of descent for h-covers and hence a consequence
of Proposition [3.2.4

Alternatively, we can deduce it from the case of singular cohomology. Re-
call that algebraic de Rham cohomology is well-behaved with respect to ex-
tensions of the ground field. Without loss of generality, we may assume that
k is finitely generated over Q and hence embeds into C. Then we apply the
period isomorphism of Definition It remains to check the analogue for
singular cohomology. This is Theorem [2.7.6] O

Example 3.3.9. Let X be a smooth affine variety and D a divisor with
simple normal crossings. Let Dy, ..., D, be the irreducible components. Let
Xe be the constant simplicial variety X and D, as in Example Then
Deligne’s algebraic de Rham cohomology D of is computed by the total com-
plex of the double complex (D, ... ;, being the (p + 1)-fold intersection of

components)
= @ b (Do)

“p
i< <ip

with differential df*? = 3>7_(~1)70; the Cech differential and d differen-
tiation of differential forms.

Relative algebraic de Rham cohomology of (X, D) is computed by the total
complex of the double complex
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P Kpr=ha p >0,
2% (X) p=0.

Remark 3.3.10. Establishing the expected properties of relative algebraic
de Rham cohomology in Deligne’s definition is lengthy. Particularly compli-
cated is the handling of the multiplicative structure which uses the functor
between complexes in Z[Sm] and simplicial objects in Z[Sm] and the product
for simplicial objects. We do not go into the details but rely on the comparison
with h-cohomology instead.

3.3.2 Hartshorne’s method

We want to review Hartshorne’s definition from [Har75]. As before let k be
a field of characteristic 0.

Definition 3.3.11. Let X be a smooth variety over k and Y — X a closed
subvariety. We define Hartshorne’s algebraic de Rham cohomology of Y as

Hin(Y) = H'(X, %),

where X is the formal completion of X along Y and f);( the formal completion
of the complex of algebraic differential forms on X. We refer to loc. cit. for
the definition of these completions.

Proposition 3.3.12 ([Har75, Theorem (1.4)]). Let Y be as in Definition
. Then Hartshorne’s algebraic de Rham cohomology HQR(Y) is inde-
pendent of the choice of X. In particular, if Y is smooth, the definition agrees
with the one in Definition|3.1.2

Theorem 3.3.13. The three definitions of algebraic de Rham cohomology

1. Definition[3.3.6 via hypercovers,
2. Definition |3.3.11| via embedding into smooth varieties,
3. Definition 5’2@ using the h-topology)

agree.

Proof. We use the eh-topology that is mentioned at the beginning of this
Section. The comparison of Hartshorne’s Hiy (X) and Hig(Xen) is proved
in [Gei06, Theorem 4.10]. This group agrees with H' (Xy) by [HJ14, Propo-
sition 6.1]. By [HJ14, Proposition 7.4], it agrees also with the definition via
hypercovers. a
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3.3.3 Using geometric motives

In chapter [ we are going to introduce the triangulated category of effective
geometric motives DMgffl over k with coefficients in Q. We only review the
most important properties here and refer to chapter [6] for more details. For
some of them, it is easier to work with the affine version.

The objects in DMgeIf]f1 are the same as the objects in C®(SmCor) where
SmCor is the category of correspondences, see Section

Lecomte and Wach in [LW09] explain how to define an operation of cor-
respondences on 2% (X). We give a quick survey of their method.

For any normal variety Z let 2" be the Oz-double dual of the sheaf of
p-differentials. This is nothing but the sheaf of reflexive differentials on Z.

If Z' — Z is a finite morphism between normal varietes which is generically
Galois with covering group G, then by [Kni73]

Q5(Z) = 257 (2.

Let X and Y be smooth varieties. Assume for simplicity that X and Y are
connected. Let I' € Cor(X,Y) be a prime correspondence, i.e., I' C X XY
is an integral closed subvariety which is finite and dominant over X. Choose
a finite I' — I such that I" is normal and the covering I" — X generically
Galois with covering group G. In this case, X = I'/G. Hence the natural
contravariant functoriality induces for I € Cor(X,Y)

ng Gg* ® k% /1 ~ (e
S 0D = 2% (X).

O (Y) = (1) — 02%27(I)
This can be sheafified. Applying Godement resolutions, we obtain
Gdy Q3(Y) = Gdp 2% (') = Gdx 2% (X).
Recall, see Lemma that
Gdx 2% (X) = RI4r(X).

Hence:

Definition 3.3.14. For a correspondence I € Cor(X,Y") as above, we define
r: RFdR(Y) — RFdR(X)

as the above composition.

This is well-defined and compatible with composition of correspondences.
We can now define de Rham cohomology for complexes of correspondences.

Definition 3.3.15. Let X, € C®(Sm). We define

RFdR(XO) = TOtRFdR(Xn)nEZv
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and _ _
HélR(Xo) = HZRFdR(Xo)'

Note that there is a straight-forward functor Sm — SmCor. It assigns an
object to itself and a morphism to its graph. This induces

i: C*(Q[Sm]) — DMSE.
By construction,
[F=1F 5 (Y) = 02%(X)
for any morphism f : X — Y between smooth affine varieties. Hence,
RI4r(Xe) = RIur(i(Xe)),

where the left hand side was defined in Definition

Proposition 3.3.16 (Voevodsky). The functor i extends naturally to a func-
tor
i: C*(Q[Var]) - DMEE.

Proof. The category of geometric motives is a localisation of K?(SmCor). It
is easy to see that RIyr passes to the localisation.

The extension to all varieties is a highly non-trivial result of Voevodsky.
By [VSFOQ, Chapter V, Corollary 4.1.4], there is functor

Var — D Mgp,.

Indeed, the functor
X — C.L(X)

of loc. cit., Section 4.1, which assigns to every variety a homotopy invariant
complex of Nisnevich sheaves, extends to C?(Z[Var]) by taking total com-
plexes. We consider it in the derived category of Nisnevich sheaves. Then the

functor factors via the homotopy category K°(Z[Var]).
By induction on the length of the complex, it follows from the result quoted
above that C.L(-) takes values in the full subcategory of geometric motives.
O

Definition 3.3.17. Let D C X be a closed immersion of varieties. We define
Hig(X,D) = H'RLar (i([D — X])),

where [D — X] € C*(Z[Var]) is concentrated in degrees —1 and 0.

Proposition 3.3.18. This definition agrees with the one given in Defini-
tion [2.5.4.

Proof. The easiest way to formulate the proof is to invoke another variant
of the category of geometric motives. It does not need transfers, but im-
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poses h-descent instead. Scholbach [Schi12bl Definition 3.10] defines the cat-
egory DMggl’ , as the localisation of K~ (Q[Var]) with respect to the trian-
gulated subcategory generated by complexes of the form X x A' — X and
h-hypercovers X, — X and closed under certain infinite sums. By defini-
tion of DMgf1 n» any hypercovering X, — X induces an isomorphism of the
associated complexes in DM, off m,p- BY resolution of singularities, any object
of DM gm,p, 18 isomorphic to an object where all components are smooth.
Hence we can replace K~ (Q[Var]) by K~ (Q[Sm]) in the definition without
any change. We have seen how algebraic de Rham cohomology is defined on
K~ (Q[Sm]). By homotopy invariance (Corollary and h-descent of the
de Rham complex (Proposition [3.3.7] 7 the definition of algebraic de Rham
cohomology factors via DM, gfg h-

This gives a definition of algebraic de Rham cohomology for K~ (Q[Var])
which by construction agrees with the one in Definition On the other
hand, the main result of [Schi2b] is that DMET can be viewed as full sub-
category of DM;EI 5. This inclusion maps the motive of a (possibly singular)
variety in DM;ncir » to the motive of the same variety in DMgy, ff " As the two
definitions of algebraic de Rham cohomology of motives agree on motives of
smooth varieties, they agree on all motives. a

3.3.4 The case of divisors with normal crossings

We are going to need the following technical result in order to give a simplified
description of periods.

Proposition 3.3.19. Let X be a smooth affine variety of dimension d
and D C X a divisor with simple normal crossings. Then every class in
H3: (X, D) is represented by some w € 2% (X).

The proof will be given at the end of this section.
Let D =D, U---UD, be the decomposition into irreducible components.
For I C {1,...,n}, let again

D; = ﬂDi.
i€l

Recall from Example that the de Rham cohomology of (X, D) is com-
puted by the total complex of

n
X) =P . (D) P, (Dij) == 2, (Dia..n)
= i<j

Note that D has dimension d—|I|, hence the double complex is concentrated
in degrees p,q > 0, p+q < d. By definition, the classes in the top cohomology
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group H, :iiR(X , D) are represented by tuples

(wo,wl, - ,wn), wo € Qf((X),wi S @ .Q%;z(D]),Z > 0.
=

All such tuples are cocycles for dimension reasons. We have to show that,
modulo coboundaries, we can assume w; = 0 for all i > 0.

Lemma 3.3.20. The restriction maps
05H(X) = P 25 (D)
i=1

P b o) - P 2N D)

[I]=s |J|=s+1
are surjective.

Proof. Since X, and hence all D;, are assumed affine, the global section func-
tors are exact. Thus it suffices to check the assertion for the corresponding
sheaves on X. As they are coherent, we can work locally for the étale topol-
ogy. By replacing X by an étale neighbourhood of a point, we can assume
that there is a global system of regular parameters t1,...,tq on X such that
D; ={t; =0} for i =1,...,n. First consider the case s = 0. The elements of
Q%:l(Di) are without loss of generality of the form f;dty A--- A dt; N A dtgq
(omitting the factor at 7). Again by replacing X by an open subvariety, we
can assume they are globally of this shape. The forms can all be lifted to X.
The element

n
w=Y_ fidty Ao Adbi A Adtg
=1

is the preimage we were looking for.

For s > 1 we argue by induction on d and n. If n = 1, there is nothing to
show. This settles the case d = 1. In general, we split theset of I C {1,...,n}
with || = s into two subsets: the sets I containing n and the other ones that
do not. We do the same with the set of J C {1,...,n} with |J| = s+ 1.
The defines decompositions of source and target into direct sums. We get a
commutative diagram of split exact sequences
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0 0
® o) — @ =250y
Ic{1,...,n} Jc{1,...,n}
|I|=s,nel |J|=s+1,neJ
b 25N D) —— G 25 H(Dy)
Ic{1,...,n} Jc{1,...,n}
|I|=s |J|=s+1
® o) —— @ D)
Ic{1,...,n—1} Jc{1,...,n—1}
|[I|=s |J|=s+1
0 0

The arrow on the top reproduces the assertion for X replaced by D,, and
D replaced by D, N (D; U---U D,_1). By induction, it is surjective. The
arrow on the bottom is surjective by induction on n. Hence, the arrow in the
middle is surjective. a

Proof of Proposition[3.3.19.. Consider a cocycle w = (wg,w1,...,w,) as ex-
plained above. We argue by descending induction on the degree i. Consider

W, € dej_{l" " (Dgi,....ny)- By the lemma, there is

wy_1 € @ Q/%?n(DI)

|[I|=n—1

such that dyw!,_; = wy,. We replace w by w—dyw!,_; £dsw!,_; (depending on
the signs in the double complex). By construction, its component in degree
n vanishes.

Hence, without loss of generality, we have w,, = 0. Next, consider w,,_1
etc. O






Chapter 4
Holomorphic de Rham cohomology

We are going to define a natural comparison isomorphism between de Rham
cohomology and singular cohomology of varieties over the complex numbers
with coefficients in C. The link is provided by holomorphic de Rham coho-
mology which we study in this chapter.

4.1 Holomorphic de Rham cohomology

Everything we did in the algebraic setting also works for complex manifolds;
indeed this is the older notion.

We write O%! for the sheaf of holomorphic functions on a complex mani-
fold X, and assume that the reader is familiar with this notion.

4.1.1 Definition

Definition 4.1.1. Let X be a complex manifold. Let 2% be the sheaf of
holomorphic differentials on X. For p > 0 let

Q&:/}'\Q}(

be the exterior power in the category of O%!-modules and (2%, d) the holo-
morphic de Rham complex.

The differential is defined as in the algebraic case, see Definition [3.1.1
Definition 4.1.2. Let X be a complex manifold. We define holomorphic de
Rham cohomology of X as the hypercohomology

Higen (X) = H (X, 02%).

97
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As in the algebraic case, de Rham cohomology is a contravariant functor.
The exterior products induces a cup-product.

Proposition 4.1.3 (Poincaré lemma). Let X be a complex manifold. The
natural map of sheaves C — O%! induces an isomorphism

H. . (X,C) = Higan(X).

sing

Proof. By Theorem we can compute singular cohomology as sheaf co-
homology on X. It remains to show that the complex

0-5C—0% =0k 0% =

is exact. Let A be the open unit disc in C. The question is local, hence we
may assume that X = A?. There is a natural isomorphism

Ad - (‘QA) )

where the right hand side means the exterior tensor product on the product
space. Hence it suffices to treat the case X = A. In this case we consider

0 — C — O"(A) - O"(A)dt — 0.

The elements of O"°!(A) are of the form ", , a;t* with radius of convergence
at least 1. The differential has the form

D aith > jat .

Jj=0 =0

The kernel is given by the constants. It is surjective because the antiderivative
has the same radius of convergence as the original power series. a

Proposition 4.1.4 (Kiinneth formula). Let X,Y be complex manifolds.
There is a natural multiplication induced from wedge product of differential
forms

Hipan(X) @c Higan (V) = Hifla(X X Y).
It induces an isomorphism

Higen(X xY) = P Higan(X) @c Higan (Y).
1+j=n

Proof. The construction of the morphism is the same as in the algebraic
case, see Proposition [3.1.9] The quasi-isomorphism C — 2* is compatible
with the exterior products. Hence the isomorphism reduces to the Kiinneth
isomorphism for singular cohomology, see Proposition a
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4.1.2 Holomorphic differentials with log poles

Let j : X — X be an open immersion of complex manifolds. Assume that
D = X ~ X is a divisor with normal crossings, i.e., locally on X there is
a coordinate system (t1,...,t,) such that D is given as the set of zeroes of
tth...tr with 0 S r S n.

Definition 4.1.5. Let
2% (D) C j. 0%

be the locally free O g-module with the following basis: if U C X is an open
with coordinates t1,...,t, and D|y is given by the equation ¢ ...t¢,. = 0,
then 2% (D)|y has Op°'-basis

dn

T et

For p > 1 let
p
2%(D) = \ 2%(D).

We call 2%(D) the complex of holomorphic differentials with log poles along
D.

Note that the differential of j.2% respects 2% (D), so that this is indeed
a subcomplex.

Proposition 4.1.6. The inclusion induces a natural isomorphism
H'(X,02%(D)) — H'(X, 2%).

This is [Del71l Proposition 3.1.8]. The algebraic analogue was treated in
Proposition |3.1.16

Proof. Note that j : X — X is Stein, hence j, is exact and we have
HY(X,02%) = H(X,j.0%).
It remains to show that the inclusion
L2 %(D) — § 2%

is a quasi-isomorphism, or, equivalently, that Coker(¢) is exact. The statement
is local, hence we may assume that X is a coordinate polydisc and D =
V(t1...tr). We consider the stalk in 0. The complexes are tensor products
of the complexes in the 1-dimensional situation. Hence it suffices to consider
the case n = 1. If » = 0, then there is nothing to show.

In remains to consider the following situation: let O"°! be the ring of germs
of holomorphic functions at 0 € C and ! the ring of germs of holomorphic
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functions with an isolated singularity at 0. The ring O"°! is given by power
series with a positive radius of convergence. The field X"°! is given by Laurent
series converging on some punctured neighborhood {t | 0 < t < €}. We have
to check that the complex

Khol/ohol N (Khol/tflohol)dt

is acyclic.
We pass to the principal parts. The differential has the form

Z ajt_j — Z(—j)ajt_j_l
§>0 3>0
It is obviously injective. For surjectivity, note that the antiderivative
. =J bj —jn
P bt ey ——t
‘ — —j5 41
j>1 j>1

maps convergent Laurent series to convergent Laurent series. a

4.1.3 GAGA

We work over the field of complex numbers.

An affine variety X C AZ is also a closed set in the analytic topology
on C". If X is smooth, the associated analytic space X?" in the sense of
Section [1.2.1]is a complex submanifold. As in loc. cit., we denote by

a: (X 0% - (X,0x)

the map of locally ringed spaces. Note that any algebraic differential form is
holomorphic, hence there is a natural morphism of complexes

a 0% = 2%an.

It induces ' 4
o Hig(X) — Hjgan (X1,

Proposition 4.1.7 (GAGA for de Rham cohomology). Let X be a smooth
variety over C. Then the natural map

a* s Hig(X) — Higan (X*)

s an isomorphism.

If X is smooth and projective, by using the Hodge to de Rham spectral
sequence this is a standard consequence of Serre’s comparison result for the
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cohomology of coherent sheaves (GAGA [Ser56]). We need to extend this to
the open case.

Proof. Let j : X — X be a compactification such that D = X\ X is a divisor
with simple normal crossings. The change of topology map « also induces

a 1. 0% = i Q% an
which respects differentials with log-poles, and hence induces:
a’lﬂg—((D) — Ji 0% (D).
Hence we get a commutative diagram

Hip(X)  ——  Higam(X™)

I I

Hl(X,Q;?<D>) SN Hi(Xan,Q.— <Dan>)

an

By Proposition [3:1.16] in the algebraic, and Proposition [£.1.6]in the holomor-
phic case, the vertical maps are isomorphism. By considering the Hodge to
de Rham spectral sequence attached to the trivial filtration on 2% (D), it
suffices to show that

an (D))

HP(X,0%(D)) — HP(X*", 2%

is an isomorphism for all p, . Note that X is smooth, projective and Q§<D>

is coherent. Its analytification oFRQ?ﬂD) Ra-104 Og‘—{‘ﬂn is nothing but

Qg—(an (D*™). By GAGA, we have an isomorphism in cohomology. O

4.2 Holomorphic de Rham cohomology via the
h’-topology

We address the singular case via the h'-topology on (An/X) introduced in
Definition 711

4.2.1 W' -differentials

Definition 4.2.1. Let {2}, be the h'-sheafification of the presheaf

Y — 20(Y)
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on the category of complex analytic spaces An.

Theorem 4.2.2 (Jorder [Jorld]). Let X be a complex manifold. Then
2% (X) = 2, (X).

Proof. Jorder defines in [J6r14, Definition 1.4.1] what he calls h-differentials
20 as the presheaf pull-back of 27 from the category of manifolds to the
category of complex analytic spaces. (There is no mention of a topology in
loc.cit.) In [Jor14l, Proposition 1.4.2 (4)] he establishes that 27 (X) = 2% (X)
in the smooth case. It remains to show that 2 = 2F,. By resolution of
singularities, every X is smooth locally for the h’-topology. Hence it suffices
to show that (2} is an h'-sheaf. By [Jorl4, Lemma 1.4.5], the sheaf condition
is satisfied for proper covers. The sheaf condition for open covers is satisfied
because already 2% is a sheaf in the ordinary topology. a

Lemma 4.2.3 (Poincaré lemma). Let X be a complex analytic space. Then
the complex
Ch/ — Qﬁ/

of ' -sheaves on (An/X)y is exact.

Proof. We may check this locally in the h’-topology. By resolution of singu-
larities it suffices to consider sections over some Y which is smooth and even
an open ball in C". By Theorem [£.2.2] the complex reads

C— 025(Y).
By the ordinary holomorphic Poincaré Lemma [4.1.3] it is exact. a

Remark 4.2.4. The main topic of Jorder’s thesis [Jorld] is to treat the
question of a Poincaré Lemma for h’-forms with respect to the usual topology.
This is more subtle and fails in general.

4.2.2 Holomorphic de Rham cohomology

We now turn to holomorphic de Rham cohomology.
Definition 4.2.5. Let X be a complex analytic space.

1. We define h’-de Rham cohomology as hypercohomology
Hgen (X)) = Hy ((Sch/X ), ).
2. Let i : Z — X be a closed subspace. Put
Qﬁf/(x,z) = Ker ({2

h/x 020 )
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in the category of abelian sheaves on (An/X)y.
We define relative h'-de Rham cohomology as

Higan (Xur, Zar) = Hy, (An/ X, 250 x,2))-

Lemma 4.2.6. The properties (long exact sequence, excision, Kinneth for-
mula) of relative algebraic h-de Rham cohomology (see Sectz’on are also
satisfied in relative h'-de Rham cohomology.

Proof. The proofs are the same as in Section respectively in [HJ14) Sec-
tion 7.3]. They rely on the computation of £2F,(D) when D is a normal cross-
ings space. Indeed, the same argument as in the proof of [HJ14, Proposition
4.9] shows that

2F,(D) = 2%,(D)/torsion.

O

As in the previous case, exterior multiplication of differential forms induces
a product structure on h’-de Rham cohomology.

Corollary 4.2.7. For all X € An and all closed immersions i : Z — X the
inclusion of the Poincaré lemma induces a natural isomorphism

g
Hsing

(X, Z; (C) — H(iiRan (Xh/7 Zh/),

compatible with long exact sequences and multiplication. Moreover, the natu-
ral map ‘ _
chiRan (Xh/) — HCZIRan (X)

18 an isomorphism if X is smooth.

Proof. By the Poincaré Lemma [£.2.3] we have a natural isomorphism
H}il/(Xh/, Zh/; Ch/) — HéRan (Xh/, Zh/).

We combine it with the comparison isomorphism with singular cohomology

of Proposition [2.7.4]

The second statement holds because both terms compute singular coho-
mology by Prop. and Prop. a
4.2.3 GAGA

We work over the base field C. As before we consider the analytification
functor
X — X
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which takes a separated scheme of finite type over C to a complex analytic
space. We recall the map of locally ringed spaces

a: XM = X,
We want to view it as a morphism of topoi
(673 (AH/Xan)h/ — (SCh/X)h

Definition 4.2.8. Let X € Sch/C. We define the h'-topology on the category
(Sch/X )y to be the smallest Grothendieck topology such that the following
are covering maps:

1. proper surjective morphisms;
2. open covers.

If 7 is a presheaf on An/X, we denote by Fy its sheafification in the h'-
topology.

Lemma 4.2.9. 1. The morphism of sites (Sch/X), — (Sch/X)y induces
an isomorphism on the categories of sheaves.
2. The analytification functor induces a morphism of sites

(An/Xan)h/ — (SCh/X)h/

Proof. By [Voe96] Theorem 3.1.9 any h-cover can be refined by a cover in
normal form which is a composition of open immersions followed by proper
maps. This shows the first assertion. The second is clear by construction. 0O

By h’-sheafifying the natural morphism of complexes
a 10% — %
of Section we also obtain
R P 0
on (An/X?*)y,. It induces
o T Hig(Xn) = Higen (XP).

Proposition 4.2.10 (GAGA for h'-de Rham cohomology). Let X be a va-
riety over C and Z a closed subvariety. Then the natural map

o Hig (Xn, Zn) — Higan (XPP, Z50)
is an isomorphism. It is compatible with long exact sequences and products.

Proof. By naturality, the comparison morphism is compatible with long exact
sequences. Hence it suffices to consider the absolute case.
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Let X, — X be a smooth proper hypercover. This is a cover in the h’-
topology, hence we may replace X by X, on both sides. As all components
of X, are smooth, we may replace h-cohomology by Zariski-cohomology in
the algebraic setting (see Proposition . On the analytic side, we may
replace h’-cohomology by ordinary sheaf cohomology (see Corollary .
The statement then follows from the comparison in the smooth case, see

Proposition [£.1.7} g






Chapter 5
The period isomorphism

The aim of this section is to define well-behaved isomorphisms between sin-
gular and de Rham cohomology of algebraic varieties.

5.1 The category (k,Q)—Vect

We introduce a category constructed with a bit of some simple linear algebra
which will later allow us to formalise the notion of periods. Throughout, let
k C C be a subfield.

Definition 5.1.1. Let (k,Q)—Vect be the category of triples (Vi, Vo, ¢c)
where V}, is a finite-dimensional k-vector space, Vg a finite-dimensional Q-
vector space and

¢c: Vi@ C— Vg®gC

a C-linear isomorphism. Morphisms in (k, Q)—Vect are linear maps on Vj
and Vg compatible with the comparison isomorphisms.

Note that a morphism in this category is an isomorphism if an only if
its Q-component is. Note also that (k,Q)—Vect is a Q-linear abelian tensor
category with the obvious notion of tensor product. It is rigid, i.e., all objects
have strong duals. It is even Tannakian with projection to the Q-component
as fibre functor.

For later use, we make the duality explicit:

Remark 5.1.2. Let V = (Vi, Vg, ¢c) € (k,Q)—Vect. Then the dual V'V is
given by

VV = (Vk*7 V67 (¢*)_1)
where -* denotes the vector space dual over £ and Q or C. Note that the
inverse is needed in order to make the map go in the right direction.

Remark 5.1.3. The above is a simplification of the category of mixed Hodge
structures introduced by Deligne, see [Del71]. It does not take the weight

107
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and Hodge filtration into account. In other words: there is a faithful forgetful
functor from mixed Hodge structures over k to (k, Q)—Vect.

Example 5.1.4. The invertible objects are those where Vj, and Vg have
dimension one. Up to isomorphism they are of the form

L(a) = (k,Q,a) with « € C*.

5.2 A triangulated category

We introduce a triangulated category with a ¢-structure whose heart is
(k,Q)—Vect.

Definition 5.2.1. A cohomological (k, Q)—Vect-complez consists of the fol-
lowing data:

e a bounded below complex K} of k-vector spaces with finite-dimensional
cohomology;

e a bounded below complex K§ of Q-vector spaces with finite-dimensional
cohomology;

e a bounded below complex K¢ of C-vector spaces with finite-dimensional
cohomology;

e a quasi-isomorphism ¢ ¢ : K ®, C — Kg;

e a quasi-isomorphism ¢g,c : K ®g C — K¢.

Morphisms of cohomological (k,Q)—Vect-complexes are given by a pair
of morphisms of complexes on the k-, Q- and C-components such that
the obvious diagrams commute. We denote the category of cohomological
(k, Q)—Vect-complexes by C'(J,;,Q).

Let K and L be objects of C(J,;,@). A homotopy from K and L is a homotopy
in the k-, Q- and C-components compatible under the comparison maps. Two
morphisms in C(JIFC’Q) are homotopic if they differ by a homotopy. We denote

by K('Z’Q) the homotopy category of cohomological (k, Q)—Vect-complexes.

A morphism in K(—Z,Q) is called quasi-isomorphism if its k-, Q-, and C-
components are quasi-isomorphisms. We denote by D&’Q) the localisation of
K (—Z,Q) with respect to quasi-isomorphisms. It is called the derived category
of cohomological (k,Q)—Vect-complezes.

Remark 5.2.2. This is a simplification of the category of mixed Hodge
complexes introduced by Beilinson [Bei86]. A systematic study of this type
of category can be found in [Hub99, §4]. In the language of loc.cit., it is the
rigid glued category of the category of k-vector spaces and the category of Q-
vector spaces via the category of C-vector spaces and the extension of scalars
functors. Note that the comparison functors are exact, hence the construction
simplifies.
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Lemma 5.2.3. DE; ) 1s a triangulated category. It has a natural t-structure
with 4
H D@Q) — (k,Q)—Vect

defined componentwise. The heart of the t-structure is (k, Q)—Vect.
Proof. This is more or less straightforward. For details see [Hub95, §4]. O

Remark 5.2.4. In [Hub95 4.2, 4.3], explicit formulas are given for the
morphisms in D:Q. The category has cohomological dimension 1. For

K,L € (k,Q)—Vect, the group HornD(Jr )(K,L[l]) is equal to the group of
k.0
Yoneda extensions. As in [Bei86], this implies that D?;C Q) is equivalent to the

bounded derived category DT ((k,Q)—Vect). We do not spell out the details
because we are not going to need these properties.

There is an obvious definition of a tensor product on C('; )" Let K*, L® €
C(‘Z Q) We define K*® ® L® with k, Q, C-components given by the tensor prod-
uct of complexes of vector spaces over k, Q, and C, respectively (see Example

1.3.4]). Tensor product of two quasi-isomorphisms defines the comparison iso-
morphism on the tensor product. It is associative and commutative.

Lemma 5.2.5. C'(‘Z,@), K(‘Z,@) and D(Z’Q) are associative and commutative

tensor categories with the above tensor product. The cohomology functor H*
commutes with ®. For K*, L® in D(J; Q) we have a natural isomorphism

H*(K*)® H*(L*) — H*(K* ® L*).

It is compatible with the associativity constraint. It is compatible with the
commutativity constraint up to the sign (—1)P? on HP(K®) @ H(L®).

Proof. The case of D(Z Q) follows immediately from the case of complexes of
vector spaces, where it is well-known. The signs come from the signs in the
total complex of a bicomplex, in this case, tensor product of complexes, see

Section [[L.3.3 |

Remark 5.2.6. This is again simpler than the case treated in [Hub95, Chap-
ter 13], because we do not need to control filtrations and because our tensor
products are exact.

5.3 The period isomorphism in the smooth case

Let k be a subfield of C. We consider smooth varieties over k and the complex
manifold X2 associated to X x C.
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Definition 5.3.1. Let X be a smooth variety over k. We define the period
isomorphism

per : Hig (X) ®, C — Hg,o (X,Q) ©g C
to be the isomorphism given by the composition of the isomorphisms

1. Hip(X) @, C — Hjp(X xi C) of Lemma

2. HiRp(X x4 C) — H}gan(X?") of Proposition

3. the inverse of the map HE,,(X*) — Higa(X*",C) from Proposition
E.L3]

4. the inverse of the change-of-coefficients isomorphism Hg .
Hpg (X7, Q) ®o C.

We define the period pairing

(X2 C) —

per : Hig(X) x Hiing(Xan,Q) —C

to be the bilinear map

(w,7) = ~(per(w)),
where we view classes in singular homology as linear forms on singular coho-
mology.

Remark 5.3.2. The choice of evaluating de Rham classes via singular ho-
mology seems more natural in our setting than the opposite choice, since
there is no natural definition de Rham homology.

Recall the category (k,Q)—Vect introduced in Section

Lemma 5.3.3. The assignment
X = (H:;R(X)a H:ing(X)a per)

defines a functor
H:Sm — (k,Q)—Vect.

For all X, Y € Sm, the Kiunneth isomorphism induces a natural isomorphism
HX)oHY) > HX xY).
The image of H is closed under direct sums and tensor product.

Proof. Functoriality holds by construction. The Kiinneth morphism is in-
duced from the Kiinneth isomorphisms in singular cohomology (Proposition
and algebraic de Rham cohomology (see Proposition , respec-
tively. All identifications in Definition [5.3.T] are compatible with the product
structure. Hence we have defined a Kiinneth morphism in H. It is an isomor-
phism because it is an isomorphism in singular cohomology.

Direct sums are realised by the disjoint union. The tensor product is re-
alised by the product. O
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In chapter we are going to study systematically the notion of periods
of objects in H(Sm).

The period isomorphism has an explicit description in terms of integration.
Theorem 5.3.4. Let X be a smooth affine variety over k and w € 24(X) a
closed differential form with de Rham class [w]. Let ¢ =) a;7y; be a singular
homology class in H;"8(X** Q), where a; € Q and ~; : A; — X are
differentiable singular cycles as in Definition [2.2.3. Then

per(ial. ) = S0, [ 7).

Remark 5.3.5. We could use the above formula as a definition of the period
pairing, at least in the affine case. By Stokes’ theorem, the value only depends
on the classes of w and ~.

Proof. Let A*(X®") be the group of C-valued C*-differential forms in degree
i and A% .. the associated sheaf. By the Poincaré lemma and its C*°-analogue,
the morphisms

C— 2% — A%an

are quasi-isomorphisms. Hence, the second map induces a quasi-isomorphism
D% (X)) — A% (X™)

because both compute singular cohomology in the affine case. Hence it suffices
to view w as a C*°-differential form. By the Theorem of de Rham, see [War83,
Sections 5.34-5.36], the period isomorphism is realised by integration over
simplices. a

Example 5.3.6. For X =P}, we have
H¥ (P}) = L((2mi))

with L(«) the invertible object of Example

5.4 The general case (via the h’-topology)

We generalise the period isomorphism to relative cohomology of arbitrary
varieties.

Let k be a subfield of C. We consider varieties over k and the complex
analytic space X" associated to X xj C.

Definition 5.4.1. Let X be a variety over k, and Z C X a closed subvariety.

We define the period isomorphism

per: Hig(X,Z2) ®, C — H}, (X, Z;Q) ®¢ C

sing
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to be the isomorphism given by the composition of the isomorphisms

1. Hir(X,Z) ®, C — Hig(X x5 C, Z x4, C) of Lemma

2. HiR(X % C,Z %, C) = Hjgan (X1, Z27) of Proposi

3. the inverse of the map H . (X{', Zi) — Hjgan (X", Z2%, C) from Corol-
lary

4. the inverse of the change-of-coefficients isomorphism H, s*ing(X an_ zan. C) —
HE (X, 2%, Q) g C.

sing

We define the period pairing
per : Hip (X, Z) x HI"8(X*, Z*";Q) — C

to be the map
(w,7) = y(per(w)),

where we view classes in singular homology as linear forms on singular coho-
mology.

Lemma 5.4.2. The assignment

(X?Z)'_}(H:;R(Xaz)a :ing(X,Z)»per)
defines a functor denoted H on the category of pairs X D Z with values in
(k,Q)—Vect. For all Z C X, Z' C X', the Kiinneth isomorphism induces a
natural isomorphism

H(X,Z)9H(X',Z') > H(X x X', X x Z/UZ x X').

The image of H is closed under direct sums and tensor product.
If Z CY C X is a triple, then there is an induced long exact sequence in
(k,Q)—Vect:

S HY(X,Y) — HY(X,Z) = H(Y,Z) S HTY(X,Y) > ...

Proof. Functoriality and compatibility with long exact sequences hold by
construction. The Kiinneth morphism is induced from the Kiinneth isomor-
phism in singular cohomology (Proposition and algebraic de Rham
cohomology (see Proposition . All identifications in Definition are
compatible with the product structure. Hence we have defined a Kiinneth
morphism in H. It is an isomorphism because it is an isomorphism in singu-
lar cohomology.

The direct sum is realised by the disjoint union. The tensor product is
realised by the product. a
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5.5 The general case (Deligne’s method)

We explain an alternative approach to generalising the period isomorphism to
relative cohomology of arbitrary varieties. It is based on Deligne’s definition
of algebraic de Rham cohomology, see Section

Let k be a subfield of C.

Recall from Section [3.1.2] the functor

RFdR : Z[Sm] — C+(k7MOd)

which maps a smooth variety to a natural complex computing its de Rham
cohomology. In the same way, we define, using the Godement resolution of
Definition a functor

Rl ing(X) = I'(X*,Gd(Q)) € CT(Q—Mod)
a complex computing singular cohomology of X?". Moreover, let
RIgpen(X) = [(X™, Gd(2%an)) € CT(C—Mod)

be a complex computing holomorphic de Rham cohomology of X?2".
Lemma 5.5.1. Let X be a smooth variety over k.

1. As before let o : X2 — X X C be the morphism of locally ringed spaces
and B : X x C — X the natural map. The inclusion a=*7102% — Q%an
induces a natural quasi-isomorphism of complezes

¢ar,drer : RIgr(X) @k C — RIygan(X).

2. The inclusion Q — 2%.. induces a natural quasi-isomorphism of com-
plexes
¢sing,dR'“’ : RFsing(X) Qg C — RI4pon (X)

3. We have
per = H* (¢sing,are») o H* (¢par.ara») : Hip (X)@kC — sing (X, Q)®qC.

Proof. The first assertion follows from applying Lemma [T.4.10] to 8 and «.
As before, we identify sheaves on X Xxj; C with sheaves on the set of closed
points of X xj C. This yields a quasi-isomorphism

a1 BTIGAdX (2%) — Gdxan (a7 B710%).
We compose with

Gann (a_lﬂ_lﬂ;() — Gann(Q;(ax)).
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Taking global sections yields by definition a natural Q-linear map of com-

plexes
RFdR(X) — RFdRan (X)

By extension of scalars we get ¢qr aran. It is a quasi-isomorphism because on

cohomology it defines the maps from Lemma and Proposition
The second assertion follows from ordinary functoriality of the Godement

resolution. The last holds by construction. a

In other words:

Corollary 5.5.2. The assignment
X = (RFdR(X); RFsing (X)a RFdRa“ (X)a d)dR,dRa“a d)sing,dRa“)

defines a functor
. +
RI': Sm — O(k,Q)

where C(E Q) the category of cohomological (k,Q)—Vect-complexes intro-
duced in Definition [5.2.1].

Moreover,
H*(RI'(X)) = H(X)),

where the functor H is defined as above.
Proof. Clear from the lemma. a

By naturality, these definitions extend to objects in Z[Sm].
Definition 5.5.3. Let

RI: K™ (Z[Sm]) — D, o

be defined (componentwise) as the total complex of the complex in C’('; )

obtained by applying RI" in every degree. For X, € C~(Z[Sm]) and i € Z
we put _ _
Hi(X,) = H'RI'(X,).

Definition 5.5.4. Let k be a subfield of C and X a variety over k with a
closed subvariety D. We define the period isomorphism
per: Hip(X,D) ®; C — H, (X, D) ®g C

sing

as follows: let Dy — X, be smooth proper hypercovers of D — X as in
Definition 3.3.6] Let

Ce = Cone(C(D,) — C(X,)) € C™(Z[Sm)).

Then H*(RI'(C,)) consists of
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(H:i{R(X7 D)) Hs*ing

(X, D), per).
In detail: per is given by the composition of the isomorphisms

H} (X2, D™ Q) ®g C — H*(RIGing(Ca))

sing

with
H* (sting,dR'“‘ (Oo))71 oH* (d)dR,dRa“ (Co))

We define the period pairing
per : Hig (X, D) x HSm&(X™ D) — C

to be the map
(w,7) = v(per(w))

where we view classes in relative singular homology as linear forms on relative
singular cohomology.

Lemma 5.5.5. per is well-defined, compatible with products and long exact
sequences for relative cohomology.

Proof. By definition of relative algebraic de Rham cohomology (see Definition
, the morphism takes values in H}y (X, D) ®; C. The first map is an
isomorphism by proper descent in singular cohomology, see Theorem [2.7.6
Compatibility with long exact sequences and multiplication comes from
the definition. a

We make this explicit in the case of a divisor with normal crossings. Recall
the description of relative de Rham cohomology in this case in Proposition
0.0.19

Theorem 5.5.6. Let X be a smooth affine variety of dimension d and D C
X a divisor with simple normal crossings. Let w € 2% (X) with associated
cohomology class [w] € Hix (X, D). Let ¢ = 3" a;v; be a singular homology
class in Hfing(Xan,Dan,Q), where a; € Q and each v; : Ag — X*" is a
differentiable singular cochain with boundary in D as in Definition [2.2.3

Then
per(il. ) = Sa; [ 7@

Proof. Let D, be as in Section[3.3.4 We apply the considerations of the proof
of Theorem to X and the components of D,. Note that w|p, = 0 for
dimension reasons. g






Chapter 6
Categories of (mixed) motives

There are different candidates for the category of mixed or pure motives over
a field k of characteristic zero. The category of Nori motives of Chapter [J] is
one of them. We review some others.

6.1 Pure motives

The category of pure motives goes back to Grothendieck’s approach to the
Weil ocnjectures. His approach is based on algebraic cycles and intersection
theory. The aim is to define an abelian category. As a first step, we introduce
an additive pseudo-abelian one.

Recall that an additive category is called pseudo-abelian if every projector
(a morphism p with p? = p) has kernel and image in the category. To every
additive category, we can assign formaly its pseudo-abelian hull, also called
Karoubian hull. Tts objects have the form (A, p) with p: A — A a projector
with morphisms

Mor((4,p), (B, q)) = gMor(A, B)p.

Definition 6.1.1. 1. The category of effective integral Chow motives CHM®T
is given by the pseudo-abelian hull of the following additive category:

e objects are given by smooth, projective varieties; where we write [X]
for the motive of X;

e for smooth projective varieties X and Y, morphism from [X] to [Y]
are given by the Chow group Ch™X(Y x X) of algebraic cycles of
codimension dim X up to rational equivalence;

e composition of morphism is composition of correspondences: the com-
position of I' : X — Y and IV : Y — Z is defined as by push-forward
of the intersection of Z x Nand I" x X in ZxY x X to Z x X:

I'"ol' =pzx. (P;XF'PEYF/)~

117
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The identity morphism is given by the diagonal.

It becomes a tensor category with
(X]@ Y] =[X xY]

for all smooth projective varieties. The category of integral Chow motives
CHM is given by the localisation of the category of effective Chow motives
with respect to the Lefschetz motive L which is the direct complement of
[Spec k] in P! with respect to a choice of k-rational point.

2. The category of effective Chow motives CHM%)ﬂr is given by the same defi-
nition with rational Chow groups up to rational equivalence. The category
of Chow motives CHMgq is given by its localisation with respect to the
Lefschetz motive.

3. The category of effective Grothendieck motives GRM*! s given by the
same definition but with the Chow group replaced by the group A4™ X (X x
X) of rational algebraic cycles of codimension dim X up to homolog-
ical equivalence with respect to singular cohomology. The category of
Grothendieck motives GRM is given by the localisation of the category
of effective Grothendieck motives with respect to the Lefschetz motive L.

Remark 6.1.2. There is a contravariant functor X — [X] from the category
of smooth, projective varieties over k to Chow or Grothendieck motives. It
maps a morphism f : Y — X to the transpose of its graph I'y. The dimension
of I Jf is the same as the dimension of Y, hence it has codimension dim X
in X x Y. On the other hand, singular cohomology defines a well-defined
covariant functor on Chow and Grothendieck motives. Note that it is not a
tensor functor due to the signs in the Kiinneth formula.

This normalisation is the original one, see e.g., [Man68§|. In recent years,
it has also become common to use the covariant normalisation instead, in
particular in the case of Chow motives.

The category of Grothendieck motives is conjectured to be abelian and
semi-simple. Jannsen has shown in [Jan92] that this is the case if and only if
homological equivalence agrees with numerical equivalence.

The disadvantage of the above categories is their “wrong tensor structure”.
This could be fixed by introducing signs - but only if the Kiinneth decom-
position was known to be algebraic. André (see [And96], [And09) Section 9])
found a way of enlarging the category of Grothendieck unconditionally into
an abelian semi-simple category and in a way that makes singular cohomology
a tensor functor. We recall his construction:

Definition 6.1.3 ([And96, Définition 1]). Let k be subfield of C. Let X
be smooth projective variety over k. A motivated cycle on X of degree r is
an element of H?"(X, Q) of the form pyx Y (o - *1(8)), where Y is a smooth
projective variety, o and 3 are algebraic cycles on X XY and *j, is the inverse
of the Lefschetz isomorphism attached to some polarisation of X and Y. Let
AT+ (X) be the space of motivated cycles of degree 7.

mot
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Lemma 6.1.4 ([And96, 2.1, 2.2]). The space AL .(X) is a graded Q-algebra
containing algebraic cycles up to homological equivalence. It is stable under
co- and contravariant functoriality for morphisms of smooth projective vari-
eties.

The algebra A% (X x X) contains the Kinneth projectors and the Lef-

mot
schetz and Hodge involutions with respect to any polarisation of X .

Definition 6.1.5. The categories AM®T and AM of (effective) André mo-
tives are defined by substituting motivated cycles for algebraic cycles up to
homological equivalence in Definition [6.1.1

In Proposition [10.2.1] we are going to give an alternative characterisation
of André motives.

Theorem 6.1.6 (André [And96l, 4.4]). The category AM is a semi-simple
abelian rigid tensor category with fibre functor given by singular cohomology.

6.2 Geometric motives

We recall the definition of geometrical motives first introduced by Voevodsky,
see [VSF00, Chapter 5].

As before, let &k C C be a field. It will be suppressed in the notation most
of the time.

Definition 6.2.1 ([VSFQ0, Chapter 5, Section 2.1]). The category of finite
correspondences SmCor, has as objects smooth k-varieties. If X and Y are
smooth varieties, then morphism from X to Y in SmCory are given by the
vector space of Z-linear combinations of integral correspondences I' C X x Y
which are finite over X and dominant over a component of X.

The compositionof I' : X — Y and IV : Y — Z is defined by push-forward
of the intersection of I' x Z and X x " in X xY x Z to X x Z. The identity
morphism is given by the diagonal. There is a natural covariant functor

Smy — SmCory,

which maps a smooth variety to itself and a morphism to its graph.
The category SmCory, is additive, hence we can consider its homotopy
category K?(SmCory). The latter is triangulated.

Definition 6.2.2 ([VSF00, Chapter 5, Definition 2.1.1]). The category of
effective geometrical motives DMZE = DMgﬁ(k,Z) is the pseudo-abelian

hull of the localisation of K®(SmCory) with respect to the thick subcategory
generated by objects of the form

(X x A2 X]
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for all smooth varieties X and
NV ULV = X]

for all open covers U UV = X of all smooth varieties X.

Remark 6.2.3. We think of DMgﬂl as the bounded derived category of the

I
conjectural abelian category of effective mixed motives.

We denote by
M : SmCory — DM;ff1

the functor which views a variety as a complex concentrated in degree 0. By
[VSEQOL Chapter 5, Section 2.2], it extends (non-trivially!) to a functor on
the category of all k-varieties. For completeness, we record the relation to
higher Chow groups and algebraic K-theory.

Definition 6.2.4. Let k£ be a field of characteristic 0. Let X be a variety
over k. We put

HY,(X,Z(q)) = Hompay,,, (M(X), Z(q)[p]).

the motivic cohomology of X in degree p with twist q.

Theorem 6.2.5. If X is smooth, then motivic cohomology agrees with
Bloch’s higher Chow groups (see [Blo80])

HY,(X,Z(q)) = Ch*(X,2q — p)
and, after tensoring with Q, with Adams eigenspaces of algebraic K -theory

HR(X,Q(q)) = Kaq—p(X)g7.

Proof. The first identification is [MVWO06, Theorem 19.1]. The second is
consequence by [Blo86, Theorem 9.1], complemented by [Blo94]. It was also
shown in [Lev94l Theorem 3.4]. O

The category DM is tensor triangulated such that

M(X)®M(Y)=M(X xY)

for all smooth varieties X and Y. The unit of the tensor structure is given
by
Z(0) = M (Speck).

The Tate motive Z(1) is defined by the equation
M(PY) = Z(0) @ Z(1)[2].

We write M(n) = M ® Z(1)®" for n > 0. By [VSEQQ, Chapter 5, Section
2.2], the functor
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(n) : DMZY — DMZE

is fully faithful.

Definition 6.2.6. The category of geometric motives DMy, is the stabilisa-

tion of DM with respect to Z(1). Objects are of the form M(n) for n € Z
and morphisms are given by

Hompy,,, (M(n), M'(n)) = HomDMgeg (M(n+N), M (n'+N)) N > 0.

Remark 6.2.7. We think of DM,,, as the bounded derived category of the
conjectural abelian category of mixed motives.

The category DMy, is rigid by [VSEQ0, Chapter 5, Section 2.2], i.e., every
object M has a strong dual MV such that there are natural isomorphisms

HOHlDMgm (A ® B, C) = I{OIHDZ\/[gm (A, BY ® C)
AV @ BY =~ (A® B)Y
(AV)V = A

for all objects A, B, C.

Remark 6.2.8. Rigidity is a deep result. It depends on a moving lemma for
cycles and computations in Voevodsky’s category of motivic complexes.

Example 6.2.9. If X is smooth and projective of pure dimension d, then
M(X)Y = M(X)(—d)[-2d].

Theorem 6.2.10 ([VSF0Q, Chapter 5, Proposition 2.1.4]). The functor X —
M(X) on smooth projective varieties extends to a natural contravariant fully
faithful tensor functor

CHM — DMy,

In our normalisation (with Chow motives contravariant and geometric mo-
tives covariant on varieties), this functor maps the Lefschetz motive L to the
Tate motive Z(1)[2].

Gillet and Soulé in [GS96] explained how to associate to a variety a
bounded complex of Chow motives. In a series of papers, Bondarko put this
construction into an abstract framework and generalised it to all geometric
motives. We sum up the part of result that we are going to apply.

Theorem 6.2.11 (Bondarko [Bonl0l Section 6]). Let k be a field of charac-
teristic 0. The category DMy, of geometric motives carries a non-degenerate
bounded weight structure with heart given by CHM®P, i.e., there are classes
DMé’jnSO and DMé”m20 of objects of D Mgy, satisfying:

1. both are additive and closed under direct summands;

2. DMgwmz0 C DMgwmzo[l], DMg‘;JI%O[l] C DMg%O);

3. For M € DM¥z° and N € DMZ= (1], we have Hompyy,,, (M, N) = 0;
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4. For any M € DMy, there are A € DMg“’mSO and B € DMET’.“][H20 and an
ezxact triangle

A[-1] - M — B;
5. () DMEEO=i] = ) DMEZ[=i] = 0;

i€Z i€z

6. U DME0(—i] = U DMEZ[~i] = Ob(DMyn);
i€Z i€z

7. DMéJ’mSO N DM};‘I’H20 = Ob(CHM®).
We write

DMEZ" = DM™=%[—i], DMES DM Y= [—i].

From the axioms, we immediately see that for every M € DMy, there is an
exact triangle
A—-M—B

with A € DM¥S' B € DMé”mZi“. We write A = w<;M and B = w>j1 M.

gm

Note that they are mot functors.

Remark 6.2.12. The above follows the original normalisation of Bondarko
in [Bon10]. There are other references where the roles of DM2S% and DMEz°
are switched.

Bondarko shows that this weight structure induces a weight filtration un-
der any cohomological functor. More precisely:

Proposition 6.2.13 (Bondarko [BonlO, Section 2]). Let A be an abelian
category and H : DMgy — A be a contravariant cohomological functor, i.e.,
it is additive and maps exact triangles to exact sequences. For M € DM,gy,
we put

W,H(M) = Im(H(w>;M) — H(M)).

Then M — W;H(M) is a well-defined subfunctor of H. Moreover, we have
natural transformations of subfunctors

Wi_1H — W;H

and for all M € DMgy,, the quotient W; H(M)/W,;,_1H(M) is is isomorphic
to an object of the form

Ker (H(P[—i]) — H(P'[-1]))
for some morphism P’ — P in CHM®?.
Proof. Consider weight decompositions
w<n M — M — wsp1 M

for n =14 — 1,4. By [Bonl0, Proposition 1.5.6], there is a unique morphism
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q:w>iM — ws;_ 1 M

compatible with the morphisms to M. This implies that W;,_1H(M) C
W;H(M). Moreover, there is an exact triangle

P([—Z]) — ’UJZZ‘M i) wzi,lM
with P € CHM®P. Applying H, this implies that

is exact. We view w>;_1M][1] as w>;(M][1]). Again by [BonI0, Proposition
1.5.6], there is an exact triangle

P'[—i] = w>i(M[1]) = wxi—1(M][1])
for a Chow motive P’. Hence we have an exact sequence

HOI’IIDI\/[gm (P[—Z], Pl[—l]) — HOHIDMgm (P[—Z], ’LUZZ(M[l]))
— HOHlDMgm (P[*Z'], ’wZi_l(M[lD.

The group on the right vanishes by Property 2. of Theorem [6.2.11] Hence our
connecting morphism lifts to an element of

HOII’IDMgm(P[—Z'], Pl[—l]) = HOHlCHM0p (P, P/)

6.3 Absolute Hodge motives

The notion of absolute Hodge motives was introduced by Deligne, cf. [DMOS82,
Chapter II] in the pure case, and independently by Jannsen, cf. [Jan90]. We
follow the presentation of Jannsen, also used in our own extension to the tri-
angulated setting, cf. [Hub95]. We give a rough overview of the construction
and refer to the literature for full details.

We fix a subfield & C C and an algebraic closure k/k. Let G, = Gal(k/k).
Let S be the set of embeddings o : k — C and S the set of embeddings
7 : k — C. Restriction of fields induces a map S — S.

Definition 6.3.1 ([Hub95, Definition 11.1.1]). Let MR = MR(k) be the
additive category of mized realisations with objects given by the following
data:

e a bifiltered k-vector space Agg;
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e for each prime [, a filtered Q;-vector space A; with a continuous operation
of Gy;

for each prime [ and each o € S, a filtered (Q;-vector space A, ;;

for each o € 5, a filtered Q-vector space A,;

for each o € S, a filtered C-vector space A, c;

for each o € S, a filtered isomorphism

Iir,o : Adr ®s C = Ay c;
e for each o € 9, a filtered isomorphism
Ioc:As ®9C — A
e for each o € S and each prime [, a filtered isomorphism
Is) Ay @ Q1 = Ao s
e for each prime [ and each o € S, a filtered isomorphism
Lo A ®oQ — Ay

These data are subject to the following conditions:

e For each o, the tuple (4, Ao ¢, Irc) is a mixed Hodge structure;

e For each [, the filtration on A; is the filtration by weights: its graded pieces
er!V A; extend to a model of finite type over Z which is pointwise pure of
weight n in the sense of Deligne, i.e., for each closed point with residue
field x, the operation of Frobenius has eigenvalues N (x)"/2.

Morphisms of mixed realisations are morphisms of these data compatible
with all filtrations and comparison isomorphisms.

The above has already used the notion of a Hodge structure as introduced
by Deligne.

Definition 6.3.2 (Deligne [Del71]). A mized Hodge structure consists of the
following data:

o a finite-dimensional filtered Q-vector space (Vg, Ws);
e a finite-dimensional bifiltered C-vector space (Vi, Wi, F*);
e a filtered isomorphism I¢ : (V, W) @ C — (Ve, Wy)

such that for all n € Z the induced triple (gr'? Vo, gr%V Ve, gr¥V ) satisfies
gtV Ve = @ FPer)V Ve @ FagrlV Ve
ptg=n

with complex conjugation taken with respect to the R-structure defined by
grV Vo ®g R.
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A Hodge structure is called pure of weight n if W, is concentrated in degree
n. It is called pure if it is a direct sum of pure Hodge structures of different
weights.

A morphism of Hodge structures are is given by morphisms of these data
compatible with filtration and comparison isomorphism.

By [Del71] this is an abelian category. All morphisms of Hodge structures
are automatically strictly compatible with filtrations. This implies immedi-
ately:

Proposition 6.3.3 ([Hub95, Lemma 11.1.2]). The category MR is abelian.
Kernels and cokernels are computed componentwise. Fvery object A has a

canonical weight filtration W; A such that gr!¥ A is pure of weight i. All mor-
phisms are strict with respect to the weight filtration.

Remark 6.3.4. Recall the abelian category (k,Q)—Vect from Definition
(.11} Fix ¢ : k — C. Then the projection

A (AdR7 Au I,:((]:-IdR,L)
obviously defines a faithful functor
MR — (k,Q)—Vect.

This functor will become important in connection with periods of motives,

see Section [[T.5

The notation in Definition [6.3.1] is suggestive. If X is a smooth variety,
then there is a natural mixed realisation H = H . (X) with

e Hyr = H}i(X) algebraic de Rham cohomology as in Chapter Sec-
tion [31}

H; = H*(X;, Q) is l-adic cohomology with its natural Galois operation;
H, = H*(X x, Spec(C), Q) is singular cohomology;

HU,(C =H, ® C and Hcr,l =H,® Ql;

I4r,o is the period isomorphism of Definition ;

1} » is induced by the comparison isomorphism between l-adic and singular
cohomology over C.

Proposition 6.3.5 ([Hub95l Lemma 11.2.1]). Let X be a variety, then
the above tuple defines an object Hy,x(X). If X is smooth projective, then
H', (X)) is pure of weight i.

This is actually a summary of some of deepest results of arithmetic geom-
etry due to Deligne, see [Del71], [Del74b|, [Del74a], [Del80Q].

Remark 6.3.6. If we assume the Hodge or the Tate conjecture, then the
functor Hy 5 is fully faithful on the category of Grothendieck motives (with
homological or, under these assumptions equivalently, numerical equivalence).
Hence it gives a linear algebra description of the conjectural abelian category
of pure motives.
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Jannsen in [Jan90, Theorem 6.11.1] extends the definition to singular va-
rieties. A refined version of his construction is given in [Hub95]. We sum up
its properties.

Definition 6.3.7 ([Hub00, Definition 2.2.2]). Let C* be the category with
objects given by a tuple of complexes in the additive categories in Defini-
tion [6.3.1] with filtered quasi-isomorphisms between them. The category of
mized realisation compleres Caqr is the full subcategory of complexes with
strict differentials and cohomology objects in MR. Let Dy be the lo-
calisation of the homotopy category of Cyr (see [Hub95]) with respect to
quasi-isomorphisms (see [Hub95l Definition 4.1.7]).

By construction, there are natural cohomology functors:
Hi : CMR - MR

factoring over Dyg.

Remark 6.3.8. One should think of D as the derived category of MR,
even though this is false in a literal sense.

The main construction of [Hub95| is a functor from varieties to mixed
realisations.

Theorem 6.3.9 ([Hub95, Section 11.2], [Hub00, Theorem 2.3.1]). Let Smy
be the category of smooth varieties over k. There is a natural additive functor

RMR : Smk — OMR,

such that ' o
Hjur(X) = H' (Rpr (X)).
This allows us to extend R to the additive category Q[Smy] and even to
the category of complexes C'~ (Q[Smy]).

Remark 6.3.10. There is a subtle technical point here. The category C* is
additive. Taking the total complex of a complex in CT gives again an object
of CT. It is a non-trivial statement that the subcategory Crqr is respected,
see [Hub00, Lemma 2.2.5].

Following Deligne and Jannsen, we can now define
Definition 6.3.11. An object M € MR is called an effective absolute Hodge
motive if it is a subquotient of an object in the image of

H*o R : C*(Q[Smy]) = MR.

Let MM, = MMSE (k) € MR be the category of all effective absolute
Hodge motives over k. Let MMapg = MMau(k) C MR be the full abelian
tensor subcategory generated by MM and the dual of Q(—1) = H3 » (Ph).
Objects in MMy are called absolute Hodge motives over k.



6.3 Absolute Hodge motives 127

Remark 6.3.12. The rationale behind this definition lies in Remark
Every mixed motive is supposed to be an iterated extension of pure motives.
The latter are conjecturally fully described by their mixed realisation. Hence,
it remains to specify which extensions of pure motives are mixed motives.

Jannsen (see [Jan90, Definition 4.1]) does not use complexes of varieties
but only single smooth varietes. It is not clear whether the two definitions
agree, see also the discussion in [Hub95l Section 22.3]. On the other hand,
in [Hub95| Definition 22.13] the varieties were allowed to be singular. This is
equivalent to the above by the construction in [Hub04) Lemma B.5.3] where
every complex of varieties is replaced by a complex of smooth varieties with
the same cohomology.

Recall again the abelian category (k, Q)—Vect from Definition Recall
also the triangulated category D(Jjg ) from Definition
Fix ¢ : kK — C. The projection

K — (Kar, K,, K, c,Iar,., 1. c)
defines a functor
Crmr = Ciiq)
which induces a triangulated functor

forget : Dpr — D(Z’Q)

compatible with the forgetful functor MR — (k, Q)—Vect of Remark

Lemma 6.3.13. There is a natural transformation of functors

K~ (Z[Smy]) = DY, o,

between forget o Rapqg and RI.

Proof. This is true by construction of the dR~ and o-components of Ry in
[Hub95)]. In fact, the definition of RI" is a simplified version of the construction
given there. O

Remark 6.3.14. The construction of RI" is not identical to the one given
in [Hub95], because MR takes the Hodge and weight filtration into account.

We finish our discussion of various categories of motives, by making the
connection between geometric and absolute Hodge motives.

Theorem 6.3.15 ([Hub00], [Hub04]). Let k be a field embeddable into C.
Then there is tensor triangulated functor

Rpmr : DMy — Dpr

compatible with the functor Ry of Theorem on Z[Sm]. For all M €
DMy, the objects H'Ryr (M) are absolute Hodge motives.
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Proof. This is the main result of [Hub00]. Note that there is a Corrigendum
[Hub04]. The second assertion is [Hub00, Theorem 2.3.6]. O

We can now consider the cohomological functor
HS % = H° o Rpmp : DMgy — MR,

and Bondarko’s weight filtration WZ-HJOMR (see Proposition [6.2.13). On the
other hand, we have weight filtration functors

Wi: MR — MR.

Corollary 6.3.16. For all i € Z, the subfunctor W;HS 5 is canonically
isomorphic to W; o H})\AR.

Proof. It suffices to show that for every M € D Mgy, the quotient
WiH (M) /Wi Hyr (M)

is pure of weight ¢ in the sense of mixed realisations. By Proposition [6.2.13
the quotient is of the form HY,x (P[—i]) for P € CHM. Hence

H o Ryw(P[-i]) = H o (RMR(P)[i]) = Hiyr (P)

is pure of weight ¢ by Proposition [6.3.5] g

6.4 Mixed Tate motives

In this section, let k£ be a number field. We work with rational coefficients.
Our aim is to discuss the subcategory generated by Tate motives Q(¢) for
all ¢ € Z. The restriction is needed because the Beilinson-Soulé vanishing
conjecture is available only in this case.

Theorem 6.4.1 (Borel). Let k be a number field, i,j,n,m € Z. Then

Hompay,,, o(Q(2)[n], Q(5)[m]) = 0,
if one of the following conditions is satisfied:

1. m<n, or

2. m>n+1, or

3. m=mnandi#j, or

4. m=n+1andi>j, or
5. 1< .

Moreover, the mized realisation functor
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HomDMgm,Q (@7 Q(J)[l]) - EXt}Vl'R(Q7 Q(j))
18 injective.

Proof. If suffices to consider ¢ = n = 0. The key input is Borel’s computation
of algebraic K-groups in [Bor74]. He established for n > 1 an isomorphism
(the Borel regulator)

Kn(k)r 2 K,(Op)r — R

into a suitable R-vector space with explicitly described dimension d,. By
[BG0O2] the Borel regulator can be identified up to a factor of 2 with the
Beilinson regular, i.e., the Chern class into Deligne or absolute Hodge coho-
mology
K, (k)r — Hp(Speck ®g R, R(5))

with n = 2j — 1. In particular, it factors via the j-eigenspace for the Adams-
operators ng_l(k:)((Q? ) and all other eigenspaces vanish. By [VSF00, Chapter
V, §2.2, p. 197], morphisms of geometric motives can be computed by higher
Chow groups, which in turn are given by algbraic K-groups:

Hom p g, o (Q, Q(j)[m]) = Ch’ (Speck, 2j — m)g 2 Ka;_m(Speck)y’.

Together this gives the vanishing statements for 2j —m # 0, 1. The remaining
exceptional cases are easier:

Ko (Speck)g = KO(Speck‘)S) =Q,
K (Speck)q = Kl(Speckz)g) =k*2Q.

For injectivity on Ext', we claim that the Chern class factors as

Kaj_1(Speck)q — Exthr (Q,Q(j)) — Hp(Speck ®g R,R(5)).

By [Bei86], Deligne cohomology can be identified with absolute Hodge coho-
mology. In our case this is

Hp (Speck ©g C,R(j)) = Extypg(H(Speck ®g C,R), R(j))

= P Extims(RR()),
o:k—C

where MHS is the abelian category of R-Hodge structures. For every o, there
is a forgetful functor from MR to MHS. The factorisation follows from the
naturality of the Chern class maps. Hence the injectivity follows from the
injectivity of the Borel regular. In the missing case 7 = 1, we proceed as in
the proof of [DGO05, Propostion 2.14|pick o : k — C. The Chern class into
Extys(Q, Q(1)) has an explicit description as
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k;Q — C/2miQ, z +— log(o(z))
for any choice of branch of log. It is injective. O

We want to think of Q(4) as a complex concentrated in degree 0 and hence
Q(%)[n] as a complex concentrated in degree —n.

Definition 6.4.2. 1. Let £ be a number field. We define the triangulated
category of mized Tate motives DT M as the full triangulated subcategory
of D Mg g closed under direct summands and containing all Q(7) for i € Z.
2. Let DT M=° be the full subcategory of objects X such that

Hompra (X, Q(j)[m]) =0 for all j € Z, m < 0.
3. Let DT MZ=° be the full subcategory of objects Y such that
Homprp (Q(4)[n],Y) =0 for all i € Z, n > 0.

4. Let
MT Mg = DTM=° N DTM="

be the category of mized Tate motives over k.

From the vanishing conjecture, one deduces quite formally the existence
of an abelian category of mixed Tate motives.

Proposition 6.4.3 (Levine [Lev93, Theorem 4.2, Corollary 4.3]). Let k be
a number field. Then (DTM=°, DTM?=°) is a t-struture on DT M. In par-
ticular, the category MT Mgy, is abelian. It contains all Q(i) for i € Z.
Moreover, the category has cohomological dimension one and Ext-groups are
computed in DMy, i.e.,

Extﬁ,lTMgm (X,Y) = Hompyy,,, (X, Y[n]),

and the group vanishes for n # 0, 1.

There are canoncial ezact subfunctors v=* MT Mg, = MT Mgy of the
identity with v=* — v="1 such that for every M € MT Mg, gr¥ M is of the
form @, c; Q(i) for a finite index set I.

Remark 6.4.4. The letter v2* stands for the slice filtration on motivic com-

plexes. It restricts to the above filtraton on mixed Tate motives, see [HKOG,
Section 4].

Proposition 6.4.5 ([DGOR]). Let k be a number field. Then H iz : MT Mg —
MMy is exact. The functor is fully faithful and the image is closed under
subquotients.

We write Mag = HS 5z (M) for M € MT Mg,

Proof. We argue by the length of the weight filtration »=? in order to show
that for all M, N € MT Mgmn:
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Hom a7 m,,, (M, N) = Hompar (Mar, NMmr),
Ext i an,, (M, N) C Extiyr (Mar, Nyr)-

The first statement is true for pure Tate motives of fixed weight, because the
category is equivalent to the category of finite dimension Q-vector spaces. The
same is true for the mixed realisation. The second statement is essentially
due to Borel, see Theorem The inductive step is a simple diagram
chase. The same induction also shows that H, is exact. The statement
on subquotients is true for pure Tate motives, because the category is semi-
simple. By induction on the weight filtration, it follows in general. a

In the context of the conjectures on special values of L-functions (see
Section or multiple zeta values (see Chapter , we actually need a
smaller category. Before going into the definition, let us first explain the
problem. Any element of

k* ®z Q = K1(k) = Hompy,,, (Q, Q(1)[1])

gives rise to an element of Ext),r My (Q,Q(1)). Hence this is an infinite
dimensional vector space. The elements of number theoretic significance are
the ones coming from the units of the ring of integers, a finite dimension
Q-subspace. Actually, this particular Ext-group is the only problematic one.
For all other twists, all extensions over k already come from extensions over
Ok.

Definition 6.4.6 (Deligne-Goncharov [DG05, Section 1]). Let k be a number
field. A mixed Tate motive M is called unramfied, if for every subquotient F
of M which defines an element in some EXt}v{TMgm (Q(n),Q(n+1) = k*®zQ,
the class is already in O} ®z Q.

Let MTM! C MT Mgy, be the full subcategory of unramified mixed
Tate motives.

The category also goes by the name of mized Tate motives over Oy. Heuris-
tically, we want motives over Q which have a preimage in the category of
motives over Z. The above definition is an unconditional replacement. The
condition can be tested on the Galois realisation.

Lemma 6.4.7 ([DGO05, Proposition 1.7], [YamI0, Theorem 4.2]). Let M
be mized Tate motive over k. Let p be a prime number and M, the p-adic
realisation of M. Let v be finite place of k.

1. If v is prime to p, then M), is unramified at v, i.e., the inertia group I,
operates trivally.

2. Ifv divides p, then M, is crystalline as representation of Gal(k, /k,), i.e.,
the k-dimension of Dp(M,) := (Berys ®q, M) */F) s equal to the Q,-
dimension of M.
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Conversely, a mized Tate motive is unramified if for every prime ideal v there
is a prime number p such that condition 1. or 2., respectively, is satisfied for
one p.

Proof. We follow the argument of [DGO5| for the case p prime to v. Let M
be an unramified Tate motive over Oy. Hence its p-adic realisation M, is a
finite interated extension of modules of the form Q,(—i). It carries a weight
filiration Wa; M), such that Wa; My, /Wa; oM, = Qi (i), i.e., Q,(—i) is pure
of weight 2i. By assumption, the subextensions

0— ng,QMp/Wzi,LL — WQiMp/WQZ'leMp — ngMp/WQi,4Mp —0

are induced from sums of Kummer extensions characterised by u € Of @z Q.
This implies that I, operates trivally on the term in the middle. For the
general case, we argue by induction on the length of the weight filtration. We
consider a non-trivial sequence

0— WQiMp — Mp — Mp/WQZ‘Mp — 0.

By the inductive hypothesis, I, operates trivially on the outer terms. The
claim is equivalent to the vanishing of the boundary morphism

0 : Mp/WQiMp — Hl([U7 WQiMp) = (WQiMp)]v(fl).

Note that the domain of this boundary morphism has weights a least 2i 4 2
and the range has weights at most 2¢ + 2. We restrict to the submodule
WaiyoM,. The subextension is unramified by the inductive hypothesis, hence
its boundary map vanishes. This implies that 0 factors via M,/Wa; 11 Mp. It
vanishes for weight reasons.

The case v | p is due to Yamashita. The argument is analoguous to the
above. We refer to [Yam10, Theorem 4.2] for full details. O

Corollary 6.4.8 ([DGO0R]). The mized realisation functor HY,z is fully faith-
ful on MT M with image closed under subquotients.
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Chapter 7
Nori’s diagram category

We explain Nori’s construction of an abelian category attached to the repre-
sentation of a diagram and establish some properties for it. The construction
is completely formal. It mimics the standard construction of the Tannakian
dual of a rigid tensor category with a fibre functor. Only, we do not have a
tensor product or even a category but only what we should think of as the
fibre functor.

The results are due to Nori. Notes from some of his talks are available
[Nor00, Nora]. There is also a sketch in Levine’s survey [Lev05, §5.3]. In
the proofs of the main results we follow closely the diploma thesis of von
Wangenheim in [vWTI].

We start by giving a summary of the main results before giving full proofs
beginning in Section [7.2

7.1 Main results

7.1.1 Diagrams and representations

Let R be a noetherian, commutative ring with unit.

Definition 7.1.1. A diagram D is a directed graph on a set of vertices
V(D) and edges E(D). A diagram with identities is a diagram together with
a choice of a distinguished edge id, : v — v for every v € V(D). A diagram
is called finite if it has only finitely many vertices. A finite full subdiagram of
a diagram D is a diagram containing a finite subset of vertices of D and all
edges (in D) between them.

By abuse of notation we often write v € D instead of v € V(D). The set
of all directed edges between p,q € D is denoted by D(p,q).

135
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Remark 7.1.2. In the literature, the terminology quiver is also quite fre-
quent. Note, however, that a finite quiver usually is only allowed to have
finitely many edges. We prefer to stay away from the notion.

Following Nori, one may think of a diagram as a category where composi-
tion of morphisms is not defined. Conversely, every small category defines a
diagram with identities. The notion of a diagram with identity edges is not
standard. The notion is useful later when we consider multiplicative struc-
tures.

Example 7.1.3. Let C be a small category. To C we can associate a diagram
D(C) with vertices the set of objects in C and edges given by morphisms. Tt
is even a diagram with identities. By abuse of notation we usually also write
C for the diagram.

Definition 7.1.4. A representation T of a diagram D in a small category
C is a map T of directed graphs from D to D(C). A representation T of a
diagram D with identities is a representation 7" such that id is mapped to id.

For p,q € D and every edge m from p to g we denote their images simply
by Tp, Tq and T'm : Tp — Tq (mostly without brackets).

Remark 7.1.5. Alternatively, a representation could be defined as a functor
from the path category P(D) to C. Recall that the objects of the path category
are the vertices of D, and the morphisms are sequences of directed edges
e1éy...e, for n > 0 with the edge e; starting in the end point of e;_; for
1 = 2,...,n. Morphisms are composed by concatenating edges. If D is a
diagram with identities, we view P (D) as a diagram by using the same edges
as identities, now viewed as a path of length one. Note that this is in conflict
with the more natural choice of the empty word as identity edge, which,
however, does not fit our application in Remark

We are particularly interested in representations in categories of modules.

Definition 7.1.6. Let R be a noetherian commutative ring with unit. By
R—Mod we denote the category of finitely generated R-modules. By R—Proj
we denote the subcategory of finitely generated projective R-modules.

Note that these categories are essentially small, so we will not worry about
smallness from now on.

Definition 7.1.7. Let S be a commutative unital R-algebra and T : D —
R—Mod a representation. We denote T the representation

DIy R—Mod 225, §—Mod.

Definition 7.1.8. Let T be a representation of D in R—Mod. We define the
ring of endomorphisms of T by
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End(T) := {(ep)peD e[l EndR(Tp)‘

peD

equm:Tmoepr,quVmED(p,q)}.

Remark 7.1.9. In other words, an element of End(T") consists of tuples
(ep)pev(p) of endomorphisms of the various T'p’s, such that all diagrams of
the following form commute:

TpLTq

TpLTq

Note that the ring of endomorphisms does not change when we replace D by
the path category P (D).

7.1.2 Explicit construction of the diagram category

The diagram category can be characterised by a universal property, but it
also has a simple explicit description that we give first.

Definition 7.1.10 (Nori). Let R be a noetherian commutative ring with
unit. Let T be a representation of D in R—Mod.

1. Assume D is finite. Then we put
C(D,T) = End(T)—Mod

the category of finitely generated R-modules equipped with an R-linear
operation of the algebra End (7).
2. In general, let
C(D,T) = 2—colimpC(F,T|F)

where F' runs through the system of finite full subdiagrams of D.

More explicitly (explaining the 2—colim): the objects of C(D,T) are the
objects of C(F,T|r) for some finite subdiagram F. For X € C(F,T|r)
and F C F’ we write X for the image of X in C(F’,T|p/). For objects
X,Y € C(D,T), we put

MOTC(D7T) (X, Y) = llﬂ MOTC(F,T\F)(XFa YF).
F

The category C(D,T) is called the diagram category. With
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fr:C(D,T) — R—Mod

we denote the forgetful functor.

Remark 7.1.11. 1. The representation T : D — C(D,T) extends to a
functor on the path category P(D). By construction the diagram categories
C(D,T) and C(P(D),T) agree. The point of view of the path category will
be useful in Chapter [8] in particular in Definition [8.2.1

2. There is no need to distinguish between diagrams and diagrams with iden-
tities at this point. We have asked the representation to map the identity
edges to the identity map. Hence compatibility of a tuple of endomor-
phisms with this edge is automatic.

In Section [7.5| we will prove that under additional conditions for R, sat-
isfied in the cases of most interest, there is the following even more direct
description of C(D, T) as comodules over a coalgebra.

Theorem 7.1.12. If the representation T takes values in free modules over
a field or a Dedekind domain R, then the diagram category is equivalent to
the category of finitely generated comodules (see Definition over the
coalgebra A(D,T), where

A(D,T) = colimpA(F,T) = colimpEnd(T|r)",

with F running through the system of all finite subdiagrams of D and V
denoting the R-dual.

The proof of this theorem is given in Section [7.5)

7.1.3 Unwversal property: statement

Theorem 7.1.13 (Nori). Let D be a diagram and
T:D — R—Mod

a representation of D. Then there exists an R-linear abelian category C(D,T),
together with a representation

T:D—C(D,T),
and a faithful, exact, R-linear functor frp, such that:

1. T factorises over D N C(D,T) Iy R—Mod.
2. T satisfies the following universal property: given

a. another R-linear, abelian category A,
b. an R-linear, faithful, exact functor, f : A — R—Mod,
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c. another representation F : D — A,

such that f o FF = T, then there exists a faithful exact functor L(F) —
unique up to unique isomorphism of additive exact functors — such that
the following diagram commutes:

|
|
T | fr
|
|

L(F)

R—Mod.

A

The category C(D,T) together with T and fr is uniquely determined by
this property up to unique equivalence of categories. It is explicitly described
by the diagram category of Definition [7.1.10, It is functorial in D in the
obvious sense.

The proof will be given in Section We are going to view fr as an
extension of T from D to C(D,T) and sometimes write simply 7" instead of

fr.

Remark 7.1.14. It is worth stressing faithfulness of all functors involved.
All categories can be viewed as non-full subcategories of R—Mod.

The above universal property already determines the diagram category up
to unique equivalence of categories. It can be generalised in two directions:
we do not need strict commutativity of the diagram but can allow an iso-
morphism of representations; and it is enough to have this property after
extension of scalars.

Corollary 7.1.15. Let D, R, T be as in Theorem[7.1.13. Let A and f, F
be as in loc. cit. 2. (a)-(c). Moreover, let S be a faithfully flat commutative
unitary R-algebra S and

¢:Ts — (foF)s

an isomorphism of representations into S—Mod. Then there exists a faithful
exact functor L(F) : C(D,T) — A and an isomorphism of functors

¢: (fr)s — fso L(F)

such that
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¢(D,T)

| (fr)s
' L(F

S—Mod

o

A

commutes up to ¢ and ¢. The pair (L(F), c;NS) s unique up to unique isomor-
phism of additive exact functors.

The proof will also be given in Section [7.4]
The following properties provide a better understanding of the nature of
the category C(D,T).

Proposition 7.1.16. 1. As an abelian category C(D,T) is generated by the
Tv where v runs through the set of vertices of D, i.e., it agrees with its
smallest full subcategory containing all such Twv and such that the inclusion
15 exact.

2. Each object of C(D,T) is a subgquotient of a finite direct sum of objects of
the form Tv.

3. If a:v— " is an edge in D such that Ta is an isomorphism, then Ta is
also an isomorphism.

Proof. Let C' C C(D,T) be the abelian subcategory generated by all Tv and
closed under kernels and cokernels . By definition, the representation T factors
through C’. By the universal property of C(D,T), we obtain a faithful exact
functor C(D,T) — C’, hence an equivalence of subcategories of R—Mod.
The second statement follows from the first criterion since the full sub-
category in C(D,T) of subquotients of finite direct sums is abelian, hence
agrees with C(D,T'). The assertion on morphisms follows since the functor
fr : C(D,T) - R—Mod is faithful and exact between abelian categories.
Kernel and cokernel of T vanish if kernel and cokernel of T'ev vanish. a

Remark 7.1.17. We will later give a direct proof, see Proposition It
will be used in the proof of the universal property.

The diagram category only weakly depends on T'.

Corollary 7.1.18. Let D be a diagram and T,T" : D — R—Mod be two
representations. Let S be a faithfully flat R-algebra and ¢ : Ts — T§ be an
isomorphism of representations in S—Mod. Then it induces an equivalence
of categories
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®:C(D,T) = C(D,T).

Proof. We apply the universal property of Corollary to the repre-
sentation T and the abelian category A = C(D,T’). This yields a functor
& :C(D,T) — C(D,T’). By interchanging the role of T' and T” we also get a
functor @' in the opposite direction. We claim that they are inverse to each
other. The composition @' o @ can be seen as the universal functor for the
representation of D in the abelian category C(D,T) via T. By the uniqueness
part of the universal property, it is the identity. a

Corollary 7.1.19. Let Dy be a diagram. Let Ty : Do — R—Mod be a repre-
sentation. Let .
Dy 25 ¢(Dy, 1) 225 R—Mod
be the factorisation via the diagram category.
Let Dy C Dy be a full subdiagram. It has the representation Ty = Ta|p,
obtained by restricting Ts. Let

Dy 5 e(Dy, 1) 5 R—Mod

be the factorisation via the diagram category. Let v : C(Dy,T1) — C(D2,T»)
be the functor induced from the inclusion of diagrams. Moreover, we assume
that there is a representation F' : Dy — C(D1,T1) compatible with Ty, i.e.,
such that there is an isomorphism of functors

Ty = fr,ovo F = fr, o F.

Then ¢ is an equivalence of categories.

Proof. Let Ty = fr, o F : Dy — R—Mod and denote T{ = T4|p, : D1 —
R—Mod. By assumption, the functors 75 and T are isomorphic, and so are
the functors 77 and Tj.

By the universal property of the diagram category, the representation F’
induces a faithful exact functor

7TI : C(DQ,TQ/) — C(Dl,Tl).

It induces 7 : C(D3, T3) by precomposition with the equivalence @ from Corol-
lary We claim that ¢ o 7w and 7 o ¢ are isomorphic to the respective
identity functors.

By the uniqueness part of the universal property, the composition ¢ o 7’ :
C(D3,T5) — C(D3,Tz) is induced from the representation ¢ o F' of Dy in
the abelian category C(Ds,T5). By the proof of Corollary this is the
equivalence ®~!. In particular, ¢ o 7 is the identity.

The argument for 7 o ¢ on C(D;,T1) is analogous. O

The most important ingredient for the proof of the universal property is
the following special case.
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Theorem 7.1.20. Let R be a noetherian ring and A an abelian, R-linear
category. Let
T: A— R—Mod

be a faithful, exact, R-linear functor and

ALy ea,1) 5 R—Mod

the factorisation via its diagram category (see Definition|7.1.1()). Then T is

an equivalence of categories.

The proof of this theorem will be given in Section 7.3

7.1.4 Discussion of the Tannakian case

The above construction of C(A,T) may be viewed as a generalisation of Tan-

naka duality. In this subsection, we will explain Tannaka duality in more

detail. We are not going to use the following considerations in the sequel.
Let k be a field, C a k-linear abelian tensor category, and

T:C — k—Vect

a k-linear faithful tensor functor, all in the sense of [DM82]. By standard
Tannakian formalism (cf [SR72] and [DMS82]), there is a k-bialgebra A such
that the category is equivalent to the category of A-comodules on finite-
dimensional k-vector spaces.

On the other hand, if we regard C as a diagram (with identities) and T
as a representation into finite-dimensional vector spaces, we can view the di-
agram category of C as the category A(C,T)—Comod by Theorem
By Theorem the category C is equivalent to its diagram category
A(C,T)—Comod. The construction of the two coalgebras A and A(C,T) coin-
cides. Thus Nori implicitly shows that we can recover the coalgebra structure
of A just by looking at the representations of C.

The algebra structure on A(C,T) is induced from the tensor product on
C. (This is actually a special case of our considerations in Section [8.1]). This
defines a pro-algebraic scheme SpecA(C,T). The coalgebra structure turns
SpecA(C,T) into a monoid scheme. We may interpret A(C,T)—Comod as
the category of finite-dimensional representations of this monoid scheme.

If, in addition, the tensor structure is rigid, C(D,T') becomes what Deligne
and Milne call a neutral Tannakian category [DM82]. The rigidity structure
induces an antipodal map, making A(C,T) into a Hopf algebra. This yields
the structure of a group scheme on SpecA(C,T), rather than only a monoid
scheme. (This is a special case of our considerations in Section )

We record the outcome of the discussion:
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Theorem 7.1.21. Let R be a field and C be a neutral R-linear Tannakian
category with faithful exact fibre functor T : C — R—Mod. Then A(C,T) is
equal to the Hopf algebra of the Tannakian dual.

Proof. By construction, see [DM82, Theorem 2.11] and its proof. a

As a byproduct of our generalisations, we are actually going to give a full
proof of Tannaka duality, see Remark
A similar result holds in the case that R is a Dedekind domain and

T:D — R—Proj

a representation into finitely generated projective R-modules. Again by The-
orem the diagram category C(D,T) equals A(C,T)—Comod, where
A(C,T) is projective over R. Wedhorn shows in [Wed04] that if SpecA(C,T')
is a group scheme it is the same to have a representation of SpecA(C,T) on a
finitely generated R-module M and to endow M with an A(C,T)-comodule
structure.

7.2 First properties of the diagram category

Let R be a unitary commutative noetherian ring, D a diagram and T': D —
R—Mod a representation. We investigate the category C(D,T) introduced in

Definition [[.T.10l

Lemma 7.2.1. If D is a finite diagram, then End(T') is an R-algebra which
1s finitely generated as an R-module.

Proof. For any p € D the module Tp is finitely generated. Since R is noethe-
rian, the algebra Endg(Tp) then is finitely generated as R-module. Thus
End(T’) becomes a unitary subalgebra of [ [ c oy p) Endg(Tp). Since V(D) is
finite and R is noetherian,

End(T) ¢ [] Endg(Tp)
peOb(D)

is finitely generated as R-module. a

Lemma 7.2.2. Let D be a finite diagram and T : D — R—Mod a represen-
tation. Then:

1. Let S be a flat R-algebra. Then:

Ends(Ts) = EndR(T) & S
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2. Let F: D' — D be a morphism of diagrams and T" =T o F the induced
representation. Then F induces a canonical R-algebra homomorphism

F*:End(T) — End(T").
Proof. The algebra End(T") is defined as a limit, i.e., a kernel
0= End(T) - [[ Ende(Tp) % [ Homg(Tp,Tq)
pEV(D) meD(p,q)

with ¢(p)(m) = e, 0o Tm —Tmoe,. As S is flat over R, this remains exact
after tensoring with S. Moreover, tensor product and direct product commute
because the products are finite. As the R-module T'p is finitely presented and
S flat, we have

Endgr(Tp) ® S = Ends(Tsp), Homg(Tp,Tq) ® S = Homg(Ts(p), Ts(q))-

Hence we get

0= End(T)®S — [[ Ends(Ts(p) > [ Homs(Ts(p), Ts(9)).
peV (D) meD(p,q)

This is the defining sequence for End(7%s).
The morphism of diagrams F' : D’ — D induces a homomorphism

I Enda(Tp)— [ Endr(T'p),
peV (D) p'€V(D’)

by mapping e = (ep), to F*(e) with (F*(e)), = epqy) in Endg(T'p") =
Endgr(TF(p")). It is compatible with the induced homomorphism

H Hompg(Tp, Tq) — H Hompg(T'p', T'q").

meD(p,q) m’eD’(p’,q")
Hence it induces a homomorphism on the kernels. a

Proposition 7.2.3. Let R be a unitary commutative noetherian ring, D a
finite diagram and T : D — R—Mod be a representation. For any p € D
the object Tp is a natural left End(T)-module. This induces a representation

T : D — End(T)—Mod,
such that T factorises via
T fr
D — C(D,T) — R—Mod.

Proof. For all p € D the projection
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pr: End(T) — Endr(Tp)

induces a well-defined action of End(T) on Tp making T'p into a left End(T)-
module. To check that 7' is a representation of left End(T)-modules, we need
Tm € Hompg(Tp,Tq) to be End(T)-linear for all p,q € D,m € D(p,q).
This corresponds directly to the commutativity of the diagram in Remark
1.9 O

Now let D be general. We study the system of finite subdiagrams F' C D.
Recall that subdiagrams are full, i.e., they have the same edges as in D.

Corollary 7.2.4. The finite subdiagrams of D induce a directed system of

abelian categories (C(D,T|p)) pcp with ezact, faithful R-linear functors as
finite
transition maps.

Proof. Let F' C F be an inclusion of finite subdiagrams. By Lemma [7.2.2
this induces an algebra homomorphism End(7T'|z) — End(T|%). From this
we obtain a faithful exact functor

End(T|%)—Mod — End(T|r)—Mod.
These are the transitions functors. O

Recall that we want to define C(D,T) as 2-colimit of this system, see
Definition [Z1T.101

Proposition 7.2.5. The 2-colimit C(D,T) exists. It provides an R-linear
abelian category such that the composition of the induced representation with
the forgetful functor

p L e, 1) L2 R—Mod
p— Tp — Tp.

yields a factorisation of T. The functor fr is R-linear, faithful and exact.

Proof. Tt is a straightforward calculation that the limit category inherits all
structures of an R-linear abelian category. It has well-defined (co)products
and (co)kernels because the transition functors are exact. It has a well-defined
R-linear structure as all transition functors are R-linear. Finally, one shows
that every kernel resp. cokernel is a monomorphism resp. epimorphism using
the fact that all transition functors are faithful and exact.

By construction, for every p € D the R-module T'p becomes an End(T'|g)-
module for all finite ¥ C D with p € F. Thus it represents an object in
C(D,T). This induces a representation

p L,
p — Tp.
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The forgetful functor is exact, faithful and R-linear. Composition with the
forgetful functor fr obviously yields the initial diagram 7' a

We now consider functoriality in D.

Lemma 7.2.6. Let D1, Dy be diagrams and G : D1 — Dy a map of diagrams.
Let further T : Do — R—Mod be a representation and

Do L e(Dy, T) 25 R—Mod

the factorisation of T through the diagram category C(Do,T) as constructed
in Proposition[7.2.5 Let

Dy 2% ¢(Dy, T o G) L7°% R—Mod
be the factorisation of T o G.
Then there exists a faithful R-linear, exact functor G, such that the follow-
ing diagram commutes.

Dy G Dy

| |
ToG T

l |

C(D1,ToG)------- G------ > C(Ds,T)
\ /
froc fr
/
R—Mod

Proof. Let Dy, D2 be finite diagrams first. Let T3 =T o G and 15 = T. The
homomorphism
G* : End(T3) — End(Ty)

of Lemma induces by restriction of scalars a functor on diagram cate-
gories as required.

Let now D, be finite and Dy arbitrary. Let Fy be a finite full subdiagram
of Dy containing G(D;). We apply the finite case to G|p, : D1 — Es and
obtain a functor

C(Dl,TO G) — C(EQ,T|E2)

which we compose with the canonical functor C(E2,T|g,) — C(D2,T). By
functoriality, it is independent of the choice of Fs.
Let now Dy and Dy be arbitrary. For every finite subdiagram E; C D, we
have constructed
C(El,TO G|E1) — C(DQ,T)

They are compatible and hence define a functor on the colimit.
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O

Isomorphic representations have equivalent diagram categories. More pre-
cisely:

Lemma 7.2.7. Let T1,T5 : D — R—Mod be representations and ¢ : Ty — Ts
an isomorphism of representations. Then ¢ induces an equivalence of cate-
gories @ : C(D,Th) — C(D,Ts) together with an isomorphism of representa-
tions

QZN) :do Tl — TQ
such that fr, o é=¢.

Proof. We only sketch the argument since it is analogous to the proof of
Lemma [7.2.6l
It suffices to consider the case D = F finite. The functor

@ : End(T})—Mod — End(T3)—Mod

is the extension of scalars for the R-algebra isomorphism End(7T7) — End(7%)
induced by conjugating by ¢. a

7.3 The diagram category of an abelian category

In this section we give the proof of Theorem the diagram category
of an abelian category with respect to a representation given by an exact
faithful functor is the abelian category itself. In the case of fields, the proof
is also given in Nori’s thesis, see [Nor82, Appendix].

We fix a commutative noetherian ring R with unit and an R-linear abelian
category A. By R-algebra we mean a unital R-algebra, not necessarily com-
mutative. Recall that R—Mod is the category of finitely generated R-modules.

7.3.1 A calculus of tensors

We start with some general constructions of functors. We fix a unital R-
algebra F, finitely generated as R-module, not necessarily commutative. The
most important case is £ = R, but this is not enough for our application.

In the simpler case where R is a field, the constructions in this section can
already be found in [DMOSS82].

Definition 7.3.1. Let E be an R-algebra which is finitely generated as R-
module. We denote E—Mod the category of finitely generated left F-modules.

The algebra E and the objects of E—Mod are noetherian because R is.
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Definition 7.3.2. Let A be an R-linear abelian category and p be an object
of A. Let E be a not necessarily commutative R-algebra and

E°P L5 Endu(p)

be a morphism of R-algebras. We say that p is a right E-module in A.

Example 7.3.3. Let A be the category of left R'-modules for some R-algebra
R’. Then a right E-module in A is the same thing as an (R, F)-bimodule,
i.e., a left R’-module with the structure of a right E-module.

Lemma 7.3.4. Let A be an R-linear abelian category in which all Hom-
modules are finitely generated. Let p be an object of A. Let E be a not neces-
sarily commutative R-algebra and p a right E-module in A. Then

Homy(p, ) : A — R—Mod

can naturally be viewed as a functor to E—Mod.

Proof. For every q € A, the algebra E operates on Hom 4 (p, ¢) in the obvious
way. O

Proposition 7.3.5. Let A be an R-linear abelian category in which all Hom-
modules are finitely generated. Let p be an object of A. Let E be a not neces-
sarily commutative R-algebra and p a right E-module in A. Then the functor

Homy(p, ) : A — E—Mod
has an R-linear left adjoint
p®g - : E—Mod — A.

It is right exact. It satisfies
POE E = 2

and on endomorphisms of the objects E we have (using Endg(F) = E°P)

p®p -: Endg(F) — End 4(p)
a —  f(a).

Proof. Right exactness of p ®@p _ follows from the universal property. For
every M € E—Mod, the value of p ® g M is uniquely determined up to
unique isomorphism by the universal property.

In order to show existence, we are going to deduce an explicit description
for more and more general M. In the case of M = FE, the universal property
is satisfied by p itself because we have for all g € A

HOHlA (p7 Q) = HOH]E (Ea HOHlA (pa q))
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This identification also implies the formula on endomorphisms of M = F.
By compatibility with direct sums, this implies that p ®p E™ =~ @} | p

for free E-modules. For the same reason, morphisms E™ M) E™ between
J(aij)ij

free E-modules must be mapped to @)~ , p —> @, p.

Let M be a finitely presented left E-module. We fix a finite presentation

g )i, pmo T8y p g
Since p ® g - preserves cokernels (if p ® g _ exists), we need to define

p®p M := Coker(p™* m po).

We check that it satisfies the universal property. Indeed, for all ¢ € A, we
have a commutative diagram

Hom4(p ® E™1,q) <——— Homy(p ® E™0,q) <——— Homuy(p® M,q) <— 0

Lz o

Hompg (E™1!, Hom4(p, q)) < Hompg(E™°,Hom4(p, q)) < Hompg(M,Hom4(p,q)) < 0

Hence the dashed arrow exists and is an isomorphism. This finishes the proof
of existence.

The universal property implies that p® g M is independent of the choice of
presentation and functorial. We can also make this explicit. For a morphism
between arbitrary modules ¢ : M — N we choose lifts

A T

Em Emo —2— M 0
B B

Em Emo N 0

) /0

i
3
bS]
3
Q
Q
3
-3
=

[v"l I/#;O : 3!
B i 4

p"o = Coker(B) — 0.

induces a unique morphism p @ (¢) : p®p M — p®g N that keeps the
diagram commutative. It is independent of the choice of lifts as different lifts
of projective resolutions are homotopic. This finishes the construction. a
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Corollary 7.3.6. Let E be an R-algebra finitely generated as R-module and
A an R-linear abelian category in which all Hom-modules are finitely gener-
ated. Let

T: A— E—Mod

be an ezract, R-linear functor into the category of finitely generated E-
modules. Further, let p be a right E-module in A with structure given by
a morphism of R-algebras

E? L5 End.a(p).

Then the composition

E? L5 Bndu(p) % Endg(Tp).
induces a right action on Tp, making it into an E-bimodule. The composition

E-Mod 2% A4 Iy E-Mod
M — pR@r M — T(pRrg M)

becomes the usual tensor functor of E-modules.

Proof. 1t is obvious that the composition

E-Mod ™% A4 L. E-Mod
E" = pRpE" = T(p®g E")

induces the usual tensor functor
(Tp) ®g - : E-Mod — E—Mod

on free E-modules. For arbitrary finitely generated E-modules this follows
from the fact that T'(p @ -) is right exact and T is exact. ad

Remark 7.3.7. Let E be an R-algebra, let M be a right E-module and N
be a left F-module. We obtain the tensor product M ® g N by dividing out
the equivalence relation m-e®n ~m®e-n forallm € M,n € Nee E
of the tensor product M ®r N of R-modules. We will now see that a similar
approach holds for the abstract tensor products p ® g M and p ® g M in A
as defined in Proposition [7.3.5] For the easier case that R is a field, this
approach has been used in [DMS&2].

Lemma 7.3.8. Let A be an R-linear, abelian category in which all Hom-
modules are finitely generated, EE a not necessarily commutative R-algebra
which is finitely generated as R-module and p € A a right E-module in A.
Let E' € E—Mod be, in addition, a right E-module.

Then p Qg E’' is a right E-module in A and for all M € E—Mod we have
natural isomorphism
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p®p (E'®@pM)=(pep E')®p M.

Moreover,
(pRe E)®r M =p®g M.

Proof. The right F-module structure on p @g F’ is defined by functoriality.
The isomorphisms are immediate from the universal property. a

Proposition 7.3.9. Let A be an R-linear, abelian category in which all Hom-
modules are finitely generated. Let further E be a unital R-algebra with finite
generating family eq, . .., ey . Let p a right E-module in A with structure given

by
E°? L End(p).

Let M be a left E-module.
Then p ®g M is isomorphic to the cokernel of the map

2 PrperM) —porM
i=1
given by

m

Z (f(ei) ®@idy —idy ® esidpr) m;

i=1

with m; the projection to the i-summand.

More suggestively (even if not quite correct), we write
m
X (zi @ui)ity Z(f(ei)(l‘i) ®v; —x; ® (€& - vi))
i=1

for z; € p and v; € M.

Proof. Consider the sequence

m
@E@REHE®RE—>E—>O
=1

where the first map is given by

m
(i @ yi)izy = Ziﬂiei QY — T ® €Y
i=1

and the second is multiplication. We claim that it is exact. The sequence is
exact in F because F is unital. The composition of the two maps is zero, hence
the cokernel maps to E. The elements in the cokernel satisfy the relation
Te; @Yy =T ey for all Z,§ and ¢ = 1,...,m. The e; generate E, hence
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Te®y =z ®ey for all T,y and all e € E. Hence the cokernel equals F ®p F
which is F via the multiplication map.

Now we tensor the sequence from the left by p and from the right by M
and obtain an exact sequence

@p‘g)E(E@RE)@EMHP®E(E®RE)®EMHP®EE®EM%0.
i=1

Applying the computation rules of Lemma we get the sequence in the
proposition. O

Similarly to Proposition and Corollary but less general, we
construct a contravariant functor Hompg(p, -) :

Proposition 7.3.10. Let A be an R-linear abelian category in which all
Hom-modules are finitely generated. Let p be an object of A. Then the functor

Homy (-, p) : A — R—Mod
has a left adjoint
Hompg(-,p) : R—Mod — A°.
This means that for all M € R—Mod and q € A, we have
Hom 4 (¢, Homp(M, p)) = Homp(M, Hom4(q, p))-
It is left exact. It satisfies
Hompg(R,p) = p.
If
T: A— R—Mod

is an exact, R-linear functor into the category of finitely generated R-modules
then the composition
R-Mod 25”4 L, R-Mod
M —  Hompg(M,p) — Hompg(M,Tp)

is the usual Hom(_, T'p)-functor in R—Mod.

Proof. The arguments are the same as in the proof of Proposition and
Corollary O

Remark 7.3.11. Let A be an R-linear, abelian category in which all Hom-
modules are finitely generated. The functors Homg(_, p) as defined in Propo-
sition [7.3.10] and p ®p - as defined in Proposition [7.3.6] are also functorial in
p, i.e., we have even functors
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Hompg(-,-) : (R—Mod)° x A — A

and
,®R,Z.A>< R—Mod —>.A

We will denote the image of a morphism p =+ ¢ under the functor
Hompg (M, -) by
Hompg(M,p) ai>) Hompg(M, q)
This notation « o ( _) is natural since by composition
Hom_(1\>477)

A A L R—Mod
P —  Hompg(M,p) — Hompg(M,Tp)

T(ao (-)) becomes the usual left action of Taw on Hompg (M, Tp).

Proof. This follows from the universal property. O

We will now check that the above functors have very similar properties to
usual tensor and Hom-functors in R—Mod.

Lemma 7.3.12. Let A be an R-linear, abelian category in which all Hom-
modules are finitely generated. Let M be a finitely generated R-module. Then
the functor Hompg (M, _) is right-adjoint to the functor _®p M.
If
T: A— R—Mod

is an R-linear, exact functor into finitely generated R-modules, the composed
functors T o Homg(M,_) and T o (_®r M) yield the usual hom-tensor ad-
junction in R—Mod.

Proof. The assertion follows from the universal property and the identifica-
tion ToHomp (M, ) = Homp (M, T-) in Proposition|7.3.10jand To(_.@r M) =
(T -) ®g M in Proposition O

7.3.2 Construction of the equivalence

We are now investigating an R-linear abelian category A together with a
faithful exact functor T' : A — R—Mod. Note that the existence of the
faithful functor 7' implies that all Hom-modules in A are finitely generated.

Definition 7.3.13. Let A be an abelian category and S a class of objects of
A. With (S) we denote the smallest full abelian subcategory of A containing
S which is closed under kernels and cokernels, i.e., the intersection of all full
subcategories of A that are abelian, contain S, and for which the inclusion
functor is exact.
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With (S)P52b we denote the smallest full pseudo-abelian subcategory of A,
i.e., it contains S and is closed under direct sums and direct summands.

Let T': A — R—Mod be a faithful exact functor. We first concentrate
on the case A = (p). From now on, we abbreviate End(T|(,,) by E(p). The
precise relation between E(p) and C((p),T) is subtle, see Corollary
below. However, we get away with less for our main result.

Lemma 7.3.14. We have:

1. E(p) = End(T|<p>psab);
2. If p is projective and every q € (p) is quotient of p™ for some n, then
E(p) = End(T ).

Proof. Let a = (agq)q € End(T|p)). The component ayn : (Tp)" — (T'p)"
is compatible with the projection p™ — p to the factor ¢ and the inclusion
p — p" into the factor j. This implies that a,~ is the diagonal map «, in
particular uniquely determined by oy,. If p" = ¢ @ ¢/, then compatibility of «
with the projections implies that oy = apnl|q. Hence o determines all of a.
Conversely, given «,, € E(p), the diagonal extension to p" is compatible with
all morphisms p™ — p™. The restriction to a direct summand ¢ automatically
respects q because p™ — ¢ — p" is an endomorphism, hence compatible with
ap. All endomorphisms of g extend to p", hence they are also compatible
with a,. This shows the first assertion.

We now assume that p is a projective generator. Every object ¢ of (p)
can be written as a cokernel ¢ = Coker(f : p” — p™). Let (aq)q € End(T).
As before, apm is determined by oy,. Hence oy is determined by apm on the
quotient. Conversely, given «,, € E(p), it commutes with f and hence it also
operates on T'q. Given a morphism g : ¢ — ¢ in A, it lifts to g : p™ — p™
because p"* is projective. By definition, o, commutes with 7', hence it also
commutes with T'g. |

Example 7.3.15. Let R be a noetherian commutative unital ring and £ an
R-algebra finitely generated as an R-module. Let

T : E—Mod — R—Mod

be the forgetful functor. The category E—Mod is generated by the module
E. It is a projective generator. Hence by Lemma [7.3.14)[2], we have

C(E—Mod, T) = E'—Mod,

where E’ = End(T|(g;) is the subalgebra of Endg(E) of endomorphisms
compatible with all F-morphisms E — E. More explicitly, we have

El = CEndR(E) (EndE(E))

and
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Endg(E) = Cpnag ) (E) = EP

as F is unitary. Indeed, the E-endomorphisms are given by right multiplica-
tion by elements of E. Hence we also have

E = CEndR(E)(EOp) =F.
Hence in this case the functor A — C(A,T) is the identity.

Lemma 7.3.16. Let A be an abelian category. Let A Ly R—Mod be a faith-
ful exact R-linear functor into the category of finitely generated R-modules.
For an object p € A let E(p) = End(T,).

Then:

1. There exists an object X (p) € Ob({(p)) such that

2. The object X (p) has a right E(p)-module structure in A
E(p)” — Enda(X(p))

such that the induced E(p)-module structure on E(p) is given by composi-
tion of endomorphisms.
3. There is an isomorphism

T: X (p) @p(p) Tp—p
which is natural in f € End4(p), i.e.,

f
p p

- d®Tf ~
X(p) @pp) Tp —— X(p) ®@p@) Tp

4. Let q be another object of A. Then there is a natural map X (p@q) — X (p)
compatible with the operation of E(p @ q) — E(p).

An easier construction of X (p) in the field case can be found in [DMS82],
the construction for R being a noetherian ring is due to Nori [Nor00].

Proof. We consider the object Hompg(T'p,p) € A. Via the contravariant func-

tor
Hom(.,p)

R—Mod — A
Tp —  Homg(Tp,p)
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of Proposition it is a right End g (T'p)-module in A which, after applying
T just becomes the usual right Endg(Tp)-module Homg(Tp, Tp). For each
¢ € Endgr(Tp), we will write ( _ ) o ¢ for the action on Hom(T'p,p) as well.
By Lemma the functors Homp(T'p, -) and - ®pg T'p are adjoint, so we
obtain an evaluation map

év : Homg(Tp,p) @p Tp — p

that becomes the usual evaluation in R—Mod after applying 7. Our aim

is now to define X(p) as a suitable subobject of Homg(Tp,p) € A. The

structures on X (p) will be induced from the structures on Hompg(7'p, p).
Let M € R—Mod. We consider the functor

Hompg(M,-)
—

A A
p +—  Hompg(M,p)

of Remark [7.3.11} The endomorphism ring End 4(p)) C Endg(Tp) is finitely
generated as R-module, since T is faithful and R is noetherian. Let aq, ..., as,
be a generating family. Since

E(p) ={¢ € End(Tp)|Taop =¢oTaVa:p— p},
we can write E(p) as the kernel of

Hom(Tp, Tp) — @?:1 Hom(Tp, Tp)
u — wuwoTla; —Ta;ou

By the exactness of T, the kernel X (p) of

Hom(Tp, p) — @;—, Hom(T'p,p)
u — wuwoTlo; —a;0ou

is a preimage of E(p) under T in A.

By construction, the right Endg(Tp)-module structure on Hompg(T'p, p)
restricts to a right E(p)-module structure on X (p) whose image under T
yields the natural E(p) right-module structure on E(p).

Now consider the evaluation map

ev : Homg(Tp,p) @r Tp — p

mentioned at the beginning of the proof. By Proposition we know that
the cokernel of the map X defined there is isomorphic to X (p) ®g(,) T'p. The
diagram
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o incl ® id v
BF_ [ (X(p) ©r Tp) —=— X (p) @ Tp ———— Hompg(Tp,p) @ Tp ——— p

Coker(X)

S

X(p) ®E(;a) Tp
in A maps via T to the diagram

> incl ® id ev
D' (E(p) ®r Tp) —=—— E(p) ®r Tp ———— Hompg(Tp, Tp) @ Tp ——— Tp

Coker(X)

.

E(p) ®p(p) Tp

in R—Mod, where the composition of the horizontal maps becomes zero.
Since T is faithful, the respective horizontal maps in A are zero as well and
induce a map
7: X(p) @pp) Tp — p

that keeps the diagram commutative. By definition of X in Proposition[7.3.9]
the respective map R ~ R
TT:E(p) ®pp) Tp — Tp

becomes the natural evaluation isomorphism of E-modules. Since T is faith-
ful, 7 is an isomorphism as well.
Naturality in f holds since T is faithful and

~ Tf
Tp Tp

- idQTf -
E(p) @p@p) Tp ——— E(p) @p@p) Tp

commutes in F(p)—Mod.

Given the projection p @& ¢ — p, we have natural surjections Endg (7' (p ®
q)) = Endg(Tp) and Hom(T'(p @ q),p & q) — Hom(Tp, p). By construction,
the induce E(p@® q) — E(p) and X (p® q) — X (p) compatible with the right
module structure. O
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Definition 7.3.17. Let A be an R-linear, abelian category and
T
A — R—Mod

be a faithful, exact, R-linear functor. Let p be an object of A and X (p) the
right- E(p)-module in A constructed in Lemma [7.3.16] We denote

ip : E(p)—Mod — A
the functor M +— X (p) ®@ppy) M.
Proposition 7.3.18. Let A be an R-linear, abelian category and
T
A — R—Mod

be a faithful, exact, R-linear functor. Let

ALy e, 1) 5 R—Mod

be the factorisation of T wvia its diagram category. Let p be an object of A and
ip the functor of Definition @ Then the composition

E(p)—Mod 2 A 1% ¢(A4,T)
agrees with the natural functor
C((p)P*", Tp) — C(A,T).

Proof. The functor i, : E(p)—Mod — A is faithful and exact because this
can be tested after applying 7. By Lemma it also induces a functor

C(E(p)—Mod, T o ip,) — C(A,T).

By Example the category on the left hand side it nothing but
E(p)—Mod itself. Moreover, the image of E(p)—Mod inside A is a (in general
non-full) exact abelian subcategory containing (p)P**P. The latter also has di-
agram category E(p)—Mod by Lemma This finishes the proof. a

Proof of Theorem[7.1.20. Let A be an R-linear abelian category, T : A —

R—Mod faithful and exact. We write A as the union of its system of sub-

categories of the form (p)P**® running through p € A. The system is filtered

with respect to the inclusions induced by p — p ® ¢ for all objects p, g.
Recall that E(p) = End(T'[,). Note that

E(p)—Mod = C({p}, T|1p}) = C({p)*>**, T)
by Lemma [7:3.14
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On the other hand, by definition
C(A,T) = 2—colimpcop(4)End(T’| ) —Mod

with F' ranging over the system of full subcategories of A that contain only
a finite number of objects. As (F)P*> = (@, p p)P**", we may as well use
the same direct system as for A itself.

By Definition we have a functor

ip : B(p)—Mod = C((p)****, T) — A

By Lemma [7.3.16[[4] they are compatible in the direct sum, hence we get a
faithful exact functor

C(A,T) — A.

By Proposition [7.3.18] the composition with the natural functor to A is the
identity. Hence
A—C(AT)

is essentially surjective and full. It is faithful because T is faithful. Hence it
is an equivalence of categories. a

To conclude, we formulate the consequences of the above in the special
case A = (p).

Corollary 7.3.19. Let A = (p) be an R-linear abelian category and T : A —
R—Mod faithful an exact. Then

(p) = 2—colimg E—Mod

where E runs through a suitable system of subalgebras of E(p). If R is a field,
then we even have an equivalence

(p) =2 E—Mod

where E C E(p) is the subalgebra of endomorphisms respecting all subquo-
tients q of p™ for all n and commuting with all their endomorphisms.

Proof. By the case of a general abelian category, we have
C({p),T) = 2—colimp E(F)—Mod

where F' is a finite set of objects containing F' and

qeF

In the special case, every object ¢ of (p) is a subquotient of some p™. Let
(ag)g € End(T). We have already seen that a,n is determined by cy,. Now
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let ¢ C p™. Then a, is determined by a,» and compatibility with the in-
clusion. Finally let ¢ be a quotient of ¢’. Then ¢, is determined by «, and
compatibility with the projection. This means

E(p) > E(F)

if we choose F' containing p and with ¢ also a subobject ¢’ C p™ surjecting
to ¢. This shows the assertion in the case of a general noetherian ring.
The system of such F' is filtered by inclusion. We have inside E(p)

End(T|4) = () End(T]r).
F

If R is a field, then E(p) is a finite dimensional vector space, then the system
of End(T|r) becomes stable. This intersection is E. O

Remark 7.3.20. In the field case, analogous considerations to the ones in
this section can be found in [DM82, Lemma 2.13]. However, the proof is in
fact different. They are in the case of a field R and implicitly make use of
the last identity of the above corollary. Their argument fails in the case of a
noetherian ring.

The following example shows that the above description is optimal in the
case of rings, even Dedekind rings and T'p free.

Example 7.3.21. Let R = Z. For n € N we choose the Z-module A4, =
7 + Zn+/3 and define A = 2—colim,, A,,—Mod. The same arguments can also
be made for the systems of orders of any number fields different from Q. Let
T be the forgetful functor to Z—Mod. Let p = A;. We have

Enda(p) = A

because any A,-linear endomophism is automatically A;-linear. Hence E(p) =
Ajz. On the other hand, the category (p) contains the objects

Gn = p/np = (Z + V3Z)/n(Z + V3nZ).

‘We have
Endy, (g,) = A1/nA;.

On the other hand, the ring A,, acts via the quotient Z/nZ on ¢,, hence
End 4(gqn) = M3(Z/n7Z).

This shows that E(p)—Mod is a strictly non-full abelian subcategory of (p).
Moreover, consider the A, -linear map
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W:Q7L_>Qn
a+bvV3+— bv/3 mod n.

The kernel of p — ¢, = ¢y is A, viewed as an A,-module. Hence it is also
in (p). This implies (p) = A. Moreover, it is not equal to A,,—Mod for any n.

7.3.3 Examples and applications

We work out a couple of explicit examples in order to demonstrate the
strength of Theorem We also use the arguments of the proof to de-
duce an additional property of the diagram category as a first step towards
its universal property.

Throughout let R be a noetherian unital ring.

Example 7.3.22. Let T : R—Mod — R—Mod be the identity functor viewed
as a representation. The assumptions of Theorem are satisfied and we
get an equivalence

C(R—Mod, T) — R—Mod.

Note that R—Mod is generated by the object R™ for any fixed n. It is a
projective generator. Hence by Lemma C(R—Mod,T) = E—Mod with
E = Endg(T|g»). By definition, E consists of those elements of Endg(R™)
which commute with all elements of End 4(R"™), i.e., F is the center of the
matrix algebra, which is R.

This can be made more interesting by playing with the representation.

Example 7.3.23 (Morita equivalence). Let R be a noetherian commutative
unital ring, A = R—Mod. Let P be a faithfully flat finitely generated R-
module and

T:R-Mod — R—Mod, M w— M ®g P.

It is faithful and exact, hence the assumptions of Theorem are satisfied
and we get an equivalence

C(R—Mod, T) — R—Mod.

Note that A = (R) has a projective generator. By Lemma [7.3.14] we have
C(R—Mod,T) = Endr(P). Hence we have shown that

Endg(P)—Mod — R—Mod

is an equivalence of categories. This is a case of Morita equivalence of cate-
gories of modules.

We deduce another consequence of the explicit description of C(D,T).
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Proposition 7.3.24. Let D be a diagram and T : D — R—Mod a represen-
tation. Let

p L e(p,T) % R—Mod

its factorisation. Then the category C(D,T) agrees with its smallest abelian
subcategory containing the image T and on which fr is exact.

Proof. Tt suffices to consider the case when D is finite. Let X = @pe pIp
and E = Endg(X). Let S C E be the R-subalgebra generated by Te for
e € E(D) and the projectors p, : X — T'(p). Then

E = End(T) = C(S)

is the centraliser of S in E. (The endomorphisms commuting with the projec-
tors are those respecting the decomposition. By definition, End(7") consists
of those endomorphisms of the summands commuting with all Te.)

By construction C(D,T) = E—Mod. We claim that it is equal to the full
abelian subcategory R

A= (X)

containing X = EBpe p such that fr is exact on A. The category has a faithful
exact representation by fr|4. Note that fr(X) = X. We compute

E(X) = End(fT|{X})~

It is given by elements of E = Endgr(X) commuting with End4(X). Note
that

End4(X) = Endg(X) = Cg(E)
and hence
E(X) = C&(C&(E)) = Cz(Ce(Cr(S)) = Ce(S) = E

because a triple centraliser equals the simple centraliser. Hence by Proposi-

tion [7.3.18] the functor
ig: E—Mod = A

of Definition is quasi-inverse to the inclusion A — E—Mod. O
Remark 7.3.25. This is a direct proof of Proposition

7.4 Universal property of the diagram category

At the end of this section we will be able to establish the universal property
of the diagram category.
Let T: D — R—Mod be a diagram and
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p L e, 1) % R—Mod

the factorisation of T' via its diagram category. Let A be another R-linear
abelian category, F' : D — A a representation, and T4 : A — R—Mod a
faithful, exact, R-linear functor into the category of finitely generated R-
modules such that fo FF=T.

Our aim is to deduce that there exists - uniquely up to unique isomorphism
- an R-linear exact faithful functor

L(F): C(D,T) — A,

making the following diagram commute:

Proposition 7.4.1. There is a functor L(F') making the diagram commute.

Proof. We can regard A as a diagram and obtain a representation
AL R Mod,
that factorises via its diagram category
AT A, Ta) 245 R—Mod.

We obtain the following commutative diagram
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D F A
| !
| l
c(D,T) T Ta C(A,Tx)
N \ / /
fr 1y
N
R—Mod

By functoriality of the diagram category (see Proposition [7.2.6)) there ex-
ists an R-linear faithful exact functor F such that the following diagram
commutes:

D F A
\
;

l l
C(DvT) 7777777 F oo ’ C(Av TA)
N S
fr fry
N S
R—Mod

Since A is R-linear, abelian, and T4 is faithful, exact, R-linear, we know
by Proposition [7.1.20} that T4 is an equivalence of categories. The functor

L(F): C(D,T) — A,

is given by the composition of F with the inverse of T4. Since an equivalence
of R-linear categories is exact, faithful and R-linear, L(F') is so as well, as it
is the composition of such functors. O

Proposition 7.4.2. The functor L(F) is unique up to unique isomorphism
of exact additive functors.

Proof. Let L' be another functor satisfying the condition in the diagram. Let
C’ be the subcategory of C(D,T) on which L' = L(F). We claim that the
inclusion is an equivalence of categories. Without loss of generality, we may
assume that D is finite.

Note that the subcategory is full because T4 : A — R—Mod is faithful. It
contains all objects of the form T'p for p € D. As the functors are additive, this
implies that they also have to agree (up to unique isomorphism of additive
functors) on finite direct sums of objects. As the functors are exact, they also
have to agree on and all kernels and cokernels. Hence C’ is the full abelian
subcategory of C(D,T') generated by T(D) By Proposition this is all
of C(D,T). O
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Proof of Theorem[7.1.13,. Let T : D — R—Mod be a representation and
Ty =f: A— R—Mod, F : D - A as in the statement. By Proposi-
tion the functor L(F') exists. It is unique up to unique isomorphism
by Proposition Hence C(D,T) satisfies the universal property of The-
orem [L.T.13

Let C be another category satisfying the universal property. By the univer-
sal property for C(D,T) and the representation of D in C, we get a functor
VU :C(D,T) — C. By interchanging their roles, we obtain a functor ¥’ in the
opposite direction. Their composition ¥’ o ¥ satisfies the universal property
for C(D,T) and the representation T. By the uniqueness part, it is isomorphic
to the identity functor. The same argument also applies to ¥ o ¥’. Hence ¥
is an equivalence of categories.

Functoriality of C(D,T) in D is Lemma [7.2.6 O

The generalised universal property follows by a trick.

Proof of Corollary[7.1.15. Let T : D — R—Mod, f : A — R—Mod und
F: D — A be as in the corollary. Let S be a faithfully flat R-algebra and

¢:Ts — (foF)s

an isomorphism of representations into S—Mod. We first show the existence
of L(F).

Let A’ be the category with objects of the form (Vi, V3, ) where V; €
R—Mod, Vo e Aand ¢ : V1 ®r S — f(V2) ®z S an isomorphism. Morphisms
are defined as pairs of morphisms in R—Mod and A such the obvious diagram
commutes. This category is abelian because S is flat over R. Kernels and
cokernels are taken componentwise. Let f' : A’ — R—Mod be the projection
to the first component. It is faithful and exact because S is faithfully flat over
R.

The data T, F' and ¢ define a representation F’ : D — A’ compatible with
T. By the universal property of Theorem [7.1.13] we obtain a factorisation

7.0 L e, 1) 2 4 5 R—Mod.

We define L(F) as the composition of L(F") with the projection to the second
component. For X € C(D,T), the object L(F')(X) € A’ is by definition a
triple (fr(X), L(F)(X), ¢x). Assigning the isomorphism ¢x to X defines the
isomorphism of functors on C(D,T)

¢:(fr)s = fso L(F).

_ We now want to show uniqueness. Let (L', @' ) be another candidate for
¢') be another candidate for (L(F'), ¢). Then

X = (fr(X), L'(X), ¢ x)
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is another candidate for L(F"). By the uniqueness part of the universal prop-
erty it agrees with L(F”) up to isomorphism. This induces the isomorphism
(L(F),$) — (L', ¢'). Any such isomorphism has to agree with the one for
L(F’), hence it is unique. O

7.5 The diagram category as a category of comodules

Under more restrictive assumptions on R and 7', we can give a description
of the diagram category as a category of comodules, see Theorem

7.5.1 Preliminary discussion

In [DM82] Deligne and Milne note that if R is a field, E a finite-dimensional
R-algebra, and V an E-module that is finite-dimensional as R-vector space
then V has a natural structure as comodule over the coalgebra EY :=
Homp(E, R). For an algebra E finitely generated as an R-module over an
arbitrary noetherian ring R, the R-dual EV does not even necessarily carry
a natural structure of an R-coalgebra. The problem is that the map dual to
the algebra multiplication

EY X (E®g E)Y
does not generally define a comultiplication because the canonical map
p:EY®@r EY - Hom(E,EY) = (E®g E)"

fails to be an isomorphism in general. In this chapter, we will see that this
isomorphism holds true for the R-algebras End(TF) if we assume that R is a
Dedekind domain or field. We will then show that by

C(D,T) = 2—colimpcp(End(T|r)—Mod)
=~ 2—colimpcp (End(T'| )Y —Comod) = (2—colimpc pEnd(T|)") —Comod

we can view the diagram category C(D,T) as the category of finitely gener-
ated comodules over the coalgebra 2—colimpc pEnd(TF)V.

Remark 7.5.1. Note that the category of comodules over an arbitrary coal-
gebra C' is not abelian in general, since the tensor product X ®g — is right
exact, but in general not left exact. If C' is flat as R-algebra (e.g. free), then
the category of C-comodules is abelian [MM65, pg. 219].
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7.5.2 Coalgebras and comodules

Let R be a noetherian ring with unit.

Proposition 7.5.2. Let E be an R-algebra which is finitely generated as
R-module. Then the canonical map

p:EY®r M — Hom(E, M)
pe@m — (n— @) -m)

becomes an isomorphism for all R-modules M if and only if E is projective.
Proof. [Str07, Proposition 5.2] O

Remark 7.5.3. Throughout we are working with the following convention:
if V, W are projective R-modules of finite rank, then we identify

(VorW)V=VYeWV.

Lemma 7.5.4. Let E be an R-algebra which is finitely generated and pro-
jective as an R-module.

1. The R-dual module EV carries a natural structure of a counital coalgebra.

2. Any left E-module that is finitely generated as R-module carries a natural
structure as right EV -comodule.

3. We obtain an equivalence of categories between the category of finitely
generated left E-modules and the category of finitely generated right EY -
comodules.

Proof. By the repeated application of Proposition [7.5.2] this becomes a
straightforward calculation. We will sketch the main steps of the proof.

1. If we dualise the associativity constraint of E we obtain a commutative
diagram of the form

(E®r E®r E)Y —— (E®g E)Y
(n®id)Y

(id @ p) w
(E®r E)Y EV.

\2

m

By the use of the isomorphism in Proposition and Hom-Tensor ad-
junction we obtain the commutative diagram
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FrenBlon B o et

id* @ p* ut

EV ®R E\/ E\/,

*

m

which induces a cocommutative comultiplication on EV. Similarly we ob-
tain the counit diagram, so EY naturally gets a coalgebra structure. We
make this explicit for later use. Let e; for ¢ € I be a basis of E. Then

€icj; = Z afjek
k
with aj; € R. We denote ¢}/ the dual basis of EV. Then
i) = Yakel wel.
,J

2. Let M be an E-module. We use Proposition [7.5.2] and Hom-Tensor ad-
junction to see that the E-multiplication induces a well-defined EV-
comultiplication

m: M — Homg(E,M) = M @ E".
In the basis e; for ¢ € I of E, it is given by

mHZeim@)eiv.

K3

We need to check that the following diagram commutes:

m

M M ®pr EY

m m ® id

id® p*
M®REV—H>M®REV®REV

Indeed, the composition via the upper right corner is given by

m qu@e}/ — Zemﬂn@eiv ®ef = Zafjekmt@e;/ ®ey.
J i,j ijk
On the other hand, the composition via the lower left corner is given by

m E erm @ ey — E exm @ p*(e))) = E ekm®afje;/®e}/.
k k kij
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3. For any homomorphism f: M — N of left E-modules, the commutative
diagram

M N

id @ f
EFEQrM — E®Qr N

induces by adjunction a commutative diagram

id ®
MepE —2% NerEY,
M ! N

thus f is a homomorphism of right EV-comodules.
4. Conversely, we can dualise the EV-comodule structure to obtain an (EV)Y =
FE-module structure. The two constructions are inverse to each other.

O

Remark 7.5.5. If R is a field, then every M € E—Mod is free over R.
By passing to the dual of the structure map, we define a left EY-comodule
structure on MV. Both the right comultiplication on M and the left comul-
tiplication on MV are equivalent to the data of a morphism

M®r MY — EV.
This allows to pass directly from one to the other. We call MV the contra-

gredient comodule to the comodule M.

Definition 7.5.6. Let A be a coalgebra over R. Then we denote by
A—Comod the category of right comodules over A that are finitely gener-
ated as a R-modules.

Recall that R—Proj denotes the category of finitely generated projective
R-modules.

Corollary 7.5.7. Let R be a field or Dedekind domain, D a diagram and
T:D — R—Proj
a representation. Set
A(D,T) := h_n; End(T|r)".

FCD
finite
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Then A(D,T) has the structure of a coalgebra and the diagram category of T
is the abelian category A(D,T)—Comod.

Proof. For any finite subset F' C D the algebra End(T|r) is a submodule of
the finitely generated projective R-module Hpe #End(T'p). Since R is a field
or Dedekind domain, for a finitely generated module to be projective is equiv-
alent to being torsion free. Hence the submodule End(TF) is also finitely gen-
erated and torsion-free, or equivalently, projective. By the previous lemma,
End(T|r)Y is an R-coalgebra and End(T|r)—Mod = End(7T|r)Y—Comod.
From now on, we denote End(T|r)Y with A(F,T). They obviously form a di-
rect system for F’/ C F finite subdiagram of D. Taking limits over the direct
system of finite subdiagrams as in Definition [7.1.10, we obtain

C(D,T) := 2—colim End(7T'|r)—Mod = 2—colim A(F,T)—Comod.
FCD FCD
finite finite
Since the category of coalgebras is cocomplete, A(D,T) = lichD A(F,T) is
a coalgebra as well.

We now need to show that the categories 2—colim(A(F,T)—Comod)
FCD
finite

and A(D,T)—Comod are equivalent. For any finite F the canonical map
A(F,T) — A(D,T) via restriction of scalars induces a functor
¢r : A(F,T)—Comod — A(D,T)—Comod
and therefore by the universal property a unique functor
u: (H_1>nA(F, T)) —Comod —+ A(D, T)—Comod.
such that for all finite £/, F” C D with F/ C F" and the canonical functors

Y+ A(F', T)—Comod —» (h_n; A(F, T)) —Comod
FCD

the following diagram commutes:
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A(F',T)—Comod bpr g A(F",T)—Comod

\ /

Y Y

T

¢pr 2—colim(A(F,T)—Comod) ¢pr
FCD

Il

J

A(D,T)—Comod

We construct an inverse functor of u: let M be an A(D,T)-comodule and
m:M— MegrAD,T)

be the comultiplication. Let M = (x1,..,2,)r. Then m(z;) = >} _; ag @
xy for certain ag; € A(D,T). For every ag; there is a finite subdiagram
F such that ag; is represented by an element of A(F,T). By taking the
union of these finitely many F', we can assume that all ay; are contained in
one coalgebra A(F,T). Since 1, .., x,, generate M as R-module, m defines a
comultiplication

i M — M ®g AF,T).

So M is an A(F,T)-comodule in a natural way, thus via ¥r an object of
2—colim;(A;—Comod). O

We also need to understand the behaviour of A(D,T) under base-change.

Lemma 7.5.8 (Base change). Let R be a field or a Dedekind domain and
T : D — R—Proj a representation. Let R — S be flat. Then

A(D,Ts) = A(D,T)®g S.
Proof. Let F' C D be a finite subdiagram. Recall that
A(F,T) = Homg(End(T|r), R).

Both R and Endg(T|r) are projective because R is a field or a Dedekind
domain. Hence by Lemma [7.2.2]

Homp(Endgr(T|r), R) ®r S = Homg(Endg(T|r) ®g S, S)
= Homs(Ends((Ts)‘F), S)

This is nothing but A(F,Ts). Tensor products commute with direct limits,
hence the statement for A(D,T) follows immediately. O
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Properties of functors between abelian categories translate into properties
of morphisms of coalgebras.

Proposition 7.5.9. Let k be a field. Let B be an abelian category and
T : B — k—Mod a faithful exact functor. Let A C B be a full abelian sub-
category closed under subquotients. Then the induced morphism of coalgebras
A(A, T 4) = A(B,T) is injective.

Proof. Let X be an object of A. It has only finitely many subobjects
X1,...,X,. Hence the full abelian subcategory generated by X and closed
under subquotients is given by (X, Xj,...,X,). This implies that we can
write A as the union of abelian subcategories (F') which are themselves closed
under subquotients. Hence we may assume without loss of generality that A
and B are generated by finitely many objects. By definition, we then have

A(A,T|4) = End(T|4), A(B,T) = End(T|).

We have to show surjectivity for the diagram algebras. Let M be the image
of E := End(T) in E' := End(T|4). It is a E-submodule of the E’-module
E’. By assumption, the category of E’-modules is closed under subquotients
in the category of E-modules. Hence M is even a E’-submodule of E’. The
homomorphism E — E’ is unital, hence 1 € M. This implies that M =
E'. O



Chapter 8
More on diagrams

The aim of this chapter is to introduce and study additonal structures on a
diagram such that its diagram category becomes a rigid tensor category. The
assumptions are tailored to the application to Nori motives.

The first step is to add a proto-multiplication on the diagram which turns
the diagram category into a tensor category and the diagram coalgebra into
a bialgebra. A particularly puzzling and subtle question is how the graded
commutativity of the Kiinneth formula is dealt with.

We then introduce a notion of localisation of diagrams which corresponds
to the the localisation of the diagram category with respect to some object
or equivalently the localisation of the algebra with respect to an element.

Following Nori, we next give a rigidity criterion for tensor categories.

Finally, we study systematically the dependence of the diagram category
on the choice of representation. This will be applied in Chapter [13|on formal
periods.

We continue to work in the setting of Chapter [7]

8.1 Multiplicative structure

Let R a fixed noetherian unital commutative ring.

Recall that R—Proj is the category of finitely generated projective R-
modules. We only consider representations 7' : D — R—Proj where D is a
diagram with identities, see Definition [7.1.1]}

Definition 8.1.1. Let D;, Dy be diagrams with identities. Then D x Dy is
defined as the diagram with vertices of the form (v, w) for v a vertex of Dy,

w a vertex of Do, and with edges of the form («,id) and (id, 8) for « an edge
of D1 and 8 an edge of Dy and with id = (id, id).

Remark 8.1.2. Levine in [Lev03], p. 466] seems to define Dy x Dy by taking
the product of the graphs in the ordinary sense. He claims (in the notation

173
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of loc. cit.) a map of diagrams
H,Sch’ x H,Sch’ — H,Sch'.

It is not clear to us how this is defined on general pairs of edges. If a, 8 are
edges corresponding to boundary maps and hence lower the degree by 1, then
we would expect a x 3 to lower the degree by 2. However, there are no such
edges in H,Sch’.

Our restricted version of products of diagrams is enough to get the impli-
cations we want.

In order to control signs in the Kiinneth formula, we need to work in a
graded commutative setting.

Definition 8.1.3. A graded diagram is a diagram D with identities together
with a map
| - | : {vertices of D} — Z/27Z.

For an edge v : v = v we put |y| = |v| — |v'|]. If D is a graded diagram,
D x D is equipped with the grading |(v,w)| = |v| + |w].
A commutative product structure on a graded diagram D is a map of graded
diagrams
Xx:DxD—D

together with choices of edges

Oy DU X W —> WXV
Bowu : VX (WX u) = (vxw) xXu
Bt (VX W) Xu—= v X (wxu)
for all vertices v, w,u of D.
A graded multiplicative representation T of a graded diagram with com-
mutative product structure is a representation of T' in R—Proj together with
a choice of isomorphism

Tww) : T x w) = T(v) ®T(w)

such that:

1. The composition

T(v) @ T(w) @ T(v x w)

T(w,v)

L T(w x v) T Tw) @ T(0)

is (—1)/*I*l times the natural map of R-modules.
2. If v: v — v is an edge, then the diagram
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T(v X w) Trdd), T(v x w)

_1yllwl i
T(v) ® T(w) 2T 1y @ T(w)
commutes.
3. If v : v — v is an edge, then the diagram

T(idx
(idx~)

T(w X v) T(w xv")

commutes.
4. The diagram

TW) @ (T(w)RT(w) —— (TW)T(w)) T (u)

commutes where the lower horizontal map is the standard isomorphism.

5. The maps T'(By,w,u) and T(3, ,, ,,) are inverse to each other. In particular,
the diagram for T'(3, ,, ,,) commutes as well.

VWU

A wunit for a graded diagram with commutative product structure D is a
vertex 1 of degree 0 together with a choice of edges

Uy -V —> 1 XV

for all vertices of v. A graded multiplicative representation is unital if T'(1)
is free of rank 1 and there is a choice of isomorphism R — T'(1) such that for
all v the map T'(u,) is equal to the isomorphism

T(v) <~ R®r T(v) = T(1) @ T(v) = T(1 x v).

Remark 8.1.4. 1. In particular, T(ay,) and T(By.w,«) are isomorphisms.
If v = w then T(av,,) = (—1)l.

2. Note that the first and the second factor are mot treated symmetrically.
There is a choice of sign convention involved. The convention above is
chosen to be consistent with the one of Section Eventually, we want to
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view relative singular cohomology as graded multiplicative representation
in the above sense.

3. For the purposes immediately at hand, the choice of ﬂ;,wyu is not needed.
However, it is needed later on in the definition of the product structure on
the localised diagram, see Remark

Let T : D — R—Proj be a representation of a diagram with identities.
Recall that we defined its diagram category C(D,T'), see Definition
If R is a field or a Dedekind domain, then C(D,T') can be described as the
category of A(D,T)-comodules of finite type over R for the coalgebra A(D,T)
defined in Theorem [Z.1.12

Proposition 8.1.5. Let D be a graded diagram with commutative product
structure with unit and T a unital graded multiplicative representation of D
in R—Proj

T:D — R—Proj.

1. ThenC(D,T) carries the structure of a commutative and associative tensor
category with unit and T : C(D,T) — R—Mod is a tensor functor. On the
generators T(v) of C(D,T) the associativity constraint is induced by the
edges By wu, the commutativity constraint is induced by the edges vy 4,
the unit object is 1 with unital maps induced from the edges u,.

2. If, in addition, R is a field or a Dedekind domain, the coalgebra A(D,T)
carries a natural structure of commutative bialgebra (with unit and counit).
The scheme M = Spec(A(D,T)) is a faithfully flat unital monoid scheme
over Spec(R).

Proof. We consider finite diagrams F' and F’ such that
{vxwh,weF}CF.
We are going to define natural maps
Wi End(T|p) = End(T|r) @ End(T| ).

Assume this for a moment. We are going to explain first how all asser-
tions follow. Let X, Y € C(D,T). We want to define X ® Y in C(D,T) =
2—colimpC(F,T). Let F be such that X,Y € C(F,T). This means that X
and Y are finitely generated R-modules with an action of End(7'|r). We equip
the R-module X ® Y with a structure of End(T|p/)-module. It is given by

End(T|p) © X ©Y — End(T|p) @ End(T|p) © X @Y - X @Y

where we have used the comultiplication map p} and the module structures
of X and Y. This will be independent of the choice of F' and F”. It is easy
to check that the properties of ® on C(D,T') as in 1} follow from properties
of u%. If R is a field or a Dedekind domain, let
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pp: A(F,T)® A(F,T) — A(F',T)

be dual to pj. Passing to the direct limit defines a multiplication p on
A(D,T) as claimed in [2| The statement on Spec(A(D,T)) is then obvious.

We now turn to the construction of uj. Let a € End(T|p/), i.e., a com-
patible system of endomorphisms a, € End(T'(v)) for v € F’. We describe its
image pi-(a). Let (v,w) € F' x F. The isomorphism

T:Twxw)—TwW)@r T(w)
induces an isomorphism
End(T(v x w)) 2 End(T'(v)) ®g End(T'(w)).

We define the (v, w)-component of p*(a) by the image of a,xq under this
isomorphism.

In order to show that this is a well-defined element of End(T|r) ®
End(T|F), we need to check that diagrams of the form

(@) (v, w)
—

T(v) @ T(w) Tw) @ T(w)
T(a)@)T(ﬁ)l lT(a)@T(ﬁ)

T() & T(w'). = T(v') & T(w')
(@) (o

commute for all edges a: v — v’, 8 : w — w’' in F. We factor
T() ®T(B) = (T(id) @ T(B)) o (T'(cx) o T(id))

and check the factors separately.
Consider the diagram

Ayl xw

T(v x w) P T(v x w)
\ o /
Tw)@T(w) ——=T(v) @ T(w)

T(axid) T(a)®T(id)l lT(a)@T(id) T(axid)
T @ T(w) -~ T)@T(w)

/ S \

T

T x w)

(v x w)

The outer square commutes because a is a diagram endomorphism of F’.
Top and bottom square commute by definition of p*(a). Left and right hand
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square commute by property (3) up to the same sign (—1)/*/l*l. Hence the
middle square commutes without signs. The analogous diagram for id x
commutes on the nose. Hence p*(a) is well-defined.

We now want to compare the (v, w)-component to the (w,v)-component.
Recall that there is a distinguished edge ay ., : v X w — w X v. Consider the
diagram

(@) (v, w

T(v) @ T(w) — 5T (v) ® T(w)

\
/

Ay xw

T(v x w) T(vx w)
T(av,w)i T(a'U,w)l/
T(w x v) e T(w x v)

T(w) @ T(vlmv)T(w) ®T(v)

By the construction of 1*(a)(y,w) (resp. 1*(a)(w,wv)), the upper (resp. lower)
tilted square commutes. By naturality, the middle rectangle with «,, ,, com-
mutes. By property (1) of a representation of a graded diagram with commu-
tative product, the left and right faces commute where the vertical maps are
(=1)l*l*l times the natural commutativity of tensor products of T-modules.
Hence the inner square also commutes without the sign factors. This is co-
commutativity of p*.

The associativity assumption (4) for representations of diagrams with
product structure implies the coassociativity of p*.

The compatibility of multiplication and comultiplication is built into the
definition.

In order to define a unit object in C(D, T) it suffices to define a counit for
End(T|p). Assume 1 € F. The counit

u* 1 End(T|p) C [] End(T(v)) - End(T(1)) = R
veF

is the natural projection. The assumption on unitality of T allows to check
that the required diagrams commute.

This finishes the argument for the tensor category and its properties. If R
is a field or a Dedekind domain, we have shown that A(D,T) has a multipli-
cation and a comultiplication. The unit element 1 € A(D,T) is induced from
the canonical element 1 € A({1},T) = Endg(T(1))" = R (note that the last
identification is indeed canonical, independent of the choice of basis vector
in T(1) & R.) It remains to show that 1 # 0 in A(D,T) or equivalently its
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image is non-zero in all A(F,T) with F a finite diagram containing 1. We
can view 1 as map

End(T|r) — R.
It is non-zero because it maps id to 1. a

Remark 8.1.6. The proof of Proposition works without any changes in
the arguments when we weaken the assumptions as follows: in Definition|8.1.3
replace X by a map of diagrams with identities

x : D x D — P(D)

where P(D) is the path category of D: objects are the vertices of D and
morphisms the paths. We view P(D) as a diagram with identities by viewing
the identity edges of D as a path of length one. (Sic, not via the more natural
choice of the empty word). It is graded by the grading on D.

A representation T' of D extends canonically to a functor on P(D).

Example 8.1.7. Let D = Ny. We are going to define the set of edges such
that it allows for the definition of a commutative product structure which
makes n — V@ (for a fixed vector space V) a multiplicative representation.
The only edges are self-edges. We denote them suggestively by

idg X @y xidp :a+v+w+b—=a+w+v+b

with a,b,v,w € Ny. We identify id, X ago x idy = idg4s and abbreviate
idg X Qo X idg = . We turn it into a graded diagram via the trivial
grading |n| =0 for all n € N.

The summation map

Np x Ng — Ny (n,m) —n+m

defines a commutative product structure on Ny in the sense of Definition[8.1.3]
The definition on edges is the obvious one. All edges By w,u, B4, are given
by the identity. The edges «, ., are the ones specified before. The unit 1 is
given by the vertex 0, the edges u, are given by the identity.

Let V be a finite dimensional k-vector space for some field k. We define a

unital graded multiplicative representation
T =Ty : Ny — k—Mod n— Vo
The morphisms
Tw,w) + T(0 X w) = yemEm) L T(v) @ T(w)

are the natural ones. All conditions are satisfied. We have in particular T'(0) =

k.
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By Proposition [8.1.5] the coalgebra A = A(Ny,T) is a commutative bial-
gebra. Indeed, SpecA = End(V') viewed as algebraic monoid over k. In more
detail: The commutative algebra A is generated freely by

A({1},T) = Endg(V)".
Let vq,...,v, be a basis of V. Then
A(NO7T) = k[Xij]ijl

with X;; the element dual to E;; : V — V with E;;(vs) = d;5v;. The comul-
tiplication A is determined by its value on the X;; where it is induced from
multiplication of the Ej;;. Hence

AXij) =Y XX
s=1

As a second, less trivial example we consider the case of an abelian tensor
category with a faithful fibre functor.

Example 8.1.8. Let R be a commutative ring. Let C be an R-linear as-
sociative and commutative abelian tensor category with unit object 1 and
T : C — R—Mod a faithful exact tensor functor. The tensor structure defines
a commutative product structure on C in the sense of Definition where
we use the trivial grading.

If R is a field, then T is a unital graded multiplicative representation of C
viewed as a diagram. All assumptions of Proposition [8.1.5|are satisfied. Hence
C=C(C,T) (see Theorem [7.1.20)) is the tensor category A(C,T)—Comod for
the bialgebra A(C,T) or, equivalently, the category of algebraic represen-
tations of the monoid scheme Spec(A(C,T)) on finite dimensional R-vector
spaces.

We want also want to establish the version where R is a Dedekind ring.

Definition 8.1.9. Let R be a Dedekind ring and C and 7" be as in Exam-
ple We say that an object X € C is T-projective, if T'(X) is projective.
Let CY™J be the full subcategory of T-projective objects of C. Let S C CF*
be a set of objects and

(S)Peb = (V" |n € No, V € §)P

be the full pseudo-abelian subcategory of C generated by S. We say that S
generates C (as abelian tensor category) relative to T if the natural inclusion

C((S)®Psab Ty - C

is an equivalence.
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Note that if C is generated by S relative to T, then it is also generated by
CProj — <CProj>®,psab and

A((S)®Psab Ty = A(CPTI T).

Example 8.1.10. Let R = Z and C the abelian category of finitely generated
abelian groups equipped with an endomorphism. Let T" be the functor forget-
ting the endomorphisms. Let C be the full subcategory of those objects (X, f)
where f ®z Q = id. This is a unital abelian tensor category category and the
forgetful functor is unital tensor functor. An object (X, f) is T-projective, if
X is free. In this case f is injective. Let S be the class of T-projectives with
X free and f = id. The the subcategory C((S)®Ps2P T) C C contains only
objects (Y, g) with g = id. In particular, C is not generated by S relative to
T.

Lemma 8.1.11. Let D be a graded diagram with a commutative product
structure. Let T : D — R—Proj be a graded multiplicative representation. Let

p Lo, 1)

be the canonical functor to the diagram category. Then C(D,T) is generated by
{Tvlv € V(D)} as an abelian tensor category in the sense of Definition|8.1.9

Proof. By construction of the tensor product on C(D,T), the set {Tw|v €
V(D)} contains 1 and is closed under tensor products. Hence we have to
show that C((Tw|v € V(D))P%*" T) is equivalent to C(D,T). We consider the
maps of diagrams

D — (Tw|v € V(D))P*** — ¢(D,T)

with their compatible representations in R—Mod and pass to the diagram
categories. This is functorial by Lemma [7.2] hence

C(D,T) — C((Tw|v € V(D))****, T) — C(C(D,T), fr) = C(D,T).

The composition is equivalent to the identity. Hence the second functor is full
and essentially surjective. It is faithful because all involved categories have
faithful exact functors to R—Mod. O

Corollary 8.1.12. Let R be a Dedekind ring and C an non-zero abelian
tensor category. Let T : C — R—Mod be a faithful exact unital tensor functor.
Let S C CP™J be a set of T-projective objects that generated C in the sense of

Definition [8.1.9

1. For every V € CY™I | the bialgebra A((V)®P%P T') is finitely generated as
a commutative R-algebra by a quotient of Endg(TV)V.
2. We have
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A(S)PP0T) = i AP T),
Ve (s)® psab
Proof. The direct limit description is obvious from the constructions.

We now fix V and put A := A((V)®P%aP T). The tensor structure on A
restricts to (V)®P$*P turning A into a bialgebra. We have

A= ligAn
with
Ap = A((1,V, V2 yempseb ),
By Lemma [7.3.14]|1] we have an injective map

Ay = P Endr(T(V)®)
=0

where A} consists of those endomorphisms compatible with all morphisms
in the subcategory. Hence, there is a surjective map

P Endr(T(V)®) — A,
i=0

In the limit, this gives a surjection of bialgebras
P Endr((T(V)®)) — A
i=0

and the kernel is generated by the relation defined by compatibility with
morphisms in C. One such relation is the commutativity constraint, hence
the map factors via the symmetric algebra

Sym*(End(T(V)Y) — A.

The algebra on the left is finitely generated by an R-basis of the Endg(TV)V.
O

Note that Sym*(End(7'(V)) is canonically the ring of regular functions
on the algebraic monoid End(T'(V)).

It is also possible to translate the result to the language of representations
of the associated monoid scheme. Note that this is not a completely obvious
notion. We follow Milne, see [Mil12, Chapter VIII, Section 2].

Definition 8.1.13. et R be a field or a Dedekind domain. Let M be a flat
affine unital monoid scheme over R. Let V' be an R-module. A linear algebraic
representation of M on V is defined as an transformation of functors on R-

algebras
M(S)xV®@rS—V®gs,
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such that for every R-algebra S the map is an S-linear operation of the
monoid M(S).

Remark 8.1.14. If V is finitely generated projective, e.g., if R is a field,
then the functor S — V ®p S is represented by Spec(Sym*V"V). We call this
scheme V again. A linear algebraic representation is then given by

MxV =V
It induces a morphism of monoid schemes
M — Endg (V).

Such a translation is not possible if V' is not projective.

Proposition 8.1.15. Let R be a field or a Dedekind domain. Let M be an
flat affine unital monoid scheme over R. Let A = O(M) be the associated
bialgebra.

Then the category A—Comod is equivalent to the category of linear repre-
sentations of M on finitely generated R-modules.

Proof. The case of fields can be found in [Wat79, Section 3.2]. He is treating
the case of group schemes, but this is not used. The same argument also
applies to the case where R is a Dedekind domain. Full details can be found
in [Mil12] Proposition 6.1]. O

Remark 8.1.16. Let V be projective. By the proposition, we have right
comodule structure
V=>VegA

On the other hand, taking global sections of M x V' — V., we also get a left
comodule
Sym*VY - A®p Sym*VV.

It is in addition a morphism of algebras. It is induced from the right comodule
by passing to the contragredient left comodule

VVHA®RVV

and extending to the univeral algebra homomorphism on Sym*V'V.

Corollary 8.1.17. Let R be a Dedekind ring and C an non-zero abelian
tensor category. Let T : C — R—Mod be a faithful exact unital tensor func-
tor. Let S C CF™ be a set of T-projective objects that generated C in the
sense of Definition[8.1.9. Then the category C is equivalent to the category of
representations of the monoid SpecA((S)®:Psab T).

Proof. By Definition, the category C is equivalent to A({S)®-Ps2b T")—Comod.
The claim follows by Proposition O
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8.2 Localisation

The purpose of this section is to give a diagram version of the localisation
of a tensor category with respect to one object, i.e., a distinguished object
X becomes invertible with respect to tensor product. This is the standard
construction used to pass e.g. from effective motives to all motives.

We restrict to the case when R is a field or a Dedekind domain and all
representations of diagrams take values in R—Proj.

Definition 8.2.1 (Localisation of diagrams). Let D be a graded diagram
with a commutative product structure with unit 1. Let vy € D be a vertex.
The localised diagram D has vertices and edges as follows:

1. for every v a vertex of D and n € Z a vertex denoted v(n);

2. for every edge a : v — w in D! and every n € Z, an edge denoted
a(n) :v(n) = w(n) in D;

3. for every vertex v in D°f and every n € Z an edge denoted (v x vg)(n) —
v(n+1).

Put |v(n)| = |v|.
We equip D with a weak commutative product structure in the sense of

Remark

x : D x D — P(D) v(n) x w(m) — (v x w)(n+m)
together with

¥y (n)w(m) = Cv,w(n+m),
Buo(n) w(m),u(r) = Bosw,u(n +m +1),
Bomyw(m)u(r) = Bowu(n +m+7).
Let 1(0) together with
Up(n) = Us()
be the unit.

Note that there is a natural inclusion of diagrams with commutative prod-
uct structure DT — D which maps a vertex v to v(0).

Remark 8.2.2. The above definition does not spell out x on edges. It is
induced from the product structure on D for edges of type (2). For edges
of type (3) there is an obvious sequence of edges. We take their composition
in P(D). For example for v, ,, : (vxvg)(n) — v(n+1) and idy,(m) = idw(m) :
w(m) = w(m) we have

Yon X id(m) 1 (v X vo)(n) X w(m) = v(n + 1) x w(m)

via
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(v x vg)(n) x w(m) = (v X vy) X w)(n+m)

B vg.w (M)
——5 (v % (vg X w))(n+m)

Mxo T, (¢ (X v0)) (m + )

Do CHM ) s ) X ) (n + m)

Yo xw,n+m

(vxw)(n+m+1)=vn+1) xw(m).

Assumption 8.2.3. Let R be a field or a Dedekind domain. Let T" be a
multiplicative unital representation of D°® with values in R—Proj such that
T'(vp) is locally free of rank 1 as R-module.

Lemma 8.2.4. Under Assumption[8.2.3, the representation T' extends uniquely
to a graded multiplicative representation of D such that T(v(n)) = T(v) ®
T (v9)®™ for all vertices and T(a(n)) = T(a) @ T(id)®™ for all edges. It is
multiplicative and unital with the choice

Tw(n),w(m)

T(v(n) x w(m)) T(v(n)) ® T(w(m))

TUM@idl J,=

T(v) @ T(w) @ T(vg)®m+™  —=—  T(v) @ T(vg)®" @ T(w) @ T(vg)®™
where the last line is the natural isomorphism.

Proof. Define T on the vertices and edges of D via the formula. It is tedious
but straightforward to check the conditions. O

Proposition 8.2.5. Let D*® D and T be as above. Assume Assumption.
Let A(D,T) and A(D*,T) be the corresponding bialgebras. Then:

1. C(D,T) is the localisation of the category C(D*®,T) with respect to the

object T'(vy).

2. Let x € End(T(v9))Y = A({wo},T) be the dual of id € End(T(vg)). We
view it in A(D*®,T). Then A(D,T) = A(D*,T),, the localisation of
algebras.

Proof. Let D=" C D be the subdiagram with vertices of the form v(n’) with
n’ > n. Clearly, D = colim,, D=", and hence

C(D,T) = 2—colim, C(D=",T).
Consider the morphism of diagrams
D=" — D="F1 y(m) = v(m + 1).

It is clearly an isomorphism. We equip C(DZ"*1, T) with a new fibre functor
Jr @ T(v9)V. Tt is faithful exact. The map v(m) — T(v(m + 1)) is a rep-



186 8 More on diagrams

resentation of DZ" in the abelian category C(D="*! T) with fibre functor
fr ® T(vg)Y. By the universal property, this induces a functor

C(D=",T) — C(D="*1T).
The converse functor is constructed in the same way. Hence
C(D=",T)=C(D="*"'T), A(D=",T)= A(D=""',T).
The map of graded diagrams with commutative product and unit
Deft _y p>0

induces an equivalence on tensor categories. Indeed, we represent D=0 in
C(D*,T) by mapping v(m) to T(v) ® T(vy)™. By the universal property
(see Corollary [7.1.19)), this implies that there is a faithful exact functor

C(D=°,T) — c(D*%,T)

inverse to the obvious inclusion. Hence we also have A(D®®, T') = A(D=° T)
as unital bialgebras.
On the level of coalgebras, this implies

A(D,T) = colim, A(D=",T) = colim,, A(D%, T

because A(D=",T) is isomorphic to A(D*, T) as coalgebras. The coalgebra
A(D®%T) also has a multiplication, but the A(D=",T) for general n € Z do
not. However, they carry a weak A(D®f T)-module structure analogous to
Remark corresponding to the map of graded diagrams

D x D=" — P(D=").
We want to describe the transition maps of the direct limit. From the point
of view of Dt — De°f it is given by v — v x vy.
In order to describe the transition maps A(D, T) — A(D°", T), it suffices

to describe End(T|r) — End(T|p/) where F, F” are finite subdiagrams of D°f
such that v X vy € V(F’) for all vertices v € V(F). It is induced by

End(T(v)) = End(T(v x v9)) = End(T(v)) ® End(T(vg)) :  a+ a®id.
On the level of coalgebras, this corresponds to the map
ADET) 5 ADE,T): 20— ax.

Note finally, that the direct limit colimA(D*f, T) with transition maps given
by multiplication by y agrees with the localisation A(D°,T),. O
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Remark 8.2.6. In order to show that the localisation of a tensor category
with respect to some object L is again a tensor category, there is a condition
to check: permutation has to act trivally on L ® L. This is a non-issue in
the case of C(D,T) and L = T(vp) because C(D,T) — R—Mod is a tensor
functor and the condition is satisfied in R—Mod.

8.3 Nori’s rigidity criterion

Implicit in Nori’s construction of motives is a rigidity criterion, which we are
now going to formulate and prove explicitly.

Let R be a Dedekind domain or a field and C an R-linear tensor cate-
gory. Recall that R—Mod is the category of finitely generated R-modules
and R—Proj the category of finitely generated projective R-modules.

We assume that the tensor product on C is associative, commutative and
unital. Let 1 be the unit object. Let T': C — R—Mod be a faithful exact unital
tensor functor with values in R—Mod. By definition this means T'(1) = R.

Recall from Deﬁnitionthat an object X is called T-projecitve if T'(X)
is projective. We say that C is generated by a class S of T-projective objects
relative to T if

C((S)®Psab ) 5 C

is an equivalence of categories. By Proposition [8:I.15 and the condition im-
plies that C is equivalent to the category of representations of the monoid
scheme M = SpecA((S)®Psab T in finitely generated R-modules. The aim
of this section is to find a criterion for this monoid to be a group scheme over
our base ring R.

Definition 8.3.1. 1. Let C be as a above with R a field. We say that C is

rigid, if every object V € C has a strong dual V'V, i.e., for all X,Y € C
there are natural isomorphisms

Hom(X ® V,Y) 2 Hom(X, V'Y ®Y),
Hom(X,V ®Y) = Hom(X @ VV,Y)

2. Let C and T be as above with R a Dedekind ring. Assume in addition that
C is generated by CF™ (as an abelian tensor category) relative to 7. We
say that C is rigid, if every T-projective object V of C has a strong dual.

Note that this is in conflict with standard terminology in the second case.
In the field case, standard Tannaka duality implies that the Tannaka dual of
C is a group scheme over R. We are going to establish the same in the second
case. Actually, we are going to show below that a weaker assumption suffices.
For this, we introduce an ad-hoc notion.

Definition 8.3.2. Let V be an object of C. We say that V' admits a perfect
duality if either there is morphism
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q: VeV =1,

such that T(V) is projective and T'(q) is a non-degenerate bilinear form, or
if there is a morphism
1-VeV

such that T'(V') is projective and the dual of T'(g) is a non-degenerate bilinear
form.

Recall from Definition that by (V)®Psab we denote the full pseudo-
abelian unital tensor subcategory of C containing V, i.e.,

<V>®,psab _ <V®n|n c N0>psab.

We start with the simplest case of the criterion.

Lemma 8.3.3. Let V be an object that admits a perfect duality. Then M :=
SpecA((V)®P5ab T is an algebraic group scheme of finite type over Spec(R).

Proof. By Lemma [8.3.6] it suffices to show that there is a closed immersion
M — G of monoids into an algebraic group G. By Corollary 1., we
have a surjection

Sym*(End(T(V)Y) — A.

The kernel is generated by relations defined by compatibility with morphism
in the subcategory. One such is the pairing ¢ : V® V' — 1. We want to work
out the explicit equation induced by gq.

We choose a basis ey, ...,e. of T(V). Let

;. = T(q)(ei, 6]‘) € R.

By assumption, the matrix (a;;);; is invertible. Let X, be the matrix co-
efficients on End(T(V)) corresponding to the basis e;. Compatibility with ¢
gives for every pair (7, ) the equation

q(eivej>
= q((er)€i7 (Xr’s’)ej)

=q (Z X, e, Z Xr/jer’>

= Z Xrin/jq(er, er)

r,r!

= § X'rin’jarr’ .

rr!

(lij

Note that the latter is the (i, j)-term in the product of matrices

X'AX,
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where we abbreviate X = (Xst)s.¢, A = (arp)r Let B = A7! be the inverse
matrix. We define Y = (V)5 as

Y = BX'A.

Then
YX =BX'AX =BA=E,

is the unit matrix. In other words, our set of equations defines the isometry
group G(q) C End(T'(V)). We now have expressed A as quotient of the ring
of regular functions of G(q).

The argument works in the same way, if we are given

q:1->VeV

instead. o

Proposition 8.3.4 (Nori). Let C and T : C — R—Mod be as defined at the
beginning of the section. Let S = {V;|i € I} be a class of objects of C¥™° with
the following properties:

1. It generates C as an abelian tensor category relative to T in the sense of
Definition [8.1.9, i.e., its diagram category is all of C.
2. For every V; there is an object W; and a morphism

gi:VioW; =1,

such that T(q;) : T(V;) @ T(W;) — T(1) = R is a perfect pairing of
projective R-modules.

Then Spec(A(CT™I T)) is a pro-algebraic group, and C is rigid, see Defini-
tion [8.3. 1

Note that the assumptions include the condition that C is generated by
T-projectives relative to T', see the discussion at the beginning of the section.

Remark 8.3.5. 1. The proposition also holds with the dual assumption, i.e.,
existence of morphisms
gi:1=>V,oW,

such that T'(¢q;)V : T(V;)¥V @ T(W;)V — R is a perfect pairing.

2. If R =k is a field, C a rigid tensor category and T : C — k—Mod a fibre
functor, i.e., a faithful and exact tensor functor, then this completes the
proof of Tannaka duality, i.e., C is equivalent to the category of represen-
tations of the pro-algebraic group SpecA(C,T).

Proof of Proposition[8.3.7.. Consider V; = V; & W,. The pairing ¢; extends
to a symmetric map ¢, on V/ ® V/ such that T(q.) is non-degenerate. We
now replace V; by V. Without loss of generality, we can assume V; = W;. It
admits a perfect duality in the sense of Definition [8.3.2
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For any finite subset J C I, let V; = €, ; V;. Let ¢; be the orthogonal
sum of the ¢; for j € J. It is again a symmetric perfect pairing.

It suffices to show that A; is a Hopf algebra. This is the case by Lemma
Note that the anti-podal map is uniquely determined by the bialge-
bra, or equivalently, the inversion map on an algebraic monoid is uniquely
determined by the multiplication. Being a Hopf algebra is a property, not a
choice. O

Finally, the missing lemma on monoids.

Lemma 8.3.6. Let R be noetherian ring, G be an algebraic group scheme
of finite type over R and M C G a closed immersion of a submonoid with
1€ M(R). Then M is an algebraic group scheme over R.

Proof. This seems to be well-known. It appears as an exercise in [Ren05l
Chapter 3]. We give the argument:

Let S be any finitely generated R-algebra. We have to show that the
functor S — M(S) takes values in the category of groups. It is a unital
moinoid by assumption. We take base change of the situation to S. Hence
without loss of generality, it suffices to consider R = S. If g € G(R), we
denote the isomorphism G — G induced by left multiplication with g also by
g: G — G. Take any g € G(R) such that gM C M (for example g € M(R)).
Then one has

MDgM2Dg*MD---

As @ is noetherian, this sequence stabilises, say at s € N:
gsM _ gs+1M
as closed subschemes of G. Since every ¢g® is an isomorphism, we obtain that
M=g*¢°M = g~°¢°"'M = gM

as closed subschemes of G. So for every g € M(R) we showed that gM = M.
Since 1 € M(R), this implies that M (R) is a subgroup. O

Example 8.3.7. We explain the simplest example. It is a dressed-up version
of Example [8.1.7] where we obtained an algebraic monoid. Let D = Ny. We
have the same self-edges id, X @y, X idp as previously and in addition edges
n + 2 — n denoted suggestively id, x b xidy : a +2+b — a + .

We equip it with the trivial grading and the commutative product struc-
ture obtained by componentwise addition. The unit is given by 0 with u, = id.

Let k be a field and (V,b) a finite dimensional k-vector space with a non-
degenerate bilinear form b : V*V — k. We define a graded multiplicative
representation

Tvyp : Ng = k—Mod : v VO,
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The edge b is mapped to the linear map b: V®2 5 k induced from the
bilinear map b. The assumptions of the rigidity criterion in Proposition [8.3.4]
are satisfied for C = C(D,T). Indeed it is generated by the object T'(1) =V
as the an abelian tensor category. It is self-dual in the sense of the criterion
in C.

Let vq,...,v, be a basis of V and B the matrix of b. The bialgebra A =
A(Ng,Tv) is generated by symbols X;; as in Example We abbreviate
X = (Xjj)i;. There is a relation coming from the edge b. It was computed in
the proof of Lemma as the matrix product

X'BX = B.

Hence
X = SpecA = G(b)

is the isometry group of b as algebraic group scheme. If, in addition, the
bilinear form b is symmetric, it is the orthogonal group O(b).

8.4 Comparing fibre functors

We pick up the story but with two representations instead of one. This will
be central to our results on the structure of the formal period algebra in

Chapter [13]

8.4.1 The space of comparison maps

Let R be a Dedekind domain or a field. Let R—Mod be the category of
finitely generated R-modules and R—Proj the category of finitely generated
projective modules. Let D be a graded diagram with a unital commuta-
tive product structure (see Definition and 71,75 : D — R—Proj two
unital graded multiplicative representations. Recall that we have attached
coalgebras Ay := A(D,Ty) and Ay := A(D,T5) to these representations (see
Theorem. They are even bialgebras by Proposition The diagram
categories C(D,Ty) and C(D,Ts) are defined as the categories of comodules
for these coalgebras. They carry a structure of unital commutative tensor
category.

Remark 8.4.1. In the case that D is the diagram defined by a rigid tensor
category C and 17,75 faithful tensor functors, it is the classical result of Tan-
naka theory that not only G; = SpecA; and G5 = SpecAs are both groups,
but they are forms of each other. Then all morphisms of tensor functors are
isomorphisms and the space of all fibre functors is a torsor under G; and Gs.
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Our aim is to imitate this as much as possible for a general diagram D. As
we will see, the results will be weaker.

Definition 8.4.2. Let D be a diagram, R a Dedekind domain or a field.
Let Ty and T» be representations of D in R—Proj. Let F C D be a finite
subdiagram. We define

HOHI(T1|F,T2|F) =
(fp)per € H Homp (T1p, Top)|fq o Tim = Tomo f, Vp,q € F Vm € D(p, q)
peD

Put
Aip = @Hom(Tl lr, T2 F)Y
F

where V denotes the R-dual and F runs through all finite subdiagrams of D.

Note that our assumptions guarantee that Hom(T} | g, T2|r) is a projective
R-module and hence has a well-behaved R-dual.

Proposition 8.4.3. 1. The operation
End(T1|r) x Hom(T1|p, To|r) — Hom(T1|r, T2|F)
induces a compatible comultiplication
AL Qp A1+ Ao,
The operation
Hom(T|p, T2|r) X End(Te|r) — Hom(Ty|r, To|F)
induces a compatible comultiplication
A1 2 ®p Az < Aq 2.
The composition of homomorphisms
Hom(T|p, To|r) xHom(Ts|p, T1|F) xHom(Ty | p, T2| ) — Hom(Th|F, To|F)
induces a natural map
A2 ®@As1 ® A1 2 + Ai .

2. Assume that D carries a unital commutative product structure and that
Ty, Ty are unital multiplicative representations. Then A; o is a faithfully
flat commutative unital R-algebra with multiplication induced by the tensor
structure of the diagram category (unless A12 = 0) and the above maps
are algebra homomorphisms.
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Proof. The statement on comultiplication follows in the same way as the
comultiplication on A; and A, themselves, see Theorem [7.1.12] The module
A; o is faithfully flat over R because it is the direct limit of locally free R-
modules.

The hard part is the existence of the multiplication. This follows by going
through the proof of Proposition[8.1.5] replacing End(T'| ) by Hom(T|r, T2| )
in the appropriate places.

As T, T5 are unital, there are distinguished isomorphisms R — T;(1). This
defines a distinguished isomorphisms

Homp (T (1), To(1)) = Homp (R, R) — R,

and
R — Hompg(T1(1),T(1)).

The element 1 € A; 5 is the image of 1 under this map. a

Note that the proof constructs an element 1 € A; 2, but does not show
that 1 # 0.

Remark 8.4.4. Asin Remark a weak product structure on D suffices.

Lemma 8.4.5. Let R be a Dedekind domain or a field. Let D be a diagram
(with a unital commutative product structure). Let Th and Ty be representa-
tions of D in R—Proj. Let S be a faithfully flat ring extension of R. Then
the following data are equivalent:

1. an R-linear map ¢V : A1 2 — S;
2. a morphism of representations @ : 11 ® S — To ® S;

Moreover, every functor @ : C(D,Ty) — C(D,T») gives rise to a morphism of
representations.

If in addition, D carries a unital commutative product structure and Ty, Ts
are unital multiplicative representations of D in R—Proj, then the following
data are equivalent:

1. a homomorphism of R-algebras ¢¥ : A1 2 — S;
2. a morphism of unital multiplicative representations @ : T1@rS — To®RS;

A tensor functor @ : C(D,T1) — C(D,Ts) gives rise to a morphism of multi-
plicative unital representations.

Proof. By base change it suffices to consider S = R. This will simplify nota-
tion.

We first establish the statement without product structures. By construc-
tion, we can restrict to the case where the diagram D is finite.

Such a morphism of representations defines an element ¢ € Hom(77y, T5),
or, equivalently, an R-linear map ¢ : A; o — R. Conversely, ¢ € Hom(Ty,T3)
is a morphism of representations.
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Let @ : C(D,T1) — C(D,T») be an S-linear functor. By composing with the
universal representations Ty and T5 we obtain a morphism of representations
T1®RS—)T2®RS.

Finally, compatibility with product structure translates into multiplicativ-
ity of the map ¢. O

Remark 8.4.6. It does not follow that a morphism of representations gives
rise to a functor between categories. Indeed, a linear map V; — V5 does not
give rise to an algebra homomorphism End(V3) — End(V}).

We translate the statements to geometric language.

Theorem 8.4.7. Let R be a field or a Dedekind domain. Let D be a dia-
gram with unital commutative product structure, Ty, Ty : D — R—Proj two
representations. Let X1 9 = SpecA; 2, G1 = SpecA; and G = SpecAy. The
scheme X1 o is faithfully flat over R unless it is empty.

1. The monoid G operates on X1 o from the left
p1 i Gy x X192 — Xy 0.
2. The monoid G2 operates on X1 o from the right
po s Xi2 X Ga — Xi 0.
3. There is a natural morphism
X2 X Xo1 X X190 = X1 9.
Let S be a faithfully flat extension of R. The choice of a point X1 2(S) is

equivalent to a morphism of representations Ty r S — To ®pr S.

Remark 8.4.8. It is possible for X; 5 to be empty as we will see in the
examples below.

Example 8.4.9. For the diagrams D = Pairs or D = Good introduced in
Chapter |§| and the representations 7y = Hjy (de Rham cohomology) and
T> = H* (singular cohomology) this is going to induce the operation of the
motivic Galois group Gmot = SpecAy on the torsor X = SpecA; .

We formulate the main result on the comparison of representations. By a
torsor we will mean a torsor in the fpgc-topology, see Definition For
background on torsors, see Section

Theorem 8.4.10. Let R — S be faithfully flat and
QDZT1®RS—)T2®RS

an isomorphism of unital multiplicative representations.
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1. Then there is ¢ € X1,2(S) such that the induced maps

Gis = X125, g+ pgo)
Gas = X125, g+ u(og)

are isomorphisms.
2. This map ¢ induces an equivalence of unital tensor categories

P C(D,Tl) — C(D,TQ)

3. The comparison algebra Ai o is canonically isomorphic for the diagram
D and the representations T1 and Ty to the comparison algebra for the
category C = C(D,Ty) and the fibre functors fr, and fr, o P.

Assume in addition that C(D,Ty) is rigid. Then:

4. X1.2 15 a Gy-left torsor and a Ga-right torsor in the fpgc-topology.

5. For flat extensions R — S’, all sections ¥ € X; 2(S") are isomorphisms
of representations Ty ®r S — To @r S’. The map ¥ — ¥~' defines an
isomorphism of schemes ¢ : X192 — Xo.1.

6. X1, is a torsor in the sense of Deﬁm’tion with structure map given
by via ¢ : X1 2 — Xo21 and Theorem

3 ~
X172 = X172 X X271 X X1,2 — X1,2.

Moreover, the groups attached to X o via Proposition|1.7.1(} are G1 and
Gs.

Proof. 1. The first statement over S follows directly from the definitions.

2. We obtain the functor and its inverse by applying the universal property
of the diagram categories in the general form of Corollary They are
inverse to each other by the uniqueness part of the universal property.

3. We use the notation A(D,T1,Ts) for the comparison algebra A; 2 con-
structed in Definition By definition,

A(D7TI7T2) = A(D7fT1 OTl?fTQ odo Tl)

The map of diagrams Ty : D — C = C (D, Ty) defines an algebra homomor-
phism
A<D7T17T2) — A(C7fT17fT2 o ¢)

by the same argument as in the proof of Lemma [7.2.6] We check that it is an
isomorphism after base change to S. Over S, we may use the isomorphism ¢
to replace Th ®p S be the isomorphic T} ®pg S. The claim now follows from
the isomorphism

A(D7T1 QR S) - A(C(D7T1)afT1)
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which is the main content of Theorem on the diagram category of an
abelian category.

4. Now suppose in addition that C(D,T7) is rigid. By the equivalence, this
implies that C(D,T5) is rigid. This means that the monoids G; and G9 are
group schemes. The first property translates into X; o being a G;-left and
Go-right torsor in the fpgc-topology.

5 Let ¢ : Ty ®r S’ — T5 ®r S’ be a morphism of representations. We
claim that it is an isomorphism. This can be checked after a base change
to S. Then T, becomes isomorphic to 77 via ¢ and we may replace Ty by
T: in the argument. The morphism % can now be identified with a section
¥ € G1(S" ®r S). This is a group, hence it has an inverse, which can be
interpreted as the inverse of the morphism of representations.

6. Consider XfQ — Xj,2 as defined in the theorem. We claim that it
satisfies the torsor identities of Definition [[7.9 This can be checked after
base change to S where we can replace X2 by G;. The map is then given
by

G3 = Gy, (a,b,c) — ab'c

which is the trivial torsor. In particular the left group defined by the torsor
X1,2 is nothing but G;. The same argument also applies to Gs. a

Remark 8.4.11. See also the discussion of the Tannakian case in Section
In this case, X 2 is the G-torsor of isomorphisms between the fibre
functors T7 and T of [DM82, Theorem 3.2], see also Theorem The
above theorem is more general as it starts out with a commutative diagram
instead of a rigid category. However, it is also weaker as it uses the existence
of a point.

8.4.2 Some examples

We make the above theory explicit in a number of simple examples. The aim
is to understand conditions needed in order to ensure that X; 5 is a torsor.
It will turn out that rigidity of the diagram category is not enough.

Example 8.4.12. We reconsider Example [8:1.7] Let k be a field. The dia-
gram is Ny with only edges id, X ay, 4 X idp. It carries a commutative product
structure as before.

Let Vi and V5 be finite dimensional k-vector spaces. Let T; : n — Vi®”
be the multiplicative representations as before. We have shown that G; =
End(V;) as algebraic k-scheme. The same argument yields

X1,2 = Homg(V1, Va)

as algebraic k-scheme with the natural left and right operations by G;.
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Example 8.4.13. We reconsider again Example [8:3.7 We have D = Ny
with additional edges generated from an extra edge b : 2 — 0. Let (V;,b;)
be finite-dimensional vector spaces with non-degenerate bilinear forms. We

obtain
X1,9 =Isom((Vi,b1), (Va,b2))

the space of linear maps compatible with the forms, i.e., the space of isome-
tries. In this case G and G2 are algebraic groups, indeed the orthogonal
groups of by and bo, respectively. The diagram categories are rigid.

We claim that X7 2 = 0 if dim V5 < dim V4. The argument can already be
explained in the case Vi = k2, Vo = k both with the standard scalar product.
If X7 0 # 0, there would be a K-valued point for some field extension K/k.
This would mean the existence of a linear map K? — K with matrix (a,b)
such that a? = 1, b> = 1 and ab = 0. This is impossible. We can write down
the same argument in terms of equations: the algebra A; o is generated by
X,Y subject to the equations X2 —1,Y? —1, XY. This implies 0 = 1 in A; ».

On the other hand, if dimV; < dim V5, then X; o # 0. Nevertheless, the
groups G, G are not isomorphic over any field extension of k. Hence X o
is mot a torsor. This is in contrast with the Tannakian case. Note that the
points of X; 2 do not give rise to functors - they would be tensor functors
and hence isomorphisms.

The example shows:

Corollary 8.4.14. There is a diagram D with unital commutative product
structure and a pair of unital multiplicative representations Ty, To such that
the resulting tensor categories are both rigid, but non-equivalent.

Example 8.4.15. We resume the situation of Example but with
dim V; = dim V5. The two spaces become isometric over k because any two
non-degenerate bilinear forms are equivalent over the algebraic closure. By
Theorem X192 is a torsor and the two diagram categories are equiv-
alent. Hence the categories of representations of all orthogonal groups of
the same dimension are equivalent. Note that we are considering algebraic
k-representations of k-algebraic groups here.

Example 8.4.16. We consider another variant of Example Let D =Ny
with edges

idy, X ap Xidp :n+v4+w+m—=n+v+w+m
id, xbxid,, :n+2+m—>n+m
id, xb' xidp, :n+m—=n+2+m

with identifications id,, X ag, X idy, = idp4m as before . We use again the
trivial grading and the obvious commutative product structure with all 5, 5 .
and 3/ given by the identity.

U,v,W
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Let (V,b) be a finite-dimensional k-vector space with a non-degenerate
bilinear form V®2 — k. We define a multiplicative representation n — V®"
which assigns the form b to the edge b and the dual of b to the edge .

As in the case of Example the category C(D,T) is the category of
representations of the group O(b). The algebra is not changed because the
additional relations for b’ are automatic.

If we have two such representations attached to (V,b1) and (Va,bs) then
X1 2 is either empty (if dimV; # dimVa) or an O(by)-torsor (if dimV; =
dim V3). The additional edge b’ forces any morphism of representations to be
an isomorphism.

We formalise this.

Lemma 8.4.17. Let D be graded diagram with a commutative product struc-
ture. Let T1, Ty : D — R—Mod be multiplicative representations. Suppose that
for every vertex v there is a vertex w and a pair of edges e, : v X w — 1 and
el 1 = v X w such that T;(e,) is a non-degenerate bilinear map and T;(el)
its dual.

Let R — S be faithfully flat. Then every morphism of representations

¢TI ®rS —Tr g S

is an isomorphism. Hence Proposition[8.4.10 applies in this case.

Remark 8.4.18. As Example has shown, the space X; o may still be
empty!

Proof. Let v be an edge. Compatibility with e, forces the map T;(v) ® S —
Tz (v) ® S to be injective. Compatibility with e), forces it to be surjective,
hence bijective. a

This applies in particular in the Tannakian case. Moreover, in this case
X1 2 is non-empty.

Theorem 8.4.19 (The Tannakian case). Let k be a field, C a rigid tensor
category. Let Fy, Fy : C — k—Mod be two faithful fibre functors with associ-
ated groups G, and Gs.

1. Let S be a k-algebra. Let
gf) : F1 X S — FQ (24 S
be a morphism of tensor functors. Then ¢ is an isomorphism.

2. X1,2 is non-empty and a G1-left and G2-right torsor.

This is [DM82, Proposition 1.9] and [DMS82, Theorem 3.2]. We give the
proof directly in our notation.

Proof. For the first statement, simply apply Proposition|8.4.17|to the diagram
defined by C.
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We now consider X » and need to show that the natural map k — A; o
is injective. As in the proof of Theorem we can write C = 2—colim{p}
where p runs through all objects of C and {p} means the full subcategory
with only object p. (In general we would consider finite subdiagrams F', but
in the abelian case we can replace F by the direct sum of its objects.) Hence

A1 = hmA({p},Tl), ALQ = lim A({p},Tl,TQ)

Without loss of generality we assume that 1 is a direct summand of p.

We check that injectivity holds on the level of (p) (the abelian category
generated by p) instead of {p}. Let X(p) C Hompg(T1(p),p) be the object
constructed in Lemma By loc. cit.

T1(X(p) = End(Tuly) = A(p, T1)".
The same arguments show that
T5(X(p)) = Hom(Ti|p, Tolp) = A((p), T, T2).-
The splitting of p induces a morphism
X(p) = Homg(Ty(p),p) - Hompg(T1(1),1) = 1.
Applying T; gives the map
A({p}, T1)" — k

defining the unit element of A;. It is surjective. As T; is faithful, this implies
that X(p) — 1 is surjective. By applying the faithful functor To we get a
surjection

A({p}, Tl, Tg)v — HOHlk(Tl(l), Tg(l)) = k.

This is the map defining the unit of A; 5. Hence k — A 5 is injective. O

8.4.3 The description as formal periods

For later use, we give an alternative description of the same algebra.

Definition 8.4.20. Let D be a diagram. Let 77,75 : D — R—Proj be
representations. We define the space of formal periods P; 2 as the R-module
generated by symbols

(p,w,”)
where p is a vertex of D, w € Typ, v € Top” with the following relations:

1. (linearity in w, 7) for all p € D, wy,ws € T1p, A1, X2 € R, v € Ty'p
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(P, Awr + Aows, ¥) = Ai1(p,w1,7) + Aa(p,wa, )

and for all p € D, w € Tip, 71,72 € Top”, pa,p2 € R

(P, Ay v + p2y2) = pa(ps A v1) + (0, Ay 72);

2. (functoriality) If f : p — p’ is an edge in D, v € Top'Y, w € T1p, then

(pl, (Tlf)(w)>'y) = (pa W, (T2f)v('7))

Proposition 8.4.21. Assume D has a unital commutative product structure
and Ty, T are unital multiplicative representations. Then Py o is a commu-
tative R-algebra with multiplication given on generators by

(p,w, V@, ') =P xpweu,yey)
Proof. It is obvious that the relations of P; 5 are respected by the formula. O

There is a natural transformation
v PLQ — Al,g

defined as follows: let (p,w,y) € Pi 2. Let F' be a finite diagram containing
p. Then
!I/(p’ w, F)/) € Al,Q(F) = HOIH(T1|F, T2|F)va

is the map
HOIII(T1|F,T2|F) — R

which maps ¢ € Hom(T1|r, T2|r) to 7(¢(p)(w)). Clearly, this is independent
of F' and respects the relations of P ».
Theorem 8.4.22. Let D be diagram. Then the above map

v PLQ — ALQ

is an isomorphism. If D carries a commutative product structure and Ty, T5
are graded multiplicative representations, then it is an isomorphism of R-
algebras.

Proof. For a finite subdiagram F' C D let P; 5(F) be the space of periods. By
definition P = colimpP(F). The statement is compatible with these direct
limits. Hence without loss of generality D = F is finite.

By definition, P; 2(F') is the submodule of

H Tip ® Top”

peD

of elements satisfying the relations induced by the edges of D. By definition,
A1 ,2(F) is the submodule of
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H Hom(Typ, Top)”
peD

of elements satisfying the relations induced by the edges of D. As all T;p are
locally free and of finite rank, this is the same thing.
The compatibility with products is easy to see. a

Remark 8.4.23. The theorem is also of interest in the case T = T] = T5.
It then gives an explicit description of Nori’s coalgebra by generators and
relations. We have implicitly used the description in some of the examples.

Definition 8.4.24. Let D be diagram with a unital commutative product
structure. Let 11,75 : D — R—Proj be unital multiplicative representations.
Let p be a vertex of D. We choose a basis wq,...,w, of Tip and a basis
Y1y - -0 Of (Top)Y. We call

Pij = ((pv wi77j))i’j
the formal period matriz at p.
Will later discuss this point of view systematically.

Proposition 8.4.25. Let D be a diagram with a unital commutative product
structure. Assume that there is a faithfully flat extension R — S and an
isomorphism of representations ¢ : Th ® S — To ® S. Moreover, assume that
C(D,Th) is rigid. Then X1 2 = SpecP; s becomes a torsor in the sense of
Definition with structure map

3
P172_>P1@,)2

given by
Pij — ZPik ® P! ® Py
k.0

Proof. We use Theorem to translate Theorem into the alterna-
tive description. O






Chapter 9
Nori motives

We explain Nori’s construction of an abelian category of motives. It is defined
as the diagram category (see Chapters [7| and [8) of a certain diagram. It is
universal for all cohomology theories that can be compared with singular
cohomology. In the first section, we give the definition of the abelian category
of Nori motives summarise the results. We then compare it to an alternative
description using the Basic Lemma. This will then allow us to define the
tensor structure. Loose ends will be collected at the end.

9.1 Essentials of Nori motives

As before, we denote Z—Mod the category of finitely generated Z-modules
and Z—Proj the category of finitely generated free Z-modules.

9.1.1 Definition

Let k£ be a subfield of C. For a variety X over k, we define singular coho-
mology of X as singular cohomology of the analytic space (X xj C)**. As in
Chapter we denote it simply by H(X,Z).

Definition 9.1.1. Let k be a subfield of C. The diagram Pairs®® of effective
pairs consists of triples (X, Y, ¢) with X a k-variety, Y C X a closed subvariety
and an integer . There are two types of edges between effective pairs:

1. (functoriality) For every morphism f: X — X’ with f(Y) C Y’ an edge
FO(XLY7 D) = (X, Y59).

2. (coboundary) For every chain X DY D Z of closed k-subschemes of X an
edge

203
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0: (Y, Z,i) = (X,Y,i+1).

The diagram has identities in the sense of Definition [7.1.1] given by the iden-
tity morphism. The diagram is graded in the sense of Definition by
[(X,Y,4)] =i mod 2.

Proposition 9.1.2. The assignment
H* : Pairs®™ — Z—Mod

which maps to (X,Y, i) to relative singular cohomology H' (X (C),Y (C);Z) is
a representation in the sense of Definition|7.1.4l It maps (G, {1},1) to Z.

Proof. Relative singular cohomology was defined in Definition By def-
inition, it is contravariantly functorial. This defines H* on edges of type 1.
The connecting morphism for triples, see Corollary defines the repre-
sentation on edges of type 2. We compute H'(G,,,{1},Z) via the sequence
for relative cohomology

H(C*,Z) — H°({1},2) — H'(C*,{1},Z) — H'(C*,Z) — H'({1},Z)

The first map is an isomorphism. The last group vanishes for dimension
reasons. Finally, H'(C*,Z) = Z because C* is homotopy equivalent to the
unit circle. a

Definition 9.1.3. 1. The category of effective mized Nori motives MMSE . =

MMSE (k) is defined as the diagram category C(Pairs®®, H*) from The-
orem [.T.T31

2. For an effective pair (X, Y1), we write H{_;(X,Y) for the corresponding
object in MMSE . We put

1(71) = HI{Iori(va {1}) € MM%Iﬂ;ri’

the Lefschetz motive.

3. The category MMnori = MMnori(k) of Nori motives is defined as the
localisation of MM = with respect to 1(—1).

4. We also write H* for the extension of H* to MMuyori-

Remark 9.1.4. This is equivalent to Nori’s original definition by Theo-
rem [9.9.4)

9.1.2 Main results

Theorem 9.1.5 (Nori). 1. MMSE . has a natural structure of commutative
tensor category with unit such that H* is a tensor functor.
2. MMyori 18 a rigid tensor category.
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3. MMunori 1S equivalent to the category of representations of a pro-algebraic
group scheme Guot(k,Z) over Z.

For the proof see Section [9.3.1

Remark 9.1.6. It is an open question whether MMS _ is a full subcategory
of MMy, or equivalently, if -~ ® 1(—1) is full on MM ..

Definition 9.1.7. The group scheme Gt (k, Z) is called the motivic Galois
group in the sense of Nori.

Remark 9.1.8. The first statement also holds with the coefficient ring Z
replaced by any noetherian ring R. The other two hold if R is a Dedekind
ring or a field. Of particular interest is the case R = Q.

The proof of this theorem will occupy the rest of the chapter. We now
explain the key ideas. In order to define the tensor structure, we would like
to apply the abstract machine developed in Section [8.1} However, the shape
of the Kiinneth formula

H"(X xY,Q) = P H'(X,Q ®H'(Y,Q)

i+j=n

is not of the required kind. Nori introduces a subdiagram of good pairs where
relative cohomology is concentrated in a single degree and free, so that the
Kiinneth formula simplifies even integrally. The key insight now becomes that
it is possible to recover all pairs from good pairs. This is done via an algebraic
skeletal filtration constructed from the Basic Lemma as discussed in Section
As a byproduct, we will also know that MMST . and MMye; are given
as representations of a monoid scheme. In the next step, we have to verify
rigidity, i.e., we have to show that the monoid is an algebraic group. We do
this by verifying the abstract criterion of Section (8.3

On the way, we need to establish a general ”motivic” property of Nori
motives.

Theorem 9.1.9. There is a natural contravariant triangulated functor
R : Ky(Z[Var]) — D' (MMSE )

on the homotopy category of bounded homological complexes in Z[Var| such
that for every effective pair (X,Y,4) we have

HY(R(Cone(Y — X)) = Hii(X,Y).

For the proof, see Section The theorem allows, for example, to define
motives of simplicial varieties or motives with support.

The category of motives is supposed to be the universal abelian category
such that all cohomology theories with suitable properties factor via the cate-
gory of motives. We do not yet have such a theory, even though it is reasonable
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to conjecture that MMy is the correct description. In any case, it does
have a universal property which is good enough for many applications.

Theorem 9.1.10 (Universal property). Let A be an abelian category with a
faithful exact functor f: A — R—Mod for a noetherian ring R. Let

H'* : Pairs®® — A

be a representation. Assume that there is an extension R — S such that S is
faithfully flat over R and Z and an isomorphism of representations

®: H: — (fo H™)s.

Then H™ extends to MMnori. More precisely, there exists a functor L(H'™) :
MMyori — A[H'(1(=1))]7% and an isomorphism of functors

@ (fu)s — fso L(H™)
such that

MMNori

(fa*)s
L(H™)

| S—Mod

fs

|
|
|
|
v

A[H™(1(-1))] 7

commutes up to & and @. The pair (L(H'*),®) is unique up to unique iso-
morphism of functors.

If, moreover, A is a tensor category, f a tensor functor and H™* a graded
multiplicative representation on GoodCH, then L(H'™) is a tensor functor and
é is an isomorphism of tensor functors.

For the proof, see Section [0.3.1] This means that MMy is universal for
all cohomology theories with a comparison isomorphism to singular cohomol-
ogy. Actually, it suffices to have a representation of Good®™ or VGood®, see

Definition [0.2.11

Example 9.1.11. Let R = k, A = k—Mod, H'* algebraic de Rham coho-
mology, see Chapter [3] Let S = C, and let the comparison isomorphism & be
the period isomorphism of Chapter [5} By the universal property, de Rham
cohomology extends to MMpyeri- We will study this example in a lot more
detail in Part IIT in order to understand the period algebra.
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Example 9.1.12. Let R = Z, A the category of mixed Z-Hodge structures,
H’* the functor assigning a mixed Hodge structure to a variety or a pair. Then
S = Z and @ is the functor mapping a Hodge structure to the underlying
Z-module. By the universal property, H'* factors canonically via MMpyori.
In other words, motives define mixed Hodge structures.

Example 9.1.13. Let ¢ be a prime, R = Zy, and A the category of finitely
generated Z,-modules with a continuous operation of Gal(k/k). Let H'* be
(-adic cohomology over k. For X a variety and Y C X a closed subvariety
with open complement j : U — X, we have

(X, Y, i) — H(Xg, 51 Ze).

In this case, we let S = Z; and use the comparison isomorphism between
{-adic and singular cohomology.

Corollary 9.1.14. The category MMxori s independent of the choice of
embedding o : k — C. More precisely, let o’ : k — C be another embedding.
Let H'* be singular cohomology with respect to this embedding. Then there is
an equivalence of categories

MMNori(U) — MMNori(U/).

Proof. Use S = Z; and the comparison isomorphism given by comparing
both singular cohomology functors with /-adic cohomology. This induces the
functor. O

Remark 9.1.15. Note that the equivalence is not canonical. In the argument
above it depends on the choice of embeddings of k into C extending o and o,
respectively. If we are willing to work with rational coefficients instead, we
can compare both singular cohomologies with algebraic de Rham cohomology
(with S = k). This gives a compatible system of comparison equivalences.

Base change defines a functor on Nori motives. Of particular interest is
the case of the algebraic closure. We restrict to rational coefficients at this
point.

Theorem 9.1.16. Let k be field with algebraic closure k. Fiz an embedding
k — k. Then there is a natural exact sequence

1 = Gmot(k)g = Gmot(k)g — Gal(k/k) — 1.

The proof of this theorem will be given in Section [9.5
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9.2 Yoga of good pairs

We now turn to alternative descriptions of MMSL . better suited to the
tensor structure.

9.2.1 Good pairs and good filtrations

Definition 9.2.1. Let k£ be a subfield of C.

1. The diagram Good®® of effective good pairs is the full subdiagram of
Pairs®® with vertices the triples (X,Y,7) such that singular cohomology
satisfies

HI(X,Y;7Z) =0, unless j = i.

and is free for j = 1.

2. The diagram VGood®® of effective very good pairs is the full subdiagram
of those effective good pairs (X,Y,4) with X affine, X \'Y smooth and
either X of dimension ¢ and Y of dimension i — 1, or X =Y of dimension
less than i.

Remark 9.2.2. In Definition [9.3.2] we will also introduce the diagrams Pairs
of pairs, Good of good pairs and VGood of very good pairs as localisation
(in the sense of Definition with respect to (G, {1},1). We do not yet
need them.

Good pairs exist in abundance by the Basic Lemma, see Theorem [2.5.2]

Our first aim is to show that the diagram categories attached to Pairseﬁ,
Good®™ and VGood®® are equivalent. By the general principles of diagram
categories this means that we have to represent the diagram Pairs®® in
C(VGood®™ H*). We do this in two steps: first a general variety is replaced by
the Cech complex attached to an affine cover; then affine varieties are replaced
by complexes of very good pairs using the key idea of Nori. The construction
proceeds in a complicated way because both steps involve choices which have
to be made in a compatible way. We handle this problem in the same way as
in [Hub04].

We start in the affine case. Using induction, one gets from the Basic
Lemma

Proposition 9.2.3. Every affine variety X has a filtration
0)=F. XCFRXC ---CF, . XCF,X=X,

such that (F;X,F;_1X, j) is very good.

Filtrations of the above type are called very good filtrations.
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Proof. Let dim X = n. Put F,,X = X. Choose a subvariety of dimension
n — 1 which contains all singular points of X. By the Basic Lemma [2.5.2]
there is a subvariety F,_1 X of dimension n — 1 such that (F, X, F,,_1X,n) is
good. By construction, F;, X \ F,,_1X is smooth and hence the pair is very
good. We continue by induction. In the case n = 0, there is nothing to do
because we are in characteristic zero. O

Corollary 9.2.4. Let X be an affine variety. The inductive system of all
very good filtrations of X 1is filtered and functorial. This means in detail:

1. for any two very good filtrations FoX and F.X there is a very good filtra-
tion GeX such that FoX C GoX and F.X C G X;

2. 4f f: X — X' is a morphism and F,X a very good filtration, then there
is a very good filtration FeX' such that f(FeX) C FoX'.

Proof. Let Fo X and F.X be two very good filtrations of X. Let n < dim X.
Then F,,_1 X UF] _; X has dimension n — 1. By the Basic Lemma there
is subvariety G,,—1 X C X of dimension n — 1 such that (X,G,-1X,n) is a
good pair. It is automatically very good. We continue by induction.
Consider a morphism f : X — X’. Let F,X be a very good filtration.
Then f(F;X) has dimension at most . As in the proof of Corollary we
construct a very good filtration Fg X’ with the additional property f(F;X) C
F X' a

Remark 9.2.5. This allows us to construct a functor from the category of
affine varieties to the diagram category C (VGoodeH, H*) as follows: Given an
affine variety X, let FoX be a very good filtration. The boundary maps of
the triples F;_1 X C F;X C F;11X define a complex in C(VGoodeH, H*)

oo Hiow(F X, F 1 X)) — Hy L(F X, FiX) — .

Taking i-th cohomology of this complex defines an object in C(VGood®™, H*)
whose underlying Z-module is nothing but singular cohomology H*(X,Z). Up
to isomorphism, it is independent of the choice of filtration. In particular, it
is functorial.

We are going to refine the above construction in order to apply it to
complexes of varieties.

9.2.2 Cech complexes

The next step is to replace arbitrary varieties by affine ones. The idea for the
following construction is from the case of étale coverings, see [Fri82] Definition
4.2].
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Definition 9.2.6. Let X be a variety. A rigidified affine cover is a finite open
affine covering {U;};cr together with a choice of an index i, for every closed
point x € X such that x € U;_. We also assume that every index ¢ € I occurs
as i, for some z € X.

Let f: X — Y be a morphism of varieties, {U, };cr a rigidified open cover
of X and {V;};es arigidified open cover of Y. A morphism of rigidified covers
(over f)

¢ : {Uitier = {Vj}jes

is a map of sets ¢ : I — J such that f(U;) C Vj(;) and we have ¢(i,) = js(a)
forall z € X .

Remark 9.2.7. The rigidification makes ¢ unique if it exists.

Lemma 9.2.8. The projective system of rigidified affine covers is filtered and
strictly functorial, i.e., if f : X — Y is a morphism of varieties, pull-back
defines a map of projective systems.

Proof. Any two covers have their intersection as common refinement with
index set the product of the index sets. The rigidification extends in the
obvious way. Preimages of rigidified covers are rigidified open covers. ad

We need to generalise this to complexes of varieties. Recall from Defi-
nition the additive categories Z[Aff] and Z[Var| with objects (affine)
varieties and morphisms roughly Z-linear combinations of morphisms of vari-
eties. The support of a morphism in Z[Var] is the set of morphisms occurring
in the linear combination.

Definition 9.2.9. Let X, be a homological complex of varieties, i.e., an
object in Cy(Z[Var]). An affine cover of X, is a complex of rigidified affine
covers, i.e., for every X, the choice of a rigidified open cover 0Xn and for
every g : X,, — X,_1 in the support of the differential X,, — X,,_1 in the
complex X, a morphism of rigidified covers g : Ux, — Uy, _, over g.

Let F, : X, — Y, be a morphism in Cy,(Z[Var]) and Uy, , Uy, affine covers
of X, and Y,. A morphism of affine covers over F, is a morphism of rigidified
affine covers f,, : Ux, — Uy, over every morphism in the support of .

Lemma 9.2.10. Let X, € Cy(Z[Var]). Then the projective system of rigid-
ified affine covers of X is non-empty, filtered and functorial, i.e., if fo :
Xo — Y, is a morphism of complexes and ﬁx. an affine cover of X,, then
there is an affine cover l~]y. and a morphism of complexes of rigidified affine
covers UX. — ﬁy.. Any two choices are compatible in the projective system
of covers.

Proof. Let n be minimal with X,, # (). Choose a rigidified cover of X,,. The
support of X, 11 — X,, has only finitely many elements. Choose a rigidified
cover of X, 11 compatible with all of them. Continue inductively.

Similar constructions show the rest of the assertion. a
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Definition 9.2.11. Let X be a variety and Uy = {Ui}ier a rigidified affine
cover of X. We put ~
C.(Ux) € C_(Z]|AH]),

the Cech complex associated to the cover, i.e.,

x) = H nUi,

i€ly i€l

where I, is the set of tuples (ig,...,%,). The boundary maps are given by

the formula N

= (-1)0; : Co(Ux) = Cr1(Ux)

j=0
with d; on nie(io,...,in
If X, € Cy(Z[Var]) is a complex, and Uy, a rigidified affine cover, let

y Ui given by the open immersion into ﬂi# U;.

C.(Ux,) € O—4(Z[Aff))

be the double complex C’i(ﬁ X;)-

Note that all components of C*(U x,) are affine. The projective system of
these complexes is filtered and functorial.

Definition 9.2.12. Let X be a variety, Ux = {Ui}ier arigidified affine cover
of X. A wvery good filtration on Uy is the choice of very good filtrations for

ne
el

for all I’ C I compatible with all inclusions between these.

Let f : X — Y be a morphism of varieties, ¢ : {Uitier — {Vj}jes a
morphism of rigidified affine covers above f . Fix very good filtrations on
both covers. The morphism ¢ is called filtered, if for all I’ C I the induced

map
ﬂ Ui — ﬂ V¢(i)
iel’ el

is compatible with the filtrations, i.e.,
f (F N Ui> C Fo () Va-
il il

Let X, € Cy(Z[Var]) be a bounded complex of varieties, Ux, an affine cover
of Xo. A wery good filtration on UX. is a very good filtration on all UX
compatible with all morphisms in the support of the boundary maps.
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Note that the Cech complex associated to a rigidified affine cover with
very good filtration is also filtered in the sense that there is a very good
filtration on all Cn(U x) and all morphisms in the support of the differential
are compatible with the filtrations.

Lemma 9.2.13. Let X be a variety, Ux a rigidified affine cover. Then the
inductive system of very good filtrations on Ux is non-empty, filtered and
functorial.

The same statement also holds for a complex of varieties Xo € Cy(Z[Var]).

Proof. Let Ux = {Ui}ier be the affine cover. We choose recursively very
good filtrations on [, ; U; with decreasing order of J, compatible with the

icJ
inclusions.
We extend the construction inductively to complexes, starting with the
highest term of the complex. ad

Definition 9.2.14. Let X, € C_(Z[Aff]). A very good filtration of X, is
given by a very good filtration F,X,, for all n which is compatible with all
morphisms in the support of the differentials of X,.

Lemma 9.2.15. Let X, € Cy(Z[Var]) and Uy, an _affine cover of Xo with
a very good filtration. Then the total complex of Ci(Ux,) carries a very good
filtration.

Proof. Clear by construction. O

9.2.3 Putting things together

Let A be an abelian category with a faithful forgetful functor f : A —
R—Mod with R noetherian. Let T : VGood®™ — A be a representation of
the diagram of very good pairs.

Definition 9.2.16. Let FoX be an affine variety X together with a very
good filtration F,. We put R(F,X) € C*(A)

e — T(FJX., Fj,1X.> — T(Fj+1X.7 FJX.) — ...
Let FoX, be a very good filtration of a complex X, € C_(Z[Aft]). We put
R(F.X,) € CT(A) the total complex of the double complex R(F¢X,,)nez.

Proposition 9.2.17. Let A be an S-linear abelian category with a faithful
forgetful functor f to S—Mod. Let T : VGood®™ — A be a representation
such that f o T is singular cohomology with S-coefficients. Then there is a
natural contravariant triangulated functor

R : Cy(Z[Var]) — D°(A)
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on the category of bounded homological complexes in Z[Var] such that for
every good pair (X,Y,i) we have

oo 20) = {07

Moreover, the image of R(X) in D*(S—Mod) computes singular cohomology
of X.

Proof. We first define R : Cy(Z[Var]) — DP’(A) on objects. Let X, €
Cy(Z[Var]). Choose a rigidified affine cover Uy, of X,. This is possible by
Lemma Choose a very good filtration on the cover. This is possible
by Lemma It induces a very good filtration on TotC, (U, ). Put

R(X,) = R(TotC,(Ux,)).

Note that any other choice yields a complex isomorphic to this one
in DT(A) because f is faithful and exact and the image of R(X,) in
D+ (R—Mod) computes singular cohomology with S-coefficients.

Let f: X¢ — Y, be a morphism. Choose a refinement Ug(. of f]X_ which

maps to Uy. and a very good filtration on 03(. Choose a refinement of the
filtrations on U x, and Uy. compatible with the filtration on U .- This gives a
little diagram of morphisms of complexes R which defines R(f) in Dt (A). O

Remark 9.2.18. Nori suggests working with Ind-objects (or rather Pro-
object in our dual setting) in order to get functorial complexes attached
to affine varieties. However, the mixing between inductive and projective
systems in our construction does not make it obvious if this works out for
the result we needed.

As a corollary of the construction in the proof, we also get:

Corollary 9.2.19. Let X be a variety, Ux a rigidified affine cover with Cech
complex C,(Ux). Then

R(X) = R(C.(Ux))
is an isomorphism in DT (A).
We are mostly interested in two explicit examples of complexes.

Definition 9.2.20. Consider the situation of Proposition[9.2.17} Let Y C X
be a closed subvariety with open complement U. For i € Z, we put

R(X,Y) = R(Cone(Y = X)), Ry(X)= R(Cone(U — X)) € D*(A)
H(X,Y,i) = H(R(X,Y)), Hy(X,i)=H'(Ry(X))cA

H(X,Y,4) is called relative cohomology. Hy (X,i) is called cohomology with
support.
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9.2.4 Comparing diagram categories

We are now ready to proof the first key theorems.

Theorem 9.2.21. The diagram categories C(Pairs®®, H*), C(Good®T, H*)
and C(VGood®™, H*) are equivalent.

Proof. The inclusion of diagrams induces faithful functors
i: C(VGood™™ H*) = C(Good®™, H*) — C(Pairs®T, H*).

We want to apply Corollary [7.1.19] Hence it suffices to represent the diagram
Pairs®® in C(VGood®®, H*) such that the restriction of the representation to
VGood®T gives back H* (up to natural isomorphism).

We turn to the construction of the representation of Pairs®® in C(VGood®®, H*).
We apply Proposition to

H* : VGood®™ — C(VGood®™, H*)
and get a functor
R : Cy(Z[Var]) — Db(C(VGood®™, H*)).
Consider an effective pair (X,Y,4) in D. It is represented by
H(X,Y,i) = H(R(X,Y)) € C(VGood™ H*)

where
R(X,Y) = R(Cone(Y — X)).

The construction is functorial for morphisms of pairs. This allows to represent
edges of type f*.

Finally, we need to consider edges corresponding to coboundary maps for
triples X DY D Z. In this case, it follows from the construction of R that
there is a natural exact triangle

R(X,Y)—> R(X,Z) - R(Y, Z).
We use the connecting morphism in cohomology to represent the edge
(Y, Z,i) = (X,Y,1+1). O
For further use, we record a number of corollaries.

Corollary 9.2.22. Every object of MMﬁ,fgri is a subquotient of a direct
sum of objects of the form Hi (X,Y) for a good pair (X,Y,i) where X =
W\ Ws and Y = Wy~ (Wo N W) with W smooth projective, Woo UWy a
divisor with normal crossings.
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Proof. By Proposition every object in the diagram category of VGood®®
(and hence MMpeyi) is a subquotient of a direct sum of some Hy,;(X,Y)
with (X,Y4) very good. In particular, X \'Y can be assumed smooth.

We follow Nori. By resolution of singularities, there is a smooth projective
variety W and a normal crossing divisor Wy U W, C W together with a
proper, surjective morphism 7 : W ~. Wy, — X such that one has 77 1(Y) =
Wo~ Wy and m: W N 771(Y) = X \ Y is an isomorphism. This implies
that

HKTori(W ~ WOO? Wo ~ (WO N WOO)) - Hf\}ori(Xv Y)

is also an isomorphism by proper base change, i.e., excision. a

Remark 9.2.23. Note that the pair (W~ W, Wy~ (WoNW)) is good, but
not very good in general. Replacing Y by a larger closed subset Z, one may,
however, assume that Wy . (Wo N W) is affine. Therefore, by Lemma[9.3.9]
the dual of each generator can be assumed to be very good.

Corollary 9.2.24. FEvery object of M/\/lefo)ri is a subquotient of a direct sum
of objects of the form Hi .(X,Y) with X smooth affine and Y a divisor with
normal crossings.

Proof. As in the proof of the last corollary, every object of MMuyoyi is a
subquotient of a direct sum of some Hy,;(X,Y) with (X,Y,4) very good. In
particular, X \'Y can be assumed smooth. By resolution of singularities, the
motive is isomorphic to HY_ (X', Y’) with X’ smooth quasi-projective and
Y’ a divisor with normal crossings. By excision, we have an isomorphism

Hli\fori(X/> YI) = Hlilori(Xv Y)

By Jouanolou’s trick, see [Jou73, Lemme 1.5] there is an A"-torsor X" — X’
with X" affine. As X’ and A" are smooth, so is X”. The preimage of Y’ in
X" is a again a divisor with normal crossings. By homotopy invariance, we
have

Hli\fori(X//7 YH) = Hli\lori (Xl? Y/)

O

Definition 9.2.25. Let Z C X be a closed immersion with open complement
U. We call ‘ .
HlZ(X) = HZ(RCOHG(U — X)) € MMyori

the motive of X with support in Z.

Corollary 9.2.26. Let Z C X be a closed immersion with open complement
U. Then the motive Hy(X) in MMuyoyi represents cohomology with support.
There is a natural long exact sequence

s Hy(X) = Hion(X) = Hyow (U) — Hz™H(X) = -+
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Proof. Both assertion follow from the distinguished triangle

R(Cone(U — X)) —» R(X) = R(U).

9.3 Tensor structure

We now introduce the tensor structure using the formal set-up developed in
Section Recall that Pairs®®, Good®™ and VGood®™ are graded diagrams
with |(X,Y,4)] =4 mod 2.

Proposition 9.3.1. The graded diagrams Good and VGood®™ carry a weak
commutative product structure in the sense of Remark[8.1.6 defined as fol-
lows: for all vertices (X,Y,1), (X', Y i)

(X, ) x (X, Y' i) =(X x X' X xY' UY x X' i+i).
with the obvious definition on edges. Let also

a: (X,Y,0) x (X, Y, i) — (X',Y",i) x (X,Y,9)
B (X,Y0) x (X,Y,4) x (X", Y",d")) = (X, Y,4) x (X', Y',d) x (X", Y",i")
B (X, Y50) x (X, Y7,47) < (X7, Y74") — (X, Y 0) x (X, Y7,4) x (X", Y",i"))

be the edges given by the natural isomorphisms of varieties.
There is a unit given by (Spec k,0,0) and

u: (X,Y,i) = (Spec k,0,0) x (X,Y,i) = (Spec k x X, Spec k x Y, i)

given by the natural isomorphism of varieties.
Moreover, H* is a weak graded multiplicative representation in the sense

of Definition and Remark with
T HT (X x X' X xY'UX' xY;Z) = H(X,Y,Z)® H (X',Y'; Z)
the Kiinneth isomorphism, cf. Theorem [2.4.1].

Proof. If (X,Y,4) and (X', Y’ 4') are good pairs, then so is (X x X', X x
Y'UY x X',i+17) by the Kiinneth formula. If they are even very good, then
so is their product. Hence X is well-defined on vertices. Recall that edges of
Good®™ x Good®™ are of the form v x id or id x v for an edge v of Good®™.
The definition of X on these edges is the natural one. We explain the case
6 X id in detail. Let X DY D Z and A D B. We compose the functoriality
edge for
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(YXAZxAUY xB)—= (Y xAUX xB,Zx AUY x B)
with the boundary edge for
XXxADYXAUXXxBDZxAUY xB

and obtain

dxid: (Y, Z,n) x (A,B,m)=(Y x A, Z x AUY X B,n+m)
S (X xAYXxAUX xBn+m+1)=(X,Y,n+1) x (4, B,m)

as a morphism in the path category P(Good®™).

We need to check that H* satisfies the conditions of Definition [8.1.3l This
is tedious, but straightforward from the properties of the Kiinneth formula,
see in particular Proposition [2:4.3] for compatibility with edges of type 9
changing the degree.

Associativity and graded commutativity are stated in Proposition [2.4.2

O

Definition 9.3.2. Let Good and VGood be the localisations (see Defini-
tion [8.2.1)) of Good®® and VGood®™, respectively, with respect to the vertex

Proposition 9.3.3. Good and VGood are graded diagrams with a weak com-

mutative product structure in the sense of Remark[8.1.6. Moreover, H* is a
graded multiplicative representation of Good and VGood.

Proof. This follows formally from the effective case and Lemma The
assumption that H*(1(—1)) = Z is satisfied by Proposition O

Theorem 9.3.4. 1. This definition of MMnori s equivalent to Nori’s orig-
inal definition.

2. /\/l./\/ll‘i}f(f)ri C MMpyori are commutative tensor categories with a faithful
fibre functor H*.

3. MMyori is equivalent to the digram categories C(Good, H*) and C(VGood, H*).

Proof. We already know by Theorem that
C(VGood®™ H*) — C(Good*®, H*) — C(Pairs®, H*) = MMSE .

are equivalent. Moreover, this agrees with Nori’s definition using either
Good®™ or Pairs®®,

By Proposition the diagrams VGood®® and Good®? carry a multi-
plicative structure. Hence, by Proposition the category MMSH . carries
a tensor structure.

By Proposition [8:2.5] the diagram categories of the localised diagrams
Good and VGood also have tensor structures and can be equivalently defined
as the localisation with respect to the Lefschetz object 1(—1).



218 9 Nori motives

In [Lev05], the category of Nori motives is defined as the category of co-
modules of finite type over Z for the localisation of the ring A% with respect
to the element y € A(1(—1)) considered in Proposition By this same
Proposition, the category of A;H—comodules agrees with MMunoi. a

Remark 9.3.5. We do not know if the inclusion MM;ff)ri — MMyori is
also full. On the level of categories this is equivalent to the fullness of the
functor - ® 1(—1). On the level of algebras, it is equivalent to the element
x € A°f in the proof of Theorem not being a divisor of zero. On the
level of schemes, it is equivalent to the group SpecA attached to MMunoy
being dense in the monoid SpecA°T attached to MMSE

Nori-

Our next aim is to establish rigidity using the criterion of Section [8:3}
Hence, we need to check that Poincaré duality is motivic, at least in a weak
sense.

Remark 9.3.6. An alternative argument using Harrer’s realisation functor
from geometric motives (see Theorem |10.1.4]) is explained in Corollary|10.1.6

Definition 9.3.7. Let 1(—1) = Hy,;(G,,) and 1(—n) = 1(—1)®".

Lemma 9.3.8. 1. HZ . (PN) =1(-n) for N >n > 0.

2. Let Z be a projective variety of dimension n. Then HE" .(Z) = 1(—n).

3. Let X be a smooth variety, Z C X a smooth, irreducible, closed subvariety
of pure codimension n. Then the motive with support of Definition [9.2.25
satisfies

HZ'(X) = 1(—n).

Proof. Recall that singular cohomolgoy is faithful on Nori motives. Hence,
in all the above statements we have to construct a morphism of motives and
check that it an isomorphism in singular cohomology.

1. For n < N let P* C PV be the natural linear immersion. It induces an
isomorphism on singular cohomology upto degree 2n, and hence on motives
up to degree 2n. Hence it suffices to check the top cohomology of P .

We start with P'. Consider the standard cover of P! by U; = Al and
Uy =P < {0}. We have U; N Uy = G,,. By Corollary

R(P') — Cone (R(Ul) ® R(Us) — R(Gm)) [—1]

is an isomorphism in Db(MMNori). This induces the isomorphism HI% ori P —
H},.i(G,,) = 1(—1). Similarly, the Cech complex (see Definition
for the standard affine cover of PV relates HZN.(PY) with HY (Gl) =
Hlifori(Gm)(gn = 1(—’/7,)

2. Let Z C PN be a closed immersion with N large enough. Then
HZ (Z) — HE(PY) is an isomorphism in MMxyoyi because it is in singu-
lar cohomology.

3. Assertion 3. holds in singular cohomology by the Gysin isomorphism [2.1.9]
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H(Z)—HZ'(X).

We now construct the map motivically. For the embedding Z C X one has
the deformation to the normal cone [Ful84] Sec. 5.1], i.e., a smooth scheme
D(X, Z) together with a morphism to A! such that the fibre over 0 is given by
the normal bundle Nz X of Z in X, and the other fibres by X. The product
Z x A can be embedded into D(X, Z) as a closed subvariety of codimension
n, inducing the embeddings of Z C X as well as the embedding of the zero
section Z C NzX over 0.
In all, we have for t # 0:

Z——sZxAN ~—— 7

P

Nz(X)——=D(X,2)=—X

]

{0} Al {1

The natural maps
HZ(X) + HZ 40 (D(X, Z)) = HF'(NzX)

are isomorphisms in singular cohomology by the three Gyson isomorphisms
and homotopy invariance. Hence they are also isomorphisms of motives. Thus,
we have reduced the problem to the embedding of the zero section Z — Nz X.
However, the normal bundle 7 : Nz X — Z trivialises on some dense open
subset U C Z. This induces an isomorphism

H7'(NzX) — Hy"(r = (U)),

and we may assume that the normal bundle Nz X is trivial. In this case, we
have
Nz(X) = NZX{O}(Z X An) =7 X N{O}(An)

By the Gysin isomorphism, H fo}(N{o}(A")) is concentrated in degree 2n. By
the Kiinneth formula with supports,

HEy (A") = Hipy (A" = 1(—n).
The formula for HZ?.(Z x N3 (A™)) follows from the Kinneth formula. O

The following lemma (more precisely, its dual) is formulated implicitly in
[Nor(Q] in order to establish rigidity of MMnori-

Lemma 9.3.9. Let W be a smooth projective variety of dimension i, Wy, W, C
W divisors such that Wy U W is a normal crossing divisor. Let
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X=W~W4
Y:WO\(WoﬂWOO)
XI:W\WO

Y = We ~ (WoN W)

We assume that (X,Y) is a very good pair.
Then there is a morphism in MMyori

q: 1— Hlilori(X’ Y) ® HI{Iori(X/7 Yl)(z)
such that the dual of H*(q) is a perfect pairing.

Proof. We follow Nori’s construction. The two pairs (X,Y) and (X',Y”) are
Poincaré dual to each other in singular cohomology, see Proposition for
the proof. This implies that they are both good pairs. Hence

Hlilori(va) ® Hlilori(leyl) — Hl%iori(X X leX X Y/ uY x X/)

is an isomorphism. Let A = A(W ~ (W U W,)) via the diagonal map A.
Note that
XxY'UX'xY C(XxX)\A.

Hence, by functoriality and the definition of cohomology with support, there
is a map

HE (X x X', X xY'UY x X') « HY(X x X').
Again, by functoriality, there is a map
HY(X x X') « HEZ(W x W)

with A = A(W). By Lemma this motive is isomorphic to 1(—i). The
map ¢ is defined by twisting the composition by (7). The dual of this map
realises Poincaré duality, hence it is a perfect pairing. O

Theorem 9.3.10 (Nori). MMy is rigid, hence a neutral Tannakian cat-
egory. It is equivalent to the category of linear algebraic representations (see

Definition of the affine flat group scheme
Got := Spec(A(Good, H)).

Proof. We apply the criterion of Proposition Let S be the set of ob-
jects MMy of the form Hf'\lori(X, Y)(4) of the particular form occurring in
Lemma[9.3.9] By this lemma, they admit a perfect pairing. It remains to check
that it generates MMy, in the sense of Definition By Lemma [8.1.11
the category is generated by the set {Tv|v € VGood}. By Corollary [9.2.22
and its proof, every such object is isomorphic to one of the special shape.
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Hence by Corollary the category is equivalent to the category of lin-
ear algebraic representations of the monoid Get. By Proposition 8:3.4] the
monoid is a group. a

9.3.1 Collection of proofs

We go through the list of theorems of Section and give the missing proofs.

Proof of Theorem [9.1.5.. By Theorem m the categories MMSI . and
MMnyori are tensor categories. By construction, H* is a tensor functor. The
category MMpeyi s rigid by Theorem [9.3.10] By loc. cit., we have a descrip-

tion of its Tannaka dual. O
Proof of Theorem[9.1.9.. We apply Proposition with A = MM
and T = H*, R = Z. 0

Proof of Theorem[9.1.101. We apply the universal property of the diagram
category (see Corollary[7.1.15) to the diagram Good®™, T' = H* and F = H'*.

This gives the universal property for MMefom.

Note that H™*(1(—1)) & R by comparison with singular cohomology.
Hence everything extends to MMyoyi by localising the categories.

If A is a tensor category and H'* a graded multiplicative representation,
then all functors are tensor functors by construction. a

9.4 Artin motives

We go through the baby case of O-motives, i.e., the ones generated by 0-
dimensional varieties. We restrict to rational coefficients.

Definition 9.4.1. Let Pairs’ c Pairs® be the subdiagram of vertices
(X,Y,n) with dim X = 0. Let MM%Ori’Q be its diagram category with re-
spect to the representation of Pairs®® given by singular cohomology with
rational coefficients. Let Var® C Pairs” be the diagram defined by the op-
posite category of O-dimensional k-varieties, or equivalently, the category of
finite separable k-algebras.

If dim X = 0, then dimY = 0 and X decomposes into a disjoint union of
Y and X \'Y. Hence H*(X,Y;Q) = H*(X \ Y,Q) and it suffices to consider
only vertices with Y = (). Moreover, all cohomology is concentrated in degree
0, and the pairs (X,Y,0) are all good and even very good. In particular,
the multiplicative structure on Good restricts to the obvious multiplicative
structure on Pairs’ and Var®.



222 9 Nori motives

We are always going to work with the multiplicative diagram Var® in the
sequel.

Definition 9.4.2. Let G°

mot

(k)g be the Tannaka dual of MMONori’Q.

The notation is a bit awkward because G° often denotes the connected
component of unity of a group scheme G. Our GY (k)g is very much not
connected.

Our aim is to show that GO . (k)o = Gal(k/k). By construction of the

coalgebra in Corollary we have
A(Var®, H°) = colimpEnd(H|r)",

where F' runs through a system of finite subdiagrams whose union is Var?.
We start with the case when F' has a single vertex Spec(K), with K/k a
finite field extension, Y = SpecK. The endomorphisms of the vertex are given
by the elements of the Galois group G = Gal(K/k). We spell out H°(Y, Q).
We have
Y (C) = Mory(SpecC, SpecK) = Homy_n1¢ (K, C)

the set of field embeddings of K into C, viewed as a finite set with the discrete
topology. Singular cohomology attaches a copy of Q to each point, hence

H°(Y(C),Q) = Maps(Y(C), Q) = Maps(Homy,_ 14 (K, C), Q).

As always, this is contravariant in Y, hence covariant in fields. The left oper-

ation of the Galois group G on K induces a left operation on H°(Y (C), Q).
Let K/k be a Galois extension of degree d. We compute the ring of endo-

morphisms of H° on the single vertex SpecK (see Definition

E = End(H°|speck)-

By definition, its elements are the endomorphisms of H?(SpecK,Q) com-
muting with the operation of the Galois group. The set Y(C) has a simply
transitive action of G. Hence, Maps(Y (C), Q) is a free Q[G]°P-module of rank
1. Its centraliser F is then isomorphic to Q[G]. This statement already makes
the algebra structure on F explicit.

The diagram algebra does not change when we consider the diagram
Var’(K) containing all vertices of the form A with A = @], K;, K; C K.

There are two essential cases: If K’ C K is a subfield, we have a surjec-
tive map Y (C) — Y’(C). The compatibility condition with respect to this
map implies that the value of the diagram endomorphism on K’ is already
determined by its value on K. If A = K & K, then compatibility with the in-
clusion of the first and the second factor implies that the value of the diagram
endomorphism on A is already determined by its value on K.

In more abstract language: The category Var’(K) is equivalent to the
category of finite G-sets. The algebra E is the group ring of the Galois group
of this category under the representation S — Maps(S, Q).
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Note that K @, K = @, K, with ¢ running through the Galois group,
is in Var’(K). The category has fibre products. In the language of Defini-
tion the diagram Var’(K) has a commutative product structure (with
trivial grading). By Proposition and its proof, the diagram category is
a tensor category, or equivalently, E carries a comultiplication.

We go through the construction in the proof of loc.cit. We start with
an element of E and view it as an endomorphism of H°(Y x Y (C),Q) =
H(Y(C),Q) ® H°(Y(C),Q), hence as a tensor product of endomorphisms
of H°(Y(C),Q). The operation of E = Q[G] on Maps(Y (C) x Y (C),Q) is
determined by the condition that it has to be compatible with the diagonal
map Y (C) — Y(C)x Y (C). This amounts to the diagonal embedding Q[G] —
Q[G] ® Q[G].

Thus we have shown that F = Q[G] as bialgebra. This means that

Got(Y) := Spec(A({SpecK), H*) = SpecE" = G

as a constant monoid (even group) scheme over Q.
Passing to the limit over all K we get

Grnot(K)g = Gal(k/k)

as proalgebraic group schemes over Q of dimension 0. As a byproduct, we
see that the monoid attached to MMONOTLQ is a group, hence the category is
rigid.

Recall that it is in general not clear whether the subcategory of effective
Nori motives is full in the category of all Nori motives. The situation is better
in the case of 0-motives.

Proposition 9.4.3. MM%orin is a full subcategory of MMyori,q-

Proof. The natural functor MM%OILQ — MMefojri,Q — MMpori g is faith-
ful and exact. It remains to check fullness on generating objects. Let K/k
and L/k be finite field extensions. Let

I Hgori(Spec K) — Hgori(Spec L)

be a morphism in MMy g. It is Gal(k/k)-equivariant as a map of the un-
derlying vector spaces by functoriality. Hence it is a morphism in the category
MMy, of Gal(k/k)-modules. O

9.5 Change of fields

We investigate how the categories of motives for different base fields are
related.
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Lemma 9.5.1. Let K/k be field extension, K C C. Then the base change
functor X — Xk for varieties induces an exact tensor functor

resg /k : MMunori(k) = MMyori(K).

We call this the restriction functor because this is what it is from the point
of view of representations of motivic Galois groups.

Proof. We write Pairseﬁ(k) for the diagram of effective pairs over k and analo-
gously for the other diagrams. Let (X,Y,7) € Pairs®® (k). Then (Xg, Yk, i) €
PairsCH(K). Note that X x; C = Xg x g C and hence

HY(X,Y;Z) = H(Xk,Yk; Z).

We obtain a representation of Pairs® (k) in MMy (K) compatible with
the representation in Z—Mod defined by singular cohomology by

(Xv KZ) — HliTori(XKv YK)

By the universal property of Nori motives, this induces the required exact
functor

MME (k) = MMSE (K.

It respects the subdiagrams of very good effective pairs and is compatible with
multiplicative structures. Hence it is also a tensor functor. It maps 1(—1) to
1(—1), hence the functor extends to the localised categories. O

Proposition 9.5.2. Let K/k be an algebraic field extension, K C k. Then
the base change functor induces an equivalence

M~Myori (K) & 2—colimy, /, MMnori (')

where the limit is over the system of intermediate fields K D k' D k with
k' /k finite.

Proof. From base change, we have a canonical functor

27C(?limMMNori(k/) — MMNori(K).
éfni/tk;
It is exact and faithful because all categories have forgetful functors to
Z—Mod. We construct a converse functor by representing PairseH(K ) in the
left hand side.

To do this, we let (X,Y,i) € Pairs®® (K). It is defined over some finite ex-
tension k'/k, i.e., there is (Xo, Yo, 1) € Pairs® () such that (X, Yo, i) x, K =
(X,Y,4). We assign to (X,Y,4) the image of HY,(Xo,Yp) in the category
2—colimy/ /, MMpnori(k"). Any two choices of models are isomorphic over a
field extension, hence the assignment is well-defined.
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In the same way, all edges of Pairs®(K) have models over some finite
subextension k’/k. From the universal property of the diagram category, we
obtain a functor

MMEE LK) — 2—colimy, j MMSE L (K).

They are obviously inverse to each other. Everything is compatible with ten-
sor products, hence the statement passes to the localisation. a

For finite extensions, there is also a functor in the converse direction.

Proposition 9.5.3. Let K/k be a finite field extension, K C C. Then the
restriction functor which views a K-variety as a k-variety induces an exact
functor

coresg /i, : MMnori(K) = MMnori(k).
The composition with base change
coresy /i, oresg/ : MMnori(k) = MMnyori(k)
is given by - ® HY ;(Spec(K)). The converse composition
resg /i, 0 cores g/ + MMnori(K) = MMnori(K)

s given by - ® HI%OH(Spec(K ® K). If K/k is Galois, then this functor is
equal to - @ 10K — [K:k

We call this the corestriction functor because this is what it seems to be
from the point of view of representations of the motivic Galois group. Note
the corestriction functor is not compatible with tensor product.

Proof. Let (X,Y,i) € Pairs"™(K). Via the structural map X — SpecK —
Speck we may also view it as a vertex of Pairs® (k). We have

X x; C =X X (Spec(K) xj Spec(K)) x i C)
and hence
HY (X x, C,Y x4, C;Z) = H(X x C,Yxg;Z) ® H*(SpecK xj, C;7Z).

This defines a representation of Pairs®® in MMST (k) compatible with the
representation H* ® Z? with d = [K : k]. By the universal property, we get
a functor

C(Pairs®(K), H* ® Z9) - MMSE (k).

By Morita equivalence, the category on the left is equivalent to MMNOM( )
In more detail: for every finite subdiagram F' C Pairs®®, we have

End(H* ® Z%|r) = Mg(End(H*|r),
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the matrix algebra over the endomorphism ring. By Example [7.3:23] this
algebra has the same category of modules as End(H*|r). Passing to the
limit, this gives the claim on motives. The functor coresg ) is not a tensor
functor, but nevertheless commutes with - ® 1(—1). Hence it passes to the
localisation.

We now consider coresg /i, oresg ;. On vertices of Pairs®™ (k) it is induced
by

(X,Y,1) = (X xxSpec(K), Y xSpec(K), i) = Hyor (X, V)@ Hyopi (Spec(K)).

This implies the computation on the full diagram category.
Finally consider resg/j o coresg . Let X " be a K-variety. Then

X' x Spec(K) = X' xx (Spec(K) xj Spec(K)).

We abbreviate S = Spec(K) x Spec(K). It is a K-variety of dimension 0 and
equal to K? if K/k is galois of degree d. Hence the composition is induced
on Pairs®T(K) by

(X/3Y17i/) = (X/ XK S7 Y’ XK Sa Zl) = Hli;ori(leyl) ® HI(\)Tori(S)'
Again this implies the computation on the full diagram category. O

Corollary 9.5.4. Let K/k be an algebraic field extension, K C k. Then
every object of MMunori(K) is a subquotient of an object in the image of
base change from MMpyoyi(k).

Proof. By Proposition it suffices to consider the case K/k finite. Let
M € MMnori(K). By Proposition [9.5.3] we have

resg p coresg/y M = M @ HR,.i(Spec(K) xj Spec(K)).

The zero dimensional variety Spec(K') X Spec(K) has at least one connected
component isomorphic to Spec(K). This allows us to represent M as a sub-
object of an object in the image of the restriction functor. ad

Corollary 9.5.5. Let K/k be an algebraic extension. Let M € MMunori(k)
such that resg, M is in the full abelian subcategory generated by 1. Then M
is in the full abelian subcategory of MMunori(k) generated by HY, i(Spec(k’))
for K D k' Dk finite over k.

Proof. By Proposition m it suffices to consider the case K/k finite.
Let M € MMnai(k) such that resg,, M € (1). Note that coresg ;1 =
HY.,;(Spec(K)). Hence

ori

coresy /i resg M € (HYori (Spec(K))).
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On the other hand, it is equal to M ® HY_;(Spec(K)). This implies the claim
because HY;(Spec(K)) is self-dual. 0

Remark 9.5.6. Even though our notation suggests that the two functors
resg/, and coresy /;, are adjoint (and we expect this to be true) we have not
established this property.

We now translate our results to the Tannakian duals. We work with mo-
tives with rational coefficients from now on.

Proof of Theorem[9.-1.16,. Let k be field with algebraic closure k. Fix an
embedding k¥ — k. We want to establish a natural exact sequence

1 = Gumot(k)g = Gmot(k)g — Gal(k/k) — 1.

The morphism G ot (E)Q — Gmot(k)g is Tannaka dual to the base change
from motives over k to motives over k. In order to check that it is a closed
immersion, we have to check that every motive over k is a subquotient of
the base change of a motive over k, see [DM82] Proposition 2.21]. This was
established in Corollary

Recall from Section that the Tannaka dual of the category of Artin
motives is Gal(k/k). The morphism Gyt (k)g — Gal(k/k) is Tannaka dual
to the inclusion of the category of Artin motives into the category of all Nori
motives. In order to check that the morphism is surjective, we have to check
that the functor is fully faithful with image closed under subquotients, see
[DMS82l Proposition 2.21]. The first condition holds by definition, the second
because the category of Artin motives with rational coefficients is semi-simple.

It remains to check exactness in the middle. This is equivalent to the
claim that any Nori motive over k which is trival after base change to k is an
Artin motive. This was established in Corollary [0.5.5] Note that with rational
coefficients, the category (1) is equivalent to the semi-simple category of Q-
vector spaces. O

Remark 9.5.7. It is an open question whether Gt (k)g is connected. This
would be a consequence of the period conjecture, see Corollary






Chapter 10
Weights and pure Nori motives

In this chapter, we explain how Nori motives relate to other categories of
motives. By work of Harrer, the realisation functor from geometric motives
to absolute Hodge motives factors via Nori motives. We then use this in order
to establish the existence of a weight filtration on Nori motives with rational
coefficients. The category of pure Nori motives turns out to be equivalent to
André’s category of motives via motivated cycles.

10.1 Comparison functors

We now have three candidates for categories of mixed motives: the trian-

gulated categories of geometric motives (see Section [6.2), and the abelian
categories of absolute Hodge motives (see Definition [6.3.11)) and of Nori mo-

tives (see Chapter [9).
Theorem 10.1.1. Let k be a subfield of C. The functor Rypr of Theo-
rem [6.3.9 factors via a chain of functors
C*(Z[Sm]) — DMy — D*(MMyori) — DY (MMan) C Dyr.
The proof will be given at the end of the section. The argument is a bit
involved.
Proposition 10.1.2. Let k C C.

1. There is a faithful tensor functor
f : MMNori — MMAH

such that the functor Ryg : C*(Z[Sm]) = Dymr of Theoremfac—
tors via DY (MMuyori) — DP(MMan).

2. Every object in MMag is a subquotient of an object in the image of
MMNori~

229
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Proof. We want to use the universal property of Nori motives. Let ¢ : k C C
be the fixed embedding. The assignment A — A, (see Definition is a
fibre functor on the neutral Tannakian category MM apn. We denote it Hg,,
because it agrees with singular cohomology of X ®; C on A = H},» (X).
We need to verify that the diagram Pairs®® of effective pairs from Chap-
ter El can be represented in MMy in a manner compatible with singular
cohomology. More explicitly, let X be a variety and ¥ C X a subvariety.
Then [Y — X] is an object of DMjy,. Hence, by Theorem for every

1 > 0 there is an object
Hiyr(X,Y) = HRur(X,Y) € MR.
By construction, we have
SngHur (X,Y) = Hi,o (X(C), Y (C)).

. . off . . .
The edges in Pairs®" are also induced from morphisms in DMjy,. Moreover,

the representation is compatible with the multiplicative structure on Good*f.
By the universal property of Theorem this yields a functor

f : MMNori — MR

It is faithful, exact and a tensor functor. We claim that it factors via MM aq.
As MMy is closed under subquotients in MR, it is enough to check this
on generators. By Corollary the category MMf\fgri is generated by
objects of the form HY,;(X,Y) for X = W \ W, with X smooth and Y a
divisor with normal crossings. Let Y, be the Cech nerve of the cover of Y by
its normalisation. This is the simplicial scheme described in detail in Section
B34 Let
Ce = Cone(Y, — X)[—1] € C~(Q[Smy)).

Then H'»(X,Y) = H'Rpr(Ce) is an absolute Hodge motive.

Consider X, € C®(Z[Sm]). We apply Proposition to A = MMunori
and A = MM g. Hence, there is Ryoi(X.) € DY (MMuyori) such that the
underlying vector space of H'Ryori(X,) is singular cohomology. We claim
that there is a natural morphism

f(RNori(X*)) — RMR(X*)

It will automatically be a quasi-isomorphism because both compute singular
cohomology of X,.

We continue as in the proof of Proposition We choose a rigidified
affine cover UX* of X, and a very good filtration on the cover. This induces
a very good filtration on TotC, (Ux._ ). This induces a double complex of very
good pairs. Each very good pair may in turn be seen as a complex with
two entries. We apply Rz to this triple complex and take the associated
simple complex. On the one hand, the result is quasi-isomorphic to Ry (Xx)
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because this is true in singular cohomology. On the other hand, it agrees with
f(RNori(X+)), also by construction.

Finally, we claim that every M € MMag is a subquotient of the image
of a Nori motive. By definition of absolute Hodge motives, it suffices to con-
sider M of the form H'Ryr(X.) for X, € C*°(Q[Smy]). We have seen that
HiRpr(X.) = H f(RNori(X4)), hence M is in the image of f. O

Remark 10.1.3. It is very far from clear whether the functor is also full or
essentially surjective. The two properties are related because every object in
MMy is a subquotient of an object in the image of MMpygri.

Theorem 10.1.4 (Harrer [Har16] Theorem 7.4.17). There is an exact tensor
functor functor
C': DMy — D*(MMyori)

such composition with the forgetful functor
DMy — D (MMyeri) — D*(Z—Mod)

agrees with the singular realisation of geometric motives.

Remark 10.1.5. By construction, Harrer’s functor C' extends the functor
RNori : C*(Q[Smy]) — DY (MMpyori)

constructed in Proposition [0.2.17

His argument has two steps. In the affine case, he follows an idea of Nori.
If FoX is a good filtration on X, we denote Cr, (X) the complex of Nori
motives induced by the filtration. A finite correspondence I' : X X Y of
degree d is interpreted as a multivalued morphism X — S¢(Y'). By choosing
the good filtration on Y carefully using an equivariant version of the Basic
Lemma, there is an isomorphism Cp, (Y %)% = CF, (S4(Y)) where Sy denotes
the symmetric group, see [Harl6, Theorem 4.4.5]. By functoriality we get

Cr, (Y% = Cp, (54(Y)) = Cp, (X).

The summation map Y. p! : Cr,(Y) — Cr,(Y?) factors via Sg-invariants.
Hence we can compose with

Cr,(Y) = Cr, (Y).

In the second step, this is extended to general smooth varieties via the Cech
complex. The difficulty is in making this functorial for correspondences. This
is surprisingly subtle.

Proof of Theorem[10.1.1]. We put together Theorem and Theorem |[10.1.2
O

As a consequence, we get an alternative proof for rigidity of MMuyoui-
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Corollary 10.1.6 (Harrer [Harl6, Theorem 7.6.7]). The category MMuyori
is rigid in the sense of Definition [8.5.]]

Proof. We sketch the argument and refer [Harl6] for complete details. Let
(X,Y,n) be a good pair. By Proposition m it suffices to show that
HL .(X,Y) has a strong dual. Let M = [Y — X][-n] be the com-
plex in DM, concentrated in degrees n — 1 and m. Then the complex
C(M) € DP(MMpyeri) is concentrated in degree 0 because this is true for
singular cohomology of the good pair (X,Y,n). Hence

C(M) = HlGori(X’ Y)

By [VSEQQ, Chapter V, Theorem 4.3.7], the category DM,y is rigid. Hence,
M has a strong dual MV. Its image under C is a strong dual of C'(M) in
DY (MMyori). Its image under the singular realisation is dual to the singular
realisation of M, which is concentrated in degree 0 and a free Z-module.
Hence C'(MV) is also concentrated in degree 0. This is the strong dual of

Hﬁori(X’ Y) in MMuori- O

Corollary 10.1.7. View the category DMgy as a diagram and singular co-
homology Hging as a representation to Z—Mod. Then there is a natural equiv-
alence of abelian categories

MMNori = C(DMgmv Hsoing)'

Proof. By Theorem [10.1.4] the representation H2

sing factors via MMyori,
hence there is an exact faithful functor

C(DMgm7 Hging) - MMNori-

On the other hand, every good pair (X, Y, n) gives rise to a complex [V — X]
in DMy, and hence to an object of C(D Mgy, HY,,). This defines a repre-
sentation of the diagram Good compatible with singular cohomology. By the
universal property, this give a functor

MMNori — C(DMgn'n Hsomg)

The two are obviously inverse to each other. a

The original definition of the category MMnoi via one of the diagrams
pairs(k), Good or VGood looks somewhat arbitrary, the characterisation via
DMy, is completely canonical.
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10.2 Weights and Nori motives

Let k C C be a subfield. We are now going to explore the connection between
Grothendieck motives, André’s pure motives and pure Nori motives. We work
with rational coeflicients throughout.

10.2.1 André’s motives

Recall the categories of Grothendieck motives over k (see Definition [6.1.1)
and André’s category of motives using motivated cycles (see Definition[6.1.5)).
We view singular cohomology with rational coefficients

H* : GRM — Q—Mod

as a representation of the diagram defined by the category GRM. By Defini-
tion [7.1.10} there is a corresponding diagram category C(GRM, H*). It has a
universal property by Theorem [7.1.13

Proposition 10.2.1. 1. The natural functor
C(GRM, H*) - AM

s an equivalence of categories.
2. If the Hodge conjecture holds, then both are equivalent to the category of
pure Grothendieck motives GRM and a full subcategory of MMagy.

In the light of this identification, André’s results in [And96] can be read
as an explicit description of the diagram category attached to Grothendieck
motives.

Proof. 1. Every algebraic cycle is motivated, hence there is natural functor
GRM — AM. It is compatible with singular cohomology. By the universal
property of the diagram category of Theorem this induces a faith-
ful exact functor C(GRM, H*) — AM. It remains to show that it is full.
Motivated cycles are generated by algebraic cycles and the inverse of the Lef-
schetz isomorphism. Both are morphisms in C(GRM, H*), the latter because
the Lefschetz isomorphism itself is algebraic.

2. We now assume the Hodge conjecture. By [Jan90, Lemma 5.5], this im-
plies that absolute Hodge cycles agree with cycles up to homological equiv-
alence. Equivalently, the functor GRM — MR to mixed realisations is fully
faithful. As it factors via AM, the inclusion GRM — AM has to be full as well.
The endomorphisms of [Y] for Y smooth and projective can be computed in
MR or AM. The algebra is semi-simple because H},5 (Y') is polarisable, see
[Hub95, Proposition 21.1.2 and 21.2.3], or because AM is a semi-simple cat-
egory, see Corollary This implies that its subquotients are the same
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as its direct summands. Hence, the functor from GRM to AM is essentially
surjective. a

Remark 10.2.2. Note that we encounter the same problem with tensor
structures as for Grothendieck motives. The category of Grothendieck mo-
tives as well as André’s both have a rigid tensor structure, but the natural
functor is not a tensor functor because of the signs in the Kiinneth formula.
In the language of diagrams of Section 8.1} GRM is a multiplicative diagram,
but H* is not a multiplicative representation.

Corollary 10.2.3. The category C(GRM, H*) is a semi-simple abelian rigid
tensor category.

Proof. This is true for AM by [And96 Théoeme 0.4]. O

10.2.2 Weights

We need to introduce weights.
We work with Q-coeflicients throughout this section.

Definition 10.2.4. Let n € Ny. An object M € ./\/l./\/l‘f\}ctf)ri7@2 is called pure
of weight n if it is a subquotient of a motive of the form HY ;(Y) with YV
smooth and projective.

A motive is called pure if it is a direct sum of pure motives of some weights.

We denote MMRS o the full subcategory of pure Nori motives.
In particular, HY, ;(Y) is pure if Y is smooth and projective.

Theorem 10.2.5 (Arapura [Aral3| Theorems 6.3.5, 6.3.6]). Every Nori mo-
tive M € MMnori,@ carries a unique bounded increasing filtration (WM )pez
inducing the weight filtration in MR. Every morphism of Nori motives is
strictly compatible with the filtration.

Arapura gives a direct proof of this result. We present a different argument
based on Bondarko’s theory of weights and Harrer’s realisation functor.

Proof. As the functor MMuyori g = MR is faithful and exact, the filtration
on M € MMpyorig is indeed uniquely determined by its image in MR.
Strictness of morphisms, i.e., that the W,, are exact, follows from the same
property in MR, see Propositionm (Note that this is the point where we
are using Q-coefficients.)

We turn to existence. We use Bondarko’s weight structure on DMy, see
Theorem By Proposition [6.2.13}, it induces a filtration on the values of
any cohomological functor. We apply this to the functor of Theorem [10.1.4]
from D Mgy to MMyori,g- The associated gradeds are pure as mixed realisa-
tions because they are are subobjects of HY,x (P[—i]) for a Chow motive P.
In particular, the weight filtration on H{_;(X,Y") is motivic for every vertex



10.2 Weights and Nori motives 235

of Pairs®®. The weight filtration on subquotients is the induced filtration,
hence also motivic. As any object in M/\/lf\}f(f)ri@ is a subquotient of some
HE, . (X,Y), this finishes the proof in the effective case. The non-effective
case follows immediately by localisation. a

Actually, the proof gives a little more:

Corollary 10.2.6. Let M € MMnyqr be of the shape HY
metric motives M. Then W, M /W, _1M is of the form

(M) for a geo-

ori

Ker (Hll? (P) - Hﬁori(Pl))

ori
for a morphism of Grothendieck motives P' — P.

Proof. The explicit description of the weight filtration in Proposition [6.2.13
gives a morphism of Chow motives. Its image in MMy, only depends on
the Grothendieck motives. ad

Theorem 10.2.7 (Arapura [Aral3] Theorem 6.4.1]). 1. Singular cohomology
on GRM factors naturally via a (covariant) faithful functor

GRM — AM — MM
2. The second functor is an equivalence of semi-simple abelian categories.

Recall (see Proposition|10.2.1]) that the Hodge conjecture implies that the
first functor is also an equivalence.

Proof. 1. Recall (see Theorem [6.2.10) that the opposite category of CHM is
a full subcategory of the category of geometric motives DMgy,. Restricting
the contravariant functor

DMgm — Db(MMNori> % MMNorLQ

to the subcategory yields a covariant functor
CHM — MMNori,Q-

By definition, its image is contained in the category of pure Nori motives.
Also by definition, a morphism in CHM is zero in GRM if it is zero in singular
cohomology, and hence in MMri,q. Therefore, the functor automatically
factors via GRM. The induced functor then is faithful. It factors via AM by
Proposition [10.2.1]

2. We use a trick inspired by Arapura’s proof. Let A be the following
auxilliary abelian categoriy: its objects are triples (M, P, ¢) where M €
MMyori0, P € AM and ¢ is an isomorphism in MMGRZY o between gri M
and P. Morphisms are given by pairs (m, p) of morphisms in MMyori @ and
AM compatible with the comparison isomorphism in MMYZS . Note that
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the forgetful functor (M, P, ¢) — M is faithful: if the component m of a mor-
phism (m, p) vanishes, then so does the component p. It is also exact because
kernels and cokernels in .4 are computed componentwise. Let (X,Y,4) be
an effective good pair (see Definition . It has an attached Nori motive
Hi.,;(X,Y). By Theorem there is also an attached pure Nori motive
gtV Hi (X,Y). By Corollary it is even in C(GRM, H*), hence, by
Proposition [10.2.1] they are even Andre motives. The same argument also
works for edges of the diagram Pairs®®. Hence we have representation

T : Pairs®™ — A

compatible with the singular realisation. By the universal property of the
diagram category, the representation 7' extends to a functor

MMSE . o = C(Pairs™ H*) — A.

It is a section of the natural functor A — MMeri,@ Which projects an object
(M, P, ¢) to M.

Let M be a pure Nori motive. It has an image in A, i.e,, there is an
André motive P isomorphic to it. More importantly, every morphism of pure
Nori motives can be viewed as a morphism of André motives. Hence the
embedding AM — MMRS o is an equivalence of categories. The category
is semi-simple because this is true for André motives. a

The relations on the level of categories can be reformulated in terms of their
Tannaka duals. Recall that Gu,t(k) is the group scheme over Z associated to
the abelian tensor category of Nori motives with integral coefficients. Hence,
Gmot(k)q is the Tannaka dual of the category of Nori motives with rational
coefficients. We denote by Gh.o¢(k)g the Tannaka dual of the category of
pure Nori motives with rational coefficients, or, equivalently, of AM.

Theorem 10.2.8. Let k be a field, k its algebraic closure and k C C an
embedding.

1. There is a natural exact sequence of pro-algebraic groups over Q

1 = Umot (k) = Gmot(k)g — Ghat (k) — 1

mot

pure
mot

with Unot (k) pro-unipotent and G
Umot (k).
2. There is a morphism of natural exact sequences

(k) pro-reductive. Moreover, Unot (k) =

1 —— GP(k)g —= GP(k)g — Gal(k/k) —> 1

mot mot

| |

1 —— Groi(k)g — Gumoi(k)g — Gal(k/k) —1



10.3 Tate motives 237

Proof. The inclusion MM%‘:EQ — MMy is fully faithful and closed un-
der subquotients. By [DMS82], Proposition 2.21], this implies that Gt (k)g —
Ghot (k) is surjective. We define Up,ot (k) as the kernel. By [DM82, Propo-
sition 2.23], the Tannaka dual is pro-reductive if and only if the category is
semi-simple. This is the case for AM. Indeed, it is the maximal semi-simple
subcategory of MMuqri,@ because every object admits a weight filtration.
The second exact sequence was established in Theorem [9.1.16] The exact
sequence for pure motives is due to André, see [And96l, Section 4.6]. In both
cases the inclusion is induced by the base change from k to k and the projec-
tion to the Galois group by the inclusion of Artin motives into all motives.
Hence the diagram commutes. Actually, the exactness of the sequence for
pure motives can also be deduced from the second sequence because the base
change of pure motive is pure and Artin motives are pure of weight zero.
Finally, we compare Up,ot (k) and Upet (k) via the commutative diagram

Umot (E) - mot(k)

| |

1—— Gmot(k)Q — Gmot(k) — Gal(]%/k) —1

| L

1 —— GPe(k)g — GPue (k) — Gal(k/k) —1

mot mot

Hence the unipotent parts over k and k agree. a

Remark 10.2.9. We will show in Corollary that under assumption
of the period conjecture, the group Gmot (k) is connected. On the other hand
Gal(k/k) is totally disconnected. Hence, at least conjecturally, Gmot (k) is the

connected component of the unit in Gt (k).

10.3 Tate motives

We discuss the subcategory of mixed Tate motives for completeness, even
though we have very little to say. We work with rational coefficients through-
out

Definition 10.3.1. Let k& be a subfield of C. The category of mized Tate Nori
motives MT Muori g is defined as the full abelican subcategory of MMori g
closed under extensions which contain all Tate objects 1(n) for n € Z. The
category of pure Tate Nori motives T Myori,g is defined as the full abelian
subcategory of MT Mnori,@ containing only pure motives.

The category of pure Tate motives is the expected one and the same as in
any other setting of motives.
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Lemma 10.3.2. A Nori motive M € MM s a mized Tate motive
if and only if the weight graded pieces gr¥¥ M are of the form 1(n/2)N» for
some N,,.

The category T Mnori,g 1S equivalent to the category of graded Q-vector
spaces.

Proof. Consider the full subcategory of MM, of objects with weight
gradeds which have the shape of the lemma. Such objects are iterated ex-
tension of objects of the form Q(i), i.e., mixed Tate. The category is abelian
because the functors gr!’ are exact and the category of pure motives is semi-
simple. Moreover, the category is closed under extensions. Hence it agrees
with MTMNori,Q.

A motive M is pure if agrees with B, ., gr’¥ M. Hence a pure Tate motive
is direct sum of objects of 1(¢). Morphisms respect the grading because this
is true in the Hodge realisation. a

Recall, on the other hand, the ”true” category of mixed Tate motives, see
Definition [6.4.2]

Proposition 10.3.3. The mized realisation functor H?Vm t MT Mg, —
MMau factors via MT Muyorig- It is is fully faithful with image closed
under subquotients.

Proof. In order to show the factorisation, it suffices to consider pure Tate
motive. The realisation functor maps Q(i) to 1(—:), hence it factors via
1(—i) S MTMNori,Q.

Fully faithfulness was shown for H},4 in Proposition As the functor
MT Muyori,o = MR is faithful, it also follows for the functor MT Mgy —
MT Mnori,g is full. The statement on subquotients follows as in loc. cit. O

Remark 10.3.4. In particular, EX‘L}MTMNO“_Q (M,N) C EXt}v(MAH (Mmr, Nan).
However, we neither know whether the inclusion is full nor whether there are
higher Ext-groups.

As mentioned in Section a variant of the category is needed in the
context of conjectures on special values of L-functions (see Section , or
multiple zeta values (see Chapter . We actually need a smaller category.
In the following, we restrict to the essential case k = Q.

Definition 10.3.5. Let £ = Q. A mixed Tate motive M is called unramified
if for primes p, the Galois realisation M,, is completely unramified, i.e., for
all primes [ # p, the inertia group I; C Gal(Q/Q) acts trivially and M,, is
crystalline as representation of Gal(Q,/Q,). Let MTM{:IML@ be the category
of unramified mized Tate motives.

Remark 10.3.6. In the literature, analoguous categories also go by the
name of motives over Z. Heuristically, we want motives over Q which have
a preimage in the category of motives over Z. The above definition is an
unconditional replacement.
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Lemma 10.3.7. 1. Pure Tate motives are unramified.
2. The category of unramified mized Tate motives is closed under subquotients
in MT Mnori,g, tn particular it is abelian.

Proof. This is a statement about the representation of Gal(Q/Q) on Q, via
the cyclotomic character. It is well-known. Let M be an unramified mixed
Tate motive and N C M a submotive. Then N, C M,. By assumption, the
inertia group acts trivally on M, hence it also acts trivially on V,. The
same argument also works for quotients. Moreover, it is known that being
crystalline is stable under subquotients. a

The whole point of the definition is to cut down the number of extensions
between pure Tate motives.

We now turn to the comparison with geometric motives. Let MT M/ be
the subcategory of Tate motives unramified over Z defined by Deligne and
Goncharov, see Definition [6.4.6]

Proposition 10.3.8. The realisation functor MT Mgn — MT Myori g
maps the subcategory MT M’ to MTM{:IOﬁ Q-

Proof. The realisation functor maps Q(%) to 1(—¢). Hence mixed Tate motives
are mapped to mixed Tate motives. The ramification condition of Deligne-
Goncharov implies ours by Proposition [6.4.7] a
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Chapter 11
Periods of varieties

A period, or more precisely, a period number may be thought of as the value
of an integral that occurs in a geometric context. In their papers [Kon99] and
IKZ01], Kontsevich and Zagier list various ways of how to define a period.
It is stated in their papers without reference that all these variants give
the same definition. We give a proof of this statement in the Period Theo-

rem [[2.2.71

11.1 First definition

We start with the simplest definition. In this section, let k¥ C C be a subfield.
For this definition, the following data is needed:

X a smooth algebraic variety of dimension d, defined over k,
D a divisor on X with normal crossings, also defined over k,
we X, 024 /k) an algebraic differential form of top degree,
I' a relative differentiable singular d-chain on X" with 0I" on D?", i.e.,

F = i Oéi’)/i
i=1

with a; € Q, v; : Ag — X?" a map which can be extended to a C**°-map
of a neighbourhood of Ay C R4t! for all ¢ and JI" a chain on D" as in
Definition [2.2.2)

As before, we denote by X" the analytic space attached to X (C).
Definition 11.1.1 (NC-periods). Let & C C be a subfield.
1. Let (X, D,w, I') as above. We will call the complex number

243
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n
/WZZ%‘/ ¥iw.
I i=1 Ad

the period of the quadruple (X, D,w,I").

2. The algebra of effective periods PST = P (k) over k is the set of all period
numbers for all (X, D,w, ") defined over k.

3. The period algebra P, = Py.(k) over k is the set of numbers of the form
(2mi)" with n € Z and « € P&

Remark 11.1.2. 1. The subscript nc refers to the normal crossing divisor
D in the above definition.

2. We will show a bit later (see Proposition that P (k) is indeed an
algebra.

3. Moreover, we will see in the next example that 27i € P¢T. This means
that Py is nothing but the localisation

1
P =P | — 1.
¢ e {m}

4. This definition was motivated by Kontsevich’s discussion of formal effective
periods [Kon99, Definition 20, p. 62]. For an extensive discussion of formal
periods and their precise relation to periods, see Chapter

Example 11.1.3. Let X = Aj be the affine line, w = dt € 2'. Let D =
V(t? — 2t). Let v : [0,1] = A{(C) = C be the line from 0 to v/2. This is a
singular chain with boundary in D(C) = {0, £+/2}. Hence it defines a class
in HY"&(ALan Dan; Q). We obtain the period

Aw:ﬁﬁﬁ:¢z

The same method works for all algebraic numbers.

Example 11.1.4. Let X =G, = A' \ {0}, D = ) and w = 1dt. We choose
v : 81 = G,,(C) = C* the unit circle. It defines a class in H;'""®(C*,Q). We

obtain the period
/ t~1dt = 2mi.
Sl

In particular, 7 € P (k) for all k.

nc

Example 11.1.5. Let X = G,,, D = V((t —2)(t — 1)), w = t~1dt, and v
the line from 1 to 2. We obtain the period

2
/ t~tdt = log(2).

1

For more advanced examples, see Part IV.
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Lemma 11.1.6. Let (X, D,w, ") be as before. The period number frw de-
pends only on the cohomology class of w in relative de Rham cohomology and
on the cohomology class of I' in relative singular homology.

Proof. The restriction of w to the analytification D" of some irreducible
component D; of D is a holomorphic d-form on a complex manifold of di-
mension d — 1, hence zero. Therefore the integral [ A w evaluates to zero for
smooth singular simplices A that are supported on D.

If I'', I are two representatives of the same relative singular homology
class, we have

I =T ~ 0(Tg41)

modulo simplices living on some D?" for a smooth singular chain Ig4q of
dimension d + 1
L1 € G (X, D™ Q).

Using Stokes’ theorem, we get

/wf/ w:/ w:/ dw =0,
4 " O(Lq+1) Tg41

since w is closed. By a similar argument, the integral does not depend on the
class of w. ad

In the course of the chapter, we are also going to show the converse: every
pair of relative cohomology classes gives rise to a period number.

Proposition 11.1.7. The sets P (k) and P,.(k) are k-algebras. Moreover,
Pt (K) = Pt (k) if K/k is algebraic.

Proof. Let (X,D,w,I') and (X', D', w’, I'") be two quadruples as in the def-
inition of normal crossing periods.

By multiplying w by an element of k, we obtain k-multiples of periods.

The product of the two periods is realised by the quadruple (X x X', D x
X' UX xD,wAw,T'xI").

Note that the quadruple (A, {0, 1}, dt, [0, 1]) has period 1. By multiplying
with this factor, we do not change the period number of a quadruple, but we
change its dimension. Hence we can assume that X and X’ have the same
dimension. The sum of their periods is then realised on the disjoint union
(XUX' DUD w+uw', I +1I).

If K/k is a finite algebraic extension, then we obviously have P (k) c
P (K). For the converse, consider a quadruple (X, D,w, I") over K. We may
also view X as k-variety and write X}, for distinction. By Lemma or
more precisely its proof, w can also be viewed as a differential form on Xy /k.
The complex points X (C) consist of [K : k| copies of the complex points
X(C). Let Iy, be the cycle I' on one of them. Then the period of (X, D,w,I")
is the same as the period of (X}, Dy, w, I'y). This gives the converse inclusion.
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If K/k is infinite, but algebraic, we obviously have P (K) = |, P (L)
with L running through all fields K D L D k finite over k. Hence, equality
also holds in the general case. a

11.2 Periods for the category (k,Q)—Vect

For a clean development of the theory of period numbers, it is of advantage
to formalise the data. Recall from Section the category (k,Q)—Vect. Its
objects consist of a k-vector space Vj, and a Q-vector space Vg linked by an
isomorphism ¢¢ : Vi ®, C — Vg ®g C. This is precisely what we need in
order to define periods abstractly.

Definition 11.2.1. 1. Let V = (V4, Vi, ¢c) be an object of (k, Q)—Vect. A
period matriz of V' is the matrix of ¢¢ with respect to a choice of bases
V1,...,Uy of Vi and wy, ..., w, of Vg, respectively. A complex number is
a period of V if it is an entry of a period matrix of V' for some choice of
bases. The set of periods of V' together with the number 0 is denoted P(V).
We denote by P(V') the k-subvector space of C generated by the entries of
the period matrix.

2. Let C C (k,Q)—Vect be a subcategory. We denote by P(C) the set of
periods for all objects in C.

Remark 11.2.2. 1. Any object V = (Vi, Vi, ¢¢) gives rise to a bilinear map
Vex Vg = C : (v,A) = Aoz (v @ 1)),

where we have extended A : Vg — Q C-linearly to Vg ®p C — C. The
periods of V' are the numbers in its image. Note that this image is a set,
not a vector space in general. The period matrix depends on the choice of
bases, but the vector space P(V) does not.

2. The definition of P(C) does not depend on the morphisms. If the category
has only one object, the second definition specialises to the first.

Lemma 11.2.3. Let C C (k,Q)—Vect be a subcategory.

1. P(C) is closed under multiplication by k.
2. If C is additive, then P(C) is a k-vector space.
3. If C is a tensor subcategory, then P(C) is a k-algebra.

Proof. Multiplying a basis element w; by an element « in k& multiplies the
periods by «. Hence the set is closed under multiplication by elements of k*.

Let p be a period of V and p’ a period of V’. Then p + p’ is a period of
V @ V'. If C is additive, then V,V’ € C implies V @& V' € C. Moreover, pp’ is
a period of V@ V'. If C is a tensor subcategory of (k,Q)—Vect, then V @ V'
is also in C. ad
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Proposition 11.2.4. Let C C (k,Q)—Vect be a subcategory.

1. Let (C) be the smallest full abelian subcategory of (k,Q)—Vect closed under
subquotients and containing C. Then P((C)) is the abelian subgroup of C
generated by P(C).

2. Let (C)® be the smallest full abelian subcategory of (k,Q)—Vect closed
under subquotients and tensor products and containing C. Then P({C)®)
is the (possibly non-unital) subring of C generated by P(C).

Proof. The period algebra P(C) only depends on objects. Hence we can re-
place C by the full subcategory with the same objects without changing the
period algebra.

Moreover, if V € C and V' C V in (k, Q)—Vect, then we can extend any
basis for V’ to a basis to V. In this form, the period matrix for V is block
triangular with one of the blocks the period matrix of V’. This implies

P(V') Cc P(V).

Hence, P(C) does not change, if we add all subobjects (in (k,Q)—Vect) of
objects of C to C. The same argument also implies that P(C) does not change
if we add quotients in (k, Q)—Vect.

After these reductions, the only thing missing to make C additive is exis-
tence of direct sums. If V and V' are objects of C, then the periods of V @ V'
are sums of periods of V' and periods of V’. Hence adding direct sums to
C amounts to passing from P(C) to the abelian group generated by it. It is
automatically a k-vector space.

If V and V' are objects of C, then the periods of V ® V' are sums of
products of periods of V' and periods of V’. Hence closing C up under tensor
products (and their subquotients) amounts to passing to the ring generated
by P(C). O

So far, we fixed the ground field k. We now want to study the behaviour
under change of fields.

Definition 11.2.5. Let K/k be a finite extension of subfields of C. Let
_® K : (k,Q)—Vect = (K,Q)—Vect, (V, Vo, oc) — (Vi @ K, Vo, oc)

be the extension of scalars.

Lemma 11.2.6. Let K/k be a finite extension of subfields of C. Let V €
(k,Q)—Vect. Then
PV @, K) =P(V) @ K.

Proof. The period matrix for V agrees with the period matrix for V ®; K.
On the left hand side, we pass to the K-vector space generated by its entries.
On the right hand side, we first pass to the k-vector space generated by its
entries, and then extend scalars. a
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Conversely, there is a restriction of scalars where we view a K-vector space
Vi as a k-vector space.
Lemma 11.2.7. Let K/k be a finite extension of subfields of C. Then the
functor _®y K has a right adjoint

R+ (K, Q)—Vect — (k, Q)—Vect
For W € (K,Q)—Vect we have
P(W) = P(Ry/xW).
Proof. Choose a k-basis eq,...,e, of K. We put
Ry, ¢ (K, Q)—Vect — (k,Q)—Vect : (Wi, Wa, ¢c) — (Wi, W™, 4c)

where

Yo Wi ®, C = Wik @ K @k C = (Wg @ C)FH — (Wg ®g C)KH

maps elements of the form w ® e; with w € Wg ®k C to ¢c(w) in the
i-component.

It is easy to check the universal property. We describe the unit and the
counit. The natural map

V — RK/k(V R K)

is given on the component Vi by the natural inclusion Vi, — Vi ®; K. In
order to describe it on the Q-component, decompose 1 = >""" | a;e; in K and
put

Vo= Vg v (av)isg.

The natural map
(RK/;CW) Qr K - W

is given on the K-component as the multiplication map

and on the Q-component
W(S — WQ

by summation.

This shows existence of the right adjoint. In particular, R /W is functo-
rial and independent of the choice of basis.

In order to compute periods, we have to choose bases. Fix a Q-basis
T1,...,2, of Wg. This also defines a Q-basis for W in the obvious way.
Fix a K-basis y1,...,y, of Wg. Multiplying by e1,...,e,, we obtain a k-
basis of Wi . The entries of the period matrix of W are the coefficients of
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¢c(y;) in the basis x;. The entries of the period matrix of R/, W are the
coefficients of ¢c(e;y;) in the basis x;. Hence, the K-linear span of the former
agrees with the k-linear span of the latter. a

Recall from Example the object L(a) € (k,Q)—Vect for a complex
number « € C*. Tt is given by the data (k, Q, «). It is invertible for the tensor
structure.

Definition 11.2.8. Let L(«a) € (k,Q)—Vect be invertible. We call a bilinear
pairing in (k, Q)—Vect
V xW — L(a)

perfect, if it is non-degenerate in the k- and Q-components. Equivalently, the
pairing induces an isomorphism

V2WYe La)

where (-)V denotes the dual in (k, Q)—Vect.
Lemma 11.2.9. Assume that

VXW = L(a)
s a perfect pairing. Then
PV, W, VY, WY)&E c P(V,W)®®[a1].

Proof. By Proposition[11.2.4] the left hand side is the ring generated by P(V),
P(W), P(VY) and P(W"). Hence we need to show that P(VY) and P(W")
are contained in the right hand side. This is true because WY =V @ L(a™1)
and P(V ® L(a™1Y)) = a 'P(V). O

11.3 Periods of algebraic varieties

11.3.1 Definition

Recall from Definition the directed graph of effective pairs Pairs®. Its
vertices are triples (X, D, j) with X a variety, D a closed subvariety and j
an integer. The edges are not of importance for the consideration of periods.
Now we define cohomological periods. For simplicity, we will call them simply
periods in the sequel.

Definition 11.3.1 (Cohomological Periods). Let (X, D, j) be a vertex of the
diagram Pairs®.

1. The set of periods P(X, D, j) is the image of the period pairing of Defini-
tions £.3.1] and F.5.4]
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per : Hip (X, D) x H;"(X™ D*;Q) — C.

2. In the same situation, the space of periods P(X, D, j) is the Q-vector space
generated by P(X, D, j).

3. Let S be a set of vertices in Pairs®® (k). We define the set of periods P(S)
as the union of the P(X, D, j) for (X, D, j) in S and the k-space of periods
P(S) as the sum of the P(X, D) for (X, D, j) € S.

4. The effective period algebra P% (k) of k is defined as P(S) for S the set of
(isomorphism classes of) all vertices (X, D, j).

5. The period algebra P(k) of k is defined as the set of complex numbers of
the form (27i)"a with n € Z and o € P (k).

Remark 11.3.2. Note that P(X, D, j) is closed under multiplication by ele-
ments in k& but not under addition. However, P (k) is indeed an algebra by
Corollary [11.3.5 below. This means that P(k) is nothing but the localisation

1
P(k) =P (k) | —] .
)= (1) | 5]
Passing to this localisation is very natural from the point of view of motives:
it corresponds to passing from periods of effective motives to periods of all
mixed motives. For more details, see Chapter [6]

Example 11.3.3. Let X = P?. Then (P}, 0,25) has period set (277)7k*. The
easiest way to see this is by computing the motive of P}, e.g., in Lemma

The motive of (P}, 0,25) is given by 1(—j). By compatibility with tensor
product, it suffices to consider the case j = 1 where the same motive can be
defined from the pair (G,,,®,1). It has the period 27 by Example
The factor k* appears because we may multiply the basis vector in de Rham
cohomology by a factor in k*.

Recall from Theorem and Theorem that we have an explicit
description of the period isomorphism by integration.

Lemma 11.3.4. There are natural inclusions P (k) € P (k) and P,.(k) C
P(k).

Proof. By definition, it suffices to consider the effective case. By Lemma/|l1.1.6
the period in Pef(k) only depends on the cohomology class. By Theo-
rem the period in P*f (k) is defined by integration, i.e., by the formula
in the definition of P (k). O

The converse inclusion is deeper, see Theorem [11.4.2

11.3.2 First properties

Recall from Definition that there is a representation
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H : Pairs®® — (k, Q)—Vect

where the category (k,Q)—Vect was introduced in Section The com-
ponent corresponding to k is given by algebraic de Rham cohomology. The
Q-component is given by singular cohomology with rational coefficients. They
are related by the period isomorphism. By construction, we have

P(Xvaj) = P(H(XaDaj))a
P(X, D, j) =PH(X, D, j)),
P (k) = P(H(Pairs®™)).

This means that we can apply the abstract considerations of Section to
our period algebras.

Corollary 11.3.5. 1. P (k) and P(k) are k-subalgebras of C.

2. If K/k is an algebraic extension of subfields of K, then P°ff(K) = P (k)
and P(K) = P(k).

3. If k is countable, then so is P(k).

Proof. 1. It suffices to consider the effective case. The image of H is closed
under direct sums because direct sums are realised by disjoint unions of ef-
fective pairs. As in the proof of Proposition we can use (A!,{0,1},1)
in order to shift the cohomological degree without changing the periods.

The image of H is also closed under tensor product. Hence its period set
is a k-algebra by Lemma [11.2.3]

2. Let K/k be finite. For (X, D,i) over k, we have the base change
(XK, Dg,i) over K. By compatibility of the de Rham realisation with base

change (see Lemma [3.2.14]), we have
H(X,D,i)® K = H(Xg, Dk, ©).

By Lemma this implies that the periods of (X, D, j) are contained in
the periods of the base change. Hence P (k) c P*ff(K).

Conversely, if (Y, E,m) is defined over K, we may view it as defined over
k via the map SpecK — Speck. We write (Y, Ex, m) in order to avoid con-
fusion. Note that Y;(C) consists of [K : k] many copies of Y (C). Moreover,
by Lemma de Rham cohomology of Y/K agrees with de Rham coho-
mology of Y} /k. Hence

H(Yka Ek7m) = RK/]{:H(K Ea m)

and their period sets agree by Lemma Hence, we also have P*f(K) C
Peft (k).

3. Let k be countable. For each triple (X, D, j), the cohomologies H (X)
and H3™®(X, D;Q) are countable. Hence, the image of the period pairing is
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also countable. There are only countably many isomorphism classes of pairs
(X, D, ), hence the set P°f (k) is countable. O

11.4 The comparison theorem

We introduce two more variants of period algebras. They are attached to
subcategories of (k, Q)—Vect by the method of Definition [11.2.1} Recall from
Corollary the functor

RI': K~(Z[Sm]) = Df o

and
H': K~ (Z[Sm]) — (k,Q)—Vect.

Definition 11.4.1.

e Let C(Sm) be the full abelian subcategory of (k,Q)—Vect closed under
subquotients generated by H*(X,) for X, € K~ (Z[Sm]). Let Pgy(k) =
P(C(Sm)) be the algebra of periods of complexes of smooth varieties.

e Let C(SmAff) be the full abelian subcategory of (k,Q)—Vect closed un-
der subquotients and generated by H'(X,) for X, € K~ (Z[SmAff]) with
SmAfl the category of smooth affine varieties over k. Let Psmag(k) =
P(C(SmAfl)) be the algebra of periods of complexes of smooth affine vari-
eties.

Theorem 11.4.2. Let k C C be a subfield. Then all definitions of period
algebras given so far agree:

B (k) = B (k) = P (K) = Poman (k)

and
Poc(k) = P(k).

Remark 11.4.3. This is a simple corollary of Theorem [9.2.21] and Corol-
lary [0:2:24) once we will have discussed the formal period algebra, see Corol-
lary [[3:1.10] However, the argument does not use the full force of Nori’s
machine, hence we give it directly. Note that the key input is the same as the
key input for Nori’s construction: the existence of good filtrations.

Proof. We are going to prove the identities on periods by showing that the
subcategories of (k, Q)—Vect appearing in their definitions are the same. More
precisely, we are going to establish a sequence of inclusions of categories (to
be defined below):

C(nc) C C(Pairs®®) ¢ C(Sm) C C(SmAfF) C C(Pairs°™).
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This already shows most equalities. Comparison with nc-periods will need an
extra argument.

Let C (Pairseﬁ) be the full abelian subcategory closed under subquotients
and generated by H(X, D, j) for (X, D) € Pairs®® | i.e., X a variety and D C
X a closed subvariety. Furthermore, let C(nc) be the full abelian subcategory
closed under subquotients and generated by HY(X, D) with X smooth, affine
of dimension d and D a divisor with normal crossings.

By definition

C(nc) C C(Pairs®™).

By the construction in Definition we may compute any H(X, D, j)
as H7(C,) with Cy in C~(Z[Sm]). Actually, in any degree cohomology only
depends on a bounded piece of C,. Hence

C(Pairs®™)  C(Sm).

We next show that
C(Sm) C C(SmAfF).

Let Xo € C(Z[Sm]). By Lemma there is a rigidified affine cover
Ux, of X,. Let Cy = Co(Ux,) be the total complex of the associated
complex of Chech complexes (see Definition . By construction, Cy €
C~(Z|SmAff]). By the Mayer-Vietoris property, we have

H(X,) = H(C,).

We claim that C(SmAff) C C(Pairs®®). It suffices to consider bounded
complexes because the cohomology of a bounded above complex of varieties
only depends on a bounded quotient. Let X be smooth affine. Recall (see
Proposition that a very good filtration on X is a sequence of subvari-
eties

hXchXcCc - --CF,X=X

such that F;X ~ F;_1X is smooth, with F;X of pure dimension j, or
F;X = F;_1X of dimension less than j and the cohomology of (F; X, F;_1X)
being concentrated in degree j. The boundary maps for the triples F;_ X C
F;_1X C FjX define a complex R(F,X) in C(Pairs°™)

v s TN 1 X FjooX) = B (Fj X, Fjo1 X) — PN (E a0 X, F X)) — .

whose cohomology agrees with H®(X).

Let X, € C*(Z[SmAff]). By Lemma we can choose good filtrations
on all X,, in a compatible way. The double complex R(F.X ) has the same
cohomology as X,. By construction, it is a complex in C(Pairs®®), hence the
cohomology is in C(Pairs®™).

Hence, we have now established that

PR (k) © BT (k) = P (k) = Psman (k).
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We refine the argument in order to show that Pspmag(k) C Pue(k). By the
above computation, this will follow if periods of very good pairs are contained
in P, (k). Let (X,Y,n) be a very good pair, in particular X \ Y is smooth. By
resolution of singularities, there is a proper birational map X’ — X which
is an isomorphism outside Y such that X’ is smooth and the preimage Y’
of Y is a divisor with normal crossings. By Jouanolou’s trick, see [Jou73,
Lemme 1.5], there is an A™-torsor X’ — X’ such that X" is affine. As X’
and A" are smooth, so is X”’. The preimage Y of Y is still a divisor with
normal crossings. By excision and homotopy invariance,

(k,Q)—Vect™(X,Y) = (k,Q)—Vect" (X", Y') = (k,Q)—Vect™ (X", Y").

By Proposition [3.3.19] every de Rham cohomology class in degree n is
represented by a global differential form on X”. Hence all cohomological
periods of (X”,Y” n) are normal crossing periods in the sense of Defini-

tion [T 111 |

11.5 Periods of motives

Recall that we have introduced various categories of motives: the triangulated
category of geometric motives D Mgy, see Section the abelian category of
Nori motives MMnyori, see Section [0.1] and the abelian category of absolute
Hodge motives, see Section [6.3] The latter have a natural forgetful functor
to (k,Q)—Vect introduced in Remark

Recall the chain of tensor functors

DMy — D (MMuori) = DY (MMan) — D°((k,Q)—Vect)

constructed in Theorem [10.1.1] together with this forgetful functor.

Definition 11.5.1. 1. Let C(gm) be the full subcategory of (k,Q)—Vect
closed under subquotients which is generated by H(M) for M € DMjy,.
Let Py = P(C(gm)) be the period algebra of geometric motives.

2. Let C(Nori) be the full subcategory of (k,Q)—Vect closed under subquo-
tients which is generated by H(M) for M € MMunori- Let Pnori(k) =
P(C(Nori)) be the period algebra of Nori motives.

3. Let C(AH) be the full subcategory of (k,Q)—Vect closed under subquo-
tients which is generated by H(M) for M € MMauay. Let Pag(k) =
P(C(AH)) be the period algebra of absolute Hodge motives.

Remark 11.5.2. Note that C(gm), C(Nori) and C(AH) are abelian tensor
subcategories of (k,Q)—Vect. Hence, the period sets are indeed algebras.

Proposition 11.5.3. We have

P(k) = Py (k) = Pxori(k) = Pan(k).
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Proof. From the functors between categories of motives, we have inclusions
of subcategories of (k, Q)—Vect:

C(gm) C C(Nori) C C(AH).

Moreover, the category C(Smy) of Definition [11.4.1] is contained in C(gm).
By definition, we also have C(AH) = C(Smy). Hence, all categories are equal.
Finally recall, that P(k) = P(Smy) by Theorem [11.4.2 O

Remark 11.5.4. The analogous statement for periods of effective motives
is also true.

This allows easily to translate information on motives into information on
periods. Here is an example:

Corollary 11.5.5. Let X be an algebraic space, or, more generally, a
Deligne-Mumford stack over k. Then the periods of X are contained in P(k).

Proof. Every Deligne-Mumford stack defines a geometric motive by work of
Choudhury [Chol2]. Their periods are therefore contained in the periods of
geometric motives. a






Chapter 12
Kontsevich-Zagier periods

This chapter follows closely the Diploma thesis of Benjamin Friedrich, see
[Fri04]. The main results are due to him.

12.1 Definition

Let £ C C be a field. Recall the notion of a semi-algebraic set from Defini-
tion 2.6.11

Definition 12.1.1 (Friedrich [Fri04]). Let k& C C. Let

e G C R" be an oriented compact (kNR)-semi-algebraic set which is equidi-
mensional of dimension d, and

e w a rational differential d-form on R™ having coefficients in k, which does
not have poles on G.

Then we call the complex number |, ¢ w a naive period over k and denote the
set of all naive periods for all G and w by P¢¥ (k). Let P,, (k) be the set of
quotients of naive periods by powers of 2mi.

Remark 12.1.2. Note that for a subset G C R™ being Q-semi-algebraic is
equivalent to being Q-semi-algebraic, see Proposition

The definition was inspired by the one given in [KZ01l, p. 772] for k = Q:

Definition 12.1.3 (Kontsevich-Zagier). Let k C R. A Kontsevich-Zagier
period is a complex number whose real and imaginary part are values of
absolutely convergent integrals of rational functions with coefficients in kg,
over domains in R™ given by polynomial inequalities with coefficients in kg.

Let P§f (k) be the set of Kontsevich-Zagier period numbers and Pkz (k)
the localisation of P§ (k) with respect to 27i.

We will show in Section that at least for k¥ C Q Kontsevich-Zagier
periods agree with naive periods in Definition [12.1.1] and indeed all other

257
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definitions of periods, see Theorem [12.2.1] We first concentrate on naive pe-
riods.
This set P (k) enjoys additional structure.

Proposition 12.1.4. The set P (k) is a unital k-algebra.

Proof. Multiplicative structure: In order to show that P (k) is closed under
multiplication, we write

pi : R"™ xR"™ — R™, ¢=1,2

for the natural projections and obtain

(/ w1> . </ WQ) :/ piwi A paws € Pry
Gl G2 G1><G2

by the Fubini formula.

Multiplication by k: We find every a € k as naive period with G = [0,1] C R
with respect to the differential form adt. In particular, 1 € P (k).

Combining the last two steps, we can shift the dimension of the set G in
the definition of a naive period number. Let a = wa. We represent 1 by
f[O,l] dt and hence also a = la = fo[O,l] w A dt.

Additive structure: Let [, w1 and [, ws € Pgi(k) be periods with do-
mains of integration G; C R™ and Gy C R™2. Using the dimension shift
described above, we may assume without loss of generality that dim G; =
dim G5. Using the inclusions

i R™M 2 R™ x {1/2} x {0} CR™ xR x R™ and
12 : R™ =2 {0} x {—1/2} x R™ C R™ x R x R"?,
we can write i1(G1) Uia(G2) for the disjoint union of G; and G3. With the

projections p; : R™ x R x R"? — R™ for j = 1,2, we can lift w; on R™ to
pjw; on R™ x R x R". For ¢1,¢2 € k we get

Q1/ w1+qQ/ Wy = / q1-(1/2+t) piwi+ga-(1/2—t) pywa € Puy(k),
G Go i](Gl)Uiz(Gz)

where ¢ is the coordinate of the “middle” factor R of R™ x R x R"2. This
shows that P (k) is a k-vector space. O

Examples of naive periods over Q are

2 4t

— =log(2
o | G =tom2),

° / dxdy = m and
z24y2 <1
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/ / i = elliptic integrals
o5 \ e p g s
for G :={(t,s) e R?|1<t<2,0<s, s2=13+1}.

The following example gives the representation of a very interesting num-
ber as a Kontsevich-Zagier period over Q in the sense of Definition [12.1.3] A
priori, it is not a naive period.

Proposition 12.1.5 (cf. [Kon99l p. 62]). We have

/ dti Aty _ ¢(2). (12.1)
0<t; <ty<1 (1 —t1)ts

Proof. This equality follows by a simple power series manipulation. For 0 <
to < 1, we have

2 dty — 13
—log(1 —t5) = 2
/0 1—t1 Og 2 z::n

Lfl

Let € > 0. The power series y
and we get

/ Cdtydty /1 Nty i (1—e)"
9 = —.
0<ts <ts<l—c (1 —t1)ty n n2

n=1

— converges uniformly for 0 <t <1-—e¢

Applying Abel’s Theorem [Fic90, XII, 438, 6°, p. 411] at, using > oo | = < o0
gives us

dtl dtg . > (]. — G)n (%) > 1
———— = lim —_— = — = 2).
~/0§t1§t2§1 (1_t1)t2 E—)OZ n2 Zn2 C( )

Equation is not a valid representation of ((2) as an integral for a
naive period, because the pole locus {t; = 1}U{t3 = 0} of (dltl 2\‘)1? is not dis-
joint with the domain of integration {0 < ¢; < ¢to < 1}. As mentioned before,
does give a valid period integral according to the original definition
of Kontsevich-Zagier — see Definition We will show in Example
how to circumvent directly this difficulty by a blow-up. The general blow-up
procedure which makes this possible is used in the proof of Lemma [12:2.5
This argument shows that Kontsevich-Zagier periods and naive periods are
the same.
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12.2 Comparison of definitions of periods

We now concentrate on the cases k = Q and k = Q. Denote the integral
closure of Q in R by Q. Note that Q is a field.

Theorem 12.2.1.
PT(Q) = Pol(Q) = Pon(Q) = Pon(Q) = PRL(Q) = PRL(Q)

and
]P)(Q) = IP)nc (Q) = an(@) = an(@) = ]P)KZ (Q) = ]P)KZ (@)

Moreover, every effective period number over Q can be represented by an

integral
vol(G) = / 7
G

where G C R™ is an oriented compact Q-semi-algebraic subset of dimension
n and p is the standard volume form on R™.

The proof will take the rest of this section.

Lemma 12.2.2. We have a commutative diagram of inclusions

]P)eff
PE(@ P%ffz

eff
]PKZ

Proof. The inclusions for the extension of coefficients Q to @ and Q are
obvious.

Let | oW € P (Q). By decomposing w into its real and imaginary part, it
suffices to consider differential forms w with coefficients in @ Hence it suffices
to show the inclusion P (k) C PS¢ (k) for k = Q, Q. We spell out the case
Q. The argument for Q is the same. _

Let (G,w) be as in the definition of a naive period over Q, i.e., G C R™ an
oriented compact @—semi—algebraic set, equidimensional of dimension d < n
and w a rational differential d-form on R™ having coefficients in Q and without
poles on G. N

We are repeatly going to subdivide G into finitely many Q-semi algebraic
subsets. By linearity it suffices to show the assertion for the individual pieces.
Hence we may replace G by the closure (in the analytic topology) of one the
pieces.
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Let Y be the Zariski closure of G. It is defined over @ By decomposing
Y into its irreducible components and G into the intersection with these
components, we may assume that Y is irreducible.

By Noether normalisation, there is a finite surjective morphism p : ¥ —
A%. We write pr for the associated analytic map on R-points. There is a
semi-algebraic triangulation of G such that pg is injective on the simplices of
dimension d. Indeed: Let Y’ be the ramification locus of p. It is again defined
over Q. On Y'\Y”, the map ¢ is unramified and hence a local homoeomorphism
in the analytic topology.

We apply Proposition[2.6.10]to the system {p(G), p(GNY’(R))} and obtain
a triangulation of R? into open @—semi—algebraic simplices. Let Aq,..., Ay
be the finitely many simplices covering the image of G. Note that each A;
is either fully contained in p(Y'(R)) or disjoint from it. In particular, p is
unramified above the A; of dimension d. Moreover, such a 4; is simply con-
nected in the analytic topology. Hence, pg'(A) C Y(R) decomposes into
finitely many copies of 4A; on which pg is injective.

We now apply Propositionto the system {GNpg ' (A))]i = 1,..., M}
in R™. This yields finitely open Q-semi-algebraic simplices G1,...,Gn cov-
ering G.

Let G; be one such of dimension d. It is connected and contained in
pr'(4;) for some index i such that A; has dimension d. Hence it is fully
contained in one of the copies of 4; in Y(R). This implies that pg|g, is
injective as claimed.

We now replace G by the analytic closure of Gj.

Hence we may assume that there is a finite surjective algebraic map ¥ —
A? and injective in the interior of G. Let G’ C R? be its image.

We have two rational differential forms with coefficients in Q on Y: on the
one hand w|y, on the other hand p*y where p is the standard volume form
on A%. As Y is irreducible, the space of rational differential forms on Y is

Q(Y)-vector space of dimension 1. The form p*j is non-zero (and hence a
basis) because p is non-zero and p finite surjective. Hence there is f € @(Y)
such that

wly = fq"p.

Both forms are regular on G, hence so is f. By subdividing G further into
semi-algebraic regions where f is is semi-positive or semi-negative, and there-
fore, taking linear combinations of integrals, we may assume that f is semi-
positive on G.

Then we pass to the graph of f in G x R =2 G’ x R € R and observe
that the period |, ¢ Jq" 1 is the volume of the compact semi-algebraic region
in R¥*! below the graph of f. 0

Remark 12.2.3. The proof has shown that in the definition of a naive
period, it suffices to consider compact semi-algebraic sets of dimension n in
R™ and w equal to the volume form.
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Lemma 12.2.4 (Friedrich [Eri04]).
Fre(Q C P (Q).

Proof. By definition, the elements of P (Q) are of the form fﬁ/ w where v €

H;ing(Xan, D Q) with X a smooth variety over Q of dimension d and D a
divisor with normal crossings and w € I'(X, 2%).
We choose an embedding

X CPg
and equip Py with coordinates [zg : ... : z,]. Lemma W provides us with
a map
¥ Pg = RY

such that D** and P¢ become Q-semi-algebraic subsets of RY. Then, by
Proposition 2.6.9 the homology class ¢,y has a representative which is a
rational linear combination of singular simplices I;, each of which is QQ-semi-
algebraic. By Proposition this makes them even QQ-semi-algebraic.

As P(Q) is a Q-algebra by Proposition [12.1.4} it suffices to prove that

/ w € P(Q).
d)’l(ImFi)

We drop the index i from now. Set G = ImI". The claim will be clear as soon
as we find a rational differential form w’ on R such that 1*w’ = w, since

then
/ w = / P = / W' e ]P’flfvf(Q)
P=1(G) (e G

After applying a barycentric subdivision to I', if necessary, we may assume
w.l.o.g. that there exists a hyperplane in Pg, say {z¢ = 0}, which does not
meet 11 (G). Furthermore, we may assume that ¢ ~!(G) lies entirely in U"
for U an open affine subset of DN{zg # 0}. (As before, U*" denotes the com-
plex analytic space associated to the base change to C of U.) The restriction
of w to the open affine subset can be represented in the form (see [Har77,
I1.8.4A, 11.8.2.1, I1.8.2A))

Z fJ(xo,...,xn)d(‘Zjl> /\.../\d(i;;i>

= 0

with f;(zo,...,2n) € Q(zg, - ,2,) being homogenous of degree zero. This
expression defines a rational differential form on all of Pg with coefficients in
Q and it does not have poles on ¥ ~1(G).

We construct the rational differential form «’ on RN with coefficients in
Q(¢) as follows
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Y10 + @210 Yno + 1Zno
Z /1 yoo+zzoo 7 oo + izoo
|J|=d
d<yj10 + ?Zjlo) N d<yjdo + ?Zjd0> 7
Yoo + 2200 Yoo + 2200
where we have used the notation from the proof of Lemma [2.6.6] Using the
explicit form of ¢ given in this proof, we obtain

O f (1 Yo +i210  Yno + izno> . (xoxo T1T0 xnxo)

Yoo + 2200 Yoo + 2200 |zo|2” |zo|? |20 |?

= fJ(xo,ml,...,xn)

o52) o33) +(2)
Yoo + 2200 || )

This shows that 1*w’ = w. This is nearly what we wanted as w’ still has
coefficients in Q(¢). We decompose w’ into its real and imaginary part and
are done. O

and

The next inclusion combines a result of Friedrich in [Fri04] for naive periods
with an argument of ideas of Belkale and Brosnan [BB03, Prop. 4.2].

Lemma 12.2.5. B -

Piz(Q) € Pic(Q).
Proof. We will use objects over various base fields. We will use subscripts to
indicate which base field is used: a subscript 0 for Q, a subscript 1 for Q, a
subscript R for R and none for C. Recall that we have fixed an embedding

Qcc N
Set-up: Let [, wr € Pkz(Q) be a period with

e (G C R™ an oriented @-semi—algebraic set defined by inequalities h* > 0 ,
and _

e wo a rational differential n-form on A™ with coefficients in QQ, and

e wp the induced form on R™

such that the integral converges absolutely.
Without loss of generality, G is equidimensional of dimension d. We ex-
tend wq to a rational differential form on IP’% (also denoted wp) by adding a

homogenuous variable. The closure G C P"*(R) is a compact semi-algebraic
domain.
Let Yg be the Zariski closure of G in PZ. It has the same dimension d and
is defined over @, ie.,
Yr2Y, X@ R

for a variety Yy C ]P’(%2 over Q. By construction G C Yg(R).
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Similarly, boundary 0G of G is supported on an algebraic variety. As
dim G = n, the variety V(H) actually does the job. Let Ey C Y be a divisor
containing V' (H), the singular locus of Y; and the pole locus of wy. In or-
der to obtain an nc-period, we need smooth varieties. Morover, we need the
differential form to be holomorphic on the domain of integration.

Step 1: We use Hironaka’s resolution of singularities. Following [BB03| we
apply [Hir64, Main Theorem II]. This provides us with a cartesian square

EO C i;o
Lobm (12.2)

EyCYy
such that
° }70 is smooth and projective; _
e Ty is proper, surjective and birational, and an isomorphism away from Fo;
e FEj is a divisor with normal crossings;
e Near each complex point P € E*" there are local holomorphic coordinates

T,y Ty o0 Y a unit in Og., p and integers f; for each j = 1,...,n,
such that

n
7w = unit x H zfjdxl Ao Adxy,.
j=1

The birational map 7o is an isomorphism away from E,
We consider the “strict transform” of G

G = mn (G \ E>) C Yr(R)

It is compact since it is a closed subset of the compact set o H@). As G, G
and G only differ by set of measure zero, we have

/wR:/wR:/WﬁwR.
G G G

It suffices to show that the latter is an nc-period.
Step 2: Our first aim is to define an algebraic differential form w; replacing
wgr. We first make a base change in 1} from Q to Q and obtain

E1C}71
L dm
EFiCY.

The differential n-form wr can be written as

wo = f(z1,...,2n) dz1 Ao Ady, (12.3)
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where z1,...,7, are coordinates of AZ and f € Q(z1,...,2,). The same
formula also defines a differential form w; on A%.
We write
(Zl = 7TT(W1|X1)
for the induced rational differential form on )71. Let Z; C Y7 and 21~C }71 be

their pole locus, respectively. Recall that Z; C E; and hence Z; C Fj.
We set

X1:=Y1\Z1,D1 = E1\ 71,
Xl = )71\21, 51 = El\Zl.

The restriction wy|x, is a regular algebraic differential form on X;; the pull-
back w; is a regular algebraic differential form on X.

Recall the special shape of Y that we arranged in , in particular the
description of mjwr in holomorphic coordinates. It is regular at points of G in

the complement of E2®. Consider P € G N (E)?». The absolute convergence
of fG wr implies the local convergence of wg over regions {0 < x; < €} at

ecach point P € G. This is only possible, if all f; > 0. Therefore, mywr is
holomorphic at the point P, and hence on the whole of G. Hence G C X .
Step 2: We now want to show that G can be triangulated. We are given
an embedding
Yy C Pg.

We also choose an embedding
o pm

for some m € N. Using Lemma we may consider both Y?" and Yo ag
Q-semi-algebraic sets via some maps

Y™ C PR RY, and

¢ Y™ C PR RM.
In this setting, the induced projection

YR yan

becomes a Q semi-algebraic map. The composition of ) with the inclusion
G C Y‘“‘ is a Q semi-algebraic map; hence G C RV is Q-semi-algebraic by
Fact |2 Since E®* is also Q-semi-algebraic via 1, we find that G\ E*"
is Q-semi- algebralc Again by Fact m 7r’1(G \ E*) C RM is Q-semi-
algebraic. Thus GcC RM | being the closure of a Q semi-algebraic set, is Q
semi-algebraic. From Prop081t10n we see that G can be triangulated
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G=U;7;, (12.4)

where the A are (homeomorphic images of) d-dimensional simplices.

Since G is oriented, so is 7, (G \ Ean) because Tan 1S an isomorphism
away from E*". Every d- blmpleX Aj in intersects mL(G \ E™) in a
dense open subset, hence inherits an orientatlon. As in the proof of Proposi-
tion [2.6.9] we choose orientation-preserving homeomorphisms from the stan-
dard d-simplex ASH to A

gj Afitd — Aj.
These maps sum up to a singular chain
I = ®jo; € Cfiing()?an;(@).

It might happen that the boundary of the singular chain I is not supported
on JG. Nevertheless, it will always be supported on D?»: The set 7} (G\ E**)
is oriented and therefore the boundary components of A ; that do not belong

to AG cancel if they have non-zero intersection with 7,1 (G \ E*"). Thus I’
gives rise to a singular homology class

5 e H5S (X, D).

Conlusion: We denote the base change to C of w; and w; by w and W,
respectively. Now

G G GNUan
= / Trw = /~ W
a-1(GNU=n) GNUan

is a period for the quadruple ()N(l, 151, W1,75)- O
Proof of Theorem[12.2.1.. By combining Lemma [12.2.2] Lemma [12.2.4] and

Lemma [12.2.5] we have shown that there is a diagram of inclusions

]P)cff

Pel(Q)——P&i( Q\ P (Q)—— P5i(

PRE( Q)

@l

)
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By Proposition[IT.1.7} these are even equalities. By Theorem[11.4.2] we finally
have P°f(Q) = P¢(Q). The reduction to volumes of Q-semi-algeraic sets is

Remark [12.2.3 |

Remark 12.2.6. The reduction to Q-algebraic sets is also a direct conse-
quence of Proposition On an elementary level, the use of the minimal
polynomial in its proof shows directly that real algebraic numbers u are pe-
riods: Choose a,b € Q with a < v < b and u the only root of its minimal
polynomial between a and b. Assume also without loss of generality that

f/(u) > 0. Then the integral
/ dr=b—-u
el

is a period, where G:= {r € R|a <z <b, f(x) > 0}. Hence u is a period.
The reader should revisit the above proofs in the case of the example of
the nc-period 2mi with (X, D,w, ) = (G, {1}, %, 51).

2






Chapter 13

Formal periods and the period
conjecture

Following Kontsevich (see [Kon99]), we now introduce another algebra P(k) of
formal periods from the same data we have used in order to define the actual
period algebra of a field in Chapter It comes with an obvious surjective
map to P(k).

The first aim of the chapter is to give a conceptual interpretation of Iﬁ’(k)
as the ring of algebraic functions on the torsor between two fibre functors on
Nori motives: singular cohomology and algebraic de Rham cohomology.

We then discuss the period conjecture from this point of view.

13.1 Formal periods and Nori motives

Definition 13.1.1. Let £k C C be a subfield. The space of effective for-
mal periods ]f”eg(k) is defined as the Q-vector space generated by symbols
(X,D,w,7), where X is an algebraic variety over k, D C X a subvariety,
w € Hix (X, D), v € Hy(X(C), D(C),Q) with relations

1. linearity in w and ~;
2. for every f: X — X' with f(D) C D’

(X7D7f*w/?/7) = (X/,D/,W/,f*'}/)
3. for every triple Z CY C X
Y, Z,w,07) = (X,Y, bw,”)

with 0 the connecting morphism for relative singular homology and ¢ the
connecting morphism for relative de Rham cohomology.

We write [X, D,w, | for the image of the generator. The vector space ]f"e‘cf(k)
is turned into an algebra via

269
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A A / / ’ / /
[X,D,w,y][ X", D', /]=Xx X' ' Dx X' UD' x X, wAw,vx~v].

The space of formal periods is the localisation P(k) of P (k) with respect to
(G, {1}, X, S, where S is the unit circle in C*.

Remark 13.1.2. This definition is modeled after Kontsevich [Kon99] Defi-
nition 20, but does not agree with it. We will discuss this point in more detail

in Remark [[3.1.8
Lemma 13.1.3. Multiplication on P (k) is well-defined.

Proof. This follows from the comparison result of Theorem We give a
direct proof for simplicity. Compatibility with relations of type 1 (linearity)
or type 2 (functoriality) is obvious. This is also the case for relations of type 3
(boundary maps) in the second argument. We turn to the case of relations of
type 3 in the first argument. By Proposition|2.4.3] a sign is involved. This sign
is the same for the de Rham and the singular component. Hence it cancels
on the product. a

Theorem 13.1.4. (Nori) Let k C C be subfield. Let Guot(k) be the Tan-

nakian dual _of the category of Nori motives with Q-coefficients (sic!), see
Definition [9.1.7. Let X = SpecP(k). Then X is naturally isomorphic to the

torsor of isomorphisms between singular cohomology and algebraic de Rham
cohomology on Nori motives. It has a natural torsor structure under the base
change of Gmot (k, Q) to k (in the fpgc-topology on the category of k-schemes):

X Xk Gmot(ka(@)k — X.

Remark 13.1.5. This was first formulated in the case k = Q without proof
by Kontsevich as [Kon99, Theorem 6]. He attributes it to Nori.

Proof. Consider the diagram Pairs®™® of Definition and the representa-
tions Th = Hjg(—) and To = H*(—, k) (sic!). Note that Hq(X(C), D(C); k)
is dual to H4(X(C), D(C); k).

By definition, P (k) is the module P; »(Pairs®™) of Definition By
Theorem it agrees with the module A; o(Pairs®™) of Definition
We are now in the situation of Section[8.4)and apply its main result, Theorem

In particular,
Aj o (Pairs®™) = A; o (MM ).

Recall that by Theorem [9.2.21f the diagram categories of Pairs®® and Good®
agree. This also shows that the modules

ALQ (Pairseff) = ALQ (GOOdeH)
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agree. From now on, we may work with the diagram Good®® which has the
advantage of admitting a commutative product structure. The algebra struc-
tures on A; 5(Good™) = Py 5(Good®™®) = P (k) agree.

We can apply the same considerations to the localised diagram Good. As in
Proposition localisation on the level of diagrams or categories amounts
to localisation on the algebra. Hence,

A1 2(Good) = P; 2(Good) = P(k)

and
X = SpecA; 2(Good).

Also, by definition, G3(Good) is the Tannakian dual of the category of Nori
motives with & coefficients. By base change Lemmal[7.5.8]it is the base change
of the Tannaka dual of the category of Nori motives with Q-coefficients. After
these identifications, the operation

X X Gmot(k, Q) — X

is the one of Theorem [R. 4.7
By Theorem [8.4.10] it is a torsor because MMy, is rigid. m]

Remark 13.1.6. There is a small subtlety here because our two fibre func-
tors take values in different categories, Q—Mod and k—Mod. As H*(X,Y; k) =
H*(X,Y;Q) ®g k and I@’(k) already is a k-algebra, the algebra of formal pe-
riods does not change when replacing Q-coefficients with k-coefficients.

We can also view X as torsor in the sense of Definition [L7.9 The de-
scription of the torsor structure was discussed extensively in Section in
particular Theorem In terms of period matrices, it is given by the
formula in [Kon99]:

Py — Zpik ® P! ® Py
k¢
Corollary 13.1.7. 1. The algebra of effective formal periods I@eﬂ(k‘) rEMAINSs

unchanged when we restrict in Definition to (X,D,w,~) with X

affine of dimension d, D of dimension d — 1 and X ~ D smooth, w €

HgR(Xa D)7 Y€ Hd(X((C)a D(C)a @)

2. PR (k) is generated as Q-vector space by elements of the form [X, D,w,~]
with X smooth of dimension d, D a divisor with normal crossings w €

Hi (X, D), v € Ha(X(C), D(C); Q).

Proof. In the proof of Theorem we have already argued that we can
replace the diagram Pairs®? by the diagram Good®™. The same argument
also allows us to replace it by VGood®t.

By blowing up X, we get another good pair (X, D, d). By excision, it has
the same de Rham and singular cohomology as (X, D,d). Hence, we may
identify the generators. a
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Remark 13.1.8. We do not know whether it is enough to work only with
formal periods of the form (X, D,w,~) with X smooth and D a divisor with
normal crossings in Deﬁnition as Kontsevich does in [Kon99, Definition
20]. By the Corollary, these symbols generate the algebra, but it is not clear to
us if they also give all relations. Indeed, Kontsevich in loc. cit. only imposes
the relation given by the connecting morphism of triples in an even more
special case.

Moreover, Kontsevich considers differential forms of top degree rather than
cohomology classes. They are automatically closed. He imposes Stokes’ for-
mula as an additional relation, hence this amounts to considering cohomology
classes. Note, however, that not every de Rham class is of this form in general.

All formal effective periods (X, D,w,7) can be ”evaluated” to complex
numbers by ”integrating” w along . More precisely, recall from Definition
the period pairing

H{p (X, D) x Hy"™(X(C), D(C);Q) — C.

The complex number obtained from (G,,, {1},dX/X, S) to 27i.

Definition 13.1.9. Let y
ev:P(k) = C,

be the ring homomorphism induced by the period pairing. We denote by per
the C-valued point of X = SpecP(k) defined by ev.

The elements in the image are precisely the element of the period algebra

P(k) of Definition[T1.3.1] By the results in Chapters[I1} [6] and[12] (for k = Q),

it agrees with all other definitions of a period algebra. From this perspective,
per is the C-valued point of the torsor X of Theorem comparing singu-
lar and algebraic de Rham cohomology. It is given by the period isomorphism
per defined in Chapter

Our results on formal period numbers have an important consequence.

Corollary 13.1.10. The algebra P (k) is Q-linearly generated by periods
of (X,D,w,~) with X smooth affine, D a divisor with normal crossings,
w e NL(X).

This was also proved without mentioning motives as Theorem [T1.4.2}

Proof. By Corollary [9.2.24] the category ./\/l./\/lf\fgri is generated by motives
of the form H{_.;(X,Y) with X smooth and affine, Y a divisor with normal
crossings. By Proposition [3.3.19] H7 (X,Y) is then generated by 2%,(X’).

O

Proposition 13.1.11. Let K/k be algebraic. Then

and hence also
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P(K) = P(k).
The second statement was already proved directly as Corollary [11.3.5

Proof. Tt suffices to consider the case K/k finite. The general case follows by
taking direct limits.

Generators of P(k) also define generators of P(K) by base change for the
field extension K /k. The same is true for relations, hence we get a well-defined
map P(k) — P(K).

We define a map in the opposite direction by viewing a K-variety as k-
variety. More precisely, let (Y, E/, m) be a vertex of PairSeH(K ) and (Yy, Ex,m
the same viewed as vertex of Pairs® (k). As in the proof of Corollary
we have

H(Yk, Bk, m) = Rg ) H(Y, E,m)

with Ry /i, as defined in Lemmal@ The same proof as in Lemma
(treating actual periods) also shows that the formal periods of (Y, Ex,m
agree with the formal periods (Y, E,m). O

13.2 The period conjecture

We explore the relation to transcendence questions from the point of view
of Nori motives and their periods. We mainly treat the case where k/Q is
algebraic. We first formulate the conjecture due to Kontsevich and Zagier
in this case. We then explore some consequences for motivic categories. In
Section we establish a connection to special cases in the literature,
some of them very long-standing. For general fields beyond Q, see Ayoub’s
survey article [Ayol4], Subsection [13.2.4] and [13.2.17| below.

13.2.1 Formulation in the number field case

Let k be an algebraic extension of Q. We fix embeddings o : k¥ — C and

7 : Q — C. Recall that P(Q) = P(k) = P(Q) under this assumption.

Conjecture 13.2.1 (Kontsevich-Zagier). Let k/Q be an algebraic field ex-
tension contained in C. The evaluation map (see Definition

ev : P(k) — P(k)
is bijective.
Remark 13.2.2. We have already seen that the map is surjective. Hence

injectivity is the real issue. Equivalently, we can conjecture that P(k) is an
integral domain and ev a generic point.
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In the literature [And09l [And04l [Ayol4] BC16l Wiis12], there are some-
times alternative formulations of this conjecture, called ” Grothendieck con-
jecture” or ”Grothendieck period conjecture”. We will explain this a little bit
more.

Definition 13.2.3. Let M € MMy be a Nori motive. Let
X (M)

be the torsor of isomorphisms between singular and algebraic de Rham co-
homology on the Tannaka category generated by M and its subquotients
and ~

P(M) = O(X (M))

the associated ring of formal periods. If M = H{_(Y) for a variety Y, we
also write P(Y).

Let Got(M) and Gt (Y) be the Tannaka duals of the above categories
with respect to singular cohomology.

These are the finite dimensional building blocks of Spec(P(k)) and Guet (k),
respectively.

Remark 13.2.4. By Theorem the space X (M) is a torsor under the
k-group Gumot (M) Xspecg Speck. Hence they share all properties that can be
tested after a faithfully flat base change. In particular, they have the same
dimension. Moreover, X (M) is smooth because Got(M) is a group scheme
over a field of characteristic zero.

Analogous to [Ayold] and [And04l Prop. 7.5.2.2 and Prop. 23.1.4.1], we
can ask:

Conjecture 13.2.5 (Grothendieck conjecture for Nori motives). Let k/Q be
an algebraic extension contained in C and M € MMnori(k). The following
equivalent assertions are true:

1. The evaluation map R
ev:P(M)—C
18 1njective. ~
2. The point evys of SpecP(M) is a generic point, and X (M) is connected.
3. The space X(M) is connected, and the transcendence degree of the sub-

field of C generated by the image of evys is the same as the dimension of
Gmot (M).

Note for the smooth variety X (M), irreducibility and connectedness are
equivalent.

Proof of equivalence. Assume that ev is injective. Then I@(M ) is contained
in the field C, hence integral. The map to C factors via the residue field
of a point. If ev is injective, this has to be the generic point. The subfield



13.2 The period conjecture 275

generated by ev(M) is isomorphic to the function field. Its transcendence
degree is the dimension of the integral domain.

Conversely, if X (M) is connected, then it is integral because it is already
smooth. If ev factors the generic point, its function field embeds into C and
hence ]f"(M ) does. If the subfield generated by the image of ev in C has the
maximal possible transcendence degree, then ev has to be generic. a

Proposition 13.2.6. The Grothendieck Conjecture is true for all M
if and only if Kontsevich-Zagier’s Conjecture holds.

Proof. By construction, we have

P(k) = colim/P(M).

Injectivity of the evaluation maps on the level of every M implies injectivity
of the transition maps and injectivity of ev on the union. Conversely, we
have to show injectivity of P(M) — P(k) for all M. This can be tested
after a faithfully flat base change, hence it suffices to show injectivity of
O(Gumot (M)) — O(Gmot(k)). This holds by Proposition [7.5.9} 0

13.2.2 Consequences

Corollary 13.2.7. 1. Assume Kontsevich-Zagier’s Conjecture[13.2.1] holds.
Then the motivic Galois group Gme(Q) of the category of Nori motives is
connected.

2. Let M be a Nori motive over Q. Assume the Grothendieck Conjecture

holds for M. Then Guot(M) is connected.

Proof. By assumption, SpecP(Q) is a connected Q-scheme, hence geomet-
rically connected. It remains connected under any base change. As it is a

Gmot (Q)g-torsor, this implies that Get(Q) is connected.
The argument for Gyot(M) is the same. a

Recall from Theorem [[0.1.1] the faithful exact tensor functor
MMuori,g = MMan

which maps the motive of an algebraic variety to its absolute Hodge mo-
tive. Moreover, the choice of an embedding ¢ : & — C defines a forget-
ful functorMMan — (k,Q)—Vect to the category of pairs of Definition
It maps a mixed realisation A (see Definition to the components
(Adr, Ao, IR0 )-

Proposition 13.2.8. Let k be algebraic over Q and o : k — C an embedding.
Assume the Period Conjecture holds. Then the functor MMyori —
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MMag is an equivalence of categories and the functor to (k,Q)—Vect is
fully faithful with image closed under subquotients.

Proof. By construction, the period map ]f”(k) — C factors via the formal
period algebra of MM y. Hence the Period Conjecture implies that ]f”(k) —
ED(MMAH) is injective. They are torsors, hence we also have an injection
O(Gmot(k)) = O(G(MMan)). By [Wat79, Proposition 14.1], this implies
that the homomorphism of affine group schemes G(MMan) = Gumot(k) is
faithfully flat. As in [DM82 Proposition 2.21] this translates into the tensor
functor functor MMuori — MMy being fully faithful and the image closed
under closed under subquotients. Moreover, in both categories all objects are
subquotients of objects in the image of the category of geometric motives.
Hence, the two categories are actually equivalent.

The same line of arguments can also be applied to the image of MMy
in (k, Q)—Vect. O

Remark 13.2.9. The fully faithfullness of MMnyoi — (k, Q)—Vect seems
weaker than the period conjecture. For V' € (k,Q)—Vect, the formal period
algebra of the tensor category generated by V is in general not embedded
into C via the period isomorphism. An example is the case k = Q with
V = (Q?,Q?,¢) with ¢ given by the matrix ((1) \{i
the field Q(1/2). However, its formal period algebra is the group of unipotent

). Its period algebra is

1 . . .
0 91() = A'. Hence the period conjecture implies that V does not
occur in the image of the category of motives.

Recall that by Theorem [10.2.7] the semi-simple category of pure Nori mo-
tives is equivalent to André’s category of pure motives for motivated cycles,
see Definition We specialise to this case.

Corollary 13.2.10. Assume the Grothendieck Conjecture[13.2.5] for all pure
Nori motives, i.e., for all objects of AM. Then:

matrices (

1. The functor AM — MMZRY® is an equivalence of categories.

2. The embedding of MM aupure into (k,Q)—Vect is fully faithful.

3. All algebraic relations between periods of smooth projective varieties are
induced by algebraic cycles on smooth projective varieties.

Proof. The first two assertions follow by the same argument as in the proof
of Proposition By the period conjecture, all relations between period
numbers are induced by relations of formal periods. By construction of the
formal period algebra, all linear relations between formal periods are induced
by morphisms of AM, hence by algebraic cycles. By the period conjecture
Algebraic relations are linear relations between periods for tensor powers,
hence the same is true. a
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We compare this to the implication of the Hodge conjecture. As pointed
out to us by Yves André, there is a relation, but no implication in either
direction.

Recall from Chapter [6] the sequence of functors

MHSP™e
o:k—C
(1) (2) ®
GRM ——L> AM ——% MM
(4)
o:k—C
(k, Q)—Vect

where GRM is the category of Grothendieck motives, AM is the category
of André motives, MMRE® the category of pure absolute Hodge motives,
and MHSP" the category of pure Q-Hodge structures. The last two functors
depend on the choice of an embedding of k£ into C. We have just shown that
the period conjecture implies that (3) is an equivalence and (4) fully faithful.

As already discussed in Chapter [6 the Hodge conjecture implies that
(1) and (2) are equivalences of semi-simple abelian categories. For an al-
gebraically closed field (in our context k = Q), the functor (3) to Hodge
structure is then fully faithful.

The same relations also hold for the Tannakian category generated by a
single pure motive.

Definition 13.2.11. Let V be a polarisable pure Hodge structure. The
Mumford-Tate group G = MT(V) of V is the smallest Q-algebraic subgroup
of GL(V) such that the Hodge representation h : S — GL(Vg) factors via
G as h : S — Gg. Here, S = Resc/rGyy, is the Deligne torus. It is precisely
the Q-algebraic subgroup of GL(Vg) that fixes all Hodge tensors in all tensor
powers @ VO™ @ VVO" [Mum66].

Alternatively, MT(V) can be understood as the Tannaka dual of the Tan-
naka subcategory of the category of Hodge structures generated by V. It is
closed under subquotients because V is semi-simple. This also implies that
MT(V) is a reductive Q-algebraic group by [GGK12 Chapter I].

Proposition 13.2.12. Let k = Q and let Y be smooth and projective. As-
sume that the Hodge conjecture holds for all powers of Y. Then Guot(Y) is
the same as the Mumford-Tate group of Y.

Proof. By Proposition[10.2.1]the Tannaka subcategory of MMui generated
by M = Hf,,;(Y) agrees with the Tannaka subcategory of GRM generated
by M. Note that the statement of Proposition assumes the full Hodge
conjecture. The same argument also gives the statement on the subcategories
under the weaker assumption. For the rest of the argument we refer to Lemme
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7.2.2.1 and Remarque 23.1.4.2 of [And04]. It amounts to saying that equiva-
lent Tannaka categories have isomorphic Tannaka duals. ad

This means that under the Hodge conjecture, the period conjecture can
be reformulated in terms of the Mumford Tate group. This brings us back to
earlier versions of the period conjecture.

13.2.3 Special cases and the older literature

The third version of Conjecture[I3.2.5]is very close to the point of view taken
originally by Grothendieck in the pure case.

Corollary 13.2.13 (Period Conjecture). Let Y be a smooth, projective va-
riety over Q. Assume Conjecture [13.2.5] for powers of Y and the Hodge con-
jecture. Then all polynomial relations among the periods of Y are of motivic
nature, i.e., they are induced by algebraic cycles (correspondences) in powers
of Y.

In the case of elliptic curves this was stated as a conjecture by Grothendieck
[Gro66].

Proof. As in the proof of proposition [[3.2.12] the Hodge conjecture for Y and
its powers implies that all morphism in the category of motives generated by
M = H*(V) are given by algebraic cycles. The rest of the argument is the
same as in the proof of Corollary but more precise in only using
cycles on Y and its tensor powers. O

Arnold [Arn90L pg. 93] remarked in a footnote that this is related to a
conjecture of Leibniz which he made in a letter to Huygens from 1691. Leib-
niz essentially claims that all periods of generic meromorphic 1-forms are
transcendental. Of course, precisely the meaning of ”generic” is the essential
question. The conjecture of Leibniz can be rephrased in modern form as in
[Wiis12]:

Conjecture 13.2.14 (Integral Conjecture of Leibniz). Any period integral
of a rational algebraic 1-form w on a smooth projective variety X over a
number field k over a path v with &y C D (the polar divisor of w) which does
not come from a proper mized Hodge substructure H C Hi(X \ D) over k is
transcendental.

This is only a statement about periods for H'(X, D) (or, by duality Hy(X\
D)) on curves. The Leibniz conjecture follows essentially from the period
conjecture in the case i = 1, since the Hodge conjecture holds on H(X) ®
H'(X) C H*(X). This conjecture of Leibniz seems to be still open. See also
[BC16] for strongly related questions.

Wiistholz [Wiis12] has related this problem to many other transcendence
results. One can give transcendence proofs assuming this conjecture:
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Example 13.2.15. Let us show that log(«) is transcendental for every al-
gebraic o # 0,1 under the assumption of the Leibniz conjecture. One takes
X =P andw = dlog(z) and v = [1, a]. The polar divisor of w is D = {0, 0o},
and the Hodge structure H1(X \ D) = H1(C*) = Z(1) is irreducible as a
Hodge structure. Hence, log(«) is transcendental assuming Leibniz’s conjec-
ture. A direkt proof of this can be found in [BWOQT].

There are also examples of elliptic curves in [WiisI2] related to Chud-
novsky’s theorem we mention below.

The third form of Conjecture is also very useful in a computational
sense. In this case, assuming the Hodge conjecture for all powers of Y, the
motivic Galois group Gt (Y) is the same as the Mumford-Tate group MT(Y')

by Proposition [13.2.12
André shows in [And04l Remark 23.1.4.2]:

Corollary 13.2.16. Let Y be a smooth, projective variety over Q and as-
sume that the Hodge conjecture holds for all powers of Y. Then, assuming
Grothendieck’s conjecture,

trdeggP(Y) = dimg MT(Y').

Proof. We view the right hand side as Gmot(Yg) by Proposition By
[And04l Paragraph 7.6.4], it is of finite index in Gupoet(Y'), hence has the
same dimension. It has also the same dimension as the torsor ]fD(Y) Under
Grothendieck’s conjecture, this is given by the transcendence degree of P(Y),
see Conjecture O

The assertion of the corollary can be tested unconditionally. Hence this is
a reasonable testing conjecture for transcendence questions.

Remark 13.2.17. If k is a number field, and Y is defined over k, then one
would have as well under Grothendieck’s conjecture

trdeg, P(Y') = trdeggP(Y) = dimy Gt (Y) = dimg MT(Y').

However, if k has positive transcendance degree, then this has to be modified,
see [And04] §23.4.1] and [Ayol4, Remark 24]: In general, one only conjectures

trdegQP(Y) Z dlmk Gmot (Y)

If, moreover, the embedding k < C is sufficiently ”general” in the sense of
[AyoT4, Remark 15], then one expects to have

trdegoP(Y) = dimg Grot (V') + trdegg (k).

Example 13.2.18. (Tate motives) If the motive of Y is a Tate motive, e.g.,
Y = P", then the conjecture is true, since 2 is transcendent. The Mumford-
Tate group is the 1-torus in this case. More generally, the conjecture holds
for Artin-Tate motives, since the transcendence degree remains 1.
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Example 13.2.19. (Elliptic curves) Let E be an elliptic curve over Q. Then
the Mumford-Tate group of E is either a 2-torus if E has complex multi-
plication, or GLy g otherwise (cf. [Mum66]). Hence, the transcendence de-
gree of P(E) is either 2 or 4. G. V. Chudnovsky [Chu80] has proved that
trdeggP(E) = 2 if E is an elliptic curve with complex multiplication, and
it is > 2 for all elliptic curves over Q. Note that in this situation we have
actually 5 period numbers wy, ws, 71, N2 and 7 around (see Section for
more details), but they are related by Legendre’s relation won; —wine = 27,
so that the transcendence degree cannot go beyond 4. Hence, it remains to
show that the transcendence degree of the periods of an elliptic curve without
complex multiplication is precisely 4, as predicted by the conjecture.

13.2.4 The function field case

In the case of a transcendental extension k/Q, the Kontsevich-Zagier and
Grothendieck conjecture does not generalise easily, unless the embedding of
k — C is "general” in some sense, see [Ayoldl Remark 15]. However, a rela-
tive function field version of Conjecture[13.2.1]holds indeed, as we will explain
now. It was found independently by Ayoub [Ayol5] [Ayol6] and Nori [Norb].
We will explain both versions. In the following, we fix a field k of finite type
over Q, and embeddings Q — k — C.

Ayoub’s approach: Ayoub first proposes an alternative definition of ]fD(Q)
His motivation is to construct a variation of Definition [13.1.1] in which he
uses only quadrupels (X, Z,w, ), where after [Ayol4] Section 2.2]:

e X = Spec(A) for A any étale sub-Q|z1, ..., 2,]-algebras of the ring of
convergent power series with radius strictly larger than 1.

e Z C X is the normal crossing divisor given by [[. z;(1 — z;) = 0.

e ~:[0,1]" — X" is the canonical lift of the obvious inclusion [0, 1]* — C".

e w=f-dzxyN---Ndz, with f € A, a top degree differential form.

The actual definition, however, is quite different and is as follows:

Definition 13.2.20. Denote by D" the closed polydisk of radius 1 in C”
and by O(D") the ring of convergent power series in the variables z1,. .., z,
with radius of convergence strictly larger than 1. Let (’)k,alg(]ﬁ)”) be the k-
subspace of power series which are algebraic over the field k(z1,...,2,) of
rational functions, and

Op—atg (D) = | J Ok-ag(D").
n=1

In particular, for n = 0, one has Op_,14(D") = k. Now define a ring ]?’eAfg(k)

of effective formal Ayoub periods over k as the quotient of Op_a14(ID>°) by
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the sub-k-vector space spanned by the elements of the form

of
6zi

- f

z;=1 + f

Z4 =0

for f € Okia]g(]ﬁ)oo) and 7 > 1.

Finally, we denote by I@’Ay(k) the algebra of formal Ayoub periods over
k, defined as the localisation of I@Zf;(k) by some (non-unique) element of
Og-alg(D') C Ok_aig(D') whose integral over [0, 1] is 2mi.

There is a natural evaluation map ev : I@eAf; (k) — C, induced by the integral

Okfalg(Doo) — (Ca f — f’
[0,1]°

see [Ayol5| Section 1.1]. This means that for every n and f = f(z1,...,2x),
one has ev(f) = f[0,1]n f. The integral always exists, as the cube [0,1]" is
compact. The dependence on n is canonical, as the volume of the interval
[0,1] is 1. This new definition compares nicely to the old one:

Proposition 13.2.21 (Ayoub). There is an isomorphism Pa,(Q) — P(Q),
induced by (using the terminology from Definition|13.1.1

f=> X Z, f-da Ao ANdzp, [0,1]7),
for f € A, and the evaluation maps are comparable under this isomorphism.

Proof. This is [Ayol4], Proposition 11], and [Ayol5| Theorems 1.8 and 4.25].
O

To state the function field version due to Ayoub, we define first Ayoub
period power series:

Definition 13.2.22. Let Og:_alg(]]j)”) be the sub—C-vector space of the Lau-
rent series ring O(D")[[w]][w™}] consisting of all Laurent series

F= Z fi(zla"'azn)'wi

1>—00

with coefficients in O(D"), which are algebraic over the field C(w, 21, . ..., 2,)-
More generally, for any field & C C, one defines (’),Lalg(]ﬁ)”) to be those power
series F', which are algebraic over the field k(w, z1, . ..., z,). Furthermore, we
set

Olzfalg(]ﬁ)w) = U Oltfalg(@n)
n=1

Define the ring of period power series I@’:&y(k) as the quotient of (’),ifalg(ﬂj)oo)
by the two relations:
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. az — Fly=1+ Fl,—o for F € (’)k alg( ) and i > 1.

. (g — f[o,l]oo ) F for g and F both in (’)k alg( ), such that g does not

depend on the variable w, and g and F' do not depend simultanously on any
of the variables z;. This slightly complicated condition is a consequence of
Ayoub’s proof.

By Stokes’ theorem, there is a canonical evaluation mapping

eV:ﬁDLy(k)%C Z fi-wh Z (/01]oc >wz

1>—00 i>—00

Power series which are in the image of this map are called k-series of pe-
riods by Ayoub [Ayol5| Definition 1.6]. The function field version of the
Kontsevich-Zagier conjecture can then be stated as

Theorem 13.2.23 (Ayoub). The evaluation map ev : I@TAy(k) — C((w)) 1s
imjective.

Proof. See [AyoI5l Théoréme 4.25] and [Ayold, Theorem 48]. O

In Ayoub’s note [Ayol6] the statements of [Ayol5] are modified and
slightly improved.

Nori’s approach: This approach from [Norb|, only with a sketch of the steps
in the proof, is quite different from Ayoub’s, although it also uses analytic
functions, and the final statement is similar. First, let L be a finitely gener-
ated transcendental extension of a number field k. This defines Q-algebras
of effective periods ]fDeH(L) and ]Ii’eff(k;)7 together with a comparison map
Peff (k) — PefF(L).

Now, let B is a finitely generated algebra with quotient field L. For sim-
plicity, the reader may assume that L = k(w) is a one-variable transcendental
extension, then the results compare directly to Ayoub’s approach. Then, let
R be the field of meromorphic functions on the analytification of the algebraic
variety X = Spec(B). In the special case, we have B = k[w] and R = C((w)).

Then the idea is to "spread out” periods over L to power series in R, and
Nori asserts that there is an evaluation map

ev:PH(L) = R,

which is compatible with the evaluation map on I@eﬂ(k) by inclusion, and the
Kontsevich-Zagier evaluation map P°f(L) — C is obtained by evaluating the
power series at the generic point corresponding to L.

The function field version of the Kontsevich-Zagier conjecture can then be
stated as

Theorem 13.2.24 (Nori). The evaluation map ev : C @per (1, PF(L) = R
18 1njective.
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Proof. See [Norbl, Main Theorem, page 6]. A proof is sketched on the same
page. O

13.3 The case of 0-dimensional varieties

We go through all objects in the baby case of Artin motives, i.e., the ones gen-
erated by O-dimensional varieties. We work with rational coefficients through-
out.

Recall that we discussed the subcategory of Artin motives MM%Ori’Q care-
fully in Section The diagram Var’ C Pairs’ was defined by the opposite
category of O-dimensional k-varieties, or equivalently, the category of finite
separable k-algebras. We established that ./\/lMONori@ = C(Var®, H*). Tts Tan-

naka dual is Gal(k/k) viewed as pro-finite group scheme over Q.
Definition 13.3.1. Let P°(k) be the space of periods attached to MM ;.

Our aim is to show P°(k) = k with the natural operation of the Ga-
lois group. In particular, the period conjecture (in any version) holds for
0-motives. This is essentially Grothendieck’s treatment of Galois theory.

Let K/k be a finite Galois extension, Y = Spec(K). In Section we
established that

H°(Y(C),Q) = Maps(Y(C),Q) = Maps(Homy,_a15 (K, C), Q).
Note that HIz (SpecK) = K and the period isomorphism

K®,C— Maps(Homk._alg(K, (C), Q) (2Y0) C,
v (f e f(v)

is the base change of the same map with values in K
K@ K — 1\/[2),[)S(HOIH]¢_a]g(I(7 K), Q) 0V0) K.

In particular, all entries of the period matrix are in K. The space of formal
periods of K is generated by symbols (w,~y) where w runs through a k-basis
of K and v through the set Homy_a1. (K, K) viewed as basis of a Q-vector
space. The relations coming from the operation of the Galois group bring us
down to a space of dimension [K : k|, hence the evaluation map is injective.
Passing to the limit, we get

P°(k) = k.

Note that we would get the same result by applying Proposition [13.1.11] and
working only over k. The operation of Gal(k/k) on PY(k) is the natural one.
More precisely, g € Gal(k/k) operates by applying g~! because the operation
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is defined via 7, which is in the dual space. Note that the dimension of P°(k)
is also 0.

We have seen from general principles that the operation of Gal(k/k) on
XO(k) = SpecP®(k) defines a torsor. In this case, we can trivialise it already

over k. We have
Mory,(Speck, X°(k)) = Homy,_ a1 (K, k).

By Galois theory, the operation of Gal(k/k) on this set is simply transitive.

When we apply the same discussion to the ground field k, we get G9, (k) =
Gal(k/k) and PO(k) = k. We see that the (formal) period algebra has not
changed, but the motivic Galois group has. It is still true that Speck is a
torsor under the motivic Galois group, but now viewed as k-schemes, where

both consist of a single point!
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Chapter 14
Elementary examples

14.1 Logarithms

In this section, we give one of the simplest examples for a cohomological
period in the sense of Chapter [T1] Let
X :=AH\ {0} = SpecQlt,t "]
be the affine line with the point 0 removed and
D:={l,a} with a#0,1 and acQ

be a divisor on X. The singular homology of the pair (X(C),D(C)) =
(C*,{1,a}) is generated by a small loop o turning counter-clockwise around
0 once and the interval [1,a]. In order to compute the algebraic de Rham
cohomology of (X, D), we first note that by Section H3r (X, D) is the

cohomology of the complex of global sections of the cone complex 2% p,, since
X is affine and the sheaves f)f( p are quasi-coherent, hence acyclic for the

global sections functor. We spell out the complex I'(X, !~23( p) in detail

0

I

(X, Q% p)=T(X, 2% o @ i.0p,) =Q[t,t ']dt & @ @9

Td
I'(X,0x)=Qlt,t™"]

(d being the obvious map) and observe that the evaluation map

287
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Q- QaQ
f@) = (£(1), f(a))
is surjective with kernel
(t—1)(t — a)Qt,t "] = spang {t"*? — (a + )t"! + at™ | n € Z}.
The differentiation map f + df maps this kernel to
spang{(n + 2)t""" — (n+ 1)(a + 1)t" — nat™ " | n € Z}dt.
Therefore we get
HiR(X,D) = I'(Xo, 2x,p) / d['(X, Ox)
~ (@ o goQ) /awi )
= Q[t,t™1)dt/ SpanQ{((;L +2)t" T — (0 + 1) (o + 1)t" — nat™ }dt.

By the last line, we see that the class of t"dt in H} (X, D) for n # —1 is
linearly dependent of

o t"1dt and t"2dt, and
o t"Tldt and t"2dt,

hence we see by induction that % and dt (or equivalently, % and %) generate
Hip (X, D). We obtain the following period matrix P for H'(X, D):

by %
L,a]] 1 loga (14.1)
o 0 27

In Section [8.4.3] we have seen how the torsor structure on the periods of
(X, D) is given by a triple coproduct A in terms of the matrix P:

PZJHZPUC@P&I@P[]
k0

The inverse period matrix in this example is given by:

— log
0 3m

and thus we get for the triple coproduct of the most important entry log(«)

Alloga) =loga ® 5= ®@2mi —1® L2 @21i+1®1® loga . (14.2)

21
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We will see further examples of triple coproducts soon. Their properties
are not yet fully understood.

14.2 More logarithms

In this section, we describe a variant of the cohomological period in the
previous section. We define (for «, 5 € Q)

Dy :={1,a,8} with a#0,1 and B#0,1,q,

but keep X := Ag \ {0} = SpecQ[t,t™"].

Then H™(X,D;Q) is generated by the loop o from the first example
and the intervals [1,a] and [a,3]. Hence, the differential forms 4, dt and
2t dt give a basis of Hiz (X, D). If they were linearly dependent, the period
matrix P would not be of full rank

| 4 4t 2tdt

o 273, 0 0
[1,a]] loga a—1 a?—1
[a, B] log(g) B—a B%—a?.

We observe that det P = 2mi(o — 1)(8 — a)(8 — 1) # 0.
The inverse matrix of P is

o 0 0
p-1— (e®—1)log B—(8>—1) log atp a+l
- 2ri(B—a)(a—1)(B—1) (a—D)(B—1) (a=p)(B—1) |

—(a=1)log f+(B=1)log -1 -1
2mi(B—a)(a—1)(B—1)  (a—1)(B-1) (a—PB)(B—1)

and therefore we get for the triple coproduct for the entry log(«):

1
A(log o) =loga ® — ® 2mi

2mi
—(a?—1)log B+ (8> —1)logar
e - ae—nG-n "
+(a—1)®(a_al;§_1)® log
a+1 153
+(Ol*1)®m® log(a>

(a—1)logB — (B —1)loga
275 — a)a — (B - 1)

+(@*-1)®

® 27

+(@*-1)®

1
CESCES
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+(a?-1 ®®log<)
R O ICES) a
1 1
—loga® — ®@2mi—10 2L 9omi+191e loga.
21 27

Note that this is compatible with Equation It would be important to
work out the functorial behaviour of triple coproducts in general.

14.3 Quadratic forms

Let
Q(z) : Q? — Q

z = (zg,21,22) — zAzT

be a quadratic form with A € Q3*3 an invertible and symmetric matrix.
The zero-locus of Q(z)

X = {l2] e P*(Q)|Q(z) = 0}
is a quadric or non-degenerate conic. We are interested in its affine piece
X =X n{zy #0} C Q? C PX(Q).

We show that we can assume Q(z) to be of a particularly nice form. A
non-zero vector v € Q3 is called Q-anisotropic if Q(v) # 0. Since char Q # 2,
there exist such vectors, just suppose the contrary:

Q(1,0,0) =0 gives A1 =0,

Q(0,1,0) =0 gives Age =0,

Q(1,1,0) =0 gives 2-A;2=0
and A would be degenerate. In particular

Q(1,X,0) = Q(1,0,0) +2XQ(1, 1,0) + X*Q(0, 1,0)

will be different from zero for almost all A\ € Q. Hence, we can assume that
(1,0,0) is anisotropic after applying a coordinate transformation of the form

! A /
o =T, X:=—ATo+T1, Ty = Ta.

After another affine change of coordinates, we can also assume that A is a
diagonal matrix. An inspection reveals that we can choose this coordinate
transformation such that the xzop-coordinate is left unaltered. (Just take for
e1 the anisotropic vector (1,0,0) in the proof.) Such a transformation does
not change the isomorphism type of X, and we can take X to be cut out by
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an equation of the form
ar’? +by? =1 for a,beQ*

with affine coordinates z := % and y := i—i Since X is affine, the sheaves

2% are acyclic, hence we can compute its algebraic de Rham cohomology by
Hir(X) = H*(I'(X, £2%)).
So we write down the complex I'(X, 2%) in detail

0
T
(X, 2%) = (dz, dY)gLo ]/ (aa+by2—1) | (ad + bydy)
dT
I'(X,0x) = Q[z,y]/(azx* + by* — 1).
Obviously, HjR(X ) is Q-linearly generated by the elements z"y™dz and

"y™dy for m,n € Ny modulo numerous relations. Using axdz + bydy = 0,
we get

) mdy—dy ~0
o:vdx—dx NO

n, m+1

o ymdy—n;rlx” 1 m“‘ldac—i—dmnf+1
~ —n;flx”’lym“ dr for n>1,m>0

o "y dr =21 (ﬂ) dr ~ 0
o zny?mtldy = gn (1o gmz)mydx

° xydx:_Tﬁderd%

by’ —1
~ T2a dy

=2ay dy——dyNO

e (n>2)a"yde = =La"! 2dy+a: ydz 4+ Lan1ly? dy
= Loy dy + T d(az® + by? — 1)
- ab n—l 2dy+d((m" 'y) (az®+by® —1))

2a

~ b n 1 Qdy
:(wn-}-l_m" 1)dy
= (= (n+ Da"y + 2o "2y) do + d (a7 +y — £ —y)

e Hence 2"ydx ~ ﬁx"”y dxr for n>2.

Thus we see that all generators are linearly dependent of y dx

Hig(X) = H'(I'(X,0%)) = Q yda.
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What about the base change of X to C? We use the symbol y/ for the
principal branch of the square root. Over C, the change of coordinates

ui=vazr —ivby, v:=+ax+ivby
gives

X =Spec Clz,y]/(ax? + by* — 1)
= Spec Clu,v]/(uv — 1)
= Spec Clu,u™ 1]
=Ag\ {0}
Hence, the first singular homology group Hs"8(X, Q) of X is generated by

0:[0,1] = X(C), s+ u = *™,

i.e., a circle with radius 1 turning counter-clockwise around u = 0 once.
The period matrix consists of a single entry

/ dfpi/v—udu—l—v
. .20V 2a

B / vdu —udv
o 4ivab
1 du

B 2ivab J& u
0

- =

The denominator squared is nothing but the discriminant of the quadratic
form @
disc Q := det A € Q% /(Q*)2.

This is an important invariant, which distinguishes some, but not all isomor-
phism classes of quadratic forms. Since disc Q is well-defined modulo (Q*)2,
it makes sense to write

1 T 1
Hijr(X)=Q—=== CH,

\/M sing(X7 Q) (90 C.

14.4 Elliptic curves

In this section, we give another well-known example for a cohomological pe-
riod in the sense of Chapter
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An elliptic curve E is a one-dimensional non-singular complete and con-
nected group variety over a field k. Let O be the neutral element. This is a
k-rational point. An elliptic curve has genus g = 1, where the genus g of a
smooth projective curve C' is defined as

g :=dimy, I'(C, 25) .

We refer to the book [Sil86] of Silverman for the theory of elliptic curves, but
try to be self-contained in the following. For simplicity, we assume k = Q. It
can be shown, using the Riemann-Roch heorem that such an elliptic curve E
can be given as the zero locus in P?(Q) of a Weierstrafl equation

Y27 =4X3 — g2 X 77 — g3 7° (14.3)

with Eisenstein series coefficients go = 60G4,g93 = 140G and projective
coordinates X, Y and Z.

By the classification of compact, oriented real surfaces, the base change of
E to C gives us a complex torus E?", i.e., an isomorphism

E* = C/ Ay, w, (14.4)
in the complex-analytic category with

Awl, wo = wll (&) (.JQZ
for wy,wsy € C linearly independent over R,
being a lattice of full rank. Thus, all elliptic curves over C are diffeomorphic
to the standard torus S' x S, but carry different complex structures as the
parameter 7 := wy/w; varies.

We can describe the isomorphism (|14.4)) quite explicitly using periods. Let
« and (B be a basis of

HM8(E™ 7)) = H"8(S' % S 7Z) = Za & Z6.
The Q-vector space I'(E, 21,) is spanned by the algebraic differential form

_ax

w Y -

We can now choose w; and wo as

wlzz/w and wgzz/w
a B

as explicit generators of the lattice A = A, .,. These numbers are also called
the periods of E. The map
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E* — C/Auy, ws

P (14.5)
r »—>/ w modulo Ay, w,
o

then gives the isomorphism of Equation Here O = [0: 1 : 0] denotes the
group-theoretic origin in F.

The inverse map C/Ay,, ., — E*" for the isomorphism can be
described in terms of the Weierstrafl p-function of the lattice A := A, w,,
defined as

p(z) = p(z,A) ::$+Zﬁ_i

and takes the form
C/ Ay, wy — E™ C PE

[P(2): 9'(2) < 1] 2 ¢ Awywn

z mod Ay, w, —
[0:1:0] 2 € Ay -

Note that under the natural projection 7 : C — C/A,, ., any meromor-
phic function f on the torus C/A,, ., lifts to a doubly-periodic function 7* f
on the complex plane C with periods w; and ws

fl@+nw; +mws) = f(x) forall nymeZ and zeC.

This example is possibly the origin of the “period” terminology.
The defining coefficients g4, g¢ of E can be recovered from A, ., using
the Eisenstein series

Gop 1= Z w* for k=23
weA
w#0

by setting go = 60G4 and g3 = 140G¢. Therefore, the periods w; and wq
determine the elliptic curve E uniquely. However, they are not invariants of
E, since they depend on the chosen Weierstraf3 equation of E. A change of
coordinates which preserves the shape of , must be of the form

X' =u’X, Y =4, Z =27 for ueQ*.
In the new parametrisation X’,Y’, Z’, we have

! 4 ! 6
4 == G47 Gﬁ = U Gﬁ,
W =u"lw

Wi =utw and wh =u"tws.
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Hence, 7 = wy /w1 is a better invariant of the isomorphism class of E. The
value of the j-function (a modular function)

3
(r) = 17282 — 71 £ 744 4 196884g + - -+ (q = exp(2i)
g5 — 2793

on 7 indeed distinguishes non-isomorphic elliptic curves E over C:
E > E' if and only if j(E) = j(E').

Hence, the moduli space of elliptic curves over C is the affine line.

A similar result holds over any algebraically closed field K of characteristic
different from 2 or 3. For fields K that are not algebraically closed, the set of
K-isomorphism classes of elliptic curves isomorphic over K to a fixed curve
E/K is the Weil-Chdtelet group of E [Sil86], an infinite group for K a number
field.

However, E has two more cohomological periods which are also called
quasi-periods. In Section we will prove that w = % together with the
meromorphic differential form

dX
=X—
" Y

spans HJg (E), i.e., modulo exact forms this form is a generator of H'(E, Of)
in the Hodge decomposition. In the same way that w corresponds to dz under
(14.5), n corresponds to g(z)dz. The quasi-periods then are

77112/777 77212/77~
et B

We obtain the following period matrix for E:

(14.6)

Lemma 14.4.1. One has the Legendre relation
w1 — won = £27i.

Remark 14.4.2. The sign in the statement corresponds to a choice (and
or(ller) of the basis {a, B} of H{"(E*",Z), if we fix the basis {%X, X X} of
Higr(E).

Proof. In this proof, we will define w; and 7; as above and choose « resp. 8
to correspond to the projection of the straight paths from a to a + w; resp.
from a to a + wo for some a ¢ A. Consider the Weierstrafl (-function [Sil86),
p. 166]
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1 1 1 z
weA
w#0
It satisfies ¢'(z) = —gp(z). Since ('(z) = —p(z) and p is periodic, we have
that the function n(w) := {(z) — ((# + w) is independent of z. Even more,
some values of this function are quasi-periods since

w= | - / T ez = - / " e = Cla)—Clatwn) = ()

Note that our sign convention for n(w) and our condition wy/w; € H differ
both from the literature, e.g. from [Sil86l p. 166].

Using all this, the counter-clockwise path integral around the fundamental
domain centered at some point a ¢ A, ., vields

2mi = /a(H_Wl C(z)dz + /IH_UJH_UJ2 C(z)dz — /aa—s_Wler2 C(z)dz — /:4-“& ((2)dz

a+wi +w2
a+wiq

atw2
- / (C(2) = (= +wr))dz + / (C(2) = C(z + wn)) dz

a

= win(wz) — wan(wi)

= Witz — WaM1.
O

This is the second instance where we have shown that a determinant of a
period matrix is a power of 27 multiplied with a square root of a rational
number. This was also remarked by Kontsevich and Zagier, and a proof can
be found in [Erel4].

In the following two examples, all four periods are calculated and yield
I'-values (including /7 = I'(1/2)), 7 and algebraic numbers. Such period ex-
pressions for elliptic curves with complex multiplication are nowadays called
the Chowla-Lerch-Selberg formula, after Lerch [Ler97] and Chowla-Selberg
[CS49]. See also the note of B. Gross [Gro79].

Example 14.4.3. Let E be the elliptic curve with g = 0 and affine equation
Y? = 4X3 — 4X. The periods of this curve are [Wal0g]

1 (1 1\ I(1/4)? .
b (4’2) = i @2 =

9 / o dx / *° dx

Wl = —_— —_— s —
1 VAx3 — Az 1 Vad—=x 2

using the Beta function and functional equations for the I' function, and the

quasi-periods are

™ (2m)3/2 ,
m=-——= —W» M2 = —W.
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E has complex multiplication with ring Z[i] (Gaufliian integers).

Example 14.4.4. Look at the elliptic curve F with g4 = 0 and affine equa-
tion Y2 = 4X3 — 4. Then one has periods [Wal0§]

/oo dx _/°° de 1 /11 (/3> o — o
1 /741’374_ 1 /727371_3 672 - 24/37{_ 9 2_p 1

w1 = 2
—14++—3
2

where p = , and the quasi-periods are

21 27/3 72

_ _ — 2
N R T 3iRr(1j3) mTOM

E has complex multiplication with ring Z[p] (Eisenstein numbers).

Both of these examples have complex multiplication. As we have explained
in Example G. V. Chudnovsky [Chu80] has proved in agreement with
Grothendiecks period conjecture that trdegyP(E) = 2 if E is an elliptic curve
with complex multiplication, as he could show for the entries of the period
matrix that w; and 7 are both transcendental and algebraically indepen-
dent, and wo, 71 and 7, are algebraically dependent. Of course, the transcen-
dence of 7 is Lindemann’s theorem. A combination of these arguments with
Chudnovsky’s results gives also that I'(1/3) and I'(1/4) are transcendental
numbers, algebraically independent of = [WalO§|. The transcendence of wy
in these two examples also follows from a theorem of Th. Schneider [Sch35],
see [Wal08]. Schneider showed more generally that any nonzero period of an
elliptic integral of the first or the second kind with algebraic coefficients is
transcendental, see Schneiders book [Sch57, Theorem 15, version IIT].

For elliptic curves without complex multiplication, it is conjectured that
the Legendre relation is the only algebraic relation among the five period
numbers w1, wa, 11, N2 and 7. But this is still open.

14.5 Periods of 1-forms on arbitrary curves

Let X be a smooth, projective curve of geometric genus g over k, where
k C C. We denote the associated analytic space by X?".

In the classical literature, different types of meromorphic differential forms
on X?" and their periods were considered. The survey of Messing [MesT5]
gives a historical account, see also [GHTS8, pg. 459]. In this section, we mention
these notions, translate them into a modern language, and relate them to
cohomological periods in the sense of Chapter since the terminology is
still used in many areas of mathematics, e.g., in transcendence theory.

A meromorphic 1-form w on X" is locally given by f(z)dz, where f is
meromorphic. Any meromorphic function has poles in a discrete and finite
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set D in X®". Using a local coordinate z at a point P € X" we can write
f(2) = 27vP) . h(z), where h is holomorphic and h(P) # 0. In particular, a
meromorphic 1-form is a section of the holomorphic line bundle 2%.. (kD)
for some integer k > 0. We say that w has logarithmic poles, if v(P) < 1
at all points of D. A rational 1-form is a section of the line bundle 2% (kD)
on X. In particular, we can speak of rational 1-forms defined over k, if X is
defined over k.

Proposition 14.5.1. Meromorphic 1-forms on X®" are the same as rational
1-forms on X.

Proof. Since X is projective, and meromorphic 1-forms are sections of the line
bundle 2%.. (kD) for some integer k > 0, this follows from Serre’s GAGA
principle [Ser56]. O

In the following, we will mostly use the analytic language of meromorphic
forms.

Definition 14.5.2. A differential of the first kind on X?" is a holomorphic 1-
form (hence closed). A differential of the second kind is a closed meromorphic
1-form with vanishing residues. A differential of the third kind is a closed

meromorphic 1-form with at most logarithmic poles along some divisor D*" C
xan,

Note that forms of the second and third kind include forms of the first
kind.

Theorem 14.5.3. Any meromorphic 1-form w on X®* can be written as
w=df + w1 + w2 + ws,

where df is an exact form, wyi is of the first kind, wy is of the second kind,
and ws is of the third kind. In this decomposition, up to exact forms, wsz is
unique up to forms of the second kind and wy is unique up to forms of the
first kind. The first de Rham cohomology of X2 is given by

1 — forms of the second kind

Hl Xan () o
ar(X™, C) exact forms

The inclusion of differentials of the first kind into differentials of the second
kind is given by the Hodge filtration

HO(X™, Q) C Hlp(X™,C).
For differentials of the third kind with poles along D*", one has

FIHY(X* \ D, C) = HO (X Q%..(D™))
1 — forms of the third kind with poles along D"
exact forms '

1
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Proof. Let w be a meromorphic 1-form on X*". The residue theorem states
that the sum of the residues of w is zero. Suppose that w has poles in the
finite subset D?" C X?2". Then look at the exact sequence

0= HO(X™, 2ku) = HO(X™ Q%0 (D) S P CHH'(X™, 2kun).
PeDan

This shows that there exists a 1-form w3 € HO(X™", 2%.. (D)) of the third
kind which has the same residues as w. The identification

FIHY(X* \ D™ C) = H (X, 2%.. (D™))

is by definition of the Hodge filtration. In addition, the form w — w3 is of
the second kind, i.e., it has perhaps poles but no residues. Hence w — w3
defines a form ws of the second kind. All this is only unique up to a form w;
of the first kind and up to exact forms. This proves the decomposition. To
prove the statement about the cohomology group Hjy (X", C), look at the
meromorphic de Rham complex

d
Q% an (%) == 2% an (%)

of all meromorphic differential forms on X" with arbitrary poles along ar-
bitrary divisors. The cohomology sheaves of it are given by [GHT78| pg. 457]

HO2%u (1) =€, W Q)= P C.

PeXxan

These isomorphisms are induced by the inclusion of constant functions and
the residue map respectively. With the help of the spectral sequence abutting
to H* (X, 2% (%)) [GHT8, pg. 458], one obtains an exact sequence

(X, 2k (4))
0— Hiz(X* C) - X R C
ar C) exact forms @ ’

and the claim about Hjg (X?", C) follows. O

Corollary 14.5.4. In the algebraic category, if X is defined over k C C, we
have that

1 . rational 1 — forms of the second kind over k
Hip(X) = .
exact forms
We can now define periods of differentials of the first, second, and third
kind.

Definition 14.5.5. Periods of the n-th kind (n=1,2,3) are integrals of ra-
tional 1-forms of the n-th kind



300 14 Elementary examples

/ w,
.

where « is a closed path avoiding the poles of w for n = 2 and which is
contained in X \ D for n = 3.

In the literature, periods of 1-forms of the first kind are usually called
periods, and periods of 1-forms of the second kind and not of the first kind
are sometimes called quasi-periods.

Theorem 14.5.6. Let X be a smooth, projective curve over k as above.
Periods of the second kind (and hence also periods of the first kind) are
cohomological periods in the sense of [11.3.1] of the first cohomology group
HY(X). Periods of the third kind with poles along D are periods of the coho-
mology group HY(U), where U = X \ D.
Every period of any smooth, quasi-projective curve U over k is of the first,
second or third kind on a smooth compactification X of U.

Proof. The first assertion follows from the definition of periods of the n-
th kind, since differentials of the n-th kind represent cohomology classes in
HY(X) for n = 1,2 and in HY(X \ D) for n = 3. If U is a smooth, quasi-
projective curve over k, then we choose a smooth compactification X and the
assertion follows from the exact sequence

0 — HO(X™, Q%un) = HO(X™, 2k (D))™S @ CHHL(X™, 2k.n)

PeD
by Theorem 0
Examples 14.5.7. In the elliptic curve case of Section m w = % is a
1-form of the first kind, and n = X % a 1-form of the second kind, but not of

the first kind. Some periods (and quasi-periods) of this sort were computed
in the two Examples|14.4.3|and [14.4.4] For an example of the third kind, look
at X = P! and D = {0,00} where w = % is a generator with period 2mi.
Compare this with Section where logarithms also occur as periods. For
periods of differentials of the third kind on modular and elliptic curves see
[Brul3].

Finally, let X be a smooth, projective curve of genus g defined over Q.
Then there is a Q-basis wi,...,wg,M,...,7ny of Hiz(X), where the w; are
of the first kind and the 7; of the second kind. One may choose a basis
ai,...,ag,B1,..., 0, for HS™&(X0 7), such that after a change of basis
over Q, we have faj w; = d;; and fﬂj ni = 6;j.

The period matrix is then given by a block matrix:

(14.7)
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where, by Riemann’s bilinear relations [GHTS8, pg. 123], 7 is a matrix in
the Siegel upper half space Hy of symmetric complex matrices with positive
definite imaginary part. In the example of elliptic curves of Section the
matrix 7 is the (1 x 1)-matrix given by 7 = wo/w; € H.

For transcendence results for periods of curves and abelian varieties, we
refer to the survey of Wiistholz [Wiis12], and our discussion in Section [13.2]
of Part ITI.






Chapter 15
Multiple zeta values

This chapter follows partly the Diploma thesis of Benjamin Friedrich, see
[Fri04]. We study in some detail the very important class of periods called
multiple zeta values (MZV). These are periods of mixed Tate motives, which
we discussed in Section [6.4 Multiple zeta values are in fact periods of un-
ramified mixed Tate motives, a full subcategory of all mixed Tate motives.
A general reference for all aspects of multiple zeta values is [BGF].

We first explain the representation of multiple zeta values as period inte-
grals due to Kontsevich. Then we discuss some of their algebraic properties
and mention the work of Francis Brown and others, showing that multiple
zeta values are precisely the periods of unramified mixed Tate motives. We
also sketch the relation between multiple zeta values and periods of mod-
uli spaces of marked curves. Finally, we discuss an example of a variation of
mixed Tate motives in a family, and compute the degeneration of Hodge struc-
tures in the limit. The period as functions of parameters in the case of families
of algebraic varieties become interesting special functions, called (multiple)
polylogarithms. Many questions about multiple zeta values and (multiple)
polylogarithms are still open, in particular about their transcendence prop-
erties. This is strongly connected to Grothendieck’s period conjecture. We
start with the simplest and classical example of ((2).

15.1 A (-value, the basic example

In Prop. [12.1.5] we saw how to write ((2) as a Kontsevich-Zagier period:

dxr A\ dy
2) = —_—
¢(2) /0<x<y<1(1—ff)y

The problem was that this identity did not give us a valid representation of
¢(2) as a naive period, since the pole locus of the integrand and the domain

303
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of integration are not disjoint. We show how to circumvent this difficulty, as
an example of Theorem [12.21]
First we define (often ignoring the difference between X and X2"),

Y := A? with coordinates z and v,
Z:={x=1}U{y =0},
X:=Y\Z
D:=({z=0tu{y=1tu{z =y} \ Z,
A:={(z,y)eY|z,yeR, 0<z<y<1} atriangleiny, and
_dxANdy

(1-2)y’

thus getting

with w € I'(X, %) and 9A € D U{(0,0),(1,1)}, see Figure

Z

Fig. 15.1 The configuration Z, D, A

Now we blow up Y at the points (0,0) and (1,1) obtaining = : Y -5 Y.
We denote the strict transform of Z by Z, mw by @ and Y \ Z by X. The
“strict transform” 7—1(A \ {(0,0), (1,1)}) will be called A and (being Q-
semi-algebraic hence triangulable — cf. Proposition gives rise to a

singular chain

7 € Hy"(X, D; Q).

Since 7 is an isomorphism away from the exceptional locus, this exhibits

C(2)=/Aw=/£&e]?nv=]?

as a naive period, see Figure [15.2]
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Fig. 15.2 The configuration Z, D, A

We will conclude this example by writing out w and A more explicitly.
Note that Y can be described as the subvariety

A%@ x P1(Q) x P1(Q) with coordinates (Z,7, [Xo : A1), [0 & p1])

cut out by
:’f)\o = gAl and (5 — 1)‘LLO = (gf 1),U,1
With this choice of coordinates 7 takes the form

T Y — Y
(Ea §, [)‘0 : )\1]7 [/140 : Ml]) = (5737)

and we have X := Y \ ({Ao = 0} U {1 = 0}). We can embed X into affine
space

v 4
X = A
S A
(xaya )‘0 : )\laMO : ,U/l) = (.’E,y, )\717 @)
0 M1
and so have affine coordinates T, y, A := i—; and p = % on X.
Now, near 7~1(0,0), the form @ is given by
oo drNdy  d(My) Ndy  dAANdy
G-y -3y 1-3

while near 771(1,1) we have

o dEAdG _dEAdG-1) _dEAdpE-1)

—dx N du
(1-2)y '

(1-2)y (1-2)y Y

The region A s given by
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A={@E7 \p) e X(C)|ZpAMpeR, 0<F<y<1, 0<A<T, 0<pu<1).

15.2 Definition of multiple zeta values

Recall that the Riemann {-function is defined as

¢(s) == Zn_s, Re(s) > 1.

It has an analytic continuation to the whole complex plane with a simple
pole at s = 1.

Definition 15.2.1. For integers s, ...,s, > 1 with s; > 2 one defines the
multiple zeta values (MZV)

<(817~-~7sr) = Z nfsl ...nr_sr.

niy>ng>...>n,>1

The number n = s; + - - + s, is the weight of ((s1, ..., s,). The length is r.

Lemma 15.2.2. ((s1,...,s,) is convergent.
Proof. Clearly, ((s1,...,8:) < ((2,1,...,1). We use the formula

m—1

Z n~! < 14log(m —1),

=1

3

which is proved by comparing with the Riemann integral of 1/z. This implies
that

1+1 —1)"

2,1,...,1) < ni? nol.ooopot < ( Og(nl )) :
' ? " n?
n1:1 1

ni=1 1<n,.<---<n2<n;—1

which is convergent. O
Lemma 15.2.3. The positive even -values are given by

(27.(.)2m
2(2m)! 2™

((2m) = (-1

where Bo,, is a Bernoulli number, defined via

o °°B tm
etfl_Z ™l

m=0
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The first Bernoulli numbers are By = 1, By = —1/2, Bs = 1/6, B3 = 0,
B4y = —1/30. All Bernoulli B,,, numbers vanish for odd m > 3.

Proof. One uses the power series

n=1

The geometric series expansion gives

xcot(z) =1 —22(”’+)2 =1-2 Z mT((Qm)
n=1 1- (%) m=1 &

On the other hand,

e et QZiwmy ] 2ix _ > (2ix)™
x cot(x) = W =W = i+ e zx—i-mz::OBmT.
The claim then follows by comparing coefficients. O
Corollary 15.2.4. For m =1 and m = 2, one immediately gets ((2) = %2

4

and ((4) = g5 -

¢(s) satisfies a functional equation

s

¢(s) = 2°7° Lsin (?) (1 —s)c(1—s).

Using this, one can show:

Corollary 15.2.5. {(—m) = —Bmi1 for m > 0. In particular, {(—2m) =0

m-+1
form > 1. These are called the trivial zeroes of ((s).

Remark 15.2.6. J. Zhao has generalised the analytic continuation and the
functional equation for meromorphic functions corresponding to multiple zeta
values [Zha00].

In the following sections, we want to further study multiple zeta values as
periods. They satisfy many relations. Already Euler knew that ((2,1) = ¢(3).
This can be shown as follows:
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=1 1 1 1l 1
C(@*‘C(ZU—ZE‘F T nT:ZﬁZE
n=1 1<k<n 1<k<n n=1 k=1
1 1 1 1
_kn21n2 (k n+k)_k§;1nk(n+k)
1 1) 1 1 1

= —+ - = -

k;1 <n k) (n+k)? k%; n(n + k)2 kgl k(n+ k)2
=2¢(2,1)

Other relations of this type are

€(2,1,1) = ¢(4),

(2,2 = 3¢)
((3.1) = 7¢(4),
C2)? = ¢,

¢(5) =¢(3,1,1) +¢(2,1,2) + ¢(2,2,1)
€(5) = ¢4, 1) +((3,2) +((2,3).

The last two relations are special cases of the sum relation:

()= > C(s1,80)

S1+-tsp=n

We will see more such relations, after we have studied other properties of

multiple zeta values.
15.3 Kontsevich’s integral representation
Define 1-forms wqg := % and wy := 1‘%. ‘We have seen that

@)= [ wltaln)

0<t1<t2<1
In a similar way, we get that
)= | ot Joltn1) - n (1)
0<t1 <+ <tn <1

We will now write this as
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Definition 15.3.1. For €1, ...,¢, € {0,1}, we define the Kontsevich-Zagier
periods

I(ey...€1) := / We, (tn)we,, _, (tn—1) + - we, (1),
0<t; < <t, <1

In this generality, the integrals do not converge for some choices of ¢;. They
do, if the string €y, ..., €, starts with a 0 and ends with a 1. In all cases where
there is some numerical evaluation, we assume tacitly that the parameters
are chosen such that convergence holds. Note that this definition differs from
parts of the literature in terms of the order, since there are two canonical
choices. One has the following important formula:

Theorem 15.3.2 (Attributed to Kontsevich by Zagier [Zag94]).

C($1, 0y 8,) = I(0...010...01...0...01).
—— =

S1 S2 Sy

In particular, the convergent MZV (i.e., the ones with s; > 2) are Kontsevich-
Zagier periods.

Proof. For the proof we define more generally

I(0;€p ... €152) := / We, (tn)we, _y (tn—1) -+ we, (t1)
OStIS”'StnSZ

for 0 < z < 1. Then we show that

an
1(0;0...010...01...0...01;2) = > —_
S—— N = Tlll sy
S1 So S ni>ng>...>n,>1
Convergence is always ok for z < 1, but at the end we will have it for z =1
by Abel’s theorem. We proceed by induction on n = ZZ=1 s;. We start with

n=1:

n+1

1039 = [Can = [ Sra=Y S -

n>0 n>0 n>1

The induction step has two cases:

= dty,
1(0;00...010...01...0...01;2) :/ —1(0;0...010...01...0...01;t,)
—— —— o tn N— e —— ——

S1 S2 Sy S1 S2 Spr
z n n
I $ ot 3 o
t nsl ... nST Sl+1 e Sr :
0 " isne>..>ne>1 0L T iSne>..>ne>1 0 nr
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1(0;10...010...01...0...01; )
S—— =

S1 S2 Sy

* dt,
:/ 1(0;0...010...01...0...01;¢,)
o 1—t, —_— —

S1 S2 Sy

z oo tnl
m n
:/O dt Z: weoY e

ni>na>..>n.>1 1

ZZ/dt

m=0n;>n2>...>n,>1

tnl +m

no

2 -
nil...nﬁr.

no>ni>nz>...>n>1

In the latter step we strictly use z < 1 to have convergence. It does not
occur at the end of the induction, since the string starts with a 0. Convergence
is finally proven by Abel’s theorem in the last step. O

15.4 Relations among multiple zeta values

In this section, we present a slightly more abstract viewpoint on multiple
zeta values and their relations by looking only at the strings representing
a MZV integral. It turns out that there are two types of multiplications
on those strings, called the shuffle and stuffle products, which induce the
usual multiplication on the integrals, but which have a different definition.
Comparing both leads to all kind of relations between multiple zeta values.
The reader may also consult [BGE], IKZ06, Hof97, [HO03| [Henl2] for more
information.

In the literature, the shuffle and stuffle relations are an important tool,
especially in the more computationally oriented physics literature, since they
resemble the Hopf algebra structure which is behind everything.

A MZV can be represented via a tuple (s1, ..., s,.) of integers or a string

§s=0...010...01...0...01
—— =

s1 S2 Sr

of 0’s and 1’s. There is a one-to-one correspondence between strings with a
0 on the left and a 1 on the right and all tuples (si,...,s,) with all s; > 1
and s; > 2. Such strings are calles admissible. For any tuple s = (s, ..., ),
we denote the associated string by §. We will formalise the algebras arising
from this set-up.
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Definition 15.4.1 (Hoffman algebra). Let

h:=Qz, ) =00 QW dQyeQry®Qyzr ®---

be the free non-commutative graded algebra in two variables z,y (both of
degree 1). There are subalgebras

h':=Qa by, b’ :=Qdahy.
The generator in degree 0 is denoted by I.

We will now identify = and y with 0 and 1, if it is convenient. For example
any generator, i.e., a non-commutative word in z and y of length n can be
viewed as a string €, ---€; in the letters 0 and 1. With this identification,
the generators of h° consist of admissible strings and there is obviously an
evaluation map ¢ : h® — R such that

Clen - €1) = I(€n, ..., €1)
holds on the generators of h°. In addition, if s is the string

s=¢€p-€=0...010...01...0...01,
—_— =

S1 S2 Sr

then we have ((s1, ..., 8n) = ((s) by Theorem [15.3.2

We will now define two different multiplications
IH, * 1 b X h — ba

called shuffle and stuffle product, such that ¢ becomes a ring homomorphism
when restricted to h° in both cases.

Definition 15.4.2. Define the shuffle permutations for r + s = n as
Yesi={o€eX,|o(l)<o2)< - <o(r),o(r+l) <o(r+2) <--- < o(r+s)}.
Define the action of o € X, 5 on the set {1,2,...,n} as

O(T1...20) 1= To1(1)-To1(p)-

The shuffle product is then defined as

1.l y...xy = E o(xy...xy).
UEZT,S

Theorem 15.4.3. The shuffle product 11 defines an associative, bilinear
operation with unit I and hence an algebra structure on b such that after
restriction to h°, ¢ becomes a ring homomorphism. It satisfies the recursive
formula
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ullly = a(u'1Iv) + b(ullly'),
if u=au' and v =bv' as strings.

Proof. We only prove that ¢ is a ring homomorphism on h", the rest is
straightforward. Assume a = (ay, ..., a,) is of weight m and b = (by, ..., bs) is

of weight n. Denote by a and b the associated admissible strings. We want to
prove the product formula

¢(allIb) = ¢(a)¢(b).
By Fubini, the product {(a){(b) is an integral over the product domain

Ignoring subsets of measure zero,
A=]]4,
indexed by all shuffles 0 € ¥, 5, and where
Ap = {(t1, estmss) | 0 S tgoray <o Stporgny < 1)

The proof follows then from the additivity of the integral. O

This induces binary relations as in the following examples.

Example 15.4.4. One has
(01)III(01) = 2(0101) + 4(0011)
and hence we have
((2)? = 2¢(2,2) +4¢(3,1).
In a similar way,
(01)III(001) = (010011) + 3(001011) 4+ 9(000111) + (001101),
which implies that

€(2)¢(3,1) =¢(2,3,1) +3¢(3,2,1) +9¢(4,1,1) + ¢(3,1,2),

and
(01)11(011) = 3(01011) + 6(00111) + (01101)

implies that
¢(2)¢(2,1) = 3¢(2,2,1) +6¢(3,1,1) +¢(2,1,2).

Definition 15.4.5. The stuffle product
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x:hxh—h
is defined on tuples a = (ay,...,a,) and b = (b1, ..., bs) as

axb:=(a,...,ar,b1,....;05) + (a1, ...,ar + b1, ..., bs)
+ (al, vy Qp_1,b1,ap, ba, .., bs) + (al, vy 1 + by, a0, 0o, .., bs) + .
Here, the dots --- mean that one continues in the same way as in the first 3
steps by sliding the a-variables from the left to the right into the b-variables,

and adding in the case of a collision. See [BGF, Def. 1.98] for a recursive
definition.

The definition is made such that one has the formula {(a){(b) = {(a * b):

Theorem 15.4.6. The stuffle product x defines an associative, bilinear mul-
tiplication on b inducing an algebra (h,*) with unit I. One has {(a){(b) =
C(a*b) on tuples a and b in §°. Furthermore, there is a recursion formula

uxv = (a,u *v)+ (byu*v)+ (a,b,u xv)
for tuples u = (a,u’) and v = (b,v") with first entry a and b.

Proof. Again, we only give a proof for the product formula {(a)((b) = ((axb).
Assume a = (a1, ..., a,) is of weight m and b = (ay41, ..., ar+s) is of weight n.
The claim follows from a decomposition of the summation range:

C(al; st ar)C(ar—O—la ) ar+s)

_ 2 : —air . ., —ar § : —Qr41 T Or4s
- ny ny nr+1 nr+s -

ni>ne>...>n.>1 N1 >N 2> >Npgs > 1
— E —ay —Qp,, ~Ar41 —Qr4s
= nl ...nT an+1 ...nr+s
N1I>N2 > >Np >Np g1 >Npgp2>0 >Npgs >1
E —a1 o= (artarp1) | "Orts
+ i n, T Nyyg
NI>N2>. . >Ne =Ny 1 >Npp2> .. >Ny s 1
+ etc.
where all terms in the stuffle set occur once. O

This induces again binary relations as in the following examples.

Example 15.4.7.

¢(2)¢(3,1) =¢(2,3,1) +¢(5,1) +¢(3,2,1) +((3,3) +¢(3,1,2)
((2)” = 2¢(2,2) + ¢(4).

More generally,

¢(a)¢(b) = ¢(a,b) + {(a+b)+((b,a), for a,b > 2.
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Since we have ¢(alllb) = ((a * b), we can define the unary double-shuffle
relation as

C(alllb — a % b) = 0.

Example 15.4.8. We have ((2)? = 2((2,2) + 4¢(3,1) using shuffle and
¢(2)% = 2¢(2,2) + ¢(4) using the stuffle. Therefore one has

4C(3,1) = ¢(4).

In the literature [Hof97, [HO03, IKZ0G, [Henl12] more relations were found,
e.g., a modified version of this relation, called the reqularised double-shuffle

relation:
L DY b= > ] =0

be(1)*a ée(1)1lla

Example 15.4.9. Let a = ( ) = (01). Then (1)III(01) = (101) +2(011) and
(1) % (2) = (1,2) + (3) + (2,1). Therefore, the corresponding relation is

€(1,2) +2¢(2,1) = ¢(1,2) + ¢(3) +¢(2,1), hence

¢(2,1) =<(3).

Like in this example, it is always the case that all non-convergent contri-
butions cancel in the relation, since they occur with the same multiplicity in
both expressions. It is conjectured that the regularised double-shuffle rela-
tion generates all relations among MZV. There are more relations: the sum
theorem (mentioned above), the duality theorem, the derivation theorem and
Ohno’s theorem, which implies the first three [HO03, [Hen12].

The above discussion about the search for relations between MZVs raises
the question about the dimension of the spaces of MZV of a given weight.
It was conjectured by Zagier [Zag94] that the Q-vector space Z,, of MZV of
weight n has dimension d,, where d,, is the coefficient of " in the power

series
1
dpt"™ =
Z 1— t2 t

so that one has a recursion d,, = d,,_2 + d,,_3. For example d4 = 1, which
can be checked using the above relations. The fact that dg = 1 is compatible
with the convention that the MZV of weight 0 from a constant summand Q.
This conjecture is still open, however one knows that d,, is an upper bound
for dimg(Z,) [Brol2l [DGO03, [Ter02]. It is also conjectured that the MZV of
different weights are independent over Q, so that the space of all MZV should

be a direct sum
Z =@ 2.
n>0
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The direct sum decomposition would imply immediately that all {(n) (n > 2)
are transcendental.

Hoffman [Hof97] conjectured that all MZV containing only s; € {2, 3} form
a basis of Z. Brown [Brol2] showed in 2010 that this set forms a generating
set. Broadhurst et. al. [BBV10] conjecture that the ((s1,...,s,) with s; €
{2,3} a so-called Lyndon word form a transcendance basis. A Lyndon word
in two letters with an order, e.g. 2 < 3, is a word w such that for all non-trivial
decompositions w = uv, w is smaller than v in lexicographic order.

Of course, such difficult open questions about transcendence are avatars
of Grothendieck’s period conjecture, see Section in this book.

Some values of this sort, with computations mainly due to Zagier, are
mentioned in Brown [Broldl p. 16]:

7r2n
2,2,...,2)= ———
C( ) ) ) ) (2”—"—1)!,
and
a+b+1
(2,52,3,2,..,2) =2 3 (=1)"caprC(2r + 1)¢(2,2,...,2),
b r=1 b+1
a a+b+1—r

for a,b € N5q, where

Capr 1= ((251 2) —(1-27%) <2521 1>) '

We refer to the work of Brown [Brol2, [Brol4] for the relation between the
algebraic structures related to multiple zeta values and the Hopf algebra asso-
ciated to the motivic Galois group of the Tannakian category of (unramified)
mixed Tate motives over Z (see Section . Then, one has:

Theorem 15.4.10 (Brown). The periods of mized Tate motives unramified
over Z are Q[ﬁ]—linear combinations of multiple zeta values.

Proof. This is a result of Brown, see [Brol2, [Del13]. O

In the next section, we relate multiple zeta values to Nori motives and
also to mixed Tate motives. This give a more conceptual description of such
periods in the sense of Chapter [6] see in particular Section [I1.5
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15.5 Multiple zeta values and moduli space of marked
curves

In this short section, we indicate how one can relate multiple zeta values to
Nori motives in some other and surprising way.

Multiple zeta values can also be seen as periods of certain cohomol-
ogy groups of moduli spaces. This viewpoint is discussed in Brown’s thesis
[Bro09]. In this way, they appear naturally as Nori motives. Recall that the
moduli space My, of smooth rational curves with n marked points can be
compactified to the space Mo,n of stable curves with n markings. Goncharov
and Manin in [GM04] observed the following.

Theorem 15.5.1. For each convergent multiple zeta value p = C(81yeey S1)
of weight n = s1 + ... + s, there are divisors A, B in Mo 43 such that p is
a period of the cohomology group H™ (Mo 43\ A, B\ (AN B)).

The group H" (Mo n+3 \ 4, B\ (AN B)) defines of course immediately a
motive in Nori’s sense.

Example 15.5.2. The fundamental example is ((2), which we already de-
scribed in Section Here My 5 is a compactification of

My s = (P\ {0,1,00})%\ diagonal,

and M 5 is isomorphic to the blow up of (0,0), (1,1) and (0o, 00) in P! x PL.
This realises ((2) as the integral

= [ b

<ti<t,<1 L —t2 12

We leave it to the reader to make the divisors A and B explicit.

Recent related research for higher polylogarithms and elliptic polyloga-
rithms can be found in [BLI1]. We do not want to explain this in full gener-
ality, but see the next section for an example.

15.6 Multiple Polylogarithms

In this section, we study a variation of cohomology groups in a 2-parameter

family of varieties over Q, the so-called double logarithm variation, for which

multiple polylogarithms appear as coefficients. This viewpoint gives more

examples of Kontsevich-Zagier periods occuring as cohomological periods of

canonical cohomology groups at particular values of the parameters. The

degeneration of the parameters specialises such periods to simpler ones.
First, define the hyperlogarithm as the iterated integral
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dt dty,
In(ah...,an)::/ 2 ALA
0

<t <<t <1t a1 tn — an

with aq,...,a, € C (cf. [Zha02l p. 168]). Note that the order of terms here
is different from the previous order, also in the infinite sum below.
These integrals specialise to the multiple polylogarithm (cf. [loc. cit.])

. as Qn, 1
Lin,....m, (, cee , ) = (=1)"Is p, (a1,0,...,0,...,a,,0,...,0),
a1 Qp—1 Aan —— ——
my1—1 My —1

which is convergent if 1 < |a1]| < -+ < |an| (cf. [Gon01l 2.3, p. 9]). Alter-
natively, we can describe the multiple polylogarithm as a power series (cf.
[Gon01l Theorem 2.2, p. 9])

k1 k

. .’I/‘ .. .x n
Li,, ..m, (@1, .. Zp) = Z W for |z <1. (15.1)

0<ki<--<ky 1 "

Of special interest to us will be the dilogarithm
Lip(z Z L2’
k>0
and the double logarithm

Llllxy Zk—y
0<k

Remark 15.6.1. At first, the functions Lin, . m, (21,...,2,) only make
sense for |z;| < 1, but they can be analytlcally continued to multivalued mero-

morphic functions on C"™ (see [Zha02, p. 2]), for example Li; (z) = —log(1—x).
One has Lis(1) = by Corollary |1

15.6.1 The configuration

Let us consider the configuration

Y := A? with coordinates z and v,
Z:={zx=a}U{y=0} with a#0,1 and b#0,1
X:=Y\Z

={z=0u{fy=1U{z=y})\Z
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see Figure We will also assume the condition a # b, although this is not
needed in the beginning.
We denote the irreducible components of the divisor D as follows:

Dy :={z =0} \{(0,b)},
Dy :={y=1}\{(a,1)}, and
Ds := {:E = y} \ {(ava)v (b7 b)}

By projecting from Y onto the y- or x-axis, we get isomorphisms for the
associated complex analytic spaces

Dt =2 C\{b}, D3*=C\{a}, and D" =C\ {a,b}.

Fig. 15.3 The algebraic pair (X, D)

15.6.2 Singular homology

We can easily give generators for the second singular homology of the pair
(X, D), see Figure[15.4]

e Let o :[0,1] — C be a smooth path, which does not meet a or b. We define
a “triangle”

A= {(afs),at))|0<s<t <1} CC

e Consider the closed curve in C

a
Cb_{b{»eezﬁls|se[0’1]}7
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which divides C into two regions: an inner one containing  and an outer
one. We can choose € > 0 small enough such that Cj separates § from 0
and 1, i.e., such that 0 and 1 are contained in the outer region. This allows
us to find a smooth path g : [0,1] — C from 0 to 1 not meeting C;. We
define a “slanted tube”

Sp = {(B(t) - (b+ ec®™®),b+ ee®™) | 5, € [0,1]} € C?

which winds around {y = b} and whose boundary components are sup-
ported on D; (corresponding to t = 0) and D3 (corresponding to ¢t = 1).
The special choice of S guarantees S, N Z(C) = 0.

e Similarly, we choose € > 0 such that the closed curve

b—1
Ca {alge%wse[o, ]}

separates % from 0 and 1. Let 7 : [0,1] — C be a smooth path from 0
to 1 which does not meet C,. We have a “slanted tube”

Sa={(a+e”™ 1+ () (a+e® —1))|s,t €[0,1]} C C?

winding around {z = a} with boundary supported on Ds and Ds.
e Finally, we have a torus

T :={(a+ ee®™ " b+ ec*™) |s,t € [0,1]}.

The 2-form ds A dt defines an orientation on the unit square [0,1]> =
{(s,t)]s,t € [0,1]}. Hence the manifolds with boundary A, Sy, Sg, T in-
herit an orientation, and since they can be triangulated, they give rise to
smooth singular chains. By abuse of notation we will also write A, Sy, S,, T

Sb.

Fig. 15.4 Generators of H;ing(X,D;Q)
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for these smooth singular chains. The homology classes of A, Sy, S, and T
will be denoted by 7o, 71, 72 and -3, respectively.

An inspection of the long exact sequence in singular homology will reveal
that o, ...,vs form a system generators (see the following proof)

H}"8(D,Q) —— Hy™(X,Q) —— H}"$(X,D,Q) ——
H™(D,Q) —"— H{™(X,Q).

Proposition 15.6.2. With notation as above, we have for the second singular
homology of the pair (X, D)

Hy"8(X,D;Q) = Qv @ Qv @ Qe @ Q.

Proof. For ¢ := a and ¢ := b, the inclusion of the circle {c + ee*™* | s € [0,1]}
into C\ {c} is a homotopy equivalence, hence the product map T — X (C)
is also a homotopy equivalence. This shows

H3™(X,Q) =Q-[T],

while H8(X, Q) has rank two with generators:

e one loop winding counterclockwise around {z = a} once, but not around
{y = b}, thus being homologous to both 95, N D3(C) and —9S, N D3(C),
and

e another loop winding counterclockwise around {y = b} once, but not
around {x = a}, thus being homologous to 9S,N.D;(C) and —9S,ND3(C).

In order to compute the Betti numbers b; of D, we use the spectral sequence
for the closed covering {D;}

EY = @ Hi(Dr,C)= EXNY = HF(D,C),
[I|=p+1

with I a strictly ordered tuple of elements of {1,2,3}, and Dy = (,c; D;. As
the D; are affine of dimension 1, cohomology is concentrated in degrees q =
0, 1. Moreover, D; N Dy N D3 = (), hence the spectral sequence is concentrated
in p=0,1. We have

. 0 0 0 0---
pra. 0@?:1 HéR(Di,(C) 0o 0---
2 e 0 Kerd Cokerd O - - -
0 0 0 0

where

3
§: @ Hix(Di,C) — @ HIx(D;;, C).
=1

i<j
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Note that this spectral sequence degenerates at F,. Since D is connected, we
have by = 1, i.e.,

1 = by = dim¢ Ego = dim¢ Eg,o = dim¢ Kerd.
Hence

dim¢ Cokerd = dim¢ codomain § — dime domain § + dime Kerd
=(141+1)-(1+1+1)+1=1,

and so

by = dime EL, = dime E3° + dime EJ?
3
= Z dime Hig (D;, C) + dime Cokerd
=1
= dim¢ H'(C\ {b},C) + dim¢ H'(C\ {a},C) + dim¢c H'(C\ {a,b},C) + 1
=(1+1+2)+1=5.

We can easily specify generators of H;™8(D, Q) as follows
HY™(D,Q) = Q(9SyND1)® Q-(0S,ND2)® Q-(0S,ND3)& Q:(9S.ND3)& Q-IA.

As D is affine of dimension 1, we have by = dim¢ H;ing(D,Q) = 0. Now we
can compute Keri; and obtain

Keri; = Q-0A®Q-(0SyND;(C)+dSyND3(C))BQ:(9S,ND2(C)+8S,ND3(T)).
This shows finally
dimg H3™8 (X, D; Q) = dimg H3"#(X, Q) 4 dimg Keri; =1+ 3 = 4.

From these explicit calculations we also derive the linear independence of
Yo = [A], 71 = [Sb], 72 = [Sal, 73 = [T] and Proposition [15.6.2|is proved. O

15.6.3 Smooth singular homology

Recall the definition of smooth singular cohomology from Definition
It computes singular cohomology by Theorem With the various sign
conventions made so far, the boundary map 6 : S5°(X, D; Q) — S°(X, D; Q)
is given by
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3
51 S5°(X, Q)aP S (Di, Q)P S5°( U@ale@eaEBSo D;,Q)

i=1 1<J i=1

(0,01,02,03,012,013,023)
9 1 2 3 12 13 23

(80’ + 01+ 0o+ 03,—001 + 019 + 013, — 009 — 012 + 093, —003 — 013 — 023).
0 1 2 3

where the little subscripts gives the ordered tuple of indices I characterises
the summand in which the element above lives. Thus the following elements
of C*(X, D;Q) are cycles

o [y:= (A 8A0D1( ),*aAﬁDQ(C),*aﬂﬂDg(C),Dlz(C),*Dlg(C),Dgg(C)),
o [ := (b(;b, 8SbOD1( ),0 0, 8SbﬂD3((C) %PZ,%), - " v

o [H:= (b;a,(l), 85 ODQ((C), —05, ﬁDg((C) 021037203) and

o Iy:= (%’9’9’9 1213 23)

Under the isomorphism H$°(X, D; Q) — H5™8(X, D; Q) the classes of these
cycles [Ip], [I1], [I2], [I'5] are mapped to o, 71, V2, 73, respectively.

15.6.4 Algebraic de Rham cohomology and the period
matriz of (X, D)

Recall the definition of the complex !~23< p- We consider

3
IX, 0% p) =X, 2%) e P rm:,2p)e@rmo;,op,)
=1

i<j

together with the following cycles of I'(X, f?g( D)

o w:=(0.0.0.0.0.0.1).
121323

— —dy
® Wy = (0 ylb,o 9710271037203)>
® Wy = (ana%dmaoaoaovo)7and
150737127137 23

_ dzNdy
® ws: ((1: azb(y b)70707(3)7102 103 203)

S

By computing the (transposed) period matrix P;; := (I, w;) and checking
its non-degeneracy, we will show that wy, ..., ws span Hiz (X, D).
Proposition 15.6.3. Let X and D be as above. Then the second algebraic

de Rham cohomology group H3g (X, D) of the pair (X, D) is generated by the
cycles wy, . ..,ws considered above.
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Proof. Easy calculations give us the (transposed) period matrix P:

For example,

L4 P1,1 = <F170J1>

o P33 =(I3ws)

o Po=(Io,w1)

o Py =(I",w3) =

| I I I3 I3
wo| 1 0 0 0
w1 Ll]_(%) 21 0 0
Wo L11(5> 0 21 0

ws| 7 2miLiy(2 )2mlog<%2) (2mi)2.

—08,ND1(C) y—b

ly—bl=€ y—b
= 2m,

fT r—a T
_ (ﬁml:e %) . (ﬁyfb\:e %) by Fubini
= (2mi)?,
= f —dy
dANDL(C) y—b
1 —«
:f a(t)(tb
= —[log(a(t) — b)]
—log(%bb)
1
b

i
e
—

— I~
=}
09
—~
[
[

i (%), and
dx dy

Sy x—a y—>b

- ﬁ(t b+ee2ﬂ"')) d(b+eezﬂs)
f[O 1]2 B(t)-(b+ee2™is)—a €e2mis

27mis

= ‘[\[0,1]2 Wdﬁ(t) A 27TZdS

L T alog(B(0)-(b4ec™*) —a) —2miB(t)bs |
_ a log . €e —Q |—4T S
== /O { HOReaTED) | 4B

= =2y 50y

= —2mi [log(B(t) — %)]
= —2mi log( %%)

= —27 log(l - %)

= 2miLi; (2).

Obviously, the period matrix P is non-degenerate and so Proposition

is proved.

O

What about the entry Pz ?
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Proposition 15.6.4. P3¢ = Li171(b 1).

a’b
Proof. For the proof we need to show that (Ip,ws) = Lil,l(g, %), where
Li; 1(x,y) is an analytic continuation of the double logarithm defined for
|z|,]y] < 1 at the beginning of Section [15.6] The following Lemma
describes this analytic continuation in detail, and therefore completes the
proof. Our approach is similar to the one taken in [GonOll 2.3, p. 9], but
differs from that in [Zha07l p. 7]. O

Before stating Lemma [15.6.5] we need to explain some more notation. Let
B := (C\ {0,1})? be the parameter space and choose a point (a,b) € B,
For € > 0 we denote by D.(a,b) the polycylinder

D.(a,b) :={(a',b") € B* ||’ —a| <, |b\ — b <€}

If «:[0,1] — C is a smooth path from 0 to 1 passing through neither a nor
b, then there exists an € > 0 such that Im(«) does not meet any of the discs

Doc(a) :={a' € C||a' —a|] < 2¢}, and
Do (b) :={b" € C||b" —b| < 2¢}.

Hence the power series (15.2)) below

(77=0) s5)
w-2) () () (=)

1 !
(a(s) — ) {aft) — B

Ck.1

—~

Il
N

—a)f (b’ —b)t  (15.2)

I
WK

>

=0

has coefficients cj; satisfying

1 k+1+2
< (= .
|ck.a (26>

In particular, (15.2) converges uniformly for (a’,b’) € D.(a,b) and we see
that the integral

af da(s) do(t)
2@, b") ._~/O§s§t§1 a(s) —a’ " aft) — b’

— da(s) da(t) ) /
- Z </o<s<t<1 (a(s) —a)k+t A (a(t) — b)l+1> (@ —a)*(b" —b)

k,1=0 Sssts
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defines an analytic function on D.(a,b). In fact, by the same argument we
get an analytic function I§ on all of (C\ Ima)?.

Now let a, : [0,1] — C\ (Dz2c(a) U Dy (b)) with € [0,1] be a smooth
homotopy of paths from 0 to 1, i.e. @,.(0) = 0 and «,.(1) =1 for all » € [0,1].
We show

I5°(a',b") =151 (a’,b") for all (a’,b") € Dc(a,b).
Define a subset I" C C?
I:={(ar(s),ar(t))|0< s <t <1,r €[0,1]}.

The boundary of I" is built out of five components (each being a manifold
with boundary)

. Fs —o = {(0,a,(t)) |r,t € [0, 1]},

o [y = {(ar(s),ar(s))|r,s €[0,1]},

. thl = {(ar(s),1)|r,s €[0,1]},

o g :={(ap(s),ap(t)|0<s <t <1},
o Iy :={(a1(s),an(¥) |0 < s <t <1}

Let (a/,b’) € Dc(a,b). Since the restriction of —42 A —%— to Iy, I'\—y and
. T—a y—>b
I';—1 is zero, we get by Stokes’ theorem

dy
0= /[ 0=
/ /x—a y—0b'
d
_/ T A dy
oarx—a y—>b'

B / da: dy
- Fooy—Tomg T — @'y = b’

=13 (a’,b") = 15°(d’, b").

For each pair of smooth paths ag, oy : [0,1] — C from 0 to 1, we can find a
homotopy «,. relative to {0,1} between both paths. Since Im(«,.) is compact,
we also find a point (a,b) € B* = (C\ {0,1})? and an € > 0 such that
Im(cv,.) does not meet Dac(a,b) or Dac(a,b). Then I5° and I5* must agree on
D.(a,b). By the identity principle for analytic functions of several complex
variables [Gun90], the functions I§(a’,b’), each defined on (C\Im(«))?, patch
together to give a multivalued analytic function on B** = (C\ {0,1})2.

Lemma 15.6.5. The integrals

5(50) e a1

ry Yy

provide a genuine analytic continuation of Liy 1(z,y) to a multivalued func-
tion which is defined on {(x,y) € C?|z,y # 0,2y # 1,y # 1}.
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Proof. Assume 1 < |b| < |a| without loss of generality. Then we can take
a=1id:[0,1] = C, s — s, and obtain

; . b 1
Il2d(a, b) = IQ(CL, b) = L11,1 (a, y) y
where Liy 1(z,y) is the double logarithm defined for |z|, |y| < 1 in Subsec-

tion [15.6l Thus we have proved the lemma. a

Definition 15.6.6 (Double logarithm). We call the analytic continuation
from Lemma the double logarithm as well and continue to use the
notation Lij 1 (z, y).

The period matrix P is thus given by:

| I I I3 I3
wo 1 0 0 0
wi| Lii(3) 2mi 0 0
w2 Lll(g) 0 211 0

wa|Lin1 (2, §) 2milia (£) 2milog (424 ) (2mi)2.

a

15.6.5 Varying the parameters a and b

The homology group H3"8(X,D;Q) of the pair (X, D) carries a Q-MHS
(W, F'*). The weight filtration is given in terms of the {;}:

0 for p< -5
W Hsing(X D: Q) _ QV3 for p= *47 -3
e Qv ® Q2 ® Qs for p=-2-1

QudQyndQyr®Qys for p>0,

The Hodge filtration is given in terms of the {w;}:

Cwj @ Cwi ® Cws & Cw; for p< -2

FpH;ing ()(7 D; C) _ (Cwé 2] CWT ® CW; for =-1
Cwyg for p=20
0 for p>1.

This Q-MHS resembles very much the Q-MHS considered in [Gon97, 2.2,
p. 620] and [Zha07, 3.2, p. 6]. Nevertheless a few differences are note-worthy:

e Goncharov defines the weight filtration slightly differently, for example his
lowest weight is —6.
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e The entry P39 = 2mi log(T:Z) of the period matrix P differs by (27i)?2,

or put differently, the basis {v0, 71,72 — 73, 3} is used.

Up to now, the parameters a and b of the configuration (X, D) have been
fixed. By varying a and b, we obtain a family of configurations. Equip A%
with coordinates a and b and let

B:=A:\{a=0}U{a=1}u{b=0}u{b=1})

be the parameter space. Take another copy of A?C with coordinates x and y
and define total spaces

Xi= (Bx )\ (e =abufy =), and

D=“BxD'=XN{z=0}U{y=1}U{z=1y}).

We now have a projection
D—X  (abwy)
N | |
B (a,b)

whose fibre over a closed point (a,b) € B is precisely the configuration (X, D)
for the parameter choice a, b. The morphism 7 is a flat. The assignment

(avb) — (VQ7W°7F.)7

where
Vo = spang{so, - .., 83},
Ve := C*  with standard basis e, ..., €3,
1 0 0
Li(3) 2mi 0
T () T 0 ) 820 2 , 83 1=
Lij (2,1 2miLiy (£) o 1og(;t§;)
0 for p< -5
Qss3 for p=-4,-3
WyVo B
Qs1 P Qso & Qs3 for p=-2,—1
Vo for p>0, and
Ve for p< =2
FPYe = Ceg ®Cey ®Cey for p=-1
Ceg for p=20

0 for p>1



328 15 Multiple zeta values

defines a good unipotent variation of Q-MHS on B*". We refer to the litera-
ture, e.g. [Hai94, [HZ87) [PS08], for more details on unipotent variations. Note
that the Hodge filtration F'* does not depend on (a,b) € B?".

One of the main characteristics of good unipotent variations of Q-MHS
is that they can be extended to a compactification of the base space (if the
complement is a divisor with normal crossings).

The algorithm for computing these extensions, so called limiting mized Q-
Hodge structures, can be found for example in [Hai94, 7, p. 24f] and [Zha04l,
4, p. 12].

In a first step, we extend the variation to the divisor {a = 1} minus the
point (1,0) and then in a second step we extend it to the point (1,0). In
particular, we assume that a branch has been picked for each entry P;; of P.
We will follow [Zha04l 4.1, p. 14f] very closely.

First step: Let o be the loop winding counterclockwise around {a = 1}
once, but not around {a = 0}, {b = 0} or {b = 1}. If we analytically continue
an entry Pj; of P along o we possibly get a second branch of the same
multivalued function. In fact, the matrix resulting from analytic continuation
of every entry along o will be of the form

P Ty,
where
1000
0100
Tae=1=| _1010
0001

is the monodromy matrix corresponding to o. The local monodromy logarithm
is defined as

log T(a=1} I -1/t "
Nigqy = —2>te=th = N~ 1 Ty,
{a=1} 2mi 2m; n 1 {a=1}
0000

0000

2000

0000

We want to extend our Q-MHS along the tangent vector %, i.e., we introduce
a local coordinate ¢t := a — 1 and compute the limit period matrix
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Pro—1y = }L“%P . ¢~ log(t)-Nia=1)

—
o
ja)

0

. Liy (1) 2mi 0 0 (1) (1)88
=lim [ 14 %H) 0 2mi 0 || ey
Liy 1 (% %)27TZL11<1+t)27TZ log(1 b“)(Zm)Q 0 001
1 0 0 0
Li (1) 2mi 0 0
= lim Liy () + log(1) 0 ori 0
Liy ; (1%1&7 %) + log( £ b“) log(t)2miLi; (1+t>2m log(1 b“)(Qm)
1 0 0 O
| Lit(g) 2m 0 0
= 0 0 2t 0

—le(ib)zmml(b) 0 (2mi)?
Here we used at (x)
o P{a:1}2,0 = hmt_)o L11 (%«H‘/) + log(t)

= lim; ¢ flog(l - 1+t) + log(t)

= limy_,o —log(t) + log(1 +t) + log(t)
=0, and

° P{a=1}3’0 = lim;_,g Lilvl(l—i-f’ b) =+ log(l b+t> . log(t)
=Liy1(b,1) by L'Hospital

1
=-L
+(3)

The vectors sg, s1, S2, s3 spanning the Q-lattice of the limit Q-MHS on
{a =1} \ {(1,0)} are now given by the columns of the limit period matrix

L 0 0 0
o Lllo(z) I . I
0 — 9’ 1 — bl 2 — - b 3 —
0 21 0
L12(1 b) 2miLi; (b) 0 (2mi)?

The weight and Hodge filtration of the limit Q-MHS can be expressed in terms
of the s; and the standard basis vectors e; of C*. This gives us a variation
of Q-MHS on the divisor {a = 1} \ {(1,0)}. This variation is actually (up
to signs) an extension of Deligne’s famous dilogarithm variation considered
for example in [KleO) 4.2, p. 38f]. In loc. cit. the geometric origin of this
variation is explained in detail.
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Second step: We now extend this variation along the tangent vector g—ba to
the point (1,0), i.e. we write b = —t with a local coordinate t. Let o be the
loop in {a = 1} \ {(1,0)} winding counterclockwise around (1,0) once, but
not around (1,1). Then the monodromy matrix corresponding to o is given
by
1000
1100
0010|”’

0001

T1,0) =

hence the local monodromy logarithm is given by

0000
log T(1,0) 7000
Noo =55 =% 000
0000
Thus we get for the limit period matrix
P(l,o) :tlg% P{a:l} .e” log(t)~N(110)
1 0 0 0 1 000
i Liy (771) 211 0 0 *1208;.@) 100
—Lig<%+t) omiLiy(—t) 0 (2mi)? 0 001
1 0 0 0
. Li; (F) — log(t) o1 0 0
= lim 0 0 2ri 0
fLiQ(%H) ~Liy(—t)-log(t) 0 0 (2mi)?
1 0 0 0
“l 0 2m 0 0
a 0 0 2z O

We remark that in the last matrix we see a decomposition into two (2 x 2)-
blocks, one consisting of a pure Tate motive, the other involving ((2).
Here we used at ()

[ P(1a0)1,0 = limt_>0 Lil (%1) - log(t)
= limy_,0 — log(1+ 1) — log(t)
= limy_,o —log(1 + t) + log(t) — log(t)
=0, and

L] P(LO)B,O = limtg)o —Li2 (%H) - Lll(—t) . 10g(t)

— Timy_o Lis (%ﬂ) +log(1 +t) - log(t)
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= —Liy(1) by L’Hospital
= —((2).

As in the previous step, the vectors sg, s1, s2, s3 spanning the Q-lattice of
the limit Q-MHS are given by the columns of the limit period matrix P o)
and weight and Hodge filtrations by the formulae in Subsection [I5.6.5}

So we obtained —((2) as a “period” of a limiting Q-MHS.






Chapter 16
Miscellaneous periods: an outlook

In this chapter, we collect several other important examples of periods in the
literature for the convenience of the reader.

16.1 Special values of L-functions

The Beilinson conjectures give a formula for the values (more precisely, the
leading coefficients) of L-functions of motives at certain integers. We sketch
the formulation in order to explain that these numbers are expected to be
periods.

In this section, fix the base field & = Q. Let Gop = Gal(Q/Q) be the
absolute Galois group. For any prime p, let I, C Gg be the inertia group.
Let Fr, € Gg/I, be the Frobenius a — a”.

In order to be able to formulate the conjectures on special values of L-
functions, we need the existence of a Q-linear abelian category of mixed
motives with all expected properties. This can be made precise by asking the
functor

DMgm,Q — Db(MMNori@)

to be an equivalence of categories. Let M be a mixed motive over Q with
coefficients in Q. For any prime [, it has an [-adic realisation M; which is a
finite-dimensional QQ;-vector space with a continuous operation of the absolute
Galois group Gg.

Definition 16.1.1. Let M be as above, p a prime and [ a prime different
from p. We put

P, (M, t); = det(1 — Fryt| M;?) € Q[t].

It is conjectured that P,(M,t); is in Q[t], and independent of I. We denote
this polynomial by P,(M, ).

333
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Example 16.1.2. Let M = H*(X) for a smooth projective variety X over Q
with good reduction at p. Then the conjecture holds by the Weil conjectures
proved by Deligne. In the special case X = Spec(Q), we get

P,(H(Spec(Q)),#) = 1 —t.
In the special case X = P!, i =1, we get
P,(H*(P'),t) =1 — pt.
Definition 16.1.3. Let M be as above. We put

1
B i

p prime

as function in the variable s € C. For n € Z, let
L(M,n)*

be the leading coeflicient of the Laurent expansion of L(M, s) around n.

It is conjectured that the infinite product converges for Re(s) big enough
and that the function has a meromorphic continuation to all of C.

Example 16.1.4. Let M = H(X) for X a smooth projective variety over
Q. We want to show convergence of L(M, s). Note that X has good reduction
at almost all p. It suffices to consider these. Then the zeros of P,(M,t) are
known to have absolute value p~2 by the Riemann hypothesis part of the
Weil conjectures (a theorem of Deligne). This implies convergence by a simple
analytic argument. Analytic continuation is a very deep conjecture. It holds
for all O-dimensional X. Indeed, for any number field K, we have

L(H®(Spec(K)), s) = Cx(s)

where (g (s) is the Dedekind ¢-function. For M = H'(E) with E an elliptic
curve over Q, we have
L(HY(E),s) = L(E, s)

where the right hand side is the L-function of the elliptic curve, see e.g. [Sil86,
816]. Analytic continuation holds, because F is modular.

Example 16.1.5. Let M be as above, Q(—1) = H?(P!) be the Lefschetz
motive. We put M(—1) = M @ Q(—1). Then

L(M(~1),s) = L(M,s — 1)

by the formula for P,(Q(—1),t) above.

Hence, the Beilinson conjecture about L(M,s) at n € Z can be reduced
to the Beilinson conjecture about L(M(—n),s) at 0.
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Conjecture 16.1.6 (Beilinson [Bei84], [Sch9l]). Let M be a motive over Q.
Then the vanishing order of L(M,s) at s = 0 is given by

dim Hy, ;(SpecQ, M*(1)) — dim H} ;(SpecQ, M),

where Hq, 5 is unramified motivic cohomology. In particular, unramified mo-
tivic cohomology is finite-dimensional.

Remark 16.1.7. Actually, Beilinson only considers certain pure motives.
The general conjecture is formulated as Conjecture B by [Sch91]. In Defini-
tion we defined motivic cohomology of algebraic varieties. Analogously,
we put

H},(SpecQ, M) = Hompay,,, (M, Q[i])

for all geometric motives M. The unramified motivic cohomology groups
H}w f(SpecQ, M) are modifications whose definition depends on conjectures
about the category of motives over Q. An unconditional definition for Chow
motives was given by Scholl in [Sch07]. For the case of Tate motives, see
als Section For a conceptual discussion of unramified motivic cohomol-
ogy and a comparison of the different possible definitions, see Scholbach’s
discussion in [Schi2a]. We frefer to treat them as a black box.

This conjecture is known for example when M = H(Spec(K))(n) with
K a number field, n € Z or when M = H'(E) with E an elliptic curve with
Mordell-Weil rank at most 1.

Definition 16.1.8. We call M special if the motivic cohomology groups

HYy ;(SpecQ, M), Hjy y(SpecQ, M),
H?Vlyf(SpecQ,M*(l)), H/l\/(,f(SPGCQ,M*(l))

all vanish.

If M is pure and special, then Beilinson’s conjecture on the Beilinson
regulator implies that it also critical in the sense of Deligne, [Del79) Définition
1.3]. The converse is not expected. We are only going to state the Beilinson
conjecture for special motives. In the pure case, this is a case of Deligne’s
conjecture.

Conjecture 16.1.9 (Beilinson [Bei84], Deligne [Del79]). Let M be a special
motive. Let Mp be its Betti realisation and Mggr its de Rham realisation.

1. L(M,0) is defined and non-zero.
2. The composition

Mg®C—)MB®C—p:MdR(X)C—)MdR@)C/FOMdR@C

is an isomorphism. Here Mg denotes the invariants under complex con-
jugation and FOMag denotes the 0-step of the Hodge filtration.
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3. Up to a rational factor, the value L(M,0) is given by the determinant of
the above isomorphism in any choice of rational basis of Mg and Myg .

For the formulation in the general case, which is somewhat involved, see
[Fon92], ignoring everything p-adic. The precise formula for L(M,0)* is actu-
ally implied by the above by asking compatibility with short exact sequences
of motives (hence it suffices to consider the pure case) and the following trick.

Proposition 16.1.10 (Scholl, [Sch91]). Let M be a pure motive of weights.
Assume all unramified motivic cohomology groups over Q are finite-dimensional.
Then there is a special mized motive M’ such that

L(M,0)* = L(M',0)

and the Beilinson conjecture for M is equivalent to the Beilinson conjecture
for M.

Proof. The case of motives of weight at least 0 is treated in Section IV. By
applying the considerations to M*(1) this also settles the case of motives of
weights at most —2. The remaining case of motives of weight —1 is handled
in Section V. O

Corollary 16.1.11. Assume the Beilinson conjecture holds. Let M be a
motive. Then L(M,0)* is a period number.

Proof. We first reduce to the pure case. The L-function is nearly multiplica-
tive on short exact sequences of motives. If 0 — M’ — M — M"” — 0 is
a short exact sequence of motives, then P,(M,t) = P,(M’,t)P,(M",t) for
almost all primes, in fact for all primes where I,, acts trivally on M/ and M/’
Hence the L(M,0)* and L(M',0)*L(M",0)* differ by a rational factor.

By Scholl’s reduction, it then suffices to consider the case M special. The
matrix of the morphism in the conjecture is a block in the matrix of

per: Mg ® C — Myr ® C.

All its entries are periods. Hence, the same is true for the determinant. O

16.2 Feynman periods

Standard procedures in quantum field theory (QFT) lead to loop amplitudes
associated to certain graphs. Although the foundations of QFT via path
integrals are mathematically non-rigorous, Feynman and others have set up
the so-called Feynman rules as axioms, leading to a mathematically precise
definition of loop integrals (sometimes also called amplitudes).

These are defined as follows. Associated to a graph G one defines the
integral as
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n 14 n
_ Hj:l F(Vj) Hr:l dkr H(_q2 + m?)_”j
F(I/*KD/Q) RDE Z7TD/2 J 7 .

j=1

Ig

Here, D is the dimension of space-time (usually, but not always, D = 4), n
is the number of internal edges of G, ¢ = h1(G) is the loop number, v; are
integers associated to each edge, v is the sum of all v;, the m; are masses, the
g; are combinations of external momenta and internal loop momenta £,., over
which one has to integrate [MSWZ14| Section 2]. All occurring squares, except
for the squared masses m?, are scalar products in D-dimensional Minkowski
space. The integrals usually do not converge in D-space, but standard renor-
malisation procedures in physics, e.g. dimensional regularisation, lead to ex-
plicit numbers as coefficients of Laurent series. In dimensional regularisation,
one views the integrals as analytic meromorphic functions in the parameter
€ € C where D = 4 — 2¢. The coefficients of the resulting Laurent expansion
in the variable € are then the relevant numbers. By a theorem of Belkale-
Brosnan [BB03] and Bogner-Weinzierl [BW09], such numbers are periods,
if all moments and masses in the formulas are rational (or even algebraic)
numbers.

A process called Feynman-Schwinger trick [BEKO06] transforms the above

integral into a period integral
IG = / fw
(e

J

with
H?:l x;jfluy—(é—&-l)D/Q n ; -
f= Fv—iD/2 , o w= ) (=D ajdey Ao Ndxg A Aday,.

1

Here, U and F are homogenous graph polynomials of Kirchhoff type, with
only F depending on kinematical invariants, and o is the standard real sim-
plex in P"~1(C). Since o is a compact subset of P?"~1(C), this is almost a
representation of I4 as a naive period, and it is indeed one as a Kontsevich-
Zagier period, provided the external momenta p; are algebraic numbers. The
differential form fw has poles along o, but there is a canonical blow-up pro-
cess to resolve this problem [BEKO06]. The period which emerges is the period
of the relative cohomology group

H"(P\Y,B\ (BNY)),

where P is a blow-up of projective space in linear coordinate subspaces,
Y is the strict transform of the singularity set of the integrand, and B is
the strict transform of the standard algebraic simplex A™™' Cc P*~1. It is
thus immediate that Is is a Kontsevich-Zagier period, if it is convergent,
and provided that all masses and momenta involved are rational. If I is
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not convergent, then, by a theorem of Belkale-Brosnan [BB03] and Bogner-
Weinzier] [BW09], the same holds under these assumptions for the coefficients
of the Laurent expansion in renormalisation.

Example 16.2.1. A very popular graph with a divergent amplitude is the

two-loop sunset graph
mi

A
NI

ms3

The corresponding amplitude in D dimensions is the product of the I-
value I'(3 — D) with the period integral

)

/ ((ElfIJQ + x9x3 + $3$1)3_%D($1d$2 AN d$3 - iCQdiEl AN d£C3 + xgdxl AN dxz)
o (—z1momsp? 4+ (z1m3 + xam3 + w3m3) (w122 + w2x3 + x371))3 P

where ¢ is the real 2-simplex in P2.

In D = 4, this integral does not converge. One may, however, compute
the integral in D = 2 and study its dependence on the momentum p as an
inhomogeneous differential equation, as there is an obvious family of elliptic
curves involved in the equations of the denominator of the integral which
gives rise to the homogenous Picard-Fuchs equation. Then, a trick of Tarasov
allows us to compute the D = 4 situation from that, see [MSWZ12] for all
the details. The extension of mixed Hodge structures

0—7Z(-1) = H*(P\Y,B\BNY) = H*P\Y) =0

arising from this graph is already quite complicated, as there are three differ-
ent weights involved. The corresponding period functions when the momen-
tum p varies are given by elliptic dilogarithm functions [BV15b, [ABWT4].
There are generalisations to higher loop banana graphs [BKV15].

In the literature, there are many more concrete examples of such periods,
see the work of Broadhurst-Kreimer [BK97] and subsequent work. Besides
multiple zeta values, there are for examples graphs G where the integral is
related to periods of K3 surfaces [BS12).

16.3 Algebraic cycles and periods

In this section, we want to show how algebraic cycles in (higher) Chow groups
give rise to Kontsevich-Zagier periods. Let us start with an example.
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Example 16.3.1. Assume that & C C, let X be a smooth, projective curve
of genus g, and let Z = Zle a;Z; € CH'(X) be a non-trivial zero-cycle on
X with degree 0, i.e., >, a; = 0. Then we have a sequence of cohomology
groups with integral coefficients

0*>H1(Xan) *)Hl(Xan \ |ZD *>H2

1 (Xan) s HQ(Xan>

l: i:

P, Z(—1) —=— 7(-1).

The cycle Z defines a non-zero vector (a,...,ar) € @, Z(—1) mapping to
zero in H?(X®" 7). Hence, by pulling back, we obtain an extension

0— HY(X™) - F — Z(-1) — 0.

The extension class of this sequence in the category of mixed Hodge structures
is known to be the Abel-Jacobi class of Z, see [Car80]. One can compute it
in several ways. For example, one can choose a continuous chain v with
0y = >, a;Z; and a basis w1, ...,wy of holomorphic 1-forms on X*". Then

the vector
(/wl,...,/wg)
v v

defines the Abel-Jacobi class in the Jacobian

Hl(Xan,(C) o HO(Xa“,Q}(a,,)V

Jac(X) = F1HY(X20 C)+ HY(X?,Z)  Hy(X27Z)

If X and the cycle Z are both defined over k, then obviously the Abel-
Jacobi class is defined by g period integrals in P (k). In the case of smooth,
projective curves, the Abel-Jacobi map

AJ' : CHY (X )pom — Jac(X)

gives an isomorphism when k = C.

One can generalise this construction to Chow groups of any smooth, pro-
jective variety X over k C C, and Z € CH?(X) a cycle which is homologous
to zero. Then there is the Abel-Jacobi map

H2q71(Xan’ (C)
—
Fi 4 H2a-1(Xan 7)
= Ethl\/IHS(Z(_Q)v H2q71(Xan’ Z))

AJT: CHY(X )hom

As in the example above, the cycle Z defines an extension of mixed Hodge
structures
0— H*"Y(X*) = E — Z(—q) — 0,
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where F is a subquotient of H24=1(Xa\ |Z|). The Abel-Jacobi class is given

by period integrals
(/wl,...,/w9>
¥ ¥

in Griffiths’ intermediate jacobian

H2-1(X* ()
= Fif2-1(Xan C) + H2-1(Xan, 7)
o FqH2q_1(Xan, (C)v

Hay 1 (X, 7Z)

J4(X)

Even more general, one may use Bloch’s higher Chow groups CH?(X,n)
[Blo86]. Higher Chow groups are isomorphic to motivic cohomology in the
smooth case by a result of Voevodsky, see Theorem In the general case,
they only form a Borel-Moore homology theory and not a cohomology theory,
see [VSF00|. Then the Abel-Jacobi map becomes

AJT™  CHY (X, n)hom — J2T "7 H(X) = Extys (Z(—q), H*T 71X, 7).

There are explicit formulae for AJ*™ in [KLMS06, [KLO7, Weil5] on the level
of complexes which look like period integrals. This is not a coincidence:

Proposition 16.3.2. The higher Abel-Jacobi class of an algebraic cycle Z €
CHY(X,n)nom 1s an extension class of a short exact sequence

0— H2* " HX™) 5 B — Z(—q) =0

of mized Hodge structures, where E is a subquotient of the cohomology of a
pair defined over the same field k, i.e., a Nori motive. The extension class is
given by period integrals which define numbers in P (k).

Proof. The statement about the extension class follows of course directly
from the existence of realisation maps [Hub00, [KLMS06, [DS91, [Sch]. The
Abel-Jacobi class of a cycle Z € CHY(X,n)nom is then the extension class
of a mixed Hodge structure. The periods associated to these mixed Hodge
structures over k can hence be viewed as the periods associated to Z.

In addition, we want to give an description of this extension due to Bloch
which gives an explicit way to construct the short exact sequence.

Let 0" := (P! \ {1})". For varying n, this defines a cosimplicial object
with face and degeneracy maps obtained by using the natural coordinate ¢
on P!. Faces are given by setting ¢; = 0 or ¢; = co. By definition, a cycle Z in
a higher Chow group CHY(X,n) is a subvariety of X x 0" meeting all faces
F=XxO™C X xO" for m < n properly, i.e., in codimension ¢g. By looking
at the normalised cycle complex, we may assume that Z has zero intersection
with all faces of X x O0". Removing the support of Z, let U := X x O™\ |Z|,
and define QU to be the union of the intersection of U with the codimension
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1 faces of X x (0". Then one obtains an exact sequence [DS91, Lemma A.2]
0 — H2n=l(xany o, ga-lan gpan)y oy gra-lgeny o ga-lgpen),
which can be pulled back to an extension E if Z is homologous to zero:
0— H* " HX*™) 5 E = Z(—q) — 0.

Hence, E is a subquotient of the mixed Hodge structure H2¢~1(Ua» gU").
This works for any cohomology satisfying certain axioms, see [DS91]. O

In particular, we obtain a Nori motive, also denoted by FE, which is asso-
ciated to every cycle Z € CHY(X, n)phom over k.

There is an alternative description of the Abel-Jacobi map using the full
motivic machine. It also yields an alternative proof of the proposition. We
work in the setting of geometric motives, see Section Let X be a smooth
variety. By Theorem [6.2.5| we have

CHY(X,n) = H"~!(X, Z(q)) = Hompny,,, (M (X), Z(q)[n — 2q]).

We apply the realisation functor into the derived category of Nori motives of
Theorem [[0.1.4] and obtain

Chi (X7 TL) — Home(MMNori)(l(_q) [2q - n]7 C(X))
= Hom pe (prtens) (1H(=0)[2¢ — 1], T<n—24C(X))).

A cycle is homologically trivial if and only the induced map to HJZ\ZX/?ND“ (X)
vanishes. Hence we get a secondary map

CHq(X, n)hom — HOme(MMNori)<1<—q)7TSn72q710(X))
= EXt) e, (L(—0), H2 (X)),

By construction, the composition of this map with the Hodge realisation is
nothing but AJ?™.

Second proof of Proposition [16.3.4. The Abel-Jacobi map factors via exten-
sions of Nori motives. In particular, the Hodge structure F is induced by a
Nori motive. Its periods are in P¢% (k). O

Remark 16.3.3. For the category of Nori motives, extension groups are not
known in general, and have only been computed in the situation of effective
1-motives, see [ABV15]. The extension groups of the conjectural Q-linear
abelian category MM (k) of mixed motives over k are supposed to be related
to motivic cohomology groups, or, equivalently to be Adams eigenspaces of
algebraic K-groups.

Following Beilinson, we expect a spectral sequence
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Extlyivn) (Q(—q), H (X)) = Hiy' (X,Q(g)) = Hompag,,, (M (X), Q(q)[i+1)-

If X is smooth, then we have by Theorem [6.2.5
HJG (X, Q@) 2 Kagoimy (X)) = CHY(X, 2 — i — j)o.

If k£ is a number field, then MM(k) is expected to have cohomological di-
mension 1, and the spectral sequence collapses into the short exact sequence

0 = Exty v (Q(—q), H" (X)) = Hy;(X,Q(q))
— Hompnmry (Q(—q), H" (X)) — 0.

In many cases, the last group vanishes, e.g., if X is smooth projective and
q # 2n. If X = Spec(k) is the spectrum of a number field, then the above
gives (conjectural) isomorphisms

EXt}v{M(k)(Q(*Q)yQ) = K2q—1(k)g) = Koq—1(k)g

for all gq. Note that this isomorphism is indeed true in the category of mixed
Tate motives, see Section[6.4] In this case, the Abel-Jacobi map can be iden-
tified with the Borel regulator (at least up to a factor of 2). Hence Borel’s
computation in [Bor77] can be seen as a period computation. His main result
is that for ¢ > 2, the determinant of the period matrix is given by the values
of the Dedekind zeta function (x(q), at least up to factor in Q. This is a
special case of the Beilinson conjecture, see also Section [16.1

16.4 Periods of homotopy groups

In this section, we want to explain the periods associated to fundamental
groups and higher homotopy groups.

The topological fundamental group W;OP(X (C),a) of an algebraic variety
X (defined over k C C) with base point a carries a MHS in the following
sense.

First, look at the group algebra Q[;°"(X(C),a)], and the augmentation
ideal I := Ker(Q[r}°®(X,a)] — Q). Then the Malcev-type object

1 (X(C),a)q := lim Q[m;”(X(C),a)]/I"*!
carry an Ind-MHS, as we will explain now. Beilinson observed that each finite
step Q[;°?(X(C),a)]/I™*! can be obtained as a MHS of a certain algebraic
variety defined over the same field k. This was known to experts for some
time, and later worked out in [DGO05].



16.4 Periods of homotopy groups 343

Theorem 16.4.1. Let M be any connected complexr manifold and a € M a
point. Then there is an isomorphism

Hn(M X X M,D,Q) = Qaﬂ @Q[ﬂiop(Ma a)]/[”-‘rl’

n

and Hy(M x --- x M,D;Q) = 0 for k < n. Here D = |J;_, D; is a union
[ — v

of irreducible subsets, where Do = {a} x M"~*, D, = M"~! x {a}, and, for
1<i<n—1,D;=M""1"xAx M1 with A C M x M the diagonal.

Proof. The proof in [DGO05], which we will not give here, proceeds by in-
duction, using the first projection p; : M™ — M and the Leray spectral
sequence. O

This is applied in the case where M = X(C) for some variety X, such
that its motive is mixed Tate. The primary example is X = P!\ {0,1, 00}. In
the framework of Nori motives, one can thus see that 71 (X, a)g immediately
carries the structure of an Ind-Nori motive over k.

Furthermore, one needs to pass to tangential base points at 0 and 1, de-
noted by (ﬁ, instead of a base point a as above, to obtain interesting results.
Then it is true that 71 (P*\ {0, 1, 00}, (ﬁ)@ is an Ind-mixed Tate motive over
Q (in fact, unramified over Z), and it generates the whole category of mixed
Tate motives unramified over Z. In particular, each MZV occurs as a period
of this Ind-MHS by results of Brown [Brol2 Brold):

Theorem 16.4.2 (Brown). Every multiple zeta value occurs as a period of

71 (P {0,1, 00}, (ﬁ)Q Furthermore, every multiple zeta value is a Q-linear
combination of multiple zeta values with only 2 and 3 as entries.

We cannot give a complete proof of this fact here. But these results are
nicely explained in Deligne’s Bourbaki article [Dell3l Corollaire 7.18]: The
proof uses the precise knowledge of the infinitesimal action of the motivic
Galois group. See [Brol2 [Broldl [Dell3].

Let us now look at higher homotopy groups m,(X?") for n > 2 of an
algebraic variety X over k C C. They carry a MHS rationally by a theorem
of Morgan [Mor78| and Hain [Hai94]:

Theorem 16.4.3. The homotopy groups m,(X**)®Q of a simply connected
and smooth projective variety over C carry a functorial mized Hodge structure
forn > 2.

This theorem has a natural extension to the non-compact case using log-
arithmic forms, and to the singular case using cubical hyperresolutions, see
[Hai94, NARS5| [PS0S].

Example 16.4.4. Let X be a simply connected, smooth projective 3-fold
over C. Then the MHS on 73(X ")V is given by an extension
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0 — H3(X™ Q) — Hom(m3(X*™),Q)
— Ker (S2H2(Xan7(@) — H4(Xan7Q)) =0,

constructed using the Postnikov tower by Carlson, Clemens, and Morgan in
[CCMST]. The authors prove that this extension is given by the Abel-Jacobi
class of a certain codimension 2 cycle Z € CHZ, _(X), and the extension
class of this MHS in the sense of [Car80] is given by the Abel-Jacobi class

H3(X* Q)
AJ2(Z 2(X) = ’ .
1(2) € I°(X) F2 + H3(Xan, 7)

The proof of Morgan uses the theory of Quillen [Qui69] and Sullivan [Sul77]
on rational homotopy theory. Let us sketch this description. In the simply
connected case, there is a differential graded Lie algebra L(X,z) over Q,
concentrated in degrees 0, —1, ..., such that

H.(L(X, ) = 71 (X*) @ Q.

One can then use the cohomological description of L(X,z) and Deligne’s
mixed Hodge theory, to define the MHS on homotopy groups using a complex
defined over k.

We would like to mention that one can try to make this construction
motivic in the Nori sense. At least for affine varieties, this was done in [Gar03],
see also [CGAdS14l pg. 22]. In [Gonl0], a description of periods of homotopy
groups is given in terms of Hodge correlators. This is not well understood
yet. Patel has looked at complements of hyperplane arrangements [Pat15].

From the approach in [Gar03|, one can see, at least in the affine case,
that the periods of the MHS on 7, (X?") are defined over k, i.e., are con-
tained in P (k), when X is defined over k, since all motives involved in the
construction are defined over k.

16.5 Exponential periods

Kontsevich and Zagier [KZ01) [Kon99] have suggested to study exponential
period numbers, i.e., integrals of the form

/e*fw.
Y

In the most basic setup, w is an algebraic differential form over Q of degree k
on a variety X defined over Q, f a regular function on X, and  a topological
k-chain. In order for the integral to converge, one must require that ~ has
boundary in a region where exp(—f) decays fast enough. The Q-algebra of
all such exponential period numbers includes the set of Kontsevich-Zagier
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periods with f = 0, but also many other constants which are presumably
not Kontsevich-Zagier period numbers, like the Euler number e, values of the
I'-function at all rational arguments, and certain values of Bessel functions.

One can view such numbers as the set of periods of new Hodge structures,
including the example of a Hodge structure of weight (%, %), i.e., a square
root of the Tate Hodge structure Q(—1) with exponential period

+o00 5
\f:/ e ¥ dx.
—oo

More functorially, the exponential Hodge structures H*(X, f) have de Rham
realisation H3y (X, f) the (hyper)cohomology of the twisted de Rham com-
plex

_1d d,
}/Qy.f:...ﬁﬁpli)fgp — s ...

X/Q X/Q
and the Betti realisation H§(X, f) of Deligne [Del06], pg. 116], defined as the

cohomology of a certain constructible sheaf that is constructed using growth
conditions for f. Sabbah [Sab96] has shown that

HE(X, f) = Hng(X, F71(£): Q)

for t € A1(C) with Re(t) > 0. If one has w € Hig(X) with d = dim(X) and
v € Ha(X, f~1(t); Q) (the dual space), then the period of (X, f) is obtained
as a limit

lim e w.

t—o0 e

Presumably, there exists a Tannakian category of exponential motives over
@ which can be constructed with the methods of Nori used in this book by
an adaption of the basic lemma. The details are currently being worked out
by Fresdn and Jossen [F.J16]. The tensor structure and rigidity (i.e., duality)
were already described in [Del06]. Exponential periods would appear then as
the matrix entries of the period isomorphism [Del06, pg. 116], [Sab96]

by considering suitable triples (X,Y] f), where Y is a closed subset.

16.6 Non-periods

The question whether a given transcendental complex number is a period
number in P*f(Q), i.e., is a Kontsevich-Zagier period, is very difficult to
answer in general, even though we know that there are only countably many
of them. For example, we expect (but do not know) that the Euler number e



346 16 Miscellaneous periods: an outlook

is not a period. Also 1/7 and Euler’s v are presumably not effective periods,
although no proof is known.

When Kontsevich-Zagier wrote their paper, the situation was like at the
beginning of the 19th century for the study of algebraic and transcendental
numbers. It took a lot of effort to prove that Liouville numbers ), 107% e
(Hermite) and 7 (Lindemann) were transcendental.

In 2008, M. Yoshinaga [Yos08§] first wrote down a non-period ov = 0.77766444...

in 3-adic expansion
oo

o = Z €i3_i.
i=1
We will now explain how to define this number, and why it is not a pe-
riod. First, we have to explain the notions of computable and elementary
computable numbers.

Computable numbers and equivalent notions of computable (i.e., equiva-
lently, partial recursive) functions f : Nj — Ny were introduced by Turing
[Tur36], Kleene and Church around 1936 following the ideas from Godel’s
famous paper [God31], see the references in [Kle81] . We refer to [Bri94] for
a modern treatment of such notions which is intended for mathematicians.

The modern theory of computable functions starts with the notion of cer-
tain classes £ of functions f : Ng — Ng. For each class £ there is then a
notion of £-computable real numbers. In the following definition we follow
[Yos08], but this was defined much earlier, see for example [Ric54l [Spe49).

Definition 16.6.1. A real number « > 0 is called &£-computable if there are
functions a, b, ¢ in £ such that

‘ a(n)

bn)+1

1
< for all n > c(k).

The set of £-computable numbers, including 0 and closed under o — —a, is
denoted by Rg.

Some authors use the bound 2% instead of % This leads to an equivalent
notion only for classes & which are closed under substitution (i.e., composi-
tion) and contain the function n — 2".

If & = comp is the class of Turing computable [Turd6l, or equivalently
Kleene’s partial recursive functions [Kle81], then Reomp is the set of com-
putable real numbers. Computable complex numbers Ceomp are those complex
numbers where the real- and imaginary part are computable reals.

Theorem 16.6.2. Reonp 35 a countable subfield of R, and Ceomp = Reomp ()
is algebraically closed.

One can think of computable numbers as the set of all numbers that can
be accessed with a computer.

There are some important levels of hierarchies inside the set of computable
reals



16.6 Non-periods 347

Rlow—elem - Relem - Rcompv

= =

induced by the elementary functions of Kalmér (1943) [Kal43], and the lower
elementary functions of Skolem (1962) [Sko62]. There is also the related Grze-
gorczyk hierarchy [Grzb5]. In order to define such hierarchies of real numbers,
we will now study functions f : Nj — Ny of several variables.

Definition 16.6.3. The class of lower-elementary functions is the smallest
class of functions f : Ny — Ny

e containing the zero-function, the successor function x — = + 1 and the
projection function P; : (21, ...,2p) — Z;,

e containing the addition x + y, the multiplication z - y, and the modified
subtraction max(x — y,0),

e closed under composition, and

e closed under bounded summation.

The class of elementary functions is the smallest class which is also closed
under bounded products.

Here, bounded summation (resp. product) is defined as

9(x, 21, .y ) = Zf(awl,...wn) resp. H fla,z1, ...y xy).

a<lzx a<lzx

Elementary functions contain exponentials 2, whereas lower elementary
function do not. The levels of the above hierarchy are strict [TZ10].
The main result about periods proven in [Yos08| [TZ10] is:

Theorem 16.6.4. Real periods are lower elementary real numbers.

In fact, Yoshinaga proved that periods are elementary computable num-
bers, and Tent-Ziegler made the refinement that periods are even lower-
elementary numbers. The proofs are based on Hironaka’s theorem on semi-
algebraic sets which we have already used in Chapter [2l The main idea is to
reduce periods to volumes of bounded semi-algebraic sets, and then use Rie-
mann sums to approximate the volumes inside the class of lower elementary
computable functions.

Corollary 16.6.5. One has inclusions:
Q g PCH(Q) C (Clow—elern Q (Celem ,Q Ccomp-

Hence, in order to construct a non-period, one needs to exhibit a com-
putable number which is not elementary computable. By Tent-Ziegler, it
would also be enough to write down an elementary computable number which
is not lower elementary.

Here is how Yoshinaga proceeds. First, using a result of Mazzanti [Maz02],
one can show that elementary functions are generated by composition from
the following functions:
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The successor function z +— = + 1,

the modified subtraction max(x — y,0),
the floor quotient (z,y) — |;77], and
the exponential function (z,y) — z¥.

Using this, there is an explicit enumeration (fy)nen, of all elementary
functions f : Ng — Ng. Together with the standard enumeration of Q~q, we
obtain an explicit enumeration (g,)nen, of all elementary maps g : Ny —
Qs0. Using a trick, see [Yos08, pg. 9], one can speed up each function gy, so
that g,(m) is a Cauchy sequence (hence, convergent) in m for each n.

Following [Yos08|, we therefore obtain

Relem - {BO) 61a }7 where /Bn = nllgnoo gn(m)

Finally, Yoshinaga defines

n
o= lim a, = lim E €37,
=1

n—o00 n—00 4
where ¢y = 0, and recursively

. _ 0, ifgn(n)>an+2%3n
41 = .
nr 1, if gn(n) < an + 55=

Now, it is quite easy to show that « does not occur in the list Rejem =
{Bo, B1, ...}, see [Yos08, Prop. 17]. Note that the proof is essentially a version
of Cantor’s diagonal argument.
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