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Chapter 1

General Set-up

In this chapter we collect some standard notation used throughout the book.

1.1 Varieties

Let k be field. It will almost always be of characteristic zero or even a subfield
of C.

By a scheme over k we mean a separated scheme of finite type over k. Let Sch
be the category of k-schemes. By a variety over k we mean a quasi-projective
reduced scheme of finite type over k. Let Var be the category of varieties over k.
Let Sm and Aff be the full subcategories of smooth varieties and affine varieties,
respectively.

1.1.1 Linearizing the category of varieties

We also need the additive categories generated by these categories of varieties.
More precisely:

Definition 1.1.1. Let Z[Var] be the category with objects the objects of Var.
If X = X1∪· · ·∪Xn, Y = Y1∪· · ·∪Ym are varieties with connected components
Xi, Yj , we put

MorZ[Var](X,Y ) =




∑

i,j

aijfij |aij ∈ Z, fij ∈ MorVar(Xi, Yj)





with the addition of formal linear combinations. Composition of morphisms is
defined by extending composition of morphisms of varieties Z-linearly.

Analogously, we define Z[Sm], Z[Aff] from Sm and Aff. Moreover, let Q[Var],
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12 CHAPTER 1. GENERAL SET-UP

Q[Sm] and Q[Aff] be the analogous Q-linear additive categories where mor-
phisms are formal Q-linear combinations of morphisms of varieties.

Let F =
∑
aifi : X → Y be a morphism in Z[Var]. The support of F is the set

of fi with ai 6= 0.

Z[Var] is an additive category with direct sum given by the disjoint union of
varieties. The zero object corresponds to the empty variety, or, if you prefer,
has to be added formally.

We are also going to need the category of smooth correspondences SmCor. It
has the same objects as Sm and as morphisms finite correspondences

MorSmCor(X,Y ) = Cor(X,Y ),

where Cor(X,Y ) is the free Z-module with generators integral subschemes Γ ⊂
X × Y such that Γ→ X is finite and dominant over a component of X.

1.1.2 Divisors with normal crossings

Definition 1.1.2. Let X be a smooth variety of dimension n and D ⊂ X a
closed subvariety. D is called divisor with normal crossings if for every point
of D there is an affine neighbourhood U of x in X which is étale over An via
coordinates t1, . . . , tn and such that D|U has the form

D|U = V (t1t2 · · · tr)

for some 1 ≤ r ≤ n.

D is called a simple divisor with normal crossings if in addition the irreducible
components of D are smooth.

In other words, D looks étale locally like an intersection of coordinate hyper-
planes.

Example 1.1.3. Let D ⊂ A2 be the nodal curve, given by the equation y2 =
x2(x− 1). It is smooth in all points different from (0, 0) and looks étale locally
like xy = 0 in the origin. Hence it is a divisor with normal crossings but not a
simple normal crossings divisor.

1.2 Complex analytic spaces

A classical reference for complex analytic spaces is the book of Grauert and
Remmert [GR].

Definition 1.2.1. A complex analytic space is a locally ringed space (X,Ohol
X )

with X paracompact and Hausdorff, and such that (X,Ohol
X ) is locally isomor-

phic to the vanishing locus Z of a set S of holomorphic functions in some open
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U ⊂ Cn and Ohol
Z = Ohol

U /〈S〉, where Ohol
U is the sheaf of holomorphic functions

on U .

A morphism of complex analytic spaces is a morphism f : (X,Ohol
X )→ (Y,Ohol

Y )

of locally ringed spaces, which is given by a morphism of sheaves f̃ : Ohol
Y →

f∗Ohol
X that sends a germ h ∈ Ohol

Y,y of a holomorphic function h near y to the
germs h ◦ f , which are holomorphic near x for all x with f(x) = y. A morphism
will sometimes simply be called a holomorphic map, and will be denoted in
short form as f : X → Y .

Let An be the category of complex analytic spaces.

Example 1.2.2. Let X be a complex manifold. Then it can be viewed as a
complex analytic space. The structure sheaf is defined via the charts.

Definition 1.2.3. A morphism X → Y between complex analytic spaces is
called proper if the preimage of any compact subset in Y is compact.

1.2.1 Analytification

Polynomials over C can be viewed as holomorphic functions. Hence an affine
variety immediately defines a complex analytic space. If X is smooth, it is even
a complex submanifold. This assignment is well-behaved under gluing and hence
it globalizes. A general reference for this is [SGA1], exposé XII by M. Raynaud.

Proposition 1.2.4. There is a functor

·an : SchC → An

which assigns to a scheme of finite type over C its analytification. There is a
natural morphism of locally ringed spaces

α : (Xan,Ohol
Xan)→ (X,OX)

and ·an is universal with this property. Moreover, α is the identity on points.

If X is smooth, then Xan is a complex manifold. If f : X → Y is proper, the
so ist fan.

Proof. By the universal property it suffices to consider the affine case where the
obvious construction works. Note that Xan is Hausdorff because X is separated,
and it is paracompact because it has a finite cover by closed subsets of some
Cn. If X is smooth then Xan is smooth by [SGA1], Prop. 2.1 in exposé XII,
or simply by the Jacobi criterion. The fact that fan is proper if f is proper is
shown in [SGA1], Prop. 3.2 in exposé XII.
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1.3 Complexes

1.3.1 Basic definitions

Let A be an additive category. If not specified otherwise, a complex will always
mean a cohomological complex, i.e., a sequence Ai for i ∈ Z of objects of A
with ascending differential di : Ai → Ai+1 such that di+1di = 0 for all i ∈ Z.
The category of complexes is denoted by C(A). We denote C+(A), C−(A) and
Cb(A) the full subcategories of complexes bounded below, bounded above and
bounded, respectively.

If K• ∈ C(A) is a complex, we define the shifted complex K•[1] with

(K•[1])i = Ki+1 , diK•[1] = −di+1
K• .

If f : K• → L• is a morphism of complexes, its cone is the complex Cone(f)•

with
Cone(f)i = Ki+1 ⊕ Li, diCone(f) = (−di+1

K , f i+1 + diL) .

By construction there are morphisms

L• → Cone(f)→ K•[1] ,

Let K(A), K+(A), K−(A) and Kb(A) be the corresponding homotopy cate-
gories where the objects are the same and morphisms are homotopy classes of
morphisms of complexes. Note that these categories are always triangulated
with the above shift functor and the class of distinguished triangles are those
homotopy equivalent to

K•
f−→ L• → Cone(f)→ K•[1]

for some morphism of complexes f .

Recall:

Definition 1.3.1. Let A be an abelian category. A morphism f• : K• → L•

of complexes in A is called quasi-isomorphism if

Hi(f) : Hi(K•)→ Hi(L•)

is an isomorphism for all i ∈ Z.

We will always assume that an abelian category has enough injectives, or is
essentially small, in order to avoid set-theoretic problems. If A is abelian, let
D(A), D+(A), D−(A) and Db(A) the induced derived categories where the ob-
jects are the same as in K?(A) and morphisms are obtained by localizing K?(A)
with respect to the class of quasi-isomorphisms. A triangle is distinguished if it
is isomorphic in D?(A) to a distinguished triangle in K?(A).

Remark 1.3.2. Let A be abelian. If f : K• → L• is a morphism of complexes,
then

0→ L• → Cone(f)→ K•[1]→ 0

is an exact sequence of complexes. Indeed, it is degreewise split-exact.
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1.3.2 Filtrations

Filtrations on complexes are used in order to construct spectral sequences. We
mostly need two standard cases.

Definition 1.3.3. 1. Let A be an additive category, K• a complex in A.
The stupid filtration F≥pK• on K• is given by

F≥pK• =

{
Ki i ≥ p,
0 i < p.

The quotient K•/F≥pK• is given by

F<pK• =

{
0 i ≥ p,
Ki i < p.

2. Let A be an abelian category, K• a complex in A. The canonical filtration
τ≤pK• on K• is given by

F≤pK• =





Ki i < p,

Ker(dp) i = p,

0 i > p.

The quotient K•/F≤pK• is given by

τ>pK
• =





0 i < p,

Kp/Ker(dp) i = p,

Ki i > p.

The associated graded pieces of the stupid filtration are given by

F≥pK•/F≥p+1K• = Kp .

The associated graded pieces of the canonical filtration are given by

τ≤pK
•/τ≤p−1K

• = Hp(K•) .

1.3.3 Total complexes and signs

We return to the more general case of an additive category A. We consider
complexes in K•,• ∈ C(A), i.e., double complexes consisting of a set of objects
Ki,j ∈ A for i, j ∈ Z with differentials

di,j1 : Ki,j → Ki,j+1 , di,j2 : Ki,j → Ki+1,j
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such that (Ki,•, di,•2 ) and (K•,j , d•,j1 ) are complexes and the diagrams

Ki,j+1 di,j+1
2−−−−→ Ki+1,j+1

di,j1

x
xdi+1,j

1

Ki,j di,j2−−−−→ Ki+1,j

commute for all i, j ∈ Z. The associated simple complex or total complex
Tot(K•,•) is defined as

Tot(K•,•)n =
⊕

i+j=n

Ki,j , dnTot(K•,•) =
∑

i+j=n

(di,j1 + (−1)jdi,j2 ) .

In order to take the direct sum, either the category has to allow infinite direct
sums or we have to assume boundedness conditions to make sure that only finite
direct sums occur. This is the case if Ki,j = 0 unless i, j ≥ 0.

Examples 1.3.4. 1. Our definition of the cone is a special case: for f :
K• → L•

Cone(f) = Tot(K̃•,•) , K̃•,−1 = K•, K̃•,0 = L• .

2. Another example is given by the tensor product. Given two complexes
(F •, dF ) and (G•, dG), the tensor product

(F • ⊗G•)n =
⊕

i+j=n

F i ⊗Gj

has a natural structure of a double complex with Ki,j = F i⊗Gj , and the
differential is given by d = idF ⊗ dG + (−1)idF ⊗ idF .

Remark 1.3.5. There is a choice of signs in the definition of the total complex.
See for example [Hu1] §2.2 for a discussion. We use the convention opposite to
the one of loc. cit. For most formulae it does matter which choice is used,
as long as it is used consistently. However, it does have an asymmetric effect
on the formula for the compatibility of cup-products with boundary maps. We
spell out the source of this assymmetry.

Lemma 1.3.6. Let F •, G• be complexes in an additive tensor category. Then:

1. F • ⊗ (G•[1]) = (F • ⊗G•)[1].

2. ε : (F •[1] ⊗ G•) → (F • ⊗ G•)[1] with ε = (−1)j on F i ⊗ Gj (in degree
i+ j − 1) is an isomorphism of complexes.

Proof. We compute the differential on F i⊗Gi in all three complexes. Note that

F i ⊗Gj = (F [1])i−1 ⊗Gj = F i ⊗ (G[1])j−1.
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For better readability, we drop ⊗id and id⊗ and |F i⊗Gj everywhere. Hence we
have

di+j−1
(F•⊗G•)[1] = −di+jF•⊗G•

= −
(
djG• + (−1)jdiF•

)

= −djG• + (−1)j−1diF•

di+j−1
F•⊗(G•[1]) = dj−1

G•[1] + (−1)j−1diF•

= −djG• + (−1)j−1diF•

di+j−1
(F•[1])⊗G• = djG• + (−1)jdi−1

F•[1]

= djG• + (−1)j−1diF•

We see that the first two complexes agree, whereas the differential of the third
is different. Multiplication by (−1)j on the summand F i⊗Gj is a morphism of
complexes.

1.4 Hypercohomology

Let X be a topological space and Sh(X) the abelian category of sheaves of
abelian groups on X.

We want to extend the definition of sheaf cohomology on X, as explained in
[Ha2], Chap. III, to complexes of sheaves.

1.4.1 Definition

Definition 1.4.1. Let F• be a bounded below complex of sheaves of abelian
groups on X. An injective resolution of F• is a quasi-isomorphism

F• → I•

where I• is a bounded below complex with In injective for all n, i.e., Hom(−, In)
is exact.

Sheaf cohomology of X with coefficients in F• is defined as

Hi(X,F•) = Hi (Γ(X, I•)) i ∈ Z

where F• → I• is an injective resolution.

Remark 1.4.2. In the older literature, it is customary to write Hi(X,F•)
instead of Hi(X,F•) and call it hypercohomology. We do not see any need to
distinguish. Note that in the special case F• = F [0] a sheaf viewed as a complex
concentrated in degree 0, the notion of an injective resolution in the above sense
agrees with the ordinary one in homological algebra.
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Remark 1.4.3. In the language of derived categories, we have

Hi(X,F•) = HomD+(Sh(X))(Z,F•[i])

because Γ(X, ·) = HomSh(X)(Z, ·).
Lemma 1.4.4. Hi(X,F•) is well-defined and functorial in F•.

Proof. We first need existence of injective resolutions. Recall that the category
Sh(X) has enough injectives. Hence every sheaf has an injective resolution. This
extends to bounded below complexes in A by [We] Lemma 5.7.2 (or rather, its
analogue for injective rather than projective objects).

Let F• → I• and G• → J • be injective resolutions. By loc.cit. Theorem 10.4.8

HomD+(Sh(X))(F•,G•) = HomK+(Sh(X))(I•,J •).

This means in particular that every morphism of complexes lifts to a morphism
of injective resolutions and that the lift is unique up to homotopy of complexes.
Hence the induced maps

Hi(Γ(X, I•))→ Hi(Γ(X,J •))

agree. This implies that Hi(X,F•) is well-defined and a functor.

Remark 1.4.5. Injective sheaves are abundant (by our general assumption
that there are enough injectives), but not suitable for computations. Every
injective sheaf F is flasque [Ha1, III. Lemma 2.4], i.e., the restriction maps
F(U) → F(V ) between non-empty open sets V ⊂ U are always surjective.
Below we will introduce the canonical flasque Godemont resolution for any sheaf
F . More generally, every flasque sheaf F is acyclic, i.e., Hi(X,F) = 0 for i > 0.
One may compute sheaf cohomology of F using any acyclic resolution F •. This
follows from the hypercohomology spectral sequence

Ep,q2 = Hp(Hq(F •))⇒ Hp+q(X,F)

which is supported entirely on the q = 0-line.

Special acylic resolutions on X are the so-called fine resolutions. See [Wa,
pg. 170] for a definition of fine sheaves involving partitions of unity. Their
importance comes from the fact that sheaves of C∞-functions and sheaves of
C∞-differential forms on X are fine sheaves.

1.4.2 Godement resolutions

For many purposes, it is useful to have functorial resolutions of sheaves. One
such is given by the Godement resolution introduced in [God] chapter II §3.

Let X be a topological space. Recall that a sheaf on X vanishes if and only the
stalks at all x ∈ X vanish. For all x ∈ X we denote ix : x → X the natural
inclusion.
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Definition 1.4.6. Let F ∈ Sh(X). Put

I(F) =
∏

x∈X
ix∗Fx .

Inductively, we define the Godement resolution Gd•(F) of F by

Gd0(F) = I(F) ,

Gd1(F) = I(Coker(F → Gd0(F))) ,

Gdn+1(F) = I(Coker(Gdn−1(F)→ Gdn(F))) n > 0.

Lemma 1.4.7. 1. Gd is an exact functor with values in C+(Sh(X)).

2. The natural map F → Gd•(F) is a flasque resolution.

Proof. Functoriality is obvious. The sheaf I(F) is given by

U 7→
∏

x∈U
ix∗Fx .

All the sheaves involved are flasque, hence acyclic. In particular, taking the
direct products is exact (it is not in general), turning I(F) into an exact functor.
F → I(F) is injective, and hence by construction, Gd•(F) is then a flasque
resolution.

Definition 1.4.8. Let F• ∈ C+(Sh(X)) be a complex of sheaves. We call

Gd(F•) := Tot(Gd•(F•))

the Godement resolution of F•.

Corollary 1.4.9. The natural map

F → Gd(F•)

is a quasi-isomorphism and

Hi(X,F•) = Hi (Γ(X,Gd(F•))) .

Proof. By Lemma 1.4.7, the first assertion holds if F• is concentrated in a single
degree. The general case follows by the hypercohomology spectral sequence or
by induction on the length of the complex using the stupid filtration.

All terms in Gd(F•) are flasque, hence acyclic for Γ(X, ·).

We now study functoriality of the Godement resolution. For a continuous map
f : X → Y be denote f−1 the pull-back functor on sheaves of abelian groups.
Recall that it is exact.
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Lemma 1.4.10. Let f : X → Y be a continuous map between topological spaces,
F• ∈ C+(Sh(Y )). Then there is a natural quasi-isomorphism

f−1GdY (F•)→ GdX(f−1F•) .

Proof. Consider a sheaf F on Y . We want to construct

f−1I(F)→ I(f−1F) =
∏

x∈X
ix∗(f

−1F)x =
∏

x∈X
ix∗Ff(x) .

By the universal property of the direct product and adjunction for f−1, this is
equivalent to specifying for all x ∈ X

∏

y∈Y
iy∗Fy = I(F)→ f∗ix∗Ff(x) = if(x)∗Ff(x) .

We use the natural projection map. By construction, we have a natural com-
mutative diagram

f−1F −−−−→ f−1I(F) −−−−→ Coker
(
f−1F → f−1I(F)

)

=

y
y

f−1F −−−−→ I(f−1F) −−−−→ Coker
(
f−1F → I(f−1F)

)

It induces a map between the cokernels. Proceeding inductively, we obtain a
morphism of complexes

f−1Gd•Y (F)→ Gd•X(f−1F) .

It is a quasi-isomorphism because both are resolutions of f−1F . This transfor-
mation of functors extends to double complexes and hence defines a transfor-
mation of functors on C+(Sh(Y )).

Remark 1.4.11. We are going to apply the theory of Godement resolutions in
the case where X is a variety over a field k, a complex manifold or more generally
a complex analytic space. The continuous maps that we need to consider are
those in these categories, but also the maps of schemes XK → Xk for the change
of base field K/k and a variety over k; and the continuous map Xan → X for
an algebraic variety over C and its analytification.

1.4.3 Čech cohomology

Neither the definition of sheaf cohomology via injective resolutions nor Gode-
ment resolutions are convenient for concrete computations. We introduce Čech
cohomology for this task. We follow [Ha2], Chap. III §4, but extend to hyper-
cohomology.
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Let k be a field. We work in the category of varieties over k. Let I = {1, . . . , n}
as ordered set and U = {Ui|i ∈ I} an affine open cover of X. For any subset
J ⊂ {1, . . . , n} we denote

UJ =
⋂

j∈J
Uj .

As X is separated, they are all affine.

Definition 1.4.12. Let X and U be as above. Let F ∈ Sh(X). We define the
Čech complex of F as

Cp(U,F) =
∏

J⊂I,|J|=p+1

F(UJ) p ≥ 0

with differential δp : Cp(U,F)→ Cp+1(U,F)

(δpα)i0<i1<···<ip =

p+1∑

j=0

(−1)pαi0···<îj<···<ip+1
|Ui0...ip+1

,

where, as usual, i0 · · · < îj < · · · < ip+1 means the tuple with îj removed.

We define the p-th Čech cohomology of X with coefficients in F as

Ȟp(U,F) = Hp(C•(U,F), δ) .

Proposition 1.4.13 ([Ha2], chap. III Theorem 4.5). Let X be a variety, U an
affine open cover as before. Let F be a coherent sheaf of OX-modules on X.
Then there is a natural isomorphism

Hp(X,F) = Ȟp(U,F) .

We now extend to complexes. We can apply the functor C•(U, ·) to all terms in
a complex F• and obtain a double complex C•(U,F•).

Definition 1.4.14. Let X and U as before. Let F• ∈ C+(Sh(X)). We define
the Čech complex of U with coefficients in F• as

C•(U,F•) = Tot (C•(U,F•))

and Čech cohomology as

Ȟp(U,F) = Hp(C•(U,F•)) .

Proposition 1.4.15. Let X be a variety, U as before an open affine cover of
X. Let F• ∈ C+(Sh(X)) be complex such that all Fn are coherent sheaves of
OX-modules. Then there is a natural isomorphism

Hp(X,F)→ Ȟp(U,F•) .
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Proof. The essential step is to define the map. We first consider a single sheaf
G. Let C•(U,G) be a sheafified version of the Čech complex for a sheaf G. By
[Ha2], chap. III Lemma 4.2, it is a resolution of G. We apply the Godement
resolution and obtain a flasque resolution of G by

G → C•(U,G)→ Gd (C•(U,G)) .

By Proposition 1.4.13, the induced map

C•(U,G)→ Γ(X,Gd (C•(U,G))

is a quasi-isomorphism as both compute Hi(X,G).

The construction is functorial in G, hence we can apply it to all components of
a complex F• and obtain double complexes. We use the previous results for all
Fn and take total complexes. Hence

F• → TotC•(U,F•)→ Gd (C•(U,F•))

are quasi-isomorphisms. Taking global sections we get a quasi-isomorphism

TotC•(U,F•)→ TotΓ(X,Gd (C•(U,F•))) .

By definition, the complex on the left computes Čech cohomology of F• and
the complex on right computes hypercohomology of F•.

Corollary 1.4.16. Let X be an affine variety and F• ∈ C+(Sh(X)) such that
all Fn are coherent sheaves of OX-modules. Then

Hi(Γ(X,F•)) = Hi(X,F•) .

Proof. We use the affine covering U = {X} and apply Proposition 1.4.15.

1.5 Simplicial objects

We introduce simplicial varieties in order to carry out some of the constructions
in [D5]. Good general references on the topic are [May] or [We] Ch. 8.

Definition 1.5.1. Let ∆ be the category whose objects are finite ordered sets

[n] = {0, 1, . . . , n} n ∈ N0

with morphisms nondecreasing monotone maps. Let ∆N be the full subcategory
with objects the [n] with n ≤ N .

If C is a category, we denote by C∆ the category of simplicial objects in C defined
as contravariant functors

X• : ∆→ C
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with transformation of functors as morphisms. We denote by C∆◦ the category
of cosimplicial objects in C defined as covariant functors

X• : ∆→ C .

Similarly, we defined the categories C∆N and C∆◦N of N -truncated simplicial and
cosimplicial objects.

Example 1.5.2. Let X be an object of C. The constant functor

∆◦ → C

which maps all objects to X and all morphism to the identity morphism is a
simplicial object. It is called the constant simplicial object associated to X.

In ∆, we have in particular the face maps

εi : [n− 1]→ [n] i = 0, . . . , n,

the unique injective map leaving out the index i, and the degeneracy maps

ηi : [n+ 1]→ [n] i = 0, . . . , n,

the unique surjective map with two elements mapping to i. More generally, a
map in ∆ is called face or degeneracy if it is a composition of εi or ηi, respectively.
Any morphism in ∆ can be decomposed into a degeneracy followed by a face
([We] Lemma 8.12).

For all m ≥ n, we denote Sm,n the set of all degeneracy maps [m]→ [n].

A simplicial object X• is determined by a sequence of objects

X0, X1, . . .

and face and degeneracy morphisms between them. In particular, we write

∂i : Xn → Xn−1

for the image of εi and
si : Xn → Xn+1

for the image of ηi.

Example 1.5.3. For every n, there is a simplicial set ∆[n] with

∆[n]m = Mor∆([m], [n])

and the natural face and degeneracy maps. It is called the simplicial n-simplex.
For n = 0, this is the simplicial point, and for n = 1 the simplicial interval.
Functoriality in the first argument induces maps of simplicial sets. In particular,
there are

δ0 = ε∗0, δ1 = ε∗1 : ∆[1]→ ∆[0] .
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Definition 1.5.4. Let C be a category with finite products and coproducts.
Let ? be the final object. Let X•, Y• simplicial objects in C and S• a simplicial
set

1. X• × Y• is the simplicial object with

(X• × Y•)n = Xn × Yn
with face and degeneracy maps induced from X• and Y•.

2. X• × S• is the simplicial object with

(X• × S•)n =
∐

s∈Sn
Xn

with face and degeneracy maps induced from X• and S•.

3. Let f, g : X• → Y• be morphisms of simplicial objects. Then f is called
homotopic to g if there is a morphism

h : X• ×∆[1]→ Y•

such that h ◦ δ0 = f and h ◦ δ1 = g.

The inclusion ∆N → ∆ induces a natural restriction functor

sqN : C∆ → C∆N .

For a simplicial object X•, we call sqNX• its N -skeleton. If Y• is a fixed simpli-
cial objects, we also denote sqN the restriction functor from simplicial objects
over Y• to simplicial objects over sqNY•.

Remark 1.5.5. The skeleta sqkX• define the skeleton filtration, i.e., a chain of
maps

sq0X• → sq1X• → · · · → sqNX• = X•.

Later, in section 2.3, we will define the topological realization |X•| of a simpli-
cial set X•. The skeleton filtration then defines a filtration of |X•| by closed
subspaces.

An important example in this book is the case when the simplicial set X• is a
finite set, i.e., all Xn are finite sets, and empty for n > N sufficiently large. See
section 2.3.

Lemma 1.5.6. Let C be a category with finite limits. Then the functor sqN has
a right adjoint

cosqN : C∆N → C∆ .

If Y• is a fixed simplicial object, then

cosqY•N (X•) = cosqNX× ×cosqN sqNY• Y•

is the right adjoint of the relative version of sqN .
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Proof. The existence of cosqN is an instance of a Kan extension. We refer to
[ML, chap. X] or [AM, chap. 2] for its existence. The relative case follows from
the universal properties of fibre products.

If X• is an N -truncated simplicial object, we call cosqNX• its coskeleton.

Remark 1.5.7. We apply this in particular to the case where C is one of the
categories Var, Sm or Aff over a fixed field k. The disjoint union of varieties is
a coproduct in these categories and the direct product a product.

Definition 1.5.8. Let S be a class of covering maps of varieties containing
all identity morphisms. A morphism f : X• → Y• of simplicial varieties (or
the simplicial variety X• itself) is called an S-hypercovering if the adjunction
morphisms

Xn → (cosqY•n−1sqn−1X•)n

are in S.

If S is the class of proper, surjective morphisms, we call X• a proper hypercover
of Y•.

Definition 1.5.9. Let X• be a simplical variety. It is called split if for all
n ∈ N0

N(Xn) = Xn r
n−1⋃

i=0

si(Xn−1)

is an open and closed subvariety of Xn.

We call N(Xn) the non-degenerate part of Xn. If X• is a split simplicial variety,
we have a decomposition as varieties

Xn = N(Xn)q
∐

m<n

∐

s∈Sm,n
sN(Xm)

where Sm,n is the set of degeneracy maps from Xm to Xn.

Theorem 1.5.10 (Deligne). Let k be a field and Y a variety over k. Then
there is a split simplicial variety X• with all Xn smooth and a proper hypercover
X• → Y .

Proof. The construction is given in [D5] Section (6.2.5). It depends on the
existence of resolutions of singularities. In positive characteristic, we may use
de Jong’s result on alterations instead.

The other case we are going to need is the case of additive categories.

Definition 1.5.11. Let A be an additive category. We define a functor

C : A∆ → C−(A)
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by mapping a simplicial object X• to the cohomological complex

. . . X−n
d−n−−→ X−(n−1) → · · · → X0 → 0

with differential

d−n =

n∑

i=0

(−1)i∂i .

We define a functor
C : A∆◦ → C+(A)

by mapping a cosimplicial object X• to the cohomological complex

0→ X0 → . . . Xn dn−→ Xn+1 → . . .

with differential

dn =
n∑

i=0

(−1)i∂i .

Let A be an abelian category. We define a functor

N : A∆◦ → C+(A)

by mapping a cosimplicial object X• to the normalized complex N(X•) with

N(X•)n =
n−1⋂

i=0

Ker(si : Xn → Xn−1)

and differential dn|N(X•).

Proposition 1.5.12 (Dold-Kan correspondence). Let A be an abelian category,
X• ∈ A∆◦ a cosimplicial object. Then the natural map

N(X•)→ C(X•)

is a quasi-isomorphism.

Proof. This is the dual result of [We], Theorem 8.3.8.

Remark 1.5.13. We are going to apply this in the case of cosimplicial com-
plexes, i.e., to C(A)∆◦ , where A is abelian, e.g., a category of vector spaces.

1.6 Grothendieck topologies

Grothendieck topologies generalize the notion of open subsets in topological
spaces. Using them one can define cohomology theories in more abstract set-
tings. To define a Grothendieck topology, we need the notion of a site, or situs.
Let C be a category. A basis for a Grothendieck topology on C is given by
covering families in the category C satisfying the following definition.
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Definition 1.6.1. A site/situs is a category C together with a collection of
morphism in C

(ϕi : Vi −→ U)i∈I ,

the covering families.

The covering families satisfy the following axioms:

• An isomorphism ϕ : V → U is a covering family with an index set con-
taining only one element.

• If (ϕi : Vi −→ U)i∈I is a covering family, and f : V → U a morphism in
C, then for each i ∈ I there exists the pullback diagram

V ×U Vi Fi−−−−→ Vi

Φi

y
yϕi

V
f−−−−→ U

in C, and (Φi : V ×U Vi → V )i∈I is a covering family of V .

• If (ϕi : Vi −→ U)i∈I is a covering family of U , and for each Vi there is

given a covering family
(
ϕij : V ij → Vi

)
j∈J(i)

, then

(
ϕi ◦ ϕij : V ij → U

)
i∈I,j∈J(i)

is a covering family of U .

Example 1.6.2. Let X be a topological space. Then the category of open
sets in X together with inclusions as morphisms form a site, where the covering
maps are the families (Ui)i∈I of open subsets of U such that ∪i∈IUi = U . Thus
each topological space defines a canonical site. For the Zariski open subsets of
a scheme X this is called the (small) Zariski site of X.

Definition 1.6.3. A presheaf F of abelian groups on a situs C is a contravariant
functor

F : C → Ab, U 7→ F(U).

A presheaf F is a sheaf, if for each covering family (ϕi : Vi −→ U)i∈I , the dif-
ference kernel sequence

0→ F(U)→
∏

i∈I
F(Vi) ⇒

∏

(i,j)∈I×I
F(Vi ×U Vj)

is exact. This means that a section s ∈ F(U) is determined by its restrictions
to each Vi, and a tuple (si)i∈I of sections comes from a section on U , if one has
si = sj on pullbacks to the fiber product Vi ×U Vj .
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Once we have a notion of sheaves in a certain Grothendieck topology, then we
may define cohomology groups H∗(X,F) by using injective resolutions as in
section 1.4 as the right derived functor of the left-exact global section functor
X 7→ F(X) = H0(X,F) in the presence of enough injectives.

Example 1.6.4. The (small) étale site over a smooth variety X consists of the
category of all étale morphisms ϕ : U → X from a smooth variety U to X. See
[Ha2, Chap. III] for the notion of étale maps. We just note here that étale maps
are quasi-finite, i.e., have finite fibers, are unramified, and the image ϕ(U) ⊂ X
is a Zariski open subset.

A morphism in this site is given by a commutative diagram

V
f−−−−→ U

y
y

X
id−−−−→ X.

Let U be étale over X. A family (ϕi : Vi −→ U)i∈I of étale maps over X is
called a covering family of U , if

⋃
i∈I ϕi(Vi) = U , i.e., the images form a Zariski

open covering of U .

This category has enough injectives by Grothendieck [SGA4.2], and thus we can
define étale cohomology H∗et(X,F) for étale sheaves F .

Example 1.6.5. In Section 2.7 we are going to introduce the h′-topology on
the category of analytic spaces.

Definition 1.6.6. Let C and C′ be sites. A morphism of sites f : C → C′
consists of a functor F : C′ → C (sic) which preserves fibre products and such
that the F applied to a covering family of C′ yields a covering family of C.

A morphism of sites induces an adjoint pair of functors (f∗, f∗) between sheaves
of sets on C and C′.

Example 1.6.7. 1. Let f : X → Y be continuous map of topological spaces.
As in Example 1.6.2 we view them as sites. Then the functor F mapping
an open subset of Y to its preimage f−1(U).

2. Let X be a scheme. Then there is morphism of sites from the small étale
site of X to the Zariki-site of X. The functor views an open subscheme
U ⊂ X as an étale X-scheme. Open covers are in particular étale covers.

Definition 1.6.8. Let C be a site. A C-hypercover is an S-hypercover in the
sense of Definition 1.5.8 with S the class of morphism

∐

i∈I
Ui → U

for all covering families {φi : Ui → U}i∈I in the site.
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If X• is a simplical object and F is a presheaf of abelian groups, then F(X•)
is a cosimplicial abelian group. By applying the total complex functor C of
Definition 1.5.11, we get a complex of abelian groups.

Proposition 1.6.9. Let C be a site closed under finite products and fibre prod-
ucts, F a sheaf of abelian groups on C, X ∈ C. Then

Hi(X,F) = lim
X•→X

Hi (C(F(X•)))

where the direct limit runs through the system of all C-hypercovers of X.

Proof. This is [SGA4V, Théorème 7.4.1]

1.7 Torsors

Informally, a torsor is a group without a unit. The standard notion in algebraic
geometry is sheaf theoretic: A torsor under a sheaf of groups G is a sheaf of
sets X with an operation G × X → X such that there is a cover over which
X becomes isomorphic to G and the action becomes the group operation. This
makes sense in any site.

In this chapter, we are going to discuss a variant of this idea which does not
involve sites or topologies but rather schemes. This approach fits well with the
Tannaka formalism that we have discussed in previous chapters.

It is used by Kontsevich in [K]. This notion at least goes back to a paper of
R. Baer [Ba] from 1929, see the footnote on page 202 of loc. cit. where Baer
explains how the notion of a torsor comes up in the context of earlier work of H.
Prüfer [Pr]. In yet another context, ternary operations satisfying these axioms
are called associative Malcev operations, see [Joh] for a short account.

1.7.1 Sheaf theoretic definition

Definition 1.7.1. Let C be a category equipped with a Grothendieck topology
t. Assume S is a final object of C. Let G be a group object in C. A (left)
G-torsor is an object X with a (left) operation

µ : G×X → X

such that there is a t-covering U → S such that restriction of G and X to U is
a trivial, i.e., X(U) is non-empty, and the choice x ∈ X(U) induces a natural
isomorphism

·x : G(U ′)→ X(U ′)

g 7→ µ(g, x).

for all U ′ → U .
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The condition can also be formulated as an isomorphism

G× U → X × U
(g, u) 7→ g(u), u)

Remark 1.7.2. 1. As µ is an operation, the isomorphism of the definition
is compatible with the operation as well, i.e., the diagram

G(U ′)×X(U ′)
µ // X(U ′)

G(U ′)×G(U ′) //

(id,·x)

OO

G(U ′)

·x
OO

commutes.

2. If, moreover, X → S is a t-cover, then X(X) is always non-empty and
we recover a version of the definition that often appears in the literature,
namely that

G×X → X ×X
has to be an isomorphism.

We are interested in the topology that is in use in Tannaka theory. It is basically
the flat topology, but we have to be careful what we mean by this because the
schemes involved are not of finite type over the base.

Definition 1.7.3. Let S be an affine scheme and C the category of affine S-
schemes. The fpqc-topology on C is generated by covers of the form X → Y
with O(X) faithfully flat over O(Y ).

The letters fpqc stand for fidèlement plat quasi-compact. Recall that SpecA is
quasi-compact for all rings A.

We do not discuss the non-affine case at all, but see the survey [Vis] by Vistoli
for the general case. The topology is discussed in loc. cit. Section 2.3.2. The
above formulation follows from loc. cit. Lemma 2.60.

Remark 1.7.4. If, moreover, S = Spec(k) is the spectrum of a field, then any
non-trivial SpecA→ Spec(k) is an fpqc-cover. Hence, we are in the situation of
Remark 1.7.2. Note that X still has to be non-empty!

The importance of the fpqc-topology is that all representable presheaves are
fpqc-sheaves, see [Vis, Theorem 2.55].

1.7.2 Torsors in the category of sets

Definition 1.7.5 ([Ba] p. 202, [K] p. 61, [Fr] Definition 7.2.1). A torsor is a
set X together with a map

(·, ·, ·) : X ×X ×X → X
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satisfying:

1. (x, y, y) = (y, y, x) = x for all x, y ∈ X

2. ((x, y, z), u, v) = (x, (u, z, y), v) = (x, y, (z, u, v)) for all x, y, z, u, v ∈ X.

Morphisms are defined in the obvious way, i.e., maps X → X ′ of sets commuting
with the torsor structure.

Lemma 1.7.6. Let G be a group. Then (g, h, k) = gh−1k defines a torsor
structure on G.

Proof. This is a direct computation:

(x, y, y) = xy−1y = x = yy−1x = (y, y, x),

((x, y, z), u, v) = (xy−1z, u, v) = xy−1zu−1v = (x, y, zu−1v) = (x, y, (z, u, v)),

(x, (u, z, y), v) = (x, uz−1y, v) = x(uz−1y)−1v) = xy−1zu−1v.

Lemma 1.7.7 ([Ba] page 202). Let X be a torsor, e ∈ X an element. Then
Ge := X carries a group structure via

gh := (g, e, h), g−1 := (e, g, e).

Moreover, the torsor structure on X is given by the formula (g, h, k) = gh−1k
in Ge.

Proof. First we show associativity:

(gh)k = (g, e, h)k = ((g, e, h), e, k) = (g, e, (h, e, k)) = g(h, e, k) = g(hk).

e becomes the neutral element:

eg = (e, e, g) = g; ge = (g, e, e) = g.

We also have to show that g−1 is indeed the inverse element:

gg−1 = g(e, g, e) = (g, e, (e, g, e)) = ((g, e, e), g, e) = (g, g, e) = e.

Similarly one shows that g−1g = e. One gets the torsor structure back, since

gh−1k = g(e, h, e)k = (g, e, (e, h, e))k = ((g, e, (e, h, e)), e, k)

= (g, (e, (e, h, e), e), k) = (g, ((e, e, h), e, e), k)

= (g, (h, e, e), k) = (g, h, k).
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Proposition 1.7.8. Let µl : X2 ×X2 → X2 be given by

µl ((a, b), (c, d)) = ((a, b, c), d).

Then µl is associative and has (x, x) for x ∈ X as left-neutral elements. Let
Gl = X2/ ∼l where (a, b) ∼l (a, b)(x, x) for all x ∈ X is an equivalence relation.
Then µl is well-defined on Gl and turns Gl into a group. Moreover, the torsor
structure map factors via a simply transitive left Gl-operation on X which is
defined by

(a, b)x := (a, b, x).

Let e ∈ X. Then

ie : Ge → Gl, x 7→ (x, e)

is group isomorphism inverse to (a, b) 7→ (a, b, e).
In a similar way, using µr ((a, b), (c, d)) := (a, (b, c, d)) we obtain a group Gr

with analogous properties acting transitively on the right on X and such that µr
factors through the action X ×Gr → X.

Proof. First we check associativity of µl:

(a, b)[(c, d)(e, f)] = (a, b)((c, d, e), f) = ((a, b, (c, d, e)), f) = (((a, b, c), d, e), f)

[(a, b)(c, d)](e, f) = ((a, b, c), d)(e, f) = (((a, b, c), d, e), f)

(x, x) is a left neutral element for every x ∈ X:

(x, x)(a, b) = ((x, x, a), b) = (a, b)

We also need to check that ∼l is an equivalence relation: ∼l is reflexive, since one
has (a, b) = ((a, b, b), b) = (a, b)(b, b) by the first torsor axiom and the definition
of µ. For symmetry, assume (c, d) = (a, b)(x, x). Then

(a, b) = ((a, b, b), b) = ((a, b, (x, x, b)), b) = (((a, b, x), x, b), b)

= ((a, b, x), x)(b, b) = (a, b)(x, x)(b, b) = (c, d)(b, b)

again by the torsor axioms and the definition of µl. For transitivity observe
that

(a, b)(x, x)(y, y) = (a, b)((x, x, y), y) = (a, b)(y, y).

Now we show that µl is well-defined on Gl:

[(a, b)(x, x)][(c, d)(y, y)] = (a, b)[(x, x)(c, d)](y, y) = (a, b)(c, d)(y, y).

The inverse element to (a, b) in Gl is given by (b, a), since

(a, b)(b, a) = ((a, b, b), a) = (a, a).
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Define the left Gl-operation on X by (a, b)x := (a, b, x). This is compatible with
µl, since

[(a, b)(c, d)]x = ((a, b, c), d)x = ((a, b, c), d, x),

(a, b)[(c, d)x] = (a, b)(c, d, x) = ((a, b, (c, d, x))

are equal by the second torsor axiom. The left Gl-operation is well-defined with
respect to ∼l:

[(a, b)(x, x)]y = ((a, b, x), x)y = ((a, b, x), x, y) = (a, (x, x, b), y) = (a, b, y) = (a, b)y.

Now we show that ie is a group homomorphism:

ab = (a, e, b) 7→ ((a, e, b), e) = (a, e)(b, e)

The inverse group homomorphism is given by

(a, b)(c, d) = ((a, b, c), d) 7→ ((a, b, c), d, e).

On the other hand in Ge one has:

(a, b, e)(c, d, e) = ((a, b, e), e, (c, d, e)) = (a, b, (e, e, (c, d, e))) = (a, b, (c, d, e)).

This shows that ie is an isomorphism. The fact that Ge is a group implies that
the operation of Gl on X is simply transitive. Indeed the group structure on
Ge = X is the one induced by the operation of Gl. The analogous group Gr is
constructed using µr and an equivalence relation ∼r with opposite order, i.e.,
(a, b) ∼r (x, x)(a, b) for all x ∈ X. The properties of Gr can be verified in the
same way as for Gl and are left to the reader.

1.7.3 Torsors in the category of schemes (without groups)

Definition 1.7.9. Let S be a scheme. A torsor in the category of S-schemes
is a non-empty scheme X and a morphism

X ×X ×X → X

which on T -valued points is a torsor in the sense of Definition 1.7.5 for all T
over S.

This simply means that the diagrams of the previous definition commute as mor-
phisms of schemes. The following is the scheme theoretic version of Lemma 1.7.8.

Recall the fpqc-topology of Definition 1.7.3.

Proposition 1.7.10. Let S be affine. Let X be a torsor in the category of
affine schemes. Assume that X/S is faithfully flat. Then there are affine group
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schemes Gl and Gr operating from the left and right on X, respectively, such
that the natural maps

Gl ×X → X ×X (g, x) 7→ (gx, x)

X ×Gr → X ×X (x, g′) 7→ (x, xg′)

are isomorphisms.

Moreover, X is a left Gl- and right Gr-torsor with respect to the fpqc-topology
on the category of affine schemes.

Proof. We consider Gl. The arguments for Gr are the same. We define Gl as
the fpqc-sheafification of the presheaf

T 7→ X2(T )/ ∼l
We are going to see below that it is representable by an affine scheme. The
map of presheaves µl defines a multiplication on Gl. It is associative as it is
associative on the presheaf level.

We construct the neutral element. Recall that X → S is an fpqc-cover. The
diagonal ∆ : X → X2/ ∼l induces a section e ∈ G(X). It satisfies descent
for the cover X/S by the definition of the equivalence relation ∼l. Hence it
defines an element e ∈ G(S). We claim that it is the neutral element of G.
This can be tested fpqc-locally, e.g., after base change to X. For T/X the set
X(T ) is non-empty, hence X2/ ∼l (T ) is a group with neutral element e by
Proposition 1.7.8.

The inversion map ι exists on X2(T )/ ∼l for T/X, hence it also exists and is
the inverse on G(T ) for T/X. By the sheaf condition this gives a well-defined
map with the correct properties on G.

By the same arguments, the action homomorphism X2(T )/ ∼l ×X(T )→ X(T )
defines a left action Gl × X → X. The induced map Gl × X → X × X is an
isomorphism because it as an isomorphism on the presheaf level for T/X. In
particular, X is a left Gl-torsor.

We now turn to representability.

We are going to construct Gl by flat descent with respect to the faithfully flat
cover X → S following [BLR, Section 6.1]. In order to avoid confusion, put
T = X and Y = X ×X viewed as T -scheme over the second factor. A descent
datum on Y → T consists of the choice of an isomorphism

φ : p∗1Y → p∗2Y

subject to the coycle condition

p∗13φ = p∗23φ ◦ p∗12φ

with the obvious notation. We have p∗1Y = Y ×T = X2×X and p∗2Y = T×Y =
X ×X2 and use

φ(x1, x2, x3) = (x2, ρ(x1, x2, x3), x3)
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where ρ : X2 → X is the structural morphism of X. We have p∗12p
∗
1Y =

X2 ×X ×X etc. and

p∗12φ(x1, x2, x3, x4) = (x2, ρ(x1, x2, x3), x3, x4)

p∗23φ(x1, x2, x3, x4) = (x1, x3, ρ(x2, x3, x4), x4)

p∗13φ(x1, x2, x3, x4) = (x2, x3ρ(x1, x3, x4), x4)

and the cocyle condition is equivalent to

ρ(ρ(x1, x2, x3), x3, x4) = ρ(x1, x2, x4),

which is an immediate consequence of the properties of a torsor. In the affine
case (that we are in) any descent datum is effective, i.e., induced from a uniquely
determined S-scheme G̃l. In other words, it represents the fpqc-sheaf defined as
the coequalizer of

X2 ×X ⇒ X2

with respect to the projection p1 mapping (x1, x2, x3) to (x1, x2) and p2 ◦ φ :
X2 ×X → X ×X2 → X2 mapping

(x1, x2, x3) 7→ (x2, ρ(x1, x2, x3), x3) 7→ (ρ(x1, x2, x3), x3)

This is precisely the equivalence relation ∼l. Hence

G̃l = X2/ ∼l

as fpqc-sheaves.

Remark 1.7.11. If S is the spectrum of a field, then the flatness assumption is
always satisfied. In general, some kind of assumption is needed, as the following
example shows. Let S be the spectrum of a discrete valuation ring with closed
point s. Let G be an algebraic group over s and X = G the trivial torsor defined
by G. In particular, we have the structure map

X ×s X ×s X → X.

We now view X as an S-scheme. Note that

X ×S X ×S X = X ×s X ×s X

hence X is also a torsor over S in the sense of Definition 1.7.9. However, it
is not a torsor with respect to the fpqc (or any other reasonable Grothendieck
topology) as X(T ) is empty for all T → S surjective.
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Chapter 2

Singular Cohomology

In this chapter we give a short introduction to singular cohomology. Many
properties are only sketched, as this theory is considerably easier than de Rham
cohomology for example.

2.1 Sheaf cohomology

Let X be a topological space. Sometimes, if indicated, X will be the underlying
topological space of an analytic or algebraic variety also denoted by X. To avoid
technicalities, X will always be assumed to be a paracompact space, i.e., locally
compact, Hausdorff, and satisfying the second countability axiom.

From now on, let F be a sheaf of abelian groups on X and consider sheaf
cohomology Hi(X,F) from Section 1.4. Mostly, we will consider the case of the
constant sheaf F = Z. Later we will also consider other constant coefficients
R ⊃ Z, but this will not change the following topological statements.

Definition 2.1.1 (Relative Cohomology). Let A ⊂ X be a closed subset, U =
X \A the open complement, i : A ↪→ X and j : U ↪→ X be the inclusion maps.
We define relative cohomology as

Hi(X,A;Z) := Hi(X, j!Z),

where j! is the extension by zero, i.e., the sheafification of the presheaf V 7→ Z
for V ⊂ U and V 7→ 0 else.

Remark 2.1.2 (Functoriality and homotopy invariance). The association

(X,A) 7→ Hi(X,A;Z)

is a contravariant functor from pairs of topological spaces to abelian groups. In
particular, for every continuous map f : (X,A) → (X ′, A′) of pairs, i.e., satis-
fying f(A) ⊂ A′, one has a homomorphism f∗ : Hi(X ′, A′;Z) → Hi(X,A;Z).

37
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Given two homotopic maps f and g, then the homomorphisms f∗, g∗ are equal.
As a consequence, if two pairs (X,A) and (X ′, A′) are homotopy equivalent,
then the cohomology groups Hi(X ′, A′;Z) and Hi(X,A;Z) are isomorphic.

Proposition 2.1.3. There is a long exact sequence

· · · → Hi(X,A;Z)→ Hi(X,Z)→ Hi(A,Z)
δ→Hi+1(X,A;Z)→ · · ·

Proof. This follows from the exact sequence of sheaves

0→ j!Z→ Z→ i∗Z→ 0.

Note that by our definition of cones, see section 1.3, one has a quasi-isomorphism
j!Z = Cone(Z→ i∗Z)[−1]. For Nori motives we need a version for triples, which
can be proved using iterated cones by the same method:

Corollary 2.1.4. Let X ⊃ A ⊃ B be a triple of relative closed subsets. Then
there is a long exact sequence

· · · → Hi(X,A;Z)→ Hi(X,B;Z)→ Hi(A,B;Z)
δ→Hi+1(X,A;Z)→ · · ·

Here, δ is the connecting homomorphism, which in the cone picture is explained
in Section 1.3.

Proposition 2.1.5 (Mayer-Vietoris). Let {U, V } be an open cover of X. Let
A ⊂ X be closed. Then there is a natural long exact sequence

· · · → Hi(X,A;Z)→ Hi
dR(U,U ∩A;Z)⊕Hi(V, V ∩A;Z)

→ Hi(U ∩ V,U ∩ V ∩A;Z)→ Hi+1(X,A;Z)→ · · ·

Proof. Pairs (U, V ) of open subsets form an excisive couple in the sense of [Sp,
pg. 188], and therefore the Mayer-Vietoris property holds by [Sp, pg. 189-
190].

Theorem 2.1.6 (Proper base change). Let π : X → Y be proper (i.e., the
preimage of a compact subset is compact). Let F be a sheaf on X. Then the
stalk in y ∈ Y is computed as

(Riπ∗F)y = Hi(Xy,F|Xy ).

Proof. See [KS] Proposition 2.6.7. As π is proper, we have Rπ∗ = Rπ!.

Now we list some properties of the sheaf cohomology of algebraic varieties over
a field k ↪→ C. As usual, we will not distinguish in notation between a variety
X and the topological space X(C). The first property is:
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Proposition 2.1.7 (Excision, or abstract blow-up). Let f : (X ′, D′)→ (X,D)
be a proper, surjective morphism of algebraic varieties over C, which induces an
isomorphism F : X ′ \D′ → X \D. Then

f∗ : H∗(X,D;Z) ∼= H∗(X ′, D′;Z).

Proof. This fact goes back to A. Aeppli [Ae]. It is a special case of proper-base
change: Let j : U → X be the complement of D and j′ : U → X ′ its inclusion
into X ′. For all x ∈ X, we have

Riπ∗j
′
!Z = Hi(Xx, j

′
!Z|X′x).

For x ∈ U , the fibre is one point. It has no higher cohomology. For x ∈ D, the
restriction of j′!Z to X ′x is zero. Together this means

Rπ∗j
′
!Z = j!Z.

The statement follows from the Leray spectral sequence.

We will later prove a slightly more general proper base change theorem for
singular cohomology, see Theorem 2.5.11.

The second property is:

Proposition 2.1.8 (Gysin isomorphism, localization, weak purity). Let X be
an irreducible variety of dimension n over k, and Z a closed subvariety of pure
codimension r. Then there is an exact sequence

· · · → Hi
Z(X,Z)→ Hi(X,Z)→ Hi(X \ Z,Z)→ Hi+1

Z (X,Z)→ · · ·

where Hi
Z(X,Z) is cohomology with supports in Z, defined as the hypercohomol-

ogy of Cone(ZX → ZX\U )[−1].

If, moreover, X and Z are both smooth, then one has the Gysin isomorphism

Hi
Z(X,Z) ∼= Hi−2r(Z,Z).

In particular, one has weak purity:

Hi
Z(X,Z) = 0 for i < 2r,

and H2r
Z (X,Z) = H0(Z,Z) is free of rank the number of components of Z.

Proof. See [Pa, Sect. 2] for this statement and an axiomatic treatment with
more general properties and examples of cohomology theories.
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2.2 Singular (co)homology

Let X be a topological space (same general assumptions as in section 2.1). The
definition of singular homology and cohomology uses topological simplexes.

Definition 2.2.1. The topological n-simplex ∆n is defined as

∆n := {(t0, ..., tn) |
n∑

i=0

ti = 1, ti ≥ 0} .

∆n has natural codimension one faces defined by ti = 0.

Singular (co)homology is defined by looking at all possible continuous maps
from simplices to X.

Definition 2.2.2. A singular n-simplex σ is a continuous map

f : ∆n → X.

In the case where X is a differentiable manifold, a singular simplex σ is called
differentiable, if the map f can be extended to a C∞-map from a neighbourhood
of ∆n ⊂ Rn+1 to X. The group of singular n-chains is the free abelian group

Sn(X) := Z[f : ∆n → X | f singular chain ].

In a similar way, we denote by S∞n (X) the free abelian group of differentiable
chains. The boundary map ∂n : Sn(X)→ Sn−1(X) is defined as

∂n(f) :=
n∑

i=0

(−1)if |ti=0.

The group of singular n-cochains is the free abelian group

Sn(X) := HomZ(Sn(X),Z).

The group of differentiable singular n-cochains is the free abelian group

Sn(X) := HomZ(S∞n (X),Z).

The adjoint of ∂n+1 defines the boundary map

dn : Sn(X)→ Sn+1(X).

Lemma 2.2.3. One has ∂n−1∂n = 0 and dn+1dn = 0, i.e., the groups S•(X)
and S•(X) define complexes of abelian groups.

The proof is left to the reader as an exercise.
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Definition 2.2.4. Singular homology and cohomology with values in Z is de-
fined as

Hi
sing(X,Z) := Hi(S•(X), d•), H

sing
i (X,Z) := Hi(S•(X), ∂•) .

In a similar way, we define (forX a manifold) the differentiable singular (co)homology
as

Hi
sing,∞(X,Z) := Hi(S•∞(X), d•), H

sing,∞
i (X,Z) := Hi(S

∞
• (X), ∂•) .

Theorem 2.2.5. Assume that X is a locally contractible topological space, i.e.,
every point has an open contractible neighborhood. In this case, singular coho-
mology Hi

sing(X,Z) agrees with sheaf cohomology Hi(X,Z) with coefficients in
Z. If Y is a differentiable manifold, differentiable singular (co)homology agrees
with singular (co)homology.

Proof. Let Sn be the sheaf associated to the presheaf U 7→ Sn(U). One shows
that Z → S• is a fine resolution of the constant sheaf Z [Wa, pg. 196]. In
the proof it is used that X is locally contractible, see [Wa, pg. 194]. If X is
a manifold, differentiable cochains also define a fine resolution [Wa, pg. 196].
Therefore, the inclusion of complexes S∞• (X) ↪→ S•(X) induces isomorphisms

Hi
sing,∞(X,Z) ∼= Hi

sing(X,Z) and Hsing,∞
i (X,Z) ∼= Hsing

i (X,Z) .

Of course, topological manifolds satisfy the assumption of the theorem.

2.3 Simplicial cohomology

In this section we want to introduce simplicial (co)homology and its relation to
singular (co)homology. Simplicial (co)homology can be defined for topological
spaces with an underlying combinatorial structure.

In the literature there are various notions of such spaces. In increasing order of
generality, these are: (geometric) simplicial complexes and topological realiza-
tions of abstract simplicial complexes, of ∆-complexes (sometimes also called
semi-simplicial complexes), and of simplicial sets. A good reference with a dis-
cussion of various definitions is the book by Hatcher [Hat], or the introductory
paper [Fri] by Friedman.

By construction, such spaces are built from topological simplices ∆n in various
dimensions n, and the faces of each simplex are of the same type. Particularly
nice examples are polyhedra, for example a tetrahedron, where the simplicial
structure is obvious.

Geometric simplicial complexes come up more generally in geometric situations
in the triangulations of manifolds with certain conditions. An example is the
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case of an analytic space Xan where X is an algebraic variety defined over
R. There one can always find a semi-algebraic triangulation by a result of
Lojasiewicz, cf. Hironaka [Hi2, p. 170] and Prop. 2.6.8.

In this section, we will think of a simplicial space as the topological realization
of a finite simplicial set:

Definition 2.3.1. Let X• be a finite simplicial set in the sense of Remark 1.5.5.
One has the face maps

∂i : Xn → Xn−1 i = 0, . . . , n,

and the degeneracy maps

si : Xn → Xn+1 i = 0, . . . , n.

The topological realization |X•| of X• is defined as

|X•| :=
∞∐

n=0

Xn ×∆n/ ∼,

where each Xn carries the discrete topology, ∆n is the topological n-simplex,
and the equivalence relation is given by the two relations

(x, ∂i(y)) ∼ (∂i(x), y), (x, si(y)) ∼ (si(x), y), x ∈ Xn−1, y ∈ ∆n.

(Note that we denote the face and degeneracy maps for the n-simplex by the
same letters ∂i, si.)

In this way, every finite simplicial set gives rise to a topological space |X•|.
It is known that |X•| is a compactly generated CW-complex [Hat, Appendix].
In fact, every finite CW-complex is homotopy equivalent to a finite simplical
complex of the same dimension by [Hat, Thm. 2C.5]. Thus, our restriction to
realizations of finite simplicial sets is not a severe restriction.

The skeleton filtration from Remark 1.5.5 defines a filtration of |X•|

|sq0X•| ⊆ |sq1X•| ⊆ · · · ⊆ |sqNX•| = |X•|

by closed subspaces, if Xn is empty for n > N .

There is finite number of simplices in each degree n. Associated to each of them
is a continuous map σ : ∆n → |X•|. We denote the free abelian group of all
such σ of degree n by C∆

n (X•)

∂n : C∆
n (X•)→ C∆

n−1(X•)

are given by alternating restriction maps to faces, as in the case of singular
homology. Note that the vertices of each simplex are ordered, so that this is
well-defined.
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Definition 2.3.2. Simplicial homology of the topological space X = |X•| is
defined as

Hsimpl
n (X,Z) := Hn(C∆

∗ (X•), ∂∗),

and simplicial cohomology as

Hn
simpl(X;Z) := Hn(C∗∆(X•), d∗),

where Cn∆(X•) = Hom(C∆
n (X•),Z) and dn is adjoint to ∂n.

Example 2.3.3. A tetrahedron arises from a simplicial set with four vertices (0-
simplices), six edges (1-simplices), and four faces (2-simplices). A computation
shows that Hn = Z for i = 0, 2 and zero otherwise (this was a priori clear, since
it is topologically a sphere).

A torus T 2 can be obtained from a square by identifying opposite sides, called a
and b. If we look at the diagonal of the square, we see that there is a simplicial
complex with one vertex (!), three edges, and two faces. A computation shows
that H1(T 2,Z) = Z⊕ Z as expected, and H0(T 2,Z) = H2(T 2,Z) = Z.

This definition does not depend on the representation of a topological space
X as the topological realization of a simplicial set, since one can prove that
simplicial (co)homology coincides with singular (co)homology:

Theorem 2.3.4. Singular and simplicial (co)homology of X are equal.

Proof. (For homology only.) The chain of closed subsets

|sq0X•| ⊆ |sq1X•| ⊆ · · · ⊆ |sqNX•| = |X•|

gives rise to long exact sequences of simplicial homology groups

· · · → Hsimpl
n (|sqn−1X•|,Z)→ Hsimpl

n (|sqnX•|,Z)→ Hsimpl
n (|sqn−1X•|, |sqnX•|;Z)→ · · ·

A similar sequence holds for singular homology, and there is a canonical map
C∆
n (X)→ Cn(X) from simplicial to singular chains. The result is then proved

by induction on n. We use that the relative complex Cn(|sqn−1X•|, |sqnX•|)
has zero differential and is a free abelian group of rank equal to the cardinality
of Xn. Therefore, one concludes by observing a computation of the singular
(co)homology of ∆n, i.e., Hi(∆n,Z) = Z for i = 0 and zero otherwise.

In a similar way, one can define the simplicial (co)homology of a pair (X,D) =
(|X•|, |D•|), where D• ⊂ X• is a simplicial subobject. The associated chain
complex is given by the quotient complex C∗(X•)/C∗(D•). The same proof will
then show that the singular and simplicial (co)homology of pairs coincide.

From the definition of the topological realization, we see that X is a CW-
complex. In the special case, when X is the topological space underlying an
affine algebraic variety X over C, or more generally a Stein manifold, then one
can show:
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Theorem 2.3.5 (Artin vanishing). Let X be an affine variety over C of dimen-
sion n. Then Hq(Xan,Z) = 0 for q > n. In fact, Xan is homotopy equivalent
to a finite simplicial complex where all cells are of dimension ≤ n.

Proof. The proof was first given by Andreotti and Fraenkel [AF] for Stein spaces.
An algebraic proof was given by M. Artin [A, Cor. 3.5, tome 3].

Corollary 2.3.6 (Good topological filtration). Let X be an affine variety over
C of dimension n. Then the skeleton filtration of Xan is given by

Xan = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0

where the pairs (Xi, Xi−1) have only cohomology in degree i.

Remark 2.3.7. The Basic Lemma of Nori and Beilinson, see Thm. 2.5.6, shows
that there is even an algebraic variant of this topological skeleton filtration.

Corollary 2.3.8 (Artin vanishing for relative cohomology). Let X be an affine
variety of dimension n and Z ⊂ X a closed subvariety. Then

Hi(Xan, Zan,Z) = 0 for i > n.

Proof. Consider the long exact sequence for relative cohomology and use Artin
vanishing for X and Z from Thm.2.3.5.

The following theorem is strongly related to the Artin vanishing theorem.

Theorem 2.3.9 (Lefschetz hyperplane theorem). Let X ⊂ PNC be an integral
projective variety of dimension n, and H ⊂ PNC a hyperplane section such that
H∩X contains the singularity set Xsing of X. Then the inclusion H∩X ⊂ X is
(n− 1)-connected. In particular, one has Hq(X,Z) = Hq(X ∩H,Z) for q ≤ n.

Proof. See for example [AF].

2.4 Künneth formula and Poincaré duality

Assume that we have given two topological spaces X and Y , and two closed
subsets j : A ↪→ X, and j′ : C ↪→ Y . By the above, we have

H∗(X,A;Z) = H∗(X, j!Z)

and
H∗(Y,C;Z) = H∗(Y, j′!Z) .

The relative cohomology group

H∗(X × Y,X × C ∪A× Y ;Z)



2.4. KÜNNETH FORMULA AND POINCARÉ DUALITY 45

can be computed as H∗(X × Y, j̃!Z), where

j̃ : X × C ∪A× Y ↪→ X × Y

is the inclusion map. One has j̃! = j! � j′! . Hence, we have a natural exterior
product map

Hi(X,A;Z)⊗Hj(Y,C;Z)
×−→Hi+j(X × Y,X × C ∪A× Y ;Z).

This is related to the so-called Künneth formula:

Theorem 2.4.1 (Künneth formula for pairs). Let A ⊂ X and C ⊂ Y be closed
subsets. The exterior product map induces a natural isomorphism

⊕

i+j=n

Hi(X,A;Q)⊗Hj(Y,C;Q)
∼=−→Hn(X × Y,X × C ∪A× Y ;Q).

The same result holds with Z-coefficients, provided all cohomology groups of
(X,A) and (Y,C) in all degrees are free.

Proof. Using the sheaves of singular cochains, see the proof of theorem 2.2.5,
one has fine resolutions j!Z → F • on X, and j′!Z → G• on Y . The tensor
product F •�G• thus is a fine resolution of j̃!Z = j!Z� j′!Z. Here one uses that
the tensor product of fine sheaves is fine [Wa, pg. 193]. The cohomology of the
tensor product complex F • ⊗G• induces a short exact sequence

0→
⊕

i+j=n

Hi(X,A;Z)⊗Hj(Y,C;Z)→ Hn(X × Y,X × C ∪A× Y ;Z)

→
⊕

i+j=n+1

TorZ1 (Hi(X,A;Z), Hj(Y,C;Z))→ 0

by [God, thm. 5.5.1] or [We, thm. 3.6.3]. If all cohomology groups are free, the
last term vanishes.

Proposition 2.4.2. The Künneth isomorphism of Theorem 2.4.1 is associative
and graded commutative.

Proof. This is a standard consequence of the definition of the Künneth isomor-
phism from complexes of groups.

In later constructions, we will need a certain compatibility of the exterior prod-
uct with coboundary maps. Assume that X ⊃ A ⊃ B and Y ⊃ C are closed
subsets.

Proposition 2.4.3. The diagram involving coboundary maps

Hi(A,B;Z)⊗Hj(Y,C;Z) −−−−→ Hi+j(A× Y,A× C ∪B × Y ;Z)

δ⊗id

y
yδ

Hi+1(X,A;Z)⊗Hj(Y,C;Z) −−−−→ Hi+j+1(X × Y,X × C ∪A× Y ;Z)
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commutes up to a sign (−1)j. The diagram

Hi(Y,C;Z)⊗Hj(A,B;Z) −−−−→ Hi+j(Y ×A, Y ×B ∪ C ×A;Z)

id⊗δ
y

yδ

Hi(Y,C;Z)⊗Hj+1(X,A;Z) −−−−→ Hi+j+1(Y ×X,Y ×A ∪ C ×X;Z)

commutes (without a sign).

Proof. We indicate the argument, without going into full details. Let F • be
a complex computing H•(Y,C;Z) Let G•1 and G•2 be complexes computing
H•(A,B;Z) and H•(X,A;Z). Let K•1 and K•2 be the complexes computing
cohomology of the corresponding product varieties. Cup product is induced
from maps of complexes F •i ⊗G• → K•i . In order to get compatibility with the
boundary map, we have to consider the diagram of the form

F1 ⊗G −−−−→ K1y
y

(F2[1])⊗G −−−−→ K2[1]

However, by Lemma 1.3.6, the complexes (F2[1]) ⊗ G and (F2 ⊗ G)[1] are not
equal. We need to introduce the sign (−1)j in bidegree (i, j) to make the
identification and get a commutative diagram.

The argument for the second type of boundary map is the same, but does not
need the introduction of signs by Lemma 1.3.6.

Assume now that X = Y and A = C. Then, j!Z has an algebra structure, and
we obtain the cup product maps:

Hi(X,A;Z)⊗Hj(X,A;Z) −→ Hi+j(X,A;Z)

via the multiplication maps

Hi+j(X ×X, j̃!Z)→ Hi+j(X, j!Z),

induced by
j̃! = j! � j! → j! .

In the case where A = ∅, the cup product induces Poincaré duality:

Proposition 2.4.4 (Poincaré Duality). Let X be a compact, orientable topo-
logical manifold of dimension m. Then the cup product pairing

Hi(X,Q)×Hm−i(X,Q) −→ Hm(X,Q) ∼= Q

is non-degenerate in both factors. With Z-coefficients, the same result holds for
the two left groups modulo torsion.
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Proof. We will give a proof of a slightly more general statement in the algebraic
situation below. A proof of the stated theorem can be found in [GH, pg. 53].
There it is shown that H2n(X) is torsion-free of rank one, and the cup-product
pairing is unimodular modulo torsion, using simplicial cohomology, and the
relation between Poincaré duality and the dual cell decomposition.

We will now prove a relative version in the algebraic case. It implies the version
above in the case where A = B = ∅. By abuse of notation, we again do not
distinguish between an algebraic variety over C and its underlying topological
space.

Theorem 2.4.5 (Poincaré duality for algebraic pairs). Let X be a smooth and
proper complex variety of dimension n over C and A,B ⊂ X two normal cross-
ing divisors, such that A ∪B is also a normal crossing divisor. Then there is a
non-degenerate duality pairing

Hd(X\A,B\(A∩B);Q)×H2n−d(X\B,A\(A∩B);Q) −→ H2n(X,Q) ∼= Q(−n).

Again, with Z-coefficients this is true modulo torsion by unimodularity of the
cup-product pairing.

Proof. We give a sheaf theoretic proof using Verdier duality and some formulas
and ideas of Beilinson (see [Be1]). Look at the commutative diagram:

U = X \ (A ∪B)
`U−−−−→ X \A

κU

y
yκ

X \B `−−−−→ X.

Assuming A ∪ B is a normal crossing divisor, we want to show first that the
natural map

`!RκU∗QU −→ Rκ∗`U !QU ,

extending id : QU → QU , is an isomorphism. This is a local computation.
We look without loss of generality at a neighborhood of an intersection point
x ∈ A ∩ B, since the computation at other points is even easier. If we work in
the analytic topology, we may choose a polydisk neighborhood D in X around
x such that D decomposes as

D = DA ×DB

and such that

A ∩D = A0 ×DB , B ∩D = DA ×B0
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for some suitable topological spaces A0, B0. Using the same symbols for the
maps as in the above diagram, the situation looks locally like

(DA \A0)× (DB \B0)
`U−−−−→ (DA \A0)×DB

κU

y
yκ

DA × (DB \B0)
`−−−−→ D = DA ×DB .

Using the Künneth formula, one concludes that both sides `!RκU∗QU and
Rκ∗`U !QU are isomorphic to

RκU∗QDA\A0
⊗ `!QDB\B0

near the point x, and the natural map provides an isomorphism.

Now, one has

Hd(X \A,B \ (A ∩B));Q) = Hd(X, `!κU∗QU ),

(using that the maps involved are affine), and

H2n−d(X \B,A \ (A ∩B));Q) = H2n−d(X,κ!`U∗QU ).

We have to show that there is a perfect pairing

Hd(X \A,B \ (A ∩B));Q)×H2n−d(X \B,A \ (A ∩B));Q)→ Q(−n).

However, by Verdier duality, we have a perfect pairing

H2n−d(X \B,A \ (A ∩B));Q)∨ = H2n−d(X,κ!`U∗QU )∨

= H−d(X,κ!`U∗DQU )(−n)

= H−d(X,D(κ∗`U !QU ))(−n)

= Hd(X,κ∗`U !QU )(−n)

= Hd(X, `!κU∗QU )(−n)

= Hd(X \A,B \ (A ∩B));Q).

Remark 2.4.6. The normal crossing condition is necessary, as one can see in
the example of X = P2, where A consists of two distinct lines meeting in a
point, and B a line going through the same point.

2.5 Basic Lemma

In this section we prove the basic lemma of Nori [N, N1, N2], a topological
result, which was also known to Beilinson [Be1] and Vilonen (unpublished). Let
k ⊂ C be a subfield. The proof of Beilinson works more generally in positive
characteristics as we will see below.
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Convention 2.5.1. We fix an embedding k ↪→ C. All sheaves and all cohomol-
ogy groups in the following section are to be understood in the analytic topology
on X(C).

Theorem 2.5.2 (Basic Lemma I). Let k ⊂ C. Let X be an affine variety over
k of dimension n and W ⊂ X be a Zariski closed subset with dim(W ) < n.
Then there exists a Zariski closed subset Z ⊃W with dim(Z) < n and

Hq(X,Z;Z) = 0, for q 6= n

and, moreover, the cohomology group Hn(X,Z;Z) is a free Z-module.

We formulate the Lemma for coefficients in Z, but by the universal coefficient
theorem [We, thm. 3.6.4] it will hold with other coefficients as well.

Example 2.5.3. There is an example where there is an easy way to obtain Z.
Assume that X is of the form X̄ \H for some smooth projective X̄ and a hyper-
plane H. Let W = ∅. Then take another hyperplane section H ′ meeting X̄ and
H transversally. Then Z := H ′∩X will have the property that Hq(X,Z;Z) = 0
for q 6= n by the Lefschetz hyperplane theorem, see Thm. 2.3.9. This argument
will be generalized in two of the proofs below.

An inductive application of this Basic Lemma in the case Z = ∅ yields a filtration
of X by closed subsets

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

with dim(Xi) = i such that the complex of free Z-modules

· · · δi−1−→Hi(Xi, Xi−1)
δi−→Hi+1(Xi+1, Xi)

δi+1−→· · · ,

where the maps δ• arise from the coboundary in the long exact sequence asso-
ciated to the triples Xi+1 ⊃ Xi ⊃ Xi−1, computes the cohomology of X.

Remark 2.5.4. This means that we can understand this filtration as algebraic
analogue of the skeletal filtraton of simplicial complexes, see Corollary 2.3.6.
Note that the filtration is not only algebraic, but even defined over the base
field k.

The Basic Lemma is deduced from the following variant, which was also known
to Beilinson [Be1]. To state it, we need the notion of a (weakly) constructible
sheaf.

Definition 2.5.5. A sheaf of abelian groups on a variety X over k is weakly
constructible, if there is a stratification of X into a disjoint union of finitely
many Zariski locally closed subsets Yi, and such that the restriction of F to Yi
is locally constant.
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We will also need some basic facts about sheaf cohomology. If j : U ↪→ X is
a Zariski open subset with closed complement i : W ↪→ X and F a sheaf of
abelian groups on X, then there is an exact sequence of sheaves

0→ j!j
∗F → F → i∗i

∗F → 0.

In addition, for F the constant sheaf Z, one has Hq(X, j!j
∗F ) = Hq(X,W ;Z)

and Hq(X, i∗i∗F ) = Hq(W,Z), see section 2.1.

Theorem 2.5.6 (Basic Lemma II). Let X be an affine variety over k of dimen-
sion n and F be a weakly constructible sheaf on X. Then there exists a Zariski
open subset j : U ↪→ X such the following three properties hold:

1. dim(X \ U) < n.

2. Hq(X,F ′) = 0 for q 6= n, where F ′ := j!j
∗F ⊂ F .

3. There exists a finite subset E ⊂ U(C) such that Hdim(X)(X,F ′) is iso-
morphic to a direct sum ⊕xFx of stalks of F at points of E.

Version II of the Lemma implies version I. Let V = X \W with open immer-
sion h : V ↪→ X, and the sheaf F = h!h

∗Z on X. Version II for F gives an open
subset ` : U ↪→ X such that the sheaf F ′ = `!`

∗F has non-vanishing cohomology
only in degree n. Let W ′ = X \ U . Since F was zero on W , we have that F ′ is
zero on Z = W ∪W ′ and it is the constant sheaf on X \ Z, i.e., F ′ = j!j

∗F for
j : X \Z ↪→ X. In particular, F ′ computes the relative cohomology Hq(X,Z;Z)
and it vanishes for q 6= n. Freeness follows from property (3).

Now we will give two proofs of the Basic Lemma II. The first proof by Nori will
prove all three assertions, the second proof of Beilinson we give below, proves
(1) and (2).

2.5.1 Direct proof of Basic Lemma I

We start by giving a direct proof of Basic Lemma I. It was given by Nori in the
unpublished notes [N1]. Close inspection shows that it is actually a variant of
Beilinson’s argument in this very special case.

Lemma 2.5.7. Let X be affine, W ⊂ X closed. Then there exist

1. X̃ smooth projective;

2. D0, D∞ ⊂ X̃ closed such that D0∪D∞ is a simple normal crossings divisor
and X̃ \D0 is affine;

3. π : X̃ \ D∞ → X proper surjective, an isomorphism outside of D0 such
that Y := π(D0 \D∞ ∩D0) contains W and π−1(Y ) = D0 \D∞ ∩D0.
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Proof. We may assume without loss of generality that X \W is smooth. Let
X̄ be a projective closure of X and W̄ the closure of W in X̄. By resolution
of singularities, there is X̃ → X proper surjective and an isomorphism above
X \W such that X̃ is smooth. Let D∞ ⊂ X̃ be the complement of the preimage
of X. Let W̃ be the closure of the preimage of X. By resolution of singularities,
we can also assume that W̃ ∪D∞ is a divisor with normal crossings.

Note that X̄ and hence also X̃ are projective. We choose a generic hyperplane
H̃ such that W̄ ∪D∞ ∪ H̃ is a divisor with normal crossings. This is possible
as the ground field k is infinite and the condition is satisfied in a Zariski open
subset of the space of hyperplane sections. We put D0 = H̃ ∪ W̄ . As H̃ is
a hyperplane section, it is an ample divisor. Therefore, D0 = H̃ ∪ W̄ is the
support of the ample divisor H̃ + mW̄ for m sufficiently large [Ha2, Exer. II
7.5(b)]. Hence X̃ \ D0 is affine, as the complement of an ample divisor in a
projective variety is affine.

Proof of Basic Lemma I. We use the varieties constructed in the last lemma.
We claim that Y has the right properties if the coefficients form an arbitrary
field K. We have Y ⊃ W . From Artin vanishing, see Corollary 2.3.8, we
immediately have vanishing of Hi(X,Y ;K) for i > n.

By excision (see Proposition 2.1.7)

Hi(X,Y ;K) = Hi(X̃ \D∞, D0 \D0 ∩D∞;K).

By Poincaré duality for pairs (see Theorem 2.4.5), it is dual to

H2n−i(X̃ \D0, D∞ \D0 ∩D∞;K).

The variety X̃ \D0 is affine. Hence by Artin vanishing, the cohomology group
vanishes for all i 6= n and any coefficient field K.

It remains to treat the case of integral coefficients. Let i be the smallest index
such that Hi(X,Y ;Z) is non-zero. By Artin vanishing for Z-coefficients 2.3.5,
we have i ≤ n.

If i < n, then the group Hi(X,Y ;Z) has to be torsion because the cohomology
vanishes with Q-coefficients. By the universal coefficient theorem [We, thm.
3.6.4]

Hi−1(X,Y ;Fp) = TorZ1 (Hi(X,Y ;Z),Fp) ,
which implies that Hi−1(X,Y ;Fp) is non-trivial for the occuring torsion primes.
This is a contradiction to the vanishing for K = Fp. Hence i = n. The same
argument shows that Hn(X,Y ;Z) is torsion-free.

2.5.2 Nori’s proof of Basic Lemma II

We now present the proof of the stronger Basic Lemma II published by Nori in
[N2].

We start with a couple of lemmas on weakly constructible sheaves.
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Lemma 2.5.8. Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
sheaves on X with F1, F3 weakly constructible. Then F2 is weakly constructible.

Proof. By assumption, there are stratifications of X such that F1 and F3 become
locally constant, respectively. We take a common refinement. We replace X by
one of the strata and are now in the situation that F1 and F3 are locally constant.
Then F3 is also locally constant. Indeed, by passing to a suitable open cover
(in the analytic topology), F1 and F3 become even constant. If V ⊂ U is an
inclusion of open connected subsets, then the restrictions F1(U) → F1(V ) and
F3(U) → F3(U) are isomorphisms. This implies the same statement for F2,
because H1(U,F1) = H1(V, F1) = 0, as constant sheaves do not have higher
cohomology.

Lemma 2.5.9. The notion of weak constructibility is stable under j! for j an
open immersion and π∗ for π finite.

Proof. The assertion of j! is obvious, same as for i∗ for closed immersions.

Now assume π : X → Y is finite and in addition étale. Let F be weakly
constructible on X. Let X0, . . . , Xn ⊂ X be the stratification such that F |Xi is
locally constant. Let Yi be the image of Xi. These are locally closed subvarieties
of Y because π is closed and open. We refine them into a stratification of Y .
As π is finite étale, it is locally in the analytic topology of the form I ×B with
I finite and B ⊂ Y (C) an open in the analytic topology. Obviously π∗F |B is
locally constant on the strata we have defined.

Now let π be finite. As we have already discussed closed immersion, it suffices
to assume π surjective. There is an open dense subscheme U ⊂ Y such π is
étale above U . Let U ′ = π−1(U), Z = Y \U and Z ′ = X \U ′. We consider the
exact sequence on X

0→ jU ′!j
∗
U ′F → F → iZ′∗i

∗
Z′F → 0.

As π is finite, the functor π∗ is exact and hence

0→ π∗jU ′!j
∗
U ′F → π∗F → π∗iZ′∗i

∗
Z′F → 0.

By Lemma 2.5.8, it suffices to consider the outer terms. We have

π∗jU ′!j
∗
U ′F = jU∗π|U ′∗j∗U ′F,

and this is weakly constructible by the étale case and the assertion on open
immersions. We also have

π∗iZ′∗i
∗
Z′F = iZ∗π|Z′∗i∗Z′F,

and this is weakly constructible by noetherian induction and the case of closed
immersions.
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Nori’s proof of Basic Lemma II. Let n := dim(X). In the first step, we reduce
to X = An. We use Noether normalization to obtain a finite morphism π : X →
An. By Lemma 2.5.9, the sheaf π∗F is weakly constructible.

Let then v : V ↪→ An be a Zariski open set with the property that F ′ := v!v
∗π∗F

satisfies the Basic Lemma II on An. Let U := π−1(V )
j
↪→X be the preimage in

X. One has an equality of sheaves:

π∗j!j
∗F = v!v

∗π∗F.

Therefore, Hq(X, j!j
∗F ) = Hq(An, v!v

∗π∗F ) and the latter vanishes for q 6= n.

So let us now assume that F is weakly constructible on X = An. We argue by
induction on n and all F . The case n = 0 is trivial.

By replacing F by j!j
∗F for an appropriate open j : U → An, we may assume

that F is locally constant on U and that An \ U = V (f). By Noether normal-
ization or its proof, there is a surjective projection map p : An → An−1 such
that p|V (f) : V (f)→ An−1 is surjective and finite.

We will see in Lemma 2.5.10 that Rqp∗F = 0 for q 6= 1 and R1p∗F is weakly
constructible. The Leray spectral sequence now gives that

Hq(An, F ) = Hq−1(An−1, R1π∗F ).

In the induction procedure we apply the Basic Lemma II to R1p∗F on An−1.
By induction, there exists a Zariski open h : V ↪→ An−1 such that h!h

∗R1π∗F
has cohomology only in degree n− 1. Let U := π−1(V ) and j : U ↪→ An be the
inclusion. Then j!j

∗F has cohomology only in degree n.

Lemma 2.5.10. Let p be as in the above proof. Then Rqπ∗F = 0 for q 6= 0
and R1π∗F is weakly constructible.

Proof. This is a standard fact, but Nori gives a direct proof.

The stalk of Rqp∗F at y ∈ An−1 is given by Hq({y} × A1, F{y}×A1) by the
variation of proper base change in Theorem 2.5.11 below.

Let, more generally, G be a sheaf on A1 which is locally constant outside a finite,
non-empty set S. Let T be a tree in A1(C) with vertex set S. Then the restric-
tion map to the tree defines a retraction isomorphism Hq(A1, G) ∼= Hq(T,GT )
for all q ≥ 0. Using Čech cohomology, we can compute that Hq(T,GT ): For
each vertex v ∈ S, let Us be the star of half edges of length more than half the
length of all outgoing edges at the vertex s. Then Ua and Ub only intersect if
the vertices a and b have a common edge e = e(a, b). The intersection Ua ∩ Ub
is contractible and contains the center t(e) of the edge e. There are no triple
intersections. Therefore Hq(T,GT ) = 0 for q ≥ 2. Since G is zero on S, Us is
simply connected, and G is locally constant, G(Us) = 0 for all s. Therefore also
H0(T,GT ) = 0 and H1(T,GT ) is isomorphic to

⊕
eGt(e).

This implies already that Rqp∗F = 0 for q 6= 1.
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To show that R1p∗F is weakly constructible, means to show that it is locally
constant on some stratification. We see that the stalks (R1p∗F )y depend only
on the set of points in {y}×A1 = p−1(y) where F{y}×A1 vanishes. But the sets
of points where the vanishing set has the same degree (cardinality) defines a
suitable stratification. Note that the stratification only depends on the branch-
ing behaviour of V (f)→ An−1, hence the stratification is algebraic and defined
over k.

Theorem 2.5.11 (Variation of Proper Base Change). Let p : X → Y be a
continuous map between locally compact, locally contractible topological spaces
which is a fiber bundle and let G be a sheaf on X. Assume W ⊂ X is closed
and such that G is locally constant on X \W and p restricted to W is proper.
Then (Rqp∗G)y ∼= Hq(p−1(y), Gp−1(y)) for all q and all y ∈ Y .

Proof. The statement is local on Y , so we may assume that X = T×Y is a prod-
uct with p the projection. Since Y is locally compact and locally contractible,
we may assume that Y is compact by passing to a compact neighbourhood of y.
As W → Y is proper, this implies that W is compact. By enlarging W , we may
assume that W = K × Y is a product of compact sets for some compact subset
K ⊂ X. Since Y is locally contractible, we replace Y be a contractible neigh-
bourhood. (We may loose compactness, but this does not matter anymore.) Let
i : K × Y → X be the inclusion and and j : (T \K)× Y → X the complement.

Look at the exact sequence

0→ j!G(T\K)×Y → G→ i∗GK×Y → 0.

The result holds for GK×Y by the usual proper base change.

Since Y is contractible, we may assume that G(T\K)×Y is the pull-back of con-
stant sheaf on T \K. Now the result for j!G(T\K)×Y follows from the Künneth
formula.

2.5.3 Beilinson’s proof of Basic Lemma II, 1. and 2.

We follow Beilinson [Be1] Proof 3.3.1. His proof is even more general, as he
does not assume X to be affine. Note that Beilinson’s proof is in the setting
of étale sheaves, independent of the characteristic of the ground field. We have
translated it to weakly constructible sheaves. The argument is intrinsically
about perverse sheaves, even though we have downplayed their use as far as
possible. For a complete development of the theory of perverse sheaves in the
weakly constructible setting see Schürmann’s monograph [Schü].

Let X be affine reduced of dimension n over a field k ⊂ C. Let F be a weakly
constructible sheaf on X. We choose a projective compactification κ : X ↪→ X̄
such that κ is an affine morphism. Let W be a divisor on X such that F is a
locally constant sheaf on h : X \W ↪→ X and X \W is smooth. Then define
M := h!h

∗F .
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Let H̄ ⊂ X̄ be a generic hyperplane. (We will see in the proof of Lemma 2.5.12
below what the conditions on H̄ are.) Let H = X ∩ H̄ be the hyperplane in X.

We denote by V = X̄ \H̄ the complement and by ` : V ↪→ X̄ the open inclusion.
Furthermore, let κV : V ∩X ↪→ V and `X : V ∩X ↪→ X be the open inclusion
maps, and i : H̄ ↪→ X̄ and iX : H ↪→ X the closed immersions. We set
U := X \ (W ∪H) and consider the open inclusion j : U ↪→ X with complement
Z = W ∪ (H ∩X). Let MV ∩X be the restriction of M to V ∩X. Summarizing,
we have a commutative diagram

U
yj

V ∩X `X−−−−→ X
iX←−−−− H

κV

y
yκ

yκ̃

V
`−−−−→ X̄

i←−−−− H̄.

Lemma 2.5.12. For generic H̄ in the above set-up, there is an isomorphism

`!`
∗Rκ∗M

∼=−→ Rκ∗`X∗MV ∩X

extending naturally id : MV ∩X →MV ∩X .

Proof. We consider the map of distinguished triangles

`!`
∗Rκ∗M −−−−→ Rκ∗M −−−−→ i∗i∗Rκ∗My id

y
y

Rκ∗`X!MV ∩X −−−−→ Rκ∗M −−−−→ i∗Rκ̃∗i∗XM

(the existence of the arrows follows from standard adjunctions together with
proper base change in the simple form κ∗`! = `X!κ

∗
V and κ∗i∗ = iX∗κ̄∗, respec-

tively).

Hence it is sufficient to prove that

i∗Rκ∗M
∼=−→Rκ̃∗i∗XM. (2.1)

To prove this, we make a base change to the universal hyperplane section. In
detail: Let P be the space of hyperplanes in X̄. Let

HP → P

be the universal family. It comes with a natural map

iP : H → X̄.
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Let H be the preimage of X. By [Gro2, pg. 9] and [Jo, Thm. 6.10] there is a
dense Zariski open subset T ⊂ P such that the induced map

iT : HT ↪→ X̄ × T −→ X̄

is smooth.

We apply smooth base change in the square

HT
iX,T−−−−→ X

κ̄T

y
yκ

HT iT−−−−→ X̄

and obtain a quasi-isomorphism

i∗TRκ∗M
∼=−→Rκ̃T∗i∗X,TM

of complexes of sheaves on HT .

We specialize to some t ∈ T (k) and get a hyperplane t : H̄ ⊂ HT to which we
restrict. The left hand side turns into i∗Rκ∗M .

The right hand side turns into

t∗Rκ̄T∗i
∗
X,TM = Rκ̄∗t

∗
X i
∗
X,TM = Rκ̄i∗XM

by applying the generic base change theorem 2.5.14 to κ̄T over the base T and
G = i∗X,TM . This requires to shrink T further.

Putting these equations together, we have verified equation 2.1.

Proof of Basic Lemma II. We keep the notation fixed in this section. By Artin
vanishing for constructible sheaves (see Theorem 2.5.13), the groupHi(X, j!j

∗F )
vanishes for i > n. It remains to show that Hi(X, j!j

∗F ) vanishes for i < n.
We obviously have j!j

∗F = `X!MV ∩X . Therefore,

Hi(X, j!j
∗F ) = Hi(X, `X!MV ∩X)

= Hi(X̄, Rκ∗`X!MV ∩X)

= Hi(X̄, `!`
∗Rκ∗M) by 2.5.12

= Hi
c(V, (Rκ∗M)V ).

The last group vanishes for i < n by Artin’s vanishing theorem 2.5.13 for com-
pact supports once we have checked that Rκ∗MV [n] is perverse. Recall that
M = h!h

∗F |X\W with F |X\W locally constant sheaf on a smooth variety. Hence
F |X\W [n] is perverse. Both h and κ are affine, hence the same is true for
Rκ∗h!F |X\W by Theorem 2.5.13 3.
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We now formulate the version of Artin vanishing used in the above proof. If
X is a topological space, and j : X ↪→ X̄ an arbitrary compactification, then
cohomology with supports with coefficients in a weakly constructible sheaf G is
defined by

Hi
c(X,G) := Hi(X̄, j!G).

It follows from proper base change that this is independent of the choice of
compactification.

Theorem 2.5.13 (Artin vanishing for constructible sheaves). Let X be affine
of dimension n.

1. Let G be weakly constructible on X. Then Hq(X,G) = 0 for q > n;

2. Let F• be a perverse sheaf on X for the middle perversity. Then
Hq
c (X,F•) = 0 for q < 0.

3. Let g : U → X be an open immersion and F• a perverse sheaf on U . Then
both g!F• and Rg∗F• are perverse on X.

Proof. The first two statements are [Schü, Corollary 6.0.4, p. 391]. Note that a
weakly constructible sheaf lies in mD≤n(X) in the notation of loc.cit.

The last statement combines the vanishing results for affine morphisms [Schü,
Theorem 6.0.4, p. 409] with the standard vanishing for all compactifiable mor-
phisms [Schü, Corollary 6.0.5, p. 397] for a morphism of relative dimension
0.

Theorem 2.5.14 (Generic base change). Let S be of finite type over k, f :
X → Y a morphism of S-varieties. Let F be a weakly constructible sheaf on X.
Then there is a dense open subset U ⊂ S such that:

1. over U , the sheaves Rif∗F are weakly constructible and almost all vanish;

2. the formation of Rif∗F is compatible with any base change S′ → U ⊂ S.

This is the analogue of [SGA 4 1/2, Théorème 1.9 in sect. Thm. finitude],
which is for constructible étale sheaves in the étale setting.

Proof. The case S = Y was treated by Arapura, see [Ara, Theorem 3.1.10]. We
explain the reduction to this case, using the same arguments as in the étale case.

All schemes can be assumed reduced.

Using Nagata, we can factor f as a composition of an open immersion and
a proper map. The assertion holds for the latter by the proper base change
theorem, hence it suffices to consider open immersions.

As the question is local on Y , we may assume that it is affine over S. We can
then cover X by affines. Using the hypercohomology spectral sequence for the
covering, we may reduce to the case X affine. In this case (X and Y affine, f
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an open immersion) we argue by induction on the dimension of the generic fibre
of X → S.

If n = 0, then, at least after shrinking S, we are in the situation where f is the
inclusion of a connected component and the assertion is trivial.

We now assume the case n−1. We embed Y into AmS and consider the coordinate
projections pi : Y → A1

S . We apply the inductive hypothesis to the map f over
A1
S . Hence there is an open dense Ui ⊂ A1

S such that the conclusion is valid
over p−1Ui. Hence the conclusion is valid over their union, i.e., outside a closed
subvariety Y1 ⊂ Y finite over S. By shrinking S, we may assume that it is finite
étale.

We fix the notation in the resulting diagram as follows:

X
f //

a
��

Y

b

��

Y1
ioo

b1~~
S

Let j be the open complement of i. We have checked that j∗Rf∗G is weakly con-
structible and compatible with any base change. We apply Rb∗ to the triangle
defined by the sequence

j!j
∗Rf∗G → Rf∗G → i∗i

∗Rf∗G

and obtain
Rb∗j!j

∗Rf∗G → Ra∗G → b1∗i
∗Rf∗G.

The first two terms are (after shrinking of S) constructible by the previous
considerations and the case S = Y . We also obtain that they are compatible
with any base change. Hence the same is true for the third term. As b1 is
finite étale this also implies that i∗Rf∗G is constructible and compatible with
base change. (Indeed, this follows because a direct sum of sheaves is constant if
and only if every summand is constant.) The same is true for j!j

∗Rf∗G by the
previous considerations and base change for j!. Hence the conclusion also holds
for the middle term of the first triangle and we are done.

2.6 Triangulation of Algebraic Varieties

If X is a variety defined over Q, we may ask whether any singular homology class
γ ∈ Hsing

• (Xan;Q) can be represented by an object described by polynomials.
This is indeed the case: for a precise statement we need several definitions. The
result will be formulated in Proposition 2.6.8.

This section follows closely the Diploma thesis of Benjamin Friedrich, see [Fr].
The results are due to him.
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We work over k = Q̃, i.e., the integral closure of Q in R. Note that Q̃ is a field.

In this section, we use X to denote a variety over Q̃, and Xan for the associated
analytic space over C (cf. Subsection 1.2).

2.6.1 Semi-algebraic Sets

Definition 2.6.1 ([Hi2, Def. 1.1., p.166]). A subset of Rn is said to be Q̃-semi-
algebraic, if it is of the form

{x ∈ Rn|f(x) ≥ 0}

for some polynomial f ∈ Q̃[x1, . . . , xn], or can be obtained from sets of this form
in a finite number of steps, where each step consists of one of the following basic
operations:

1. complementary set,

2. finite intersection,

3. finite union.

We need also a definition for maps:

Definition 2.6.2 (Q̃-semi-algebraic map [Hi2, p. 168]). A continuous map

f between Q̃-semi-algebraic sets A ⊆ Rn and B ⊆ Rm is said to be Q̃-semi-
algebraic, if its graph

Γf :=
{(
a, f(a)

)
| a ∈ A

}
⊆ A×B ⊆ Rn+m

is Q̃-semi-algebraic.

Example 2.6.3. Any polynomial map

f : A −→ B

(a1, . . . , an) 7→ (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

between Q̃-semi-algebraic sets A ⊆ Rn and B ⊆ Rm with fi ∈ Q̃[x1, . . . , xn] for

i = 1, . . . ,m is Q̃-semi-algebraic, since it is continuous and its graph Γf ⊆ Rn+m

is cut out from A×B by the polynomials

yi − fi(x1, . . . , xn) ∈ Q̃[x1, . . . , xn, y1, . . . , ym] for i = 1, . . . ,m. (2.2)

We can even allow f to be a rational map with rational component functions

fi ∈ Q̃(x1, . . . , xn), i = 1, . . . ,m

as long as none of the denominators of the fi vanish at a point of A. The
argument remains the same except that the expression (2.2) has to be multiplied
by the denominator of fi.
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Fact 2.6.4 ([Hi2, Prop. II, p. 167], [Sb, Thm. 3, p. 370]).

By a result of Seidenberg-Tarski, the image (respectively preimage) of a Q̃-semi-

algebraic set under a Q̃-semi-algebraic map is again Q̃-semi-algebraic.

As the name suggests, any algebraic set should be in particular Q̃-semi-algebraic.

Lemma 2.6.5. Let X be a quasi-projective algebraic variety defined over Q̃.
Then we can regard the complex analytic space Xan associated to the base change
XC = X ×Q̃ C as a bounded Q̃-semi-algebraic subset

Xan ⊆ RN (2.3)

for some N . Moreover, if f : X → Y is a morphism of varieties defined over
Q̃, we can consider fan : Xan → Y an as a Q̃-semi-algebraic map.

Remark 2.6.6. We will mostly need the case when X is even affine. Then
X ⊂ Cn is defined by polynomial equations with coefficients in Q̃. We identify
Cn ∼= R2n and rewrite the equations for the real and imaginary part. Hence X
is obviously Q̃-semialgebraic. In the lemma, we will show in addition that X
can be embedded as a bounded Q̃-semialgebraic set.

Proof of Lemma 2.6.5. First step X = PnQ̃: Consider

• PnC = (PnQ̃×Q̃C)an with homogenous coordinates x0, . . . , xn, which we split

as xm = am + ibm with am, bm ∈ R in real and imaginary part, and

• RN , N = 2(n+ 1)2, with coordinates {ykl, zkl}k,l=0,...,n.

We define a map

ψ : PnC
[x0:...:xn]

−→ RN
(y00,z00,...,ynn,znn)

[x0 : . . . : xn] 7→
(
. . . ,

Rexkxl∑n
m=0 |xm|2︸ ︷︷ ︸
ykl

,
Imxkxl∑n
m=0 |xm|2︸ ︷︷ ︸
zkl

, . . .

)

[a0 + ib0 : . . . : an + ibn] 7→
(
. . . ,

akal + bkbl∑n
m=0 a

2
m + b2m︸ ︷︷ ︸

ykl

,
bkal − akbl∑n
m=0 a

2
m + b2m︸ ︷︷ ︸

zkl

, . . .

)
.

Rewriting the last line (with the convention 0 · cos( indeterminate
angle ) = 0) as

[r0e
iφ0 : . . . : rne

iφn ] 7→
(
. . . ,

rkrl cos(φk − φl)∑n
m=0 r

2
m

,
rkrl sin(φk − φl)∑n

m=0 r
2
m

, . . .

)
(2.4)
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shows that ψ is injective: Assume

ψ
(
[r0e

iφ0 : . . . : rne
iφn ]
)
= (y00, z00, . . . , ynn, znn)

where rk 6= 0, or equivalently ykk 6= 0, for a fixed k. We find

rl
rk

=

√
y2
kl + z2

kl

ykk
, and

φk − φl =





arctan(zkl/ykl) if ykl 6= 0,

π/2 if ykl = 0, zkl > 0,

indeterminate if ykl = zkl = 0,

−π/2 if ykl = 0, zkl < 0;

that is, the preimage of (y00, z00, . . . , ynn, znn) is uniquely determined.

Therefore, we can consider PnC via ψ as a subset of RN . It is bounded since
it is contained in the unit sphere SN−1 ⊂ RN . We claim that ψ(PnC) is also

Q̃-semi-algebraic. The composition of the projection

π : R2(n+1) \ {(0, . . . , 0)} −→ PnC
(a0, b0, . . . , an, bn) 7→ [a0 + ib0 : . . . : an + ibn]

with the map ψ is a polynomial map, hence Q̃-semi-algebraic by Example 2.6.3.
Thus

Imψ ◦ π = Imψ ⊆ RN

is Q̃-semi-algebraic by Fact 2.6.4.

Second step (zero set of a polynomial): We use the notation

V (g) := {x ∈ PnC | g(x) = 0} for g ∈ C[x0, . . . , xn] homogenous, and

W (h) := {t ∈ RN |h(t) = 0} for h ∈ C[y00, . . . , znn].

Let Xan = V (g) for some homogenous g ∈ Q̃[x0, . . . , xn]. Then ψ(Xan) ⊆ RN is

a Q̃-semi-algebraic subset, as a little calculation shows. Setting for k = 0, . . . , n

gk := “g(xxk)”

= g(x0xk, . . . , xnxk)

= g
(
(a0ak + b0bk) + i(b0ak − a0bk), . . . , (anak + bnbk) + i(bnak − anbk)

)
,

where xj = aj + ibj for j = 0, . . . , n, and

hk := g(y0k + iz0k, . . . , ynk + iznk),
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we obtain

ψ(Xan) = ψ(V (g))

=
n⋂

k=0

ψ(V (gk))

=

n⋂

k=0

ψ(PnC) ∩W (hk)

=
n⋂

k=0

ψ(PnC) ∩W (Rehk) ∩W (Imhk).

Final step: We can choose an embedding

X ⊆ PnQ̃,

thus getting
Xan ⊆ PnC.

Since X is a locally closed subvariety of PnQ̃, the space Xan can be expressed in

terms of subvarieties of the form V (g) with g ∈ Q̃[x0, . . . , xn], using only the
following basic operations

1. complementary set,

2. finite intersection,

3. finite union.

Now Q̃-semi-algebraic sets are stable under these operations as well and the first
assertion is proved.

Second assertion: The first part of the lemma provides us with Q̃-semi-algebraic
inclusions

ψ : Xan ⊆ PnC
x=[x0:...:xn]

⊆ RN
(y00,z00,...,ynn,znn)

,

φ : Y an ⊆ PmC
u=[u0:...:um]

⊆ RM
(v00,w00,...,vmm,wmm)

,

and a choice of coordinates as indicated. We use the notation

V (g) := {(x, u) ∈ PnC × PmC | g(x, u) = 0},
for g ∈ C[x0, . . . , xn, u0, . . . , um] homogenous in both x and u, and

W (h) := {t ∈ RN+M |h(t) = 0}, for h ∈ C[y00, . . . , znn, v00, . . . , wmm].

Let {Ui} be a finite open affine covering of X such that f(Ui) satisfies
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• f(Ui) does not meet the hyperplane {uj = 0} ⊂ PmQ̃ for some j, and

• f(Ui) is contained in an open affine subset Vi of Y .

This is always possible, since we can start with the open covering Y ∩ {uj 6= 0}
of Y , take a subordinated open affine covering {Vi′}, and then choose a finite
open affine covering {Ui} subordinated to {f−1(Vi′)}. Now each of the maps

fi := fan
|Ui : Uan

i −→ Y an

has image contained in V an
i and does not meet the hyperplane {u ∈ PmC |uj = 0}

for an appropriate j

fi : Uan
i −→ V an

i .

Being associated to an algebraic map between affine varieties, this map is ratio-
nal

fi : x 7→
[
g′0(x)

g′′0 (x)
: . . . :

g′j−1(x)

g′′j−1(x)
: 1
j

:
g′j+1(x)

g′′j+1(x)
: . . . :

g′m(x)

g′′m(x)

]
,

with g′k, g
′′
k ∈ Q̃[x0, . . . , xn], k = 0, . . . , ĵ, . . . ,m. Since the graph Γfan of fan

is the finite union of the graphs Γfi of the fi, it is sufficient to prove that

(ψ × φ)(Γfi) is a Q̃-semi-algebraic subset of RN+M . Now

Γfi = (Uan
i × V an

i )∩
n⋂

k=0
k 6=j

V

(
yk
yj
− g′k(x)

g′′k (x)

)
= (Uan

i × V an
i )∩

n⋂

k=0
k 6=j

V (ykg
′′
k (x)−yjg′k(x)),

so all we have to deal with is

V (ykg
′′
k (x)− yjg′k(x)).

Again a little calculation is necessary. Setting

gpq := “ukuqg
′′
k (xxp)− ujuqg′k(xxp)”

= ukuqg
′′
k (x0xp, . . . , xnxp)− ujuqg′k(x0xp, . . . , xnxp)

=
(
(ckcq + dkdq) + i(dkcq − ckdq)

)

g′′k
(
(a0ap + b0bp) + i(b0ap − a0bp), . . . , (anap + bnbp) + i(bnap − anbp)

)

−
(
(cjcq + djdq) + i(djcq − cjdq)

)

g′k
(
(a0ap + b0bp) + i(b0ap − a0bp), . . . , (anap + bnbp) + i(bnap − anbp)

)
,

where xl = al + ibl for l = 0, . . . , n, ul = cl + idl for l = 0, . . . ,m, and

hpq := (vkq+iwkq)g
′′
k (y0p+iz0p, . . . , ynp+iznp)−(vjq+iwjq)g

′
k(y0p+iz0p, . . . , ynp+iznp),
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we obtain

(ψ × φ)
(
V
(
ykg
′′
k (x)−yjg′k(x)

))
=

=
n⋂

p=0

m⋂

q=0

(ψ × φ)(V (gpq))

=
n⋂

p=0

m⋂

q=0

(ψ × φ)(Uan
i × V an

j ) ∩W (hpq)

=

n⋂

p=0

m⋂

q=0

(ψ × φ)(Uan
i × V an

j ) ∩W (Rehpq) ∩W (Imhpq).

2.6.2 Semi-algebraic singular chains

We need further prerequisites in order to state the promised Proposition 2.6.8.

Definition 2.6.7 ( [Hi2, p. 168]). By an open simplex 4◦we mean the interior
of a simplex (= the convex hull of r+1 points in Rn which span an r-dimensional
subspace). For convenience, a point is considered as an open simplex as well.

The notation 4std
d will be reserved for the closed standard simplex spanned by

the standard basis

{ei = (0, . . . , 0, 1
i
, 0, . . . , 0) | i = 1, . . . , d+ 1}

of Rd+1.

Consider the following data (∗):

• X a variety defined over Q̃,

• D a divisor in X with normal crossings,

• and finally γ ∈ Hsing
p (Xan, Dan;Q), p ∈ N0.

As before, we have denoted by Xan (resp. Dan) the complex analytic space
associated to the base change XC = X ×Q̃ C (resp. DC = D ×Q̃ C).

By Lemma 2.6.5, we may consider both Xan and Dan as bounded Q̃-semi-
algebraic subsets of RN .

We are now able to formulate our proposition.

Proposition 2.6.8. With data (∗) as above, we can find a representative of
γ that is a rational linear combination of singular simplices each of which is
Q̃-semi-algebraic.
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The proof of this proposition relies on the following proposition due to Lo-
jasiewicz which has been written down by Hironaka.

Proposition 2.6.9 ( [Hi2, p. 170]). For {Xi} a finite system of bounded Q̃-
semi-algebraic sets in Rn, there exists a simplicial decomposition

Rn =
∐

j

4◦j

by open simplices 4◦j and a Q̃-semi-algebraic automorphism

κ : Rn → Rn

such that each Xi is a finite union of some of the κ(4◦j).

Note 2.6.10. Although Hironaka considers R-semi-algebraic sets, we can safely
replace R by Q̃ in this result (including the fact he cites from [Sb]). The only
problem that could possibly arise concerns a “good direction lemma”:

Lemma 2.6.11 (Good direction lemma for R, [Hi2, p. 172], [KB, Thm. 5.I,
p. 242]). Let Z be a R-semi-algebraic subset of Rn, which is nowhere dense. A
direction v ∈ Pn−1

R (R) is called good, if any line l in Rn parallel to v meets Z
in a discrete (maybe empty) set of points; otherwise v is called bad. Then the
set B(Z) of bad directions is a Baire category set in Pn−1

R (R).

This gives immediately good directions v ∈ Pn−1
R (R)\B(Z), but not necessarily

v ∈ Pn−1

Q̃ (Q̃) \ B(Z). However, in Remark 2.1 of [Hi2], which follows directly

after the lemma, the following statement is made: If Z is compact, then B(Z)

is closed in Pn−1
R (R). In particular Pn−1

Q̃ (Q̃)\B(Z) will be non-empty. Since we

only consider bounded Q̃-semi-algebraic sets Z ′, we may take Z := Z ′ (which is

compact by Heine-Borel), and thus find a good direction v ∈ Pn−1

Q̃ (Q̃) \ B(Z ′)

using B(Z ′) ⊆ B(Z). Hence:

Lemma 2.6.12 (Good direction lemma for Q̃). Let Z ′ be a bounded Q̃-semi-
algebraic subset of Rn, which is nowhere dense. Then the set Pn−1

R (R) \ B(Z)
of good directions is non-empty.

Proof of Proposition 2.6.8. Applying Proposition 2.6.9 to the two-element sys-
tem of Q̃-semi-algebraic sets Xan, Dan ⊆ RN , we obtain a Q̃-semi-algebraic
decomposition

RN =
∐

j

4◦j

of RN by open simplices 4◦j and a Q̃-semi-algebraic automorphism

κ : RN → RN .
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We write 4j for the closure of 4◦j . The sets

K := {4◦j |κ(4◦j) ⊆ Xan} and L := {4◦j |κ(4◦j) ⊆ Dan}

can be thought of as finite simplicial complexes, but built out of open simplices
instead of closed ones. We define their geometric realizations

|K| :=
⋃

4◦j∈K

4◦j and |L| :=
⋃

4◦j∈L

4◦j .

Then Proposition 2.6.9 states that κmaps the pair of topological spaces (|K|, |L|)
homeomorphically to (Xan, Dan).

Easy case: If X is complete, so is XC (by [Ha2, Cor. II.4.8(c), p. 102]), hence
Xan and Dan will be compact [Ha2, B.1, p. 439]. In this situation,

K := {4j |κ(4j) ⊆ Xan} and L := {4j |κ(4j) ⊆ Dan}

are (ordinary) simplicial complexes, whose geometric realizations coincide with
those of K and L, respectively. In particular

Hsimpl
• (K,L;Q) ∼= Hsing

• (
∣∣K
∣∣ ,
∣∣L
∣∣ ;Q)

∼= Hsing
• (|K|, |L|;Q)

∼= Hsing
• (Xan, Dan;Q).

(2.5)

Here Hsimpl
• (K,L;Q) denotes simplicial homology of course.

We write γsimpl ∈ Hsimpl
p (K,L;Q) and γsing ∈ Hsing

p (
∣∣K
∣∣ ,
∣∣L
∣∣ ;Q) for the image

of γ under this isomorphism. Any representative Γsimpl of γsimpl is a rational
linear combination

Γsimpl =
∑
j aj4j , aj ∈ Q

of oriented closed simplices 4j ∈ K. We can choose orientation-preserving
affine-linear maps of the standard simplex 4std

p to 4j

σj : 4std
p −→ 4j for 4j ∈ Γsimpl.

These maps yield a representative

Γsing :=
∑
j aj σj

of γsing. Composing with κ yields Γ := κ∗Γsing ∈ γ, where Γ has the desired
properties.

In the general case, we perform a barycentric subdivision B on K twice (once
is not enough) and define |K| and |L| not as the “closure” of K and L, but as
follows (see Figure 2.1)

K := {4 |4◦∈ B2(K) and 4 ⊆ |K|},
L := {4 |4◦∈ B2(K) and 4 ⊆ |L|}.

(2.6)
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κ−1(Xan) ∩4j K ∩4j
∣∣K
∣∣ ∩4j

Intersection of κ−1(Xan) with
a closed 2-simplex 4j , where
we assume that part of the
boundary ∂4j does not be-
long to κ−1(Xan)

Open simplices of K con-
tained in 4j

Intersection of
∣∣K
∣∣ with 4j

(the dashed lines show the
barycentric subdivision)

Figure 2.1: Definition of K

The point is that the pair of topological spaces (
∣∣K
∣∣ ,
∣∣L
∣∣) is a strong deformation

retract of (|K|, |L|). Assuming this, we see that in the general case with K, L
defined as in (2.6), the isomorphism (2.5) still holds and we can proceed as in
the easy case to prove the proposition.

We define the retraction map

ρ : (|K| × [0, 1], |L| × [0, 1])→ (
∣∣K
∣∣ ,
∣∣L
∣∣)

as follows: Let 4◦j ∈ K be an open simplex which is not contained in the
boundary of any other simplex of K and set

inner := 4j ∩K, outer := 4j \K.

Figure 2.2: Definition of qp

Note that inner is closed. For any point p ∈ outer the ray −→c p from the center
c of 4◦j through p “leaves” the set inner at a point qp, i.e. −→c p ∩ inner equals
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the line segment c qp; see Figure 2.2. The map

ρj : 4j × [0, 1]→4j

(p, t) 7→
{
p if p ∈ inner,
qp + t · (p− qp) if p ∈ outer

retracts 4j onto inner.

Now these maps ρj glue together to give the desired homotopy ρ. �

We want to state one of the intermediate results of this proof explicitly:

Corollary 2.6.13. Let X and D be as above. Then the pair of topological
spaces (Xan, Dan) is homotopy equivalent to a pair of (realizations of) simplicial
complexes (|Xsimpl|, |Dsimpl|).

2.7 Singular cohomology via the h′-topology

In order to give a simple description of the period isomorphism for singular
varieties, we are going to need a more sophisticated description of singular
cohomology.

We work in the category of complex analytic spaces An.

Definition 2.7.1. Let X be a complex analytic space. The h′-topology on the
category (An/X)h′ of complex analytic spaces overX is the smallest Grothendieck
topology such that the following are covering maps:

1. proper surjective morphisms;

2. open covers.

If F is a presheaf of An/X we denote Fh′ its sheafification in the h′-topology.

Remark 2.7.2. This definition is inspired by Voevodsky’s h-topology on the
category of schemes, see Section 3.2. We are not sure if it is the correct analogue
in the analytic setting. However, it is good enough for our purposes.

Lemma 2.7.3. For Y ∈ An let CY be the (ordinary) sheaf associated to the
presheaf C. Then

Y 7→ CY (Y )

is an h′-sheaf on An.

Proof. We have to check the sheaf condition for the generators of the topology.
By assumption it is satisfied for open covers. Let Ỹ → Y be proper surjective.



2.7. SINGULAR COHOMOLOGY VIA THE H′-TOPOLOGY 69

Without loss of generality Y is connected. Let Ỹi for i ∈ I be the collection of
connected components of Ỹ . Then

Ỹ ×Y Ỹ =
⋃

i,j∈I
Ỹi ×Y Ỹj

We have to compute the kernel of

∏

i∈I
C→

∏

i,j

C(Ỹi ×Y Ỹj)

via the difference of the two natural restriction maps. Comparing ai and aj
in C(Ỹi ×Y Ỹj) we see that they agree. Hence the kernel is just one copy of
C = CY (Y ).

Proposition 2.7.4. Let X be an analytic space and i : Z ⊂ X a closed sub-
space. Then there is a morphism of sites ρ : (An/X)h′ → X. It induces an
isomorphism

Hi
sing(X,Z;C)→ Hi

h′((An/X)h′ ,Ker(Ch′ → i∗Ch′))

compatible with long exact sequences and products.

Remark 2.7.5. This statement and the following proof can be extended to
more general sheaves F .

The argument uses the notion of a hypercover, see Definition 1.5.8.

Proof. We first treat the absolute case with Z = ∅. We use the theory of co-
homological descent as developed in [SGA4Vbis]. Singular cohomology satisfies
cohomological descent for open covers and also for proper surjective maps (see
Theorem 2.7.6). (The main ingredient for the second case is the proper base
change theorem.) Hence it satisfies cohomological descent for h′-covers. This
implies that singular cohomology can be computed as a direct limit

lim
X•

C(X•),

where X• runs through all h′-hypercovers. On the other hand, the same limit
computes h′-cohomology, see Proposition 1.6.9 For the general case, recall that
we have a short exact sequence

0→ j!C→ C→ i∗C→ 0

of sheaves on X. Its pull-back to An/X maps naturally to the short exact
sequence

0→ Ker(Ch′ → i∗Ch′))→ Ch′ → i∗Ch′ → 0 .
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This reduces the comparison in the relative case to the absolute case once
we have shown that Ri∗Ch′ = i∗Ch′ . The sheaf Rni∗Ch′ is given by the h′-
sheafification of the presheaf

X ′ 7→ Hn
h′(Z ×X X ′,Ch′) = Hn

sing(Z ×X X ′,C)

for X ′ → X in An/X. By resolution of singularities for analytic spaces we
may assume that X ′ is smooth and Z ′ = X ′ ×X Z a divisor with normal cross-
ings. By passing to an open cover, we may assume that Z ′ an open ball in a
union of coordinate hyperplanes, in particular contractible. Hence its singular
cohomology is trivial. This implies that Rni∗Ch′ = 0 for n ≥ 1.

Theorem 2.7.6 (Descent for proper hypercoverings). Let D ⊂ X be a closed
subvariety and D• → D a proper hypercover(see Definition 1.5.8), such that
there is a commutative diagram

D• −−−−→ X•y
y

D −−−−→ X

Then one has cohomological descent for singular cohomology:

H∗(X,D;Z) = H∗ (Cone(Tot(X•)→ Tot(D•))[−1];Z) .

Here, Tot(−) denotes the total complex in Z[Var] associated to the corresponding
simplicial variety, see Definition 1.5.11.

Proof. The relative case follows from the absolute case. The essential ingredient
is proper base change, which allows to reduce to the case where X is a point. The
statement then becomes a completely combinatorial assertion on contractibility
of simplicial sets. The results are summed up in [D5] (5.3.5). For a complete
reference see [SGA4Vbis], in particular Corollaire 4.1.6.



Chapter 3

Algebraic de Rham
cohomology

Let k be a field of characteristic zero. We are going to define relative algebraic
de Rham cohomology for general varieties over k, not necessarily smooth.

3.1 The smooth case

In this section, all varieties are smooth over k. In this case, de Rham cohomology
is defined as hypercohomology of the complex of sheaves of differentials.

3.1.1 Definition

Definition 3.1.1. Let X be a smooth variety over k. Let Ω1
X be the sheaf of

k-differentials on X. For p ≥ 0 let

ΩpX = ΛpΩ1
X

be the exterior power in the category ofOX -modules. The universal k-derivation
d : OX → Ω1

X induces

dp : ΩpX → Ωp+1
X .

We call (Ω•X , d) the algebraic de Rham complex of X.

If X is smooth of dimension n, the sheaf Ω1
X is locally free of rank n. This allows

to define exterior powers. Note that ΩiX vanishes for i > n. The differential is
uniquely characterized by the properties:

1. d0 = d on OX ;

71
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2. dp+1dp = 0 for all p ≥ 0;

3. d(ω ∧ ω′) = dω ∧ ω′ + (−1)pω ∧ dω′ for all local sections ω of ΩpX and ω′

of Ωp
′

X .

Indeed, if t1, . . . , tn is a system of local parameters at x ∈ X, then local sections
of ΩpX near x can be expressed as

ω =
∑

1≤i1<···<ip≤n
fi1...ipdti1 ∧ · · · ∧ dtip

and we have

dpω =
∑

1≤i1<···<ip≤n
dfi1...ip ∧ dti1 ∧ · · · ∧ dtip .

Definition 3.1.2. Let X be smooth variety over a field k of characteristic 0.
We define algebraic de Rham cohomology of X as the hypercohomology

Hi
dR(X) = Hi(X,Ω•X) .

For background material on hypercohomology see Section 1.4.

If X is smooth and affine, this simplifies to

Hi
dR(X) = Hi(Ω•X(X)) .

Example 3.1.3. 1. Consider the affine line X = A1
k = Spec k[t]. Then

Ω•A1(A1) =
[
k[t]

d−→ k[t]dt
]
.

We have

Ker(d) = {P ∈ k[t]|P ′ = 0} = k , Im(d) = k[t]dt ,

because we have assumed characteristic zero. Hence

Hi
dR(A1) =

{
k i = 0,

0 i > 0.

2. Consider the multiplicative group X = Gm = Spec k[t, t−1]. Then

Ω•Gm(Gm) =
[
k[t, t−1]

d−→ k[t, t−1]dt
]
.

We have

Ker(d) = {P ∈ k[t]|P ′ = 0} = k ,

Im(d) = {
N∑

i=n

ait
idt|a−1 = 0} ,
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again because of characteristic zero. Hence

Hi
dR(Gm) =

{
k i = 0, 1,

0 i > 1.

The isomorphism for i = 1 is induced by the residue for meromorphic
differential forms.

3. Let X be a connected smooth projective curve of genus g. We use the
stupid filtration on the de Rham complex

0→ Ω1
X [−1]→ Ω•X → OX [0]→ 0 .

The cohomological dimension of any variety X is the index i above which
the cohomology Hi(X,F) of any coherent sheaf F vanishes, see [Ha2,
Chap. III, Section 4]. The cohomological dimension of a smooth, projec-
tive curve is 1, hence the long exact sequence reads

0→ H−1(X,Ω1
X)→ H0

dR(X)→ H0(X,OX)

∂−→ H0(X,Ω1
X)→ H1

dR(X)→ H1(X,OX)

∂−→ H1(X,Ω1
X)→ H2

dR(X)→ 0

This is a special case of the Hodge spectral sequence. It is known to
degenerate (e.g. [D4]). Hence the boundary maps ∂ vanish. By Serre
duality, this yields

Hi
dR(X) =





H0(X,OX) = k i = 0,

H1(X,Ω1
X) = H0(X,OX)∨ = k i = 2,

0 i > 2.

The most interesting group for i = 1 sits in an exact sequence

0→ H0(X,Ω1
X)∨ → H1

dR(X)→ H0(X,Ω1
X)→ 0

and hence

dimH1
dR(X) = 2g .

Remark 3.1.4. In these cases, the explicit computation shows that algebraic
de Rham cohomology computes the standard Betti numbers of these varieties.
We are going to show in chapter 5 that this is always true. In particular, it
is always finite dimensional. A second algebraic proof of this fact will also be
given in Corollary 3.1.17.

Lemma 3.1.5. Let X be a smooth variety of dimension d. Then Hi
dR(X)

vanishes for i > 2d. If in addition X is affine, it vanishes for i > d.
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Proof. We use the stupid filtration on the de Rham complex. This induces a
system of long exact sequences relating the groups Hi(X,ΩpX) to algebraic de
Rham cohomology.

Any variety of dimension d has cohomological dimension ≤ d for coherent
sheaves [Ha2, ibid.]. All ΩpX are coherent, hence Hi(X,ΩpX) vanishes for i > d.
The complex Ω•X is concentrated in degrees at most d. This adds up to cohomo-
logical dimension 2d for algebraic de Rham cohomology. Affine varieties have
cohomological dimension 0, hence Hi(X,ΩpX) vanishes already for i > 0.

3.1.2 Functoriality

Let f : X → Y be morphism of smooth varieties over k. We want to explain
the functoriality

f∗ : Hi
dR(Y )→ Hi

dR(X) .

We use the Godement resolution (see Definition 1.4.8) and put

RΓdR(X) = Γ(X,Gd(Ω•X)) .

The natural map f−1OX → OX induces a unique multiplicative map

f−1Ω•X → Ω•Y .

By functoriality of the Godement resolution, we have

f−1GdX(Ω•X)→ GdY (f−1Ω•X)→ GdY (Ω•Y ) .

Taking global sections, this yields

RΓdR(Y )→ RΓdR(X) .

We have shown:

Lemma 3.1.6. De Rham cohomology Hi
dR(·) is a contravariant functor on the

category of smooth varieties over k with values in k-vector spaces. It is induced
by a functor

RΓdR : Sm→ C+(k−Mod) .

Note that Q ⊂ k, so the functor can be extended Q-linearly to Q[Sm]. This
allows to extend the definition of algebraic de Rham cohomology to complexes of
smooth varieties in the next step. Explicitly: let X• be an object of C−(Q[Sm]).
Then there is a double complex K•,• with

Kn,m = Γ(X−n, Gdm(Ω•)) .

Definition 3.1.7. Let X• be a object of C−(Z[Sm]). We denote the total
complex by

RΓdR(X•) = Tot(K•,•)

and set
Hi

dR(X•) = Hi(RΓdR(X•) .

We call this the algebraic de Rham cohomology of X•.
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3.1.3 Cup product

Let X be a smooth variety over k. Wedge product of differential forms turns
Ω•X into a differential graded algebra:

Tot(Ω•X ⊗k Ω•X)→ Ω•X .

The compatibility with differentials was built into the definition of d in Defini-
tion 3.1.1.

Lemma 3.1.8. H•dR(X) carries a natural multiplication

∪ : Hi
dR(X)⊗k Hj

dR(X)→ Hi+j
dR (X)

induced from wedge product of differential forms.

Proof. We need to define

RΓdR(X)⊗k RΓdR(X)→ RΓdR(X)

as a morphism in the derived category. We have quasi-isomorphisms

Ω•X ⊗ Ω•X → Gd(Ω•X)⊗Gd(Ω•X)

and hence a quasi-isomorphism of flasque resolutions of Ω•X ⊗ Ω•X

s : Gd(Ω•X ⊗ Ω•X)→ Gd (Gd(Ω•X)⊗Gd(Ω•X))

In the derived category, this allows the composition

RΓdR(X)⊗k RΓdR(X) = Γ(X,Gd(Ω•X))⊗k Γ(X,Gd(Ω•X))

→ Γ(X,Gd(Ω•)⊗Gd(Ω•X))

→ Γ (X,Gd (Gd(Ω•X)⊗Gd(Ω•X)))

← sΓ(X,Gd(Ω•X ⊗ Ω•X))

→ Γ(X,Gd(Ω•X)) = RΓdR(X) .

The same method also allows the construction of an exterior product.

Proposition 3.1.9 (Künneth formula). Let X,Y be smooth varieties. There is
a natural multiplication induced from wedge product of differential forms

Hi
dR(X)⊗k Hj

dR(Y )→ Hi+j
dR (X × Y ) .

It induces an isomorphism

Hn
dR(X × Y ) ∼=

⊕

i+j=n

Hi
dR(X)⊗k Hj

dR(Y ) .



76 CHAPTER 3. ALGEBRAIC DE RHAM COHOMOLOGY

Proof. Let p : X × Y → X and q : X × Y → Y be the projection maps. The
exterior multiplication is given by

Hi
dR(X)⊗Hj

dR(Y )
p∗⊗q∗−−−−→ Hi

dR(X × Y )⊗Hj
dR(X × Y )

∪−→ Hi+j
dR (X × Y ) .

The Künneth formula is most easily proved by comparison with singular coho-
mology. We postpone the proof to Lemma 5.3.2 in Chap. 5.

Corollary 3.1.10 (Homotopy invariance). Let X be a smooth variety. Then
the natural map

Hn
dR(X)→ Hn

dR(X × A1)

is an isomorphism.

Proof. We combine the Künneth formula with the compuation in the case of A1

in Example 3.1.3.

3.1.4 Change of base field

Let K/k be an extension of fields of characteristic zero. We have the corre-
sponding base change functor

X 7→ XK

from (smooth) varieties over k to (smooth) varieties over K. Let

π : XK → X

be the natural map of schemes. By standard calculus of differential forms,

Ω•XK/K
∼= π∗Ω•X/k = π−1Ω•X/k ⊗k K .

Lemma 3.1.11. Let K/k be an extension of fields of characteristic zero. Let
X be a smooth variety over k. Then there are natural isomorphisms

Hi
dR(X)⊗k K → Hi

dR(XK) .

They are induced by a natural quasi-isomorphism

RΓdR(X)⊗k K → RΓdR(XK) .

Proof. By functoriality of the Godement resolution (see Lemma 1.4.10) and
k-linarity, we get natural quasi-isomorphisms

π−1GdX(Ω•X/k)⊗k K → GdXK (π−1Ω•X/k)→ GdXK (Ω•XK/K) .
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AsK is flat over k, taking global sections induces a sequence of quasi-isomorphisms

RΓdR(X)⊗k K = Γ(X,GdX(Ω•X/k))⊗k K
∼= Γ(XK , π

−1GdX(Ω•X/k)⊗k K
∼= Γ(XK , π

−1GdX(Ω•X/k)⊗k K)

→ Γ(XK , GdXK (Ω•XK/K)

= RΓdR(XK) .

Remark 3.1.12. This immediately extends to algebraic de Rham cohomology
of complexes of smooth varieties.

Conversely, we can also restrict scalars.

Lemma 3.1.13. Let K/k be a finite field extension. Let Y be a smooth variety
over K. Then there are a natural isomorphism

Hi
dR(Y/k)→ Hi

dR(Y/K).

They are induced by a natural isomorphism

RΓdR(Y/k)→ RΓdR(Y/K).

Proof. We use the sequence of sheaves on Y ([Ha2] Proposition 8.11)

π∗Ω1
K/k → Ω1

Y/k → Ω1
Y/K → 0

where π : Y → SpecK is the structural map. As we are in characteristic 0, we
have Ω1

K/k = 0. This implies that we actually have identical de Rham complexes

Ω•Y/K = Ω•Y/k

and identical Godement resolutions.

3.1.5 Étale topology

In this section, we give an alternative interpretation of algebraic de Rham co-
homology using the étale topology. The results are not used in our discussions
of periods.

Let Xet be the small étale site on X, see section 1.6. The complex of differential
forms Ω•X can be viewed as a complex of sheaves on Xet (see [Mi], Chap. II,
Example 1.2 and Proposition 1.3). We write Ω•Xet

for distinction.

Lemma 3.1.14. There is a natural isomorphism

Hi
dR(X)→ Hi(Xet,Ω

•
Xet

) .
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Proof. The map of sites s : Xet → X induces a map on cohomology

Hi(X,Ω•X)→ Hi(Xet,Ω
•
Xet

) .

We filter Ω•X by the stupid filtration F pΩ•X

0→ F p+1Ω•X → F pΩ•X → ΩpX [−p]→ 0

and compare the induced long exact sequences in cohomology on X and Xet.
As the ΩpX are coherent, the comparison maps

Hi(X,ΩpX)→ Hi(Xet,Ω
p
Xet

)

are isomorphisms by [Mi] Chap. III, Proposition 3.7. By descending induction
on p, this implies that we have isomorphisms for all F pΩ•X , in particular for Ω•X
itself.

3.1.6 Differentials with log poles

We give an alternative description of algebraic de Rham cohomology using dif-
ferentials with log poles as introduced by Deligne, see [D4], Chap. 3. We are
not going to use this point of view in our study of periods.

Let X be a smooth variety and j : X → X̄ an open immersion into a smooth
projective variety such that D = X̄rX is a simple divisor with normal crossings
(see Definition 1.1.2).

Definition 3.1.15. Let

Ω1
X̄〈D〉 ⊂ j∗Ω1

X

be the locally free OX̄ -module with the following basis: if U ⊂ X is an affine
open subvariety étale over An via coordinates t1, . . . , tn and D|U given by the
equation t1 . . . tr = 0, then Ω1

X̄
〈D〉|U has OX̄ -basis

dt1
t1
, . . . ,

dtr
tr
, dtr+1, . . . , dtn .

For p > 1 let

Ωp
X̄
〈D〉 = ΛpΩ1

X̄〈D〉 .
We call the Ω•

X̄
〈D〉 the complex of differentials with log poles along D.

Note that the differential of j∗Ω•X respects Ω•
X̄
〈D〉, so that this is indeed a

complex.

Proposition 3.1.16. The inclusion induces a natural isomorphism

Hi(X̄,Ω•X̄〈D〉)→ Hi(X,Ω•X) .
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Proof. This is the algebraic version of [D4], Prop. 3.1.8. We indicate the argu-
ment. Note that j : X → X̄ is affine, hence j∗ is exact and we have

Hi(X,Ω•X) ∼= Hi(X̄, j∗Ω
•
X) .

It remains to show that

ι : Ω•X̄〈D〉 → j∗Ω
•
X

is a quasi-isomorphism, or, equivalently, that Coker(ι) is exact. By Lemma
3.1.14 we can work in the étale topology. It suffices to check exactness in stalks
in geometric points of X̄ over closed points. As X̄ is smooth and D a divisor
with normal crossings, it suffices to consider the case D = V (t1 . . . tr) ⊂ An and
the stalk in 0. As in the proof of the Poincaré lemma, it suffices to consider the
case n = 1. If r = 0, then there is nothing to show.

In remains to consider the following situation: let k = k̄, O be the henselization
of k[t] with respect to the ideal (t). We have to check that the complex

O[t−1]/O → O[t−1]/t−1Odt

is acyclic. The term in degree 0 has the O-basis t−i for i > 0. The term in
degree 1 has the O-basis t−idt for i > 1. In this basis, the differential has the
form

f
dt

ti
7→
{
f ′ dtti − if dt

ti+1 i > 1,

−f dtt2 i = 1.

It is injective because char(k) = 0. By induction on i we also check that it is
surjective.

Corollary 3.1.17. Let X be a smooth variety over k. Then the algebraic de
Rham cohomology groups Hi

dR(X) are finite dimensional k-vector spaces.

Proof. By resolution of singularities, we can embed X into a projective X̄ such
that D is a simple divisor with normal crossings. By the proposition

Hi
dR(X) = Hi(X̄,Ω•X̄〈D〉) .

Note that all Ω•
X̄
〈D〉 are coherent sheaves on a projective variety, hence the

cohomology groups Hp(X̄,Ωq
X̄
〈D〉) are finite dimensional over k. We use the

stupid filtration on Ω•
X̄
〈D〉 and the induced long exact cohomology sequence.

By induction, all Hq(X̄, F pΩ•
X̄
〈D〉) are finite dimensional.

Remark 3.1.18. The complex of differentials with log poles is studied inten-
sively in the theory of mixed Hodge structures. Indeed, Deligne uses it in [D4] in
order to define the Hodge and the weight filtration on cohomology of a smooth
variety X. We are not going to use Hodge structures in the sequel though.
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3.2 The general case: via the h-topology

We now want to extend the definition to the case of singular varieties and even
to relative cohomology. The most simple minded idea – use Definition 3.1.2 –
does not give the desired dimensions.

Example 3.2.1. Consider X = SpecA with A = k[X,Y ]/XY , the union of
two affine lines. This variety is homotopy equivalent to a point, so we expect its
cohomology to be trivial. We compute the cohomology of the de Rham complex

A→ 〈dX, dY 〉A/〈XdY + Y dX〉A .

Elements of A can be represented uniquely by polynomials of the form

P =

n∑

i=0

aiX
i +

m∑

j=1

bjY
j

with

dP =

n∑

i=1

iaiX
i−1dX +

m∑

j=1

bjjY
j−1dY .

P is in the kernel of d if it is constant. On the other hand d is not surjective
because it misses differentials of the form Y idX.

There are different ways of adapting the definition in order to get a well-behaved
theory.

The h-topology introduced by Voevodsky makes the handling of singular vari-
eties straightforward. In this topology, any variety is locally smooth by resolu-
tion of singularities. The h-sheafification of the presheaf of Kähler differentials
was studied in detail by Huber and Jörder in [HJ]. The weaker notion of eh-
differential was already introduced by Geisser in [Ge].

We review a definition given by Voevodsky in [Voe].

Definition 3.2.2 ([Voe] Section 3.1). A morphism of schemes p : X → Y
is called topological epimorphism if Y has the quotient topology of X. It is
a universal topological epimorphism if any base change of p is a topological
epimorphism.

The h-topology on the category (Sch/X)h of separated schemes of finite type
over X is the Grothendieck topology with coverings finite families {pi : Ui → Y }
such that

⋃
i Ui → Y is a universal topological epimorphism.

By [Voe] the following are h-covers:

1. finite flat covers (in particular étale covers);

2. proper surjective morphisms;
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3. quotients by finite groups actions.

The assignment X 7→ ΩpX/k(X) is a presheaf on Sch. We denote by Ωph (resp.

Ωph/X , if X needs to be specified) its sheafification in the h-topology, and by

Ωph(X) its value as abelian group.

Definition 3.2.3. Let X be a separated k-scheme of finite type over k. We
define

Hi
dR(Xh) = Hi((Sch/X)h,Ω

•
h) .

Proposition 3.2.4 ([HJ] Theorem 3.6, Proposition 7.4). Let X be smooth over
k. Then

Ωph(X) = ΩpX/k(X)

and
Hi

dR(Xh) = Hi
dR(X) .

Proof. The statement on Ωph(X) is [HJ], Theorem 3.6. The statement on the de
Rham cohomology is loc.cit., Proposition 7.4. together with the comparison of
loc. cit., Lemma 7.22.

Remark 3.2.5. The main ingredients of the proof are a normal form for h-
covers established by Voevodsky in [Voe] Theorem 3.1.9, an explicit computation
for the blow-up of a smooth variety in a smooth center and étale descent for the
coherent sheaves ΩpY/k.

A particular useful h-cover are abstract blow-ups, covers of the form (f : X ′ →
X, i : Z → X) where Z is a closed immersion and f is proper and an isomor-
phism above X − Z.

Then, the above implies that there is a long exact blow-up sequence

. . .→ Hi
dR(X)→ Hi

dR(X ′)⊕Hi
dR(Z)→ Hi

dR(f−1(Z))→ . . .

induced by the blow-up triangle

[f−1(Z)]→ [X ′]⊕ [Z]→ [X]

in SmCor.

Definition 3.2.6. Let X ∈ Sch and i : Z → X a closed subscheme. Put

Ωph/(X,Z) = Ker(Ωph/X → i∗Ω
p
h/Z)

in the category of abelian sheaves on (Sch/X)h.

We define relative algebraic de Rham cohomology as

Hp
dR(X,Z) = Hp

h(X,Ω•h/(X,Z)) .
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Lemma 3.2.7 ([HJ] Lemma 7.26). Let i : Z → X be a closed immersion.

1. Then
Ri∗Ω

p
h/Z = i∗Ω

p
h/Z

and hence
Hq

h(X, i∗Ω
p
h/Z) = Hq

h(Z,Ωph) .

2. The natural map of sheaves of abelian groups on (Sch/X)h

Ωph/X → i∗Ω
p
h/Z

is surjective.

Remark 3.2.8. The main ingredient of the proof is resolution of singularities
and the computation of Ωph(Z) for Z a divisor with normal crossings: it is given
as Kähler differentials modulo torsion, see [HJ] Proposition 4.9.

Proposition 3.2.9 ((Long exact sequence) [HJ] Proposition 2.7). Let Z ⊂ Y ⊂
X be closed immersions. Then there is a natural long exact sequence

· · · → Hq
dR(X,Y )→ Hq

dR(X,Z)→ Hq
dR(Y,Z)→ Hq+1

dR (X,Y )→ · · ·

Remark 3.2.10. The sequence is the long exact cohomology sequence attached
to the exact sequence of h-sheaves on X

0→ Ωph/(X,Y ) → Ωph/(X,Z) → iY ∗Ω
p
h/(Y,Z) → 0

where iY : Y → X is the closed immersion.

Proposition 3.2.11 ((Excision) [HJ] Proposition 7.28). Let π : X̃ → X be a
proper surjective morphism, which is an isomorphism outside of Z ⊂ X. Let
Z̃ = π−1(Z). Then

Hq
dR(X̃, Z̃) ∼= Hq

dR(X,Z) .

Remark 3.2.12. This is an immediate consequence of the blow-up triangle.

Proposition 3.2.13 ((Künneth formula) [HJ] Proposition 7.29). Let Z ⊂ X
and Z ′ ⊂ X ′ be closed immersions. Then there is a natural isomorphism

Hn
dR(X ×X ′, X × Z ′ ∪ Z ×X ′) =

⊕

a+b=n

Ha
dR(X,Z)⊗k Hb

dR(X ′, Z ′) .

Proof. We explain the construction of the map. We work in the category of
h-sheaves of k-vector spaces on X ×X ′. Note that h-cohomology of an h-sheaf
of k-vector spaces computed in the category of sheaves of abelian groups agrees
with its h-cohomology computed in the category of sheaves of k-vector spaces
because an injective sheaf of k-vector spaces is also injective as sheaf of abelian
groups.
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We abbreviate T = X × Z ′ ∪ Z × X ′. By h-sheafification of the product of
Kähler differentials we have a natural multiplication

pr∗XΩah/X ⊗k pr∗X′Ω
b
h/X′ → Ωa+b

h/X×X′ .

It induces, with iZ : Z → X, iZ′ : Z ′ → X ′, and i : T → X ×X ′

pr∗XKer(Ωah/X → iZ∗Ω
a
h/Z)⊗kpr∗X′Ker(Ωbh/X′ → iZ′∗Ω

b
h/Z′)→ Ker(Ωa+b

h/X×X′ → i∗Ω
a+b
h/T ) .

The resulting morphism

pr•XΩ∗h/(X,Z) ⊗k pr•X′Ω
∗
h/(X′,Z′) → Ω•h/(X×X′,T ) .

induces a natural Künneth morphism
⊕

a+b=n

Ha
dR(X,Z)⊗k Hb

dR(X ′, Z ′)→ Hn
dR(X ×X ′, T ) .

We refer to the proof of [HJ] Proposition 7.29 for the argument that this is an
isomorphism.

Lemma 3.2.14. Let K/k be an extension of fields of characteristic zero. Let
X be a variety over k and Z ⊂ X a subvariety. Then there are natural isomor-
phisms

Hi
dR(X,Z)⊗k K → Hi

dR(XK , ZK) .

They are induced by a natural quasi-isomorphism

RΓdR(X)⊗k K → RΓdR(XK) .

Proof. Via the long exact cohomology sequence for pairs, and the long exact
sequence for a blow-up, it suffices to consider the case when X is a single smooth
variety, where it follows from Lemma 3.1.11.

Lemma 3.2.15. Let K/k be a finite extension of fields of characteristic 0. Let
Y be variety over K and W ⊂ Y a subvariety. We denote Yk and Wk the same
varieties when considered over k.

Then there are natural isomorphisms

Hi
dR(Y,W )→ Hi

dR(Yk,Wk) .

They are induced by a natural quasi-isomorphism

RΓdR(Y )→ RΓdR(YK) .

Proof. Note that if a variety is smooth over K, then it is also smooth when
viewed over k.

The morphism on cohomology is induced by a morphism of sites from the cate-
gory of k-varieties over Y to the category of K-varieties over k, both equipped
with the h-topology. The pull-back of the de Rham complex over Y maps to
the de Rham complex over Yk. Via the long exact sequence for pairs and the
blow-up sequence, it suffices to show the isomorphism for a single smooth Y .
This was settled in Lemma 3.1.13.
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3.3 The general case: alternative approaches

We are now going to present a number of earlier definitions in the literature.
They all give the same results in the cases where they are defined.

3.3.1 Deligne’s method

We present the approach of Deligne in [D5]. A singular variety is replaced by a
suitable simplicial variety whose terms are smooth.

3.3.2 Hypercovers

See Section 1.5 for basics on simplicial objects. In particular, we have the notion
of an S-hypercover for a class of covering maps of varieties.

We will need two cases:

1. S is the class of open covers, i.e., X =
∐n
i=1 Ui with Ui ⊂ Y open and

such that
⋃n
i=1 Ui = Y .

2. S the class of proper surjective maps.

Lemma 3.3.1. Let X → Y be in S. We put

X• = cosqY0 X .

In explicit terms,

Xp = X ×Y · · · ×Y X (p+ 1 factors)

where we number the factors from 0 to p. The face map ∂i is the projection
forgetting the factor number i. The degeneration si is induced by the diagonal
from the factor i into the factors i and i+ 1.

Then X• → Y is an S-hypercover.

Proof. By [SGA4.2] Exposé V, Proposition 7.1.2, the morphism

cosq0 → cosqn−1sqn−1cosq0

is an isomorphism of functors for n ≥ 1. (This follows directly from the ad-
junction properties of the coskeleton functor.) Hence the condition on Xn is
satisfied trivially for n ≥ 1. In degree 0 we consider

X0 = X → (cosqY−1sq−1cosqY0 )0 = Y .

By assumption, it is in S.
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It is worth spelling this out in complete detail.

Example 3.3.2. Let X =
∐n
i=1 Ui with Ui ⊂ Y open. For i0, . . . , ip ∈

{1, . . . , n} we abbreviate

Ui0,...,ip = Ui0 ∩ · · · ∩ Uip .

Then the open hypercover X• is nothing but

Xp =
∐

i0,...,ip=0n

Ui0,...,ip

with face and degeneracy maps given by the natural inclusions. Let F be a
sheaf of abelian groups on X. Then the complex associated to the cosimplicial
abelian group F(X•) is given by

n⊕

i=1

F(Ui)→
n⊕

i0,i1=1

F(Ui0,i1)→
n⊕

i0,i1,i2=1

F(Ui0,i1,i2)→ . . .

with differential

δp(α)i0,...,ip =

p+1∑

j=0

αi0,...,̂ij ,...,ip+1
|Ui0,...,ip+1

,

i.e., the differential of the Čech complex. Indeed, the natural projection

F(X•)→ C•(U,F)

to the Čech complex (see Definition 1.4.12) is a quasi-isomorphism.

Definition 3.3.3. We say that X• → Y• is a smooth proper hypercover if it is
a proper hypercover with all Xn smooth.

Example 3.3.4. Let Y = Y1 ∪ . . . Yn with Yi ⊂ Y closed. For i0, . . . , ip =
1, . . . , n put

Yi0,...,ip = Yi0 ∩ . . . Yip .
Assume that all Yi and all Yi0,...,ip are smooth.

Then X =
∐n
i=1 Yi → Y is proper and surjective. The proper hypercover X• is

nothing but

Xn =
∐

i0,...,in=0n

Yi0 ∩ . . . Yin

with face and degeneracy maps given by the natural inclusions. Hence X• → Y
is a smooth proper hypercover. As in the open case, the projection to Čech
complex of the closed cover Y = {Vi}ni=1 is a quasi-isomorphism.

Proposition 3.3.5. Let Y• be a simplicial variety. Then the system of all
proper hypercovers of Y• is filtered up to simplicial homotopy. It is functorial in
Y•. The subsystem of smooth proper hypercovers is cofinal.
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Proof. The first statement is [SGA4.2], Exposé V, Théorème 7.3.2. For the
second assertion, it suffices to construct a smooth proper hypercover for any
Y•. Recall that by Hironaka’s resolution of singularities [Hi1], or by de Jong’s
theorem on alterations [dJ], we have for any variety Y a proper surjective map
X → Y with X smooth. By the technique of [SGA4.2], Exposé Vbis, Proposi-
tion 5.1.3 (see also [D5] 6.2.5), this allows to construct X•.

3.3.3 Definition of de Rham cohomology in the general
case

Let again k be a field of characteristic 0.

Definition 3.3.6. Let X be a variety over k and X• → X a smooth proper
hypercover. Let C(X•) ∈ ZSm be the associated complex We define algebraic
de Rham cohomology of X by

Hi
dR(X) = Hi (RΓdR(X•))

with RΓdR as in Definition 3.1.7. Let D ⊂ X be a closed subvariety and D• → D
a smooth proper hypercover such that there is a commutative diagram

D• −−−−→ X•y
y

D −−−−→ X

We define relative algebraic de Rham cohomology of the pair (X,D) by

Hi
dR(X,D) = Hi (Cone(RΓ(X•)→ RΓ(D•))[−1]) .

Proposition 3.3.7. Algebraic de Rham cohomology is a well-defined functor,
independent of the choice of hypercoverings of X and D.

Remark 3.3.8. RΓdR defines a functor

Var→ K+(k−Vect)

but not to C+(k−Vect). Hence it does not extend directly to Cb(Q[Var]). We
avoid addressing this point by the use of the h-topology instead.

Proof. This is a special case of descent for h-covers and hence a consequence of
Proposition 3.2.4.

Alternatively, we can deduce if from the case of singular cohomology. Recall
that algebraic de Rham cohomology is well-behaved with respect to extensions
of the ground field. Without loss of generality, we may assume that k is finitely
generated over Q and hence embeds into C. Then we apply the period iso-
morphism of Definition 5.3.1. It remains to check the analogue for singular
cohomology. This is Theorem 2.7.6.
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Example 3.3.9. Let X be a smooth affine variety and D a simple divisor with
normal crossings. Let D1, . . . , Dn be the irreducible components. Let X• be the
constant simplicial variety X and D• as in Example 3.3.4. Then algebraic de
Rham cohomology D is computed by the total complex of the double complex
(Di0,...,ip being the (p+ 1)-fold intersection of components)

Kp,q =
⊕

i0<···<ip
ΩqDi0,...,ip

(
Di0,...,ip

)

with differential dp,q =
∑p
j=0(−1)j∂∗j the Čech differential and δp,q differentia-

tion of differential forms.

Relative algebraic de Rham cohomology of (X,D) is computed by the total
complex of the double complex

Lp,q =

{
Kp−1,q p > 0,

ΩqX(X) p = 0.

Remark 3.3.10. Establishing the expected properties of relative algebraic de
Rham cohomology is lengthy. Particularly complicated is the handling of the
multiplicative structure which uses the the functor between complexes in Z[Sm]
and simplicial objects in Z[Sm] and the product for simplicial objects. We do
not go into the details but rely on the comparison with h-cohomology instead.

3.3.4 Hartshorne’s method

We want to review Hartshorne’s definition from [Ha1]. As before let k be a field
of characteristic 0.

Definition 3.3.11. Let X be a smooth variety over k, i : Y ⊂ X a closed
subvariety. We define algebraic de Rham cohomology of Y as

Hi
H−dR(Y ) = Hi(X̂, Ω̂•X),

where X̂ is the formal completion of X along Y and Ω̂•X the formal completion
of the complex of algebraic differential forms on X.

Proposition 3.3.12 ([Ha1] Theorem (1.4)). Let Y be as in Definition 3.3.11.
Then Hi

H−dR(Y ) is independent of the choice of X. In particular, if Y is smooth,
the definition agrees with the one in Definition 3.1.2.

Theorem 3.3.13. The three definition of algebraic de Rham cohomology (Def-
inition 3.3.6 via hypercovers, Definition 3.3.11 via embedding into smooth vari-
eties, Definition 3.2.3 using the h-topology) agree.

Proof. The comparison of Hi
H−dR(X) and Hi

dR(Xeh) is [Ge], Theorem 4.10. It
agrees with Hi

dR(Xh) by [HJ], Proposition 6.1. By [HJ], Proposition 7.4 it agrees
also with the definition via hypercovers.
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3.3.5 Using geometric motives

In Chapter 10 we are going to introduce the triangulated category of effective
geometric motives DM eff

gm over k with coefficients in Q. We only review the
most important properties here and refer to Chapter 10 for more details. For
technical reasons, it is easier to work with the affine version.

The objects in DM eff
gm are the same as the objects in Cb(SmCor) where SmCor

is the category of correspondences, see Section 1.1 and we denote SmCorAff the
full subcategory with objects smooth affine varieties.

Lecomte and Wach in [LW] explain how to define an operation of correspon-
dences on Ω•X(X). We give a quick survey of their method.

For any normal variety Z let Ωp,∗∗Z be the OZ-double dual of the sheaf of p-
differentials. This is nothing but the sheaf of reflexive differentials on Z.

If Z ′ → Z is a finite morphism between normal varietes which is generically
Galois with covering group G, then by [Kn]

Ωp,∗∗Z (Z) ∼= Ωp,∗∗Z′ (Z ′)G .

Let X and Y be smooth affine varieties. Assume for simplicity that X and Y
are connected. Let Γ ∈ Cor(X,Y ) be a prime correspondence, i.e., Γ ⊂ X × Y
an integral closed subvariety which is finite and dominant over X. Choose a
finite Γ̃ → Γ such that Γ̃ is normal and the covering Γ̃ → X generically Galois
with covering group G. In this case, X = Γ̃/G.

Definition 3.3.14. For a correspondence Γ ∈ Cor(X,Y ) as above, we define

Γ∗ : Ω•Y (Y )→ Ω•X(X)

as the composition

Ω•Y (Y )→ Ω•
Γ̃
(Γ̃)→ Ω•,∗∗

Γ̃
(Γ̃)

1
|G|

∑
g∈G g

∗

−−−−−−−−→ Ω•,∗∗
Γ̃

(Γ̃)G = Ω•X(X) .

This is well-defined and compatible with composition of correspondences. We
can now define de Rham cohomology for complexes of correspondences.

Definition 3.3.15. Let X• ∈ Cb(SmCorAff). We define

RΓdR(X•) = TotRΓdR(Xn)n∈Z .

and
Hi

dR(X•) = HiRΓdR(X•) .

Note that there is a simple functor SmAff → SmCor. It assigns an object to
itself and a morphism to its graph. This induces

i : Cb(Q[SmAff])→ DM eff
gm .
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By construction,
f∗ = Γ∗f : Ω•Y (Y )→ Ω•X(X)

for any morphism f : X → Y between smooth affine varieties. Hence,

RΓdR(X•) = RΓdR(i(X•)),

where the left hand side was defined in Definition 3.1.7.

Proposition 3.3.16 (Voevodsky). The functor i extends naturally to a functor

i : Cb(Q[Var])→ DM eff
gm .

Proof. The category of geometric motives constructed from affine varieties only
agrees with the original DM eff

gm. For details, see [Ha].

The extension to all varieties is a highly non-trivial result of Voevodsky. By
[VSF], Chapter V, Corollary 4.1.4, there is functor

Var→ DMgm .

Indeed, the functor
X 7→ C∗L(X)

of loc. cit., Section 4.1, which assigns to every variety a homotopy invariant
complex of Nisnevich sheaves, extends to Cb(Z[Var]) by taking total complexes.
We consider it in the derived category of Nisnevich sheaves. Then the functor
factors via the homotopy category Kb(Z[Var]).

By induction on the length of the complex, it follows from the result quoted
above that C∗L(·) takes values in the full subcategory of geometric motives.

Definition 3.3.17. Let D ⊂ X be a closed immersion of varieties. We define

Hi
dR(X,D) = HiRΓdR(i([D → X]) ,

where [D → X] ∈ Cb(Z[Var]) is concentrated in degrees −1 and 0.

Proposition 3.3.18. This definition agrees with the one given in Definition
3.3.6.

Proof. The easiest way to formulate the proof is to invoke another variant of
the category of geometric motives. It does not need transfers, but imposes h-
descent instead. Scholbach [Sch1, Definition 3.10] defines the category DM eff

gm,h

as the localization of K−(Q[Var]) with respect to the triangulated subcategory
generated by complexes of the form X × A1 → X and h-hypercovers X• → X
and closed under certain infinite sums. By definition of DM eff

gm,h, any hypercov-

ering X• → X induces an isomorphism of the associated complexes in DM eff
gm,h.

By resolution of singularities, any object of DM eff
gm,h is isomorphic to an ob-

ject where all components are smooth. Hence we can replace K−(Q[Var]) by
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K−(Q[Sm]) in the definition without any change. We have seen how algebraic de
Rham cohomology is defined on K−(Q[Sm]). By homotopy invariance (Corol-
lary 3.1.10) and h-descent of the de Rham complex (Proposition 3.3.7), the
definition of algebraic de Rham cohomology factors via DM eff

gm,h.

This gives a definition of algebraic de Rham cohomology for K−(Q[Var]) which
by construction agrees with the one in Definition 3.3.6. On the other hand,
the main result of [Sch1] is that DM eff

gm can be viewed as full subcategory of

DM eff
gm,h. This inclusion maps the motive of a (possibly singular) variety to the

motive of a variety. As the two definitions of algebraic de Rham cohomology of
motives agree on motives of smooth varieties, they agree on all motives.

3.3.6 The case of divisors with normal crossings

We are going to need the following technical result in order to give a simplified
description of periods.

Proposition 3.3.19. Let X be a smooth affine variety of dimension d and
D ⊂ X a simple divisor with normal crossings. Then every class in Hd

dR(X,D)
is represented by some ω ∈ ΩdX(X).

The proof will be given at the end of this section.

Let D = D1 ∪ · · · ∪Dn be the decomposition into irreducible components. For
I ⊂ {1, . . . , n}, let again

DI =
⋂

i∈I
Di .

Recall from Example 3.3.9 that the de Rham cohomology of (X,D) is computed
by the total complex of

Ω•X(X)→
n⊕

i=1

Ω•Di(Di)→
⊕

i<j

Ω•Di,j (Di,j)→ · · · → Ω•D1,2,...,n
(D1,2,...,n) .

Note that DI has dimension d− |I|, hence the double complex is concentrated
in degrees p, q ≥ 0, p+ q ≤ d. By definition, the classes in the top cohomology
group Hd

dR(X,D) are presented by a tuple

(ω0, ω1, . . . , ωn) ω0 ∈ ΩdX(X), ωi ∈
⊕

|I|=i
Ωd−iDI

(DI) , i > 0 .

All such tuples are cocycles for dimension reasons. We have to show that,
modulo coboundaries, we can assume ωi = 0 for all i > 0.

Lemma 3.3.20. The maps

Ωd−1
X (X)→

n⊕

i=1

Ωd−1
Di

(Di)

⊕

|I|=s
Ωd−s−1
DI

(DI)→
⊕

|J|=s+1

Ωd−s−1
DJ

(DJ)
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are surjective.

Proof. X and all Di are assumed affine, hence the global section functor is
exact. It suffices to check the assertion for the corresponding sheaves on X and
hence locally for the étale topology. By replacing X by an étale neighbourhood
of a point, we can assume that there is a global system of regular paramters
t1, . . . , td on X such that Di = {ti = 0} for i = 1, . . . , n. First consider the case
s = 0. The elements of Ωd−1

Di
(Di) are locally of the form fidt1∧· · ·∧ ˙dti∧· · ·∧ td

(omitting the factor at i). Again by replacing X by an open subvariety, we can
assume they are globally of this shape. The forms can all be lifted to X.

ω =
n∑

i=1

fidt1 ∧ · · · ∧ ˙dti ∧ · · · ∧ td

is the preimage we were looking for.

For s ≥ 1 we argue by induction on d and n. If n = 1, there is nothing to show.
This settles the case d = 1. If n > 0, consider the decomposition

0 0
y

y
⊕

|I|=s,I⊂{1,...,n−1}
Ωd−s−1
DI

(DI) −−−−→
⊕

|J|=s+1,J⊂{1,...,n−1}
Ωd−s−1
DJ

(DJ)

y
y

⊕
|I|=s,I⊂{1,...,n}

Ωd−s−1
DI

(DI) −−−−→ ⊕
|J|=s+1,J⊂{1,...,n}

Ωd−s−1
DJ

(DJ)

y
y

⊕
|I|=s,I⊂{1,...,n},n∈I

Ωd−s−1
DI

(DI) −−−−→
⊕

|J|=s+1,J⊂{1,...,n},n∈J
Ωd−s−1
DJ

(DJ)

y
y

0 0

The arrow on the top is surjective by induction on n. The arrow on the bottom
reproduces the assertion for X replaced by Dn and D replaced by Dn ∩ (D1 ∪
· · · ∪ Dn−1). By induction, it is surjective. Hence, the arrow in the middle is
surjective.

Proof of Proposition 3.3.19. Consider a cocycle ω = (ω0, ω1, . . . , ωn) as explained
above. We argue by descending induction on the degree i. Consider ωn ∈⊕
|I|=n Ωd−nDI

(DI). By the lemma, there is

ω′n−1 ∈
⊕

|I|=n−1

Ωd−nDI
(DI)
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such that ∂ω′n−1 = ωn. We replace ω by ω ± dω′n−1 (depending on the signs in
the double complex). By construction, its component in degree n vanishes.

Hence, without loss of generality, we have ωn = 0. Next, consider ωn−1 etc.



Chapter 4

Holomorphic de Rham
cohomology

We are going to define a natural comparison isomorphism between de Rham
cohomology and singular cohomology of varieties over the complex numbers.
The link is provided by holomorphic de Rham cohomology which we study in
this chapter.

4.1 Holomorphic de Rham cohomology

Everything we did in the algebraic setting also works for complex manifolds,
indeed this is the older notion.

We write Ohol
X for the sheaf of holomorphic functions on a complex manifold X.

4.1.1 Definition

Definition 4.1.1. Let X be a complex manifold. Let Ω1
X be the sheaf of

holomorphic differentials on X. For p ≥ 0 let

ΩpX = ΛpΩ1
X

be the exterior power in the category of Ohol
X -modules and (Ω•X , d) the holomor-

phic de Rham complex.

The differential is defined as in the algebraic case, see Definition 3.1.1.

Definition 4.1.2. Let X be a complex manifold. We define holomorphic de
Rham cohomology of X as hypercohomology

Hi
dRan(X) = Hi(X,Ω•X) .

93



94 CHAPTER 4. HOLOMORPHIC DE RHAM COHOMOLOGY

As in the algebraic case, de Rham cohomology is a contravariant functor. The
exterior products induces a cup-product.

Proposition 4.1.3 (Poincaré lemma). Let X be a complex manifold. The
natural map of sheaves C→ Ohol

X induces an isomorphism

Hi
sing(X,C)→ Hi

dRan(X) .

Proof. By Theorem 2.2.5, we can compute singular cohomology as sheaf coho-
mology on X. It remains to show that the complex

0→ C→ Ohol
X → Ω1

X → Ω2
X → . . .

is exact. Let ∆ be the unit ball in C. The question is local, hence we may
assume that X = ∆d. There is a natural isomorphism

Ω•∆d
∼= (Ω•∆)

⊗d

Hence it suffices to treat the case X = ∆. In this case we consider

0→ C→ Ohol(∆)→ Ohol(∆)dt→ 0 .

The elements of Ohol(∆) are of the form
∑
i≥0 ait

i with radius of convergence
1. The differential has the form

∑

i≥0

ait
i 7→

∑

i≥0

iait
i−1dt .

The kernel is given by the constants. It is surjective because the antiderivative
has the same radius of convergence as the original power series.

Proposition 4.1.4 (Künneth formula). Let X,Y be complex manifolds. There
is a natural multiplication induced from wedge product of differential forms

Hi
dR(X)⊗k Hj

dR(Y )→ Hi+j
dR (X × Y ) .

It induces an isomorphism

Hn
dR(X × Y ) ∼=

⊕

i+j=n

Hi
dR(X)⊗k Hj

dR(Y ) .

Proof. The construction of the morphism is the same as in the algebraic case,
see Proposition 3.1.9. The quasi-isomorphism C → Ω• is compatible with the
exterior products. Hence the isomorphism reduces to the Künneth isomorphism
for singular cohomology, see Proposition 2.4.1.
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4.1.2 Holomorphic differentials with log poles

Let j : X → X̄ be a an open immersion of complex manifolds. Assume that
D = X̄ r X is a divisor with normal crossings, i.e., locally on X̄ there is
a coordinate system (t1, . . . , tn) such that D is given as the set of zeroes of
t1t2 . . . tr with 0 ≤ r ≤ n.

Definition 4.1.5. Let
Ω1
X̄〈D〉 ⊂ j∗Ω1

X

be the locally free OX̄ -module with the following basis: if U ⊂ X is an open
with coordinates t1, . . . , tn and D|U given by the equation t1 . . . tr = 0, then
Ω1
X̄
〈D〉|U has Ohol

X̄
-basis

dt1
t1
, . . . ,

dtr
tr
, dtr+1, . . . , dtn .

For p > 1 let
Ωp
X̄
〈D〉 = ΛpΩ1

X̄〈D〉 .
We call the Ω•

X̄
〈D〉 the complex of differentials with log poles along D.

Note that the differential of j∗Ω•X respects Ω•
X̄
〈D〉, so that this is indeed a

complex.

Proposition 4.1.6. The inclusion induces a natural isomorphism

Hi(X̄,Ω•X̄〈D〉)→ Hi(X,Ω•X) .

This is [D4] Proposition 3.1.8. The algebraic analogue was treated in Proposi-
tion 3.1.16.

Proof. Note that j : X → X̄ is Stein, hence j∗ is exact and we have

Hi(X,Ω•X) ∼= Hi(X̄, j∗Ω
•
X) .

It remains to show that
ι : Ω•X̄〈D〉 → j∗Ω

•
X

is a quasi-isomorphism, or, equivalently, that Coker(ι) is exact. The statement
is local, hence we may assume that X̄ is a coordinate ball and D = V (t1 . . . tr).
We consider the stalk in 0. The complexes are tensor products of the complexes
in the 1-dimensional situation. Hence it suffices to consider the case n = 1. If
r = 0, then there is nothing to show.

In remains to consider the following situation: let Ohol be ring of germs of
holomorphic functions at 0 ∈ C and Khol the ring of germs of holomorphic
functions with an isolated singularity at 0. The ring Ohol is given by power
series with a positive radius of convergence. The field Khol is given by Laurent
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series converging on some punctured neighborhood {t | 0 < t < ε}. We have to
check that the complex

Khol/Ohol → (Khol/t−1Ohol)dt

is acyclic.

We pass to the principal parts. The differential has the form

∑

i>0

ait
−i 7→

∑

i>0

(−i)ait−i−1

It is obviously injective. For surjectivity, note that the antiderivative

∫
:
∑

i>1

bit
−i 7→

∑

i>1

bi
−i+ 1

t−i+1

maps convergent Laurent series to convergent Laurent series.

4.1.3 GAGA

We work over the field of complex numbers.

An affine variety X ⊂ AnC is also a closed set in the analytic topology on Cn. If
X is smooth, the associated analytic space Xan in the sense of Section 1.2.1 is
a complex submanifold. As in loc. cit., we denote by

α : (Xan,Ohol
Xan)→ (X,OX)

the map of locally ringed spaces. Note that any algebraic differential form is
holomorphic, hence there is a natural morphism of complexes

α−1Ω•X → Ω•Xan .

It induces

α∗ : Hi
dR(X)→ Hi

dRan(Xan) .

Proposition 4.1.7 (GAGA for de Rham cohomology). Let X be a smooth
variety over C. Then the natural map

α∗ : Hi
dR(X)→ Hi

dRan(Xan)

is an isomorphism.

If X is smooth and projective, this is a standard consequence of Serre’s com-
parison result for cohomology of coherent sheaves (GAGA). We need to extend
this to the open case.
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Proof. Let j : X → X̄ be a compactification such that D = X̄ rX is a simple
divisor with normal crossings. The change of topology map α also induces

α−1j∗Ω
•
X → jan

∗ Ω•Xan

which respects differential with log-poles

α−1ΩX̄•〈D〉 → jan
∗ Ω•X̄an〈Dan〉 .

Hence we get a commutative diagram

Hi
dR(X) −−−−→ Hi

dRan(Xan)
x

x

Hi(X̄,Ω•
X̄
〈D〉) −−−−→ Hi(X̄an,Ω•

X̄an〈Dan〉)

By Proposition 3.1.16 in the algebraic, and Proposition 4.1.6 in the holomorphic
case, the vertical maps are isomorphism. By considering the Hodge to de Rham
spectral sequence (attached to the stupid filtration on Ω•X〈D〉), it suffices to
show that

Hp(X̄,Ωq
X̄
〈D〉)→ Hp(X̄an,Ωq

X̄an〈Dan〉)
is an isomorphism for all p, q. Note that X̄ is smooth, projective and Ωq

X̄
〈D〉 is

coherent. Its analytification α−1Ωq
X̄
〈D〉⊗α−1OX̄Ohol

X̄an is nothing but Ωq
X̄an〈Dan〉.

By GAGA [Se1], we have an isomorphism in cohomology.

4.2 De Rham cohomology via the h′-topology

We address the singular case via the h′-topology on (An/X) introduced in Def-
inition 2.7.1.

4.2.1 h′-differentials

Definition 4.2.1. Let Ωph′ be the h′-sheafification of the presheaf

Y 7→ ΩpY (Y )

on the category of complex analytic spaces An.

Theorem 4.2.2 (Jörder [Joe]). Let X be a complex manifold. Then

ΩpX(X) = Ωph′(X) .

Proof. Jörder defines in [Joe, Definition 1.4.1] what he calls h-differentials Ωph
as the presheaf pull-back of Ωp from the category of manifolds to the category
of complex analytic spaces. (There is no mention of a topology in loc.cit.) In
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[Joe, Proposition 1.4.2 (4)] he establishes that Ωph(X) = ΩpX(X) in the smooth
case. It remains to show that Ωph = Ωph′ . By resolution of singularities, every
X is smooth locally for the h′-topology. Hence it suffices to show that Ωph is
an h′-sheaf. By [Joe, Lemma 1.4.5], the sheaf condition is satisfied for proper
covers. The sheaf condition for open covers is satisfied because already ΩpX is a
sheaf in the ordinary topology.

Lemma 4.2.3 (Poincaré lemma). Let X be a complex analytic space. Then the
complex

Ch′ → Ω•h′

of h′-sheaves on (An/X)h′ is exact.

Proof. We may check this locally in the h′-topology. By resolution of singuarities
it suffices to consider sections over some Y which is smooth and even an open
ball in Cn. By Theorem 4.2.2 the complex reads

C→ Ω•Y (Y ) .

By the ordinary holomorphic Poincaré Lemma 4.1.3, it is exact.

Remark 4.2.4. The main topic of Jörder’s thesis [Joe] is to treat the question
of a Poincaré Lemma for h′-forms with respect to the usual topology. This is
more subtle and fails in general.

4.2.2 De Rham cohomology

We now turn to de Rham cohomology.

Definition 4.2.5. Let X be a complex analytic space.

1. We define h′-de Rham cohomology as hypercohomology

Hi
dRan(Xh′) = Hi

h′((Sch/X)h′ ,Ω
•
h′) .

2. Let i : Z → X a closed subspace. Put

Ωph/(X,Z) = Ker(Ωph/X → i∗Ω
p
h/Z)

in the category of abelian sheaves on (An/X)h′ .

We define relative h′-de Rham cohomology as

Hp
dRan(Xh′ , Zh′) = Hp

h′((An/X)h′ ,Ω
∗
h/(X,Z)) .

Lemma 4.2.6. The properties (long exact sequence, excision, Künneth for-
mula) of relative algebraic H-de Rham cohomology (see Section 3.2) are also
satisfied in relative h′-de Rham cohomology.
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Proof. The proofs are the same as Section 3.2, respectively in [HJ, Section 7.3].
The proof relies on the computation of Ωph′(D) when D is a normal crossings
space. Indeed, the same argument as in the proof of [HJ, Proposition 4.9] shows
that

Ωph′(D) = ΩpD(D)/torsion .

As in the previous case, exterior multiplication of differential forms induces a
product structure on h′-de Rham cohomology.

Corollary 4.2.7. For all X ∈ An and closed immersions i : Z → X the
inclusion of the Poincaré lemma induces a natural isomorphism

Hi
sing(X,Z,C)→ Hi

dRan(Xh′ , Zh′) ,

compatible with long exact sequences and multiplication. Moreover, the natural
map

Hi
dRan(Xh′)→ Hi

dRan(X)

is an isomorphism if X is smooth.

Proof. By the Poincaré Lemma 4.2.3, we have a natural isomorphism

Hi
h′(Xh′ , Zh′ ,Ch′)→ Hi

dRan(Xh′ , Zh′) .

We combine it with the comparison isomorphism with singular cohomology of
Proposition 2.7.4.

The second statement holds because both compute singular cohomology by
Prop. 2.7.4 and Prop. 4.1.3.

4.2.3 GAGA

We work over the base field C. As before we consider the analytification functor

X 7→ Xan

which takes a separated scheme of finite type over C to a complex analytic space.
We recall the map of locally ringed spaces

α : Xan → X .

We want to view it as a morphism of topoi

α : (An/Xan)h′ → (Sch/X)h .

Definition 4.2.8. Let X ∈ Sch/C. We define the h′-topology on the category
(Sch/X)h′ to be the smallest Grothendieck topology such that the following are
covering maps:
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1. proper surjective morphisms;

2. open covers.

If F is a presheaf of An/X, we denote by Fh′ its sheafification in the h′-topology.

Lemma 4.2.9. 1. The morphism of sites (Sch/X)h → (Sch/X)h′ induces
an isomorphism on the categories of sheaves.

2. The analytification functor induces a morphism of sites

(An/Xan)h′ → (Sch/X)h′ .

Proof. By [Voe] Theorem 3.1.9 any h-cover can be refined by a cover in normal
form which is a composition of open immersions followed by proper maps. This
shows the first assertion. The second is clear by construction.

By h′-sheafifiying, the natural morphism of complexes

α−1Ω•X → Ω•Xan

of Section 4.1.3, we also obtain

α−1Ω•h → Ω•h′

on (An/Xan)h′ . It induces

α∗ : Hi
dR(Xh)→ Hi

dRan(Xan
h′ ) .

Proposition 4.2.10 (GAGA for h′-de Rham cohomology). Let X be a variety
over C and Z a closed subvariety. Then the natural map

α∗ : Hi
dR(Xh, Zh)→ Hi

dRan(Xan
h′ , Z

an
h′ )

is an isomorphism. It is compatible with long exact sequences and products.

Proof. By naturality, the comparison morphism is compatible with long exact
sequences. Hence it suffices to consider the absolute case.

Let X• → X be a smooth proper hypercover. This is a cover in h′-topology,
hence we may replace X by X• on both sides. As all components of X•
are smooth, we may replace h-cohomology by Zariski-cohomology in the al-
gebraic setting (see Proposition 3.2.4). On the analytic side, we may replace
h′-cohomology by ordinary sheaf cohomology (see Corollary 2.7.4). The state-
ment then follows from the comparison in the smooth case, see Proposition
4.1.7.



Chapter 5

The period isomorphism

The aim of this section is to define well-behaved isomorphisms between singular
and de Rham cohomology of algebraic varieties.

5.1 The category (k,Q)−Vect
We introduce a simple linear algebra category which will later allow to formalize
the notion of periods. Throughout, let k ⊂ C be a subfield.

Definition 5.1.1. Let (k,Q)−Vect be the category of triples (Vk, VQ, φC) where
Vk is a finite dimensional k-vector space, VQ a finite dimensional Q-vector space
and

φC : Vk ⊗k C→ VQ ⊗Q C
a C-linear isomorphism. Morphisms in (k,Q)−Vect are linear maps on Vk and
VQ compatible with comparison isomorphisms.

Note that (k,Q)−Vect is a Q-linear additive tensor category with the obvious
notion of tensor product. It is rigid, i.e., all objects have strong duals. It is even
Tannakian with projection to the Q-component as fibre functor.

For later use, we make the duality explicit:

Remark 5.1.2. Let V = (Vk, VQ, φC) ∈ (k,Q)−Vect. The the dual V ∨ is given
by

V ∨ = (V ∗k , V
∗
Q , (φ

∗)−1

where ·∗ denotes the vector space dual over k and Q or C. Note that the inverse
is needed in order to make the map go in the right direction.

Remark 5.1.3. The above is a simplification of the category of mixed Hodge
structures introduced by Deligne, see [D4]. It does not take the weight and
Hodge filtration into account. In other words: there is a faithful forgetful functor
from mixed Hodge structures over k to (k,Q)−Vect.

101
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Example 5.1.4. The invertible objects are those where dimk Vk = dimQ VQ =
1. Up to isomorphism they are of the form

L(α) = (k,Q, α) with α ∈ C∗ .

5.2 A triangulated category

We introduce a triangulated category with a t-structure whose heart is (k,Q)−Vect.

Definition 5.2.1. A cohomological (k,Q)−Vect-complex consists of the follow-
ing data:

• a bounded below complex K•k of k-vector spaces with finite dimensional
cohomology;

• a bounded below complex K•Q of Q-vector spaces with finite dimensional
cohomology;

• a bounded below complex K•C of C-vector spaces with finite dimensional
cohomology;

• a quasi-isomorphism φk,C : K•k ⊗k C→ K•C;

• a quasi-isomorphism φQ,C : K•Q ⊗Q C→ K•C.

Morphisms of cohomological (k,Q)−Vect-complexes are given by a pair of mor-
phisms of complexes on the k-, Q- and C-component such that the obvious
diagram commutes. We denote the category of cohomological (k,Q)−Vect-
complexes by C+

(k,Q).

Let K and L be objects of C+
(k,Q). A homotopy between K and L is a homotopy

in the k-, Q- and C-component compatible under the comparison maps. Two
morphisms in C+

(k,Q) are homotopic if they differ by a homotopy. We denote by

K+
(k,Q) the homotopy category of cohomological (k,Q)−Vect-complexes.

A morphism inK+
(k,Q) is called quasi-isomorphism if its k-, Q-, and C-components

are quasi-isomorphisms. We denote by D+
(k,Q) the localization of K+

(k,Q) with re-

spect to quasi-isomorphisms. It is called the derived category of cohomological
(k,Q)−Vect-complexes.

Remark 5.2.2. This is a simplification of the category of mixed Hodge com-
plexes introduced by Beilinson [Be2]. A systematic study of this type of category
can be found in [Hu1, §4]. In the language of loc.cit., it is the rigid glued cate-
gory of the category of k-vector spaces and the category of Q-vector spaces via
the category of C-vector spaces and the extension of scalars functors. Note that
they are exact, hence the construction simplifies.
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Lemma 5.2.3. D+
(k,Q) is a triangulated category. It has a natural t-structure

with
Hi : D+

(k,Q) → (k,Q)−Vect

defined componentwise. The heart of the t-structure is (k,Q)−Vect.

Proof. This is straightforward. For more details see [Hu1, §4].

Remark 5.2.4. In [Hu1, 4.2, 4.3], explicit formulas are given for the mor-
phisms in D+

(k,Q). The category has cohomological dimension 1. For K,L ∈
(k,Q)−Vect, the group HomD+

(k,Q)
(K,L[1]) is equal to the group of Yoneda ex-

tensions. As in [Be2], this implies that D+
(k,Q) is equivalent to the bounded

derived category D+((k,Q)−Vect). We do not spell out the details because we
are not going to need these properties.

There is an obvious definition of a tensor product on C+
(k,Q). Let K•, L• ∈

C+
(k,Q). We define K•⊗  L• with k,Q,C-component given by the tensor product

of complexes of vector spaces over k, Q, and C, respectively (see Example 1.3.4).
Tensor product of two quasi-isomorphisms defines the comparison isomorphism
on the tensor product.

It is associative and commutative. Note that the

Lemma 5.2.5. C+
(k,Q), K

+
(k,Q) and D+

(k,Q) are associative and commutative ten-

sor categories with the above tensor product. The cohomology functor H∗ com-
mutes with ⊗. For K•, L• in D+

(k,Q), we have a natural isomorphism

H∗(K•)⊗H∗(L•)→ H∗(K• ⊗ L•).

It is compatible with the associativity constraint. It is compatible with the com-
mutativity constraint up to the sign (−1)pq on Hp(K•)⊗Hq(L•).

Proof. The case of D+
(k,Q) follows immediately from the case of complexes of

vector spaces, where it is well-known. The signs come from the signs in the
total complex of a bicomplex, in this case, tensor product of complexes, see
Section 1.3.3.

Remark 5.2.6. This is again simpler than the case treated in [Hu1, Chap-
ter 13], because we do not need to control filtrations and because our tensor
products are exact.

5.3 The period isomorphism in the smooth case

Let k be a subfield of C. We consider smooth varieties over k and the complex
manifold Xan associated to X ×k C.
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Definition 5.3.1. Let X be a smooth variety over k. We define the period
isomorphism

per : H•dR(X)⊗k C→ H•sing(X,Q)⊗Q C

to be the isomorphism given by the composition of the isomorphisms

1. H•dR(X)⊗k C→ H•dR(X ×k C) of Lemma 3.1.11,

2. H•dR(X ×k C)→ H•dRan(Xan) of Proposition 4.1.7,

3. the inverse of H•dRan(Xan)→ H•sing(Xan,C) of Proposition 4.1.3,

4. the inverse of the change of coefficients isomorphism H•sing(Xan,C) →
H•sing(Xan,Q)⊗Q C.

We define the period pairing

per : H•dR(X)×Hsing
• (Xan,Q)→ C

to be the map

(ω, γ) 7→ γ(per(ω))

where we view classes in singular homology as linear forms on singular coho-
mology.

Recall the category (k,Q)−Vect introduced in Section 5.1.

Lemma 5.3.2. The assignment

X 7→ (H•dR(X), H•sing(X),per)

defines a functor

H : Sm→ (k,Q)−Vect .

For all X,Y ∈ Sm, the Künneth isomorphism induces an natural isomorphism

H(X)⊗H(Y )→ H(X × Y ) .

The image of H is closed under direct sums and tensor product.

Proof. Functoriality holds by construction. The Künneth morphism is induced
from the Künneth isomorphism in singular cohomology (Proposition 2.4.1) and
algebraic de Rham cohomology (see Proposition 3.1.9). All identifications in
Definition 5.3.1 are compatible with the product structure. Hence we have
defined a Künneth morphism in H. It is an isomorphism because it is an iso-
morphism in singular cohomology.

The direct sum realized by the disjoint union. The tensor product is realized
by the product.
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In Chapter 9, we are going to study systematically the periods of the objects in
H(Sm).

The period isomorphism has an explicit description in terms of integration.

Theorem 5.3.3. Let X be a smooth affine variety over k and ω ∈ Ωi(X) a

closed differential form with de Rham class [ω]. Let c ∈ Hsing
d (Xan,Q) be a sin-

gular homology class. Let
∑
ajγj with aj ∈ Q and γj : ∆i → Xan differentiable

singular cycles as in Definition 2.2.2. Then

per([ω], c) =
∑

aj

∫

∆i

γ∗(ω) .

Remark 5.3.4. We could use the above formula as a definition of the period
pairing, at least in the affine case. By Stokes’ theorem, the value only depends
on the class of ω.

Proof. Let Ai(Xan) be group of C-valued C∞-differential forms and AiXan the
associated sheaf. By the Poincaré lemma and its C∞-analogue the morphisms

C→ Ω•Xan → A•Xan

are quasi-isomorphism. It induces a quasi-isomorphism

Ω•Xan(Xan)→ A•(Xan)

because both compute singular cohomology in the affine case. Hence it suf-
fices to view ω as a C∞-differential form. By the Theorem of de Rham, see
[Wa], Sections 5.34-5.36, the period isomorphism is realized by integration over
simplices.

Example 5.3.5. For X = Pnk , we have

H2j(Pnk ) = L((2πi)j)

with L(α) the invertible object of Example 5.1.4.

5.4 The general case (via the h′-topology)

We generalize the period isomorphism to relative cohomology of arbitrary vari-
eties.

Let k be a subfield of C. We consider varieties over k and the complex analytic
space Xan associated to X ×k C.

Definition 5.4.1. Let X be a variety over k, and Z ⊂ X a closed subvariety.
We define the period isomorphism

per : H•dR(X,Z)⊗k C→ H•sing(X,Z,Q)⊗Q C

to be the isomorphism given by the composition of the isomorphisms
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1. H•dR(X,Z)⊗k C→ H•dR(X ×k C, Z ×k C) of Lemma 3.2.14,

2. H•dR(X ×k C, Z ×k C)→ H•dRan(Xan
h′ , Z

an
h′ ) of Proposition 4.2.10,

3. the inverse of H•dRan(Xan
h′ , Z

an
h′ )→ H•sing(Xan, Zan,C) of Corollary 4.2.7,

4. the inverse of the change of coefficients isomorphism H•sing(Xan, Zan,C)→
H•sing(Xan, Zan,Q)⊗Q C.

We define the period pairing

per : H•dR(X,Z)×Hsing
• (Xan, Zan,Q)→ C

to be the map

(ω, γ) 7→ γ(per(ω)),

where we view classes in singular homology as linear forms on singular coho-
mology.

Lemma 5.4.2. The assignment

(X,Z) 7→ (H•dR(X,Z), H•sing(X,Z),per)

defines a functor denoted H on the category of pairs X ⊃ Z with values in
(k,Q)−Vect. For all Z ⊂ Z, Z ′ ⊂ X ′, the Künneth isomorphism induces a
natural isomorphism

H(X,Z)⊗H(X ′, Z ′)→ H(X ×X ′, X × Z ′ ∪ Z ×X ′) .

The image of H is closed under direct sums and tensor product.

If Z ⊂ Y ⊂ X is a triple, the there is a induced long exact sequence in
(k,Q)−Vect.

· · · → Hi(X,Y )→ Hi(X,Z)→ Hi(Y, Z)
∂−→ Hi+1(X,Y )→ . . . .

Proof. Functoriality and compatibility with long exact sequences holds by con-
struction. The Künneth morphism is induced from the Künneth isomorphism
in singular cohomology (Proposition 2.4.1) and algebraic de Rham cohomology
(see Proposition 3.1.9). All identifications in Definition 5.3.1 are compatible
with the product structure. Hence we have defined a Künneth morphism in H.
It is an isomorphism because it is an isomorphism in singular cohomology.

The direct sum realized by the disjoint union. The tensor product is realized
by the product.
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5.5 The general case (Deligne’s method)

We generalize the period isomorphism to relative cohomology of arbitrary vari-
eties.

Let k be a subfield of C.

Recall from Section 3.1.2 the functor

RΓdR : Z[Sm]→ C+(k−Mod)

which maps a smooth variety to a natural complex computing its de Rham
cohomology. In the same way, we define using the Godement resolution (see
Definition 1.4.8)

RΓsing(X) = Γ(Xan, Gd(Q)) ∈ C+(Q−Mod)

a complex computing singular cohomology of Xan. Moreover, let

RΓdRan(X) = Γ(Xan, Gd(Ω•Xan) ∈ C+(C−Mod)

be a complex computing holomorphic de Rham cohomology of Xan.

Lemma 5.5.1. Let X be a smooth variety over k.

1. As before let α : Xan → X ×k C be the morphism of locally ringed spaces
and β : X ×k C→ X the natural map. The inclusion α−1β−1Ω•X → Ω•Xan

induces a natural quasi-isomorphism of complexes

φdR,dRan : RΓdR(X)⊗k C→ RΓdRan(X) .

2. The inclusion Q → Ω•Xan induces a natural quasi-isomorphism of com-
plexes

φsing,dRan : RΓsing(X)⊗Q C→ RΓdRan(X) .

3. We have

per = H•(φsing,dRan)−1◦H•(φsing,dRan) : H•dR(X)⊗kC)→ H•sing(Xan,Q) .

Proof. The first assertion follows from applying Lemma 1.4.10 to β and α. As
before, we identify sheaves on X ×k C with sheaves on the set of closed points
of X ×k C. This yields a quasi-isomorphism

α−1β−1GdX(Ω•X)→ GdXan(α−1β−1Ω•X) .

We compose with

GdXan(α−1β−1Ω•X)→ GdXan(Ω•Xan) .
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Taking global sections yields by definition a natural Q-linear map of complexes

RΓdR(X)→ RΓdRan(X) .

By extension of scalars we get φdR,dRan . It is a quasi-isomorphism because on
cohomology it defines the maps from Lemma 3.1.11 and Proposition 4.1.7.

The second assertion follows from ordinary functoriality of the Godement reso-
lution. The last holds by construction.

In other words:

Corollary 5.5.2. The assignment

X 7→ (RΓdR(X), RΓsing(X), RΓdRan(X), φdR,dRan , φsing,dRan)

defines a functor

RΓ : Sm→ C+
(k,Q)

where C+
(k,Q) is the category of cohomological (k,Q)−Vect-complexes introduced

in Definition 5.2.1.

Moreover,

H•(RΓ(X)) = H(X) ,

where the functor H is defined as above.

Proof. Clear from the lemma.

By naturality, these definitions extend to objects in Z[Sm].

Definition 5.5.3. Let

RΓ : K−(ZSm)→ D+
(k,Q)

be defined componentwise as the total complex complex of the complex in C+
(k,Q).

For X• ∈ C−(ZSm) and i ∈ Z we put

Hi(X•) = HiRΓ(X•) .

Definition 5.5.4. Let k be a subfield of C and X a variety over k with a closed
subvariety D. We define the period isomorphism

per : H•dR(X,D)⊗k C→ H•sing(Xan, Dan)⊗Q C

as follows: let D• → X• be smooth proper hypercovers of D → X as in Defini-
tion 3.3.6. Let

C• = ConeC(D•)→ C(X•)) ∈ C−(Z[Sm]) .
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Then H•(RΓ(C•)) consists of

(H•dR(X,D), H•sing(X,D),per) .

In detail: per is given by the composition of the isomorphisms

H•sing(Xan, Dan,Q))⊗Q C→ H•(RΓsing(C•)

with
H•φsing,dRan(C•)

−1 ◦H•φdR,dRan(C•) .

We define the period pairing

per : H•dR(X,D)×Hsing
• (Xan, Dan)→ C

to be the map
(ω, γ) 7→ γ(per(ω))

where we view classes in relative singular homology as linear forms on relative
singular cohomology.

Lemma 5.5.5. per is well-defined, compatible with products and long exact
sequences for relative cohomology.

Proof. By definition of relative algebraic de Rham cohomology (see Definition
3.3.6), the morphism takes values in H•dR(X,D) ⊗k C. The first map is an
isomorphism by proper descent in singular cohomology, see Theorem 2.7.6.

Compatibility with long exact sequences and multiplication comes from the
definition.

We make this explicit in the case of a divisor with normal crossings. Recall the
description of relative de Rham cohomology in this case in Proposition 3.3.19.

Theorem 5.5.6. Let X be a smooth affine variety of dimension d and D ⊂
X a simple divisor with normal crossings. Let ω ∈ ΩdX(X) with associated
cohomology class [ω] ∈ Hd

dR(X,D). Let
∑
ajγj with aj ∈ Q and γj : ∆i → Xan

be a differentiable singular cchain as in Definition 2.2.2 with boundary in Dan.
Then

per([ω], c) =
∑

aj

∫

∆i

γ∗(ω) .

Proof. Let D• as in Section 3.3.6. We apply the considerations of the proof
of Theorem 5.3.3 to X and the components of D•. Note that ω|DI = 0 for
dimension reasons.



110 CHAPTER 5. THE PERIOD ISOMORPHISM


