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Chapter 6

Nori’s diagram category

We explain Nori’s construction of an abelian category attached to the repre-
sentation of a diagram and establish some properties for it. The construction
is completely formal. It mimicks the standard construction of the Tannakian
dual of a rigid tensor category with a fibre functor. Only, we do not have a
tensor product or even a category but only what we should think of as the fibre
functor.

The results are due to Nori. Notes from some of his talks are available [N, N1].
There is a also a sketch in Levine’s survey [L1] §5.3. In the proofs of the main
results we follow closely the diploma thesis of von Wangenheim in [vW].

6.1 Main results

6.1.1 Diagrams and representations

Let R be a noetherian, commutative ring with unit.

Definition 6.1.1. A diagram D is a directed graph on a set of vertices V (D)
and edges E(D). A diagram with identities is a diagram with a choice of a
distinguished edge idv : v → v for every v ∈ D. A diagram is called finite if
it has only finitely many vertices. A finite full subdiagram of a diagram D is a
diagram containing a finite subset of vertices of D and all edges (in D) between
them.

By abuse of notation we often write v ∈ D instead of v ∈ V (D). The set of all
directed edges between p, q ∈ D is denoted by D(p, q).

Remark 6.1.2. One may view a diagram as a category where composition of
morphisms is not defined. The notion of a diagram with identity edges is not
standard. The notion is useful later when we consider multiplicative structures.
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114 CHAPTER 6. NORI’S DIAGRAM CATEGORY

Example 6.1.3. Let C be a small category. Then we can associate a diagram
D(C) with vertices the set of objects in C and edges given by morphisms. It is
even a diagram with identities. By abuse of notation we usually also write C for
the diagram.

Definition 6.1.4. A representation T of a diagram D in a small category C is
a map T of directed graphs from D to D(C). A representation T of a diagram
D with identities is a representation such that id is mapped to id.

For p, q ∈ D and every edge m from p to q we denote their images simply by
Tp, Tq and Tm : Tp→ Tq (mostly without brackets).

Remark 6.1.5. Alternatively, a representation is defined as a functor from the
path category P(D) to C. Recall that the objects of the path category are the
vertices of D, and the morphisms are sequences of directed edges e1e2 . . . en
for n ≥ 0 with the edge ei starting in the end point of ei−1 for i = 2, . . . , n.
Morphisms are composed by concatenating edges.

We are particularly interested in representations in categories of modules.

Definition 6.1.6. Let R be a noetherian commutative ring with unit. By
R−Mod we denote the category of finitely generated R-modules. By R−Proj
we denote the subcategory of finitely generated projective R-modules.

Note that these categories are essentially small by passing to isomorphic objects,
so we will not worry about smallness from now on.

Definition 6.1.7. Let S be a commutative unital R-algebra and T : D →
R−Mod a representation. We denote TS the representation

D
T−→ R−Mod

⊗RS−−−→ S−Mod .

Definition 6.1.8. Let T be a representation of D in R−Mod. We define the
ring of endomorphisms of T by

End(T ) :=



(ep)p∈D ∈

∏

p∈D
EndR(Tp)|eq ◦ Tm = Tm ◦ ep ∀p, q ∈ D ∀m ∈ D(p, q)



 .

Remark 6.1.9. In other words, an element of End(T ) consists of tuples (ep)p∈V (D)

of endomorphisms of Tp, such that all diagrams of the following form commute:

Tp Tq

Tp Tq

ep eq

Tm

Tm

Note that the ring of endomorphisms does not change when we replace D by
the path category P(D).
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6.1.2 Explicit construction of the diagram category

The diagram category can be characterized by a universal property, but it also
has a simple explicit description that we give first.

Definition 6.1.10 (Nori). Let R be a noetherian commutative ring with unit.
Let T be a representation of D in R−Mod.

1. Assume D is finite. Then we put

C(D,T ) = End(T )−Mod

the category of finitely generated R-modules equipped with an R-linear
operation of the algebra End(T ).

2. In general let
C(D,T ) = 2−colimFC(F, T |F )

where F runs through the system of finite subdiagrams of D.

More explicitly: the objects of C(D,T ) are the objects of C(F, T |F ) for
some finite subdiagram F . For X ∈ C(F, T |F ) and F ⊂ F ′ we write XF ′

for the image of X in C(F ′, T |F ′). For objects X,Y ∈ C(D,T ), we put

MorC(D,T )(X,Y ) = lim−→
F

MorC(F,T |F )(XF , YF ) .

The category C(D,T ) is called the diagram category. With

fT : C(D,T ) −→ R−Mod

we denote the forgetful functor.

Remark 6.1.11. The representation T : D −→ C(D,T ) extends to a functor
on the path category P(D). By construction the diagram categories C(D,T )
and C(P(D), T ) agree. The point of view of the path category will be useful
Chapter 7, in particular in Definition 7.2.1.

In section 6.5 we will prove that under additional conditions for R, satisfied in
the cases of most interest, there is the following even more direct description of
C(D,T ) as comodules over a coalgebra.

Theorem 6.1.12. If the representation T takes values in free modules over a
field or Dedekind domain R, the diagram category is equivalent to the category
of finitely generated comodules (see Definition 6.5.4) over the coalgebra A(D,T )
where

A(D,T ) = colimFA(F, T ) = colimFEnd(T |F )∨

with F running through the system of all finite subdiagrams of D and ∨ the
R-dual.

The proof of this theorem is given in Section 6.5.
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6.1.3 Universal property: Statement

Theorem 6.1.13 (Nori). Let D be a diagram and

T : D −→ R−Mod

a representation of D.

Then there exists an R-linear abelian category C(D,T ), together with a repre-
sentation

T̃ : D −→ C(D,T ),

and a faithful, exact, R-linear functor fT , such that:

1. T factorizes over D
T̃−→ C(D,T )

fT−−→ R−Mod.

2. T̃ satisfies the following universal property: Given

(a) another R-linear, abelian category A,

(b) an R-linear, faithful, exact functor, f : A → R−Mod,

(c) another representation F : D → A,

such that f ◦F = T , then there exists a functor L(F ) - unique up to unique
isomorphism of functors - such that the following diagram commutes:

C(D,T )

D R−Mod .

A

T̃

F f

fT

T

L(F )

The category C(D,T ) together with T̃ and fT is uniquely determined by this
property up to unique equivalence of categories. It is explicitly described by the
diagram category of Definition 6.1.10. It is functorial in D in the obvious sense.

The proof will be given in Section 6.4. We are going to view fT as an extension
of T from D to C(D,T ) and sometimes write simply T instead of fT .

The universal property generalizes easily.
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Corollary 6.1.14. Let D, R, T be as in Theorem 6.1.19. Let A and f , F be as
in loc.cit. 2. (a)-(c). Moreover, let S be a faithfully flat commutative unitary
R-algebra S and

φ : TS → (f ◦ F )S

an isomorphism of representations into S−Mod. Then there exists a functor
L(F ) : C(D,T )→ A and an isomorphism of functors

φ̃ : (fT )S → fS ◦ L(F )

such that

C(D,T )

D S−Mod

A

T̃

F fS

(fT )S

TS

L(F )

commutes up to φ and φ̃. The pair (L(F ), φ̃) is unique up to unique isomorphism
of functors.

The proof will also be given in Section 6.4.

The following properties provide a better understanding of the nature of the
category C(D,T ).

Proposition 6.1.15. 1. As an abelian category C(D,T ) is generated by the
T̃ v where v runs through the set of vertices of D, i.e., it agrees with its
smallest full subcategory such that the inclusion is exact containing all
such T̃ v.

2. Each object of C(D,T ) is a subquotient of a finite direct sum of objects of
the form T̃ v.

3. If α : v → v′ is an edge in D such that Tα is an isomorphism, then T̃α is
also an isomorphism.

Proof. Let C′ ⊂ C(D,T ) be the subcategory generated by all T̃ v. By definition,
the representation T̃ factors through C′. By the universal property of C(D,T ),
we obtain a functor C(D,T ) → C′, hence an equivalence of subcategories of
R−Mod.
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The second statement follows from the first criterion since the full subcategory
in C(D,T ) of subquotients of finite direct sums is abelian, hence agrees with
C(D,T ). The assertion on morphisms follows since the functor fT : C(D,T )→
R−Mod is faithful and exact between abelian categories. Kernel and cokernel
of T̃α vanish if kernel and cokernel of Tα vanish.

Remark 6.1.16. We will later give a direct proof, see Proposition 6.3.20. It
will be used in the proof of the universal property.

The diagram category only weakly depends on T .

Corollary 6.1.17. Let D be a diagram and T, T ′ : D → R−Mod two represen-
tations. Let S be a faithfully flat R-algebra and φ : TS → T ′S be an isomorphism
of representations in S−Mod. Then it induces an equivalence of categories

Φ : C(D,T )→ C(D,T ′).

Proof. We apply the universal property of Corollary 6.1.14 to the representation
T and the abelian category A = C(D,T ′). This yields a functor Φ : C(D,T )→
C(D,T ′). By interchanging the role of T and T ′ we also get a functor Φ′ in
the opposite direction. We claim that they are inverse to each other. The
composition Φ′ ◦ Φ can be seen as the universal functor for the representation
of D in the abelian category C(D,T ) via T . By the uniqueness part of the
universal property, it is the identity.

Corollary 6.1.18. Let D2 be a diagram. Let T2 : D2 → R−Mod be a repre-
sentation. Let

D2
T̃2−→ C(D2, T2)

fT2−−→ R−Mod

be the factorization via the diagram category.

Let D1 ⊂ D2 be a full subdiagram. It has the representation T1 = T2|D1 obtained
by restricting T2. Let

D1
T1−→ C(D1, T1)

fT1−−→ R−Mod

be the factorization via the diagram category. Let ι : C(D1, T1) → C(D2, T2) be
the functor induced from the inclusion of diagrams. Moreover, we assume that
there is a representation F : D2 → C(D1, T1) compatible with T2, i.e., such that
there is an isomorphism of functors

T2 → fT2 ◦ ι ◦ F = fT1 ◦ F .

Then ι is an equivalence of categories.

Proof. Let T ′2 = fT1
◦ F : D2 → R−Mod and denote T ′1 = T ′2|D1

: D1 →
R−Mod. Note that T2 and T ′2 and T1 and T ′1 are isomorphic by assumption.
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By the universal property of the diagram category, the representation F induces
a functor

π′ : C(D2, T
′
2)→ C(D1, T1) .

It induces π : C(D2, T2) by precomposition with the equivalence Φ from Corol-
lary 6.1.17. We claim that ι ◦π and π ◦ ι are isomorphic to the identity functor.

By the uniqueness part of the universal property, the composition ι ◦ π′ :
C(D2, T

′
2) → C(D2, T2) is induced from the representation ι ◦ F of D2 in the

abelian category C(D2, T2). By the proof of Corollary 6.1.17 this is the equiva-
lence Φ−1. In particular, ι ◦ π is the identity.

The argument for π ◦ ι on C(D1, T1) is analogous.

The most important ingredient for the proof of the universal property is the
following special case.

Theorem 6.1.19. Let R be a noetherian ring and A an abelian, R-linear cat-
egory. Let

T : A −→ R−Mod

be a faithful, exact, R-linear functor and

A T̃−→ C(A, T )
fT−→ R−Mod

the factorization via its diagram category (see Definition 6.1.10). Then T̃ is an
equivalence of categories.

The proof of this theorem will be given in Section 6.3.

6.1.4 Discussion of the Tannakian case

The above may be viewed as a generalization of Tannaka duality. We explain
this in more detail. We are not going to use the considerations in the sequel.

Let k be a field, C a k-linear abelian tensor category, and

T : C −→ k−Vect

a k-linear faithful tensor functor, all in the sense of [DM]. By standard Tan-
nakian formalism (cf [Sa] and [DM]), there is a k-bialgebra A such that the
category is equivalent to the category of A-comodules on finite dimensional k-
vector spaces.

On the other hand, if we regard C as a diagram (with identities) and T as a
representation into finite dimensional vector spaces, we can view the diagram
category of C as the category A(C, T )−Comod by Theorem 6.1.12. By Theo-
rem 6.1.19 the category C is equivalent to its diagram category A(C, T )−Comod.
The construction of the two coalgebras A and A(C, T ) coincides. Thus Nori im-
plicitely shows that we can recover the coalgebra structure of A just by looking
at the representations of C.
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The algebra structure on A(C, T ) is induced from the tensor product on C (see
also Section 7.1). This defines a pro-algebraic scheme SpecA(C, T ). The coal-
gebra structure turns SpecA(C, T ) into a monoid scheme. We may interpret
A(C, T )−Comod as the category of finite-dimensional representations of this
monoid scheme.

If the tensor structure is rigid in addition, C(D,T ) becomes what Deligne and
Milne call a neutral Tannakian category [DM]. The rigidity structure induces an
antipodal map, making A(C, T ) into a Hopf algebra. This yields the structure
of a group scheme on SpecA(C, T ), rather than only a monoid scheme.

We record the outcome of the discussion:

Theorem 6.1.20. Let R be a field and C be a neutral R-linear Tannakian
category with faithful exact fibre functor T : C → R−Mod. Then A(C, T ) is
equal to the Hopf algebra of the Tannakian dual.

Proof. By construction, see [DM] Theorem 2.11 and its proof.

A similar result holds in the case that R is a Dedekind domain and

T : D −→ R−Proj

a representation into finitely generated projective R-modules. Again by Theo-
rem 6.1.12, the diagram category C(D,T ) equalsA(C, T )−Comod, whereA(C, T )
is projective over R. Wedhorn shows in [Wed] that if SpecA(C, T ) is a group
scheme it is the same to have a representation of SpecA(C, T ) on a finitely
generated R-module M and to endow M with an A(C, T )-comodule structure.

6.2 First properties of the diagram category

Let R be a unitary commutative noetherian ring, D a diagram and T : D →
R−Mod a representation. We investigate the category C(D,T ) introduced in
Definition 6.1.10.

Lemma 6.2.1. If D is a finite diagram, then End(T ) is an R-algebra which is
finitely generated as an R-module.

Proof. For any p ∈ D the module Tp is finitely generated. Since R is noetherian,
the algebra EndR(Tp) then is finitely generated as R-module. Thus End(T )
becomes a unitary subalgebra of

∏
p∈Ob(D) EndR(Tp). Since V (D) is finite and

R is noetherian,

End(T ) ⊂
∏

p∈Ob(D)

EndR(Tp)

is finitely generated as R-module.
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Lemma 6.2.2. Let D be a finite diagram and T : D → R−Mod a representa-
tion. Then:

1. Let S be a flat R-algebra. Then:

EndS(TS) = EndR(T )⊗ S

2. Let F : D′ → D be morphism of diagrams and T ′ = T ◦ F the induced
representation. Then F induces a canonical R-algebra homomorphism

F ∗ : End(T )→ End(T ′) .

Proof. The algebra End(T ) is defined as a limit, i.e., a kernel

0→ End(T )→
∏

p∈V (D)

EndR(Tp)
φ−→

∏

m∈D(p,q)

HomR(Tp, Tq)

with φ(p)(m) = eq ◦Tm−Tm ◦ ep. As S is flat over R, this remains exact after
tensoring with S. As the R-module Tp is finitely presented and S flat, we have

EndR(Tp)⊗ S = EndS(TSp) .

Hence we get

0→ End(T |F )⊗ S →
∏

p∈V (D)

EndS(TS(p))
φ−→

∏

m∈D(p,q)

HomS(TS(p), TS(q)) .

This is the defining sequence for End(TS).

The morphism of diagrams F : D′ → D induces a homomorphism
∏

p∈V (D)

EndR(Tp)→
∏

p′∈V (D′)

EndR(T ′p′),

by mapping e = (ep)p to F ∗(e) with (F ∗(e))p′ = ef(p′) in EndR(T ′p′) =
EndR(Tf(p′)). It is compatible with the induced homomorphism

∏

m∈D(p,q)

HomR(Tp, Tq)→
∏

m′∈D′(p′,q′)
HomR(T ′p′, T ′q′).

Hence it induces a homomorphism on the kernels.

Proposition 6.2.3. Let R be unitary commutative noetherian ring, D a finite
diagram and T : D −→ R−Mod be a representation. For any p ∈ D the object
Tp is a natural left End(T )-module. This induces a representation

T̃ : D −→ End(T )−Mod,

such that T factorises via

D
T̃−→ C(D,T )

fT−→ R−Mod.
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Proof. For all p ∈ D the projection

pr : End(T )→ EndR(Tp)

induces a well-defined action of End(T ) on Tp making Tp into a left End(T )-
module. To check that T̃ is a representation of left End(T )-modules, we need
Tm ∈ HomR(Tp, Tq) to be End(T )-linear for all p, q ∈ D,m ∈ D(p, q). This
corresponds directly to the commutativity of the diagram in Remark 6.1.9.

Now let D be general. We study the system of finite subdiagrams F ⊂ D.
Recall that subdiagrams are full, i.e., they have the same edges.

Corollary 6.2.4. The finite subdiagrams of D induce a directed system of
abelian categories

(
C(D,T |F )

)
F⊂Dfinite

with exact, faithful R-linear functors as
transition maps.

Proof. The transition functors are induced from the inclusion via Lemma 6.2.2.

Recall that we have defined C(D,T ) as 2-colimit of this system, see Defini-
tion 6.1.10.

Proposition 6.2.5. The 2-colimit C(D,T ) exists. It provides an R-linear
abelian category such that the composition of the induced representation with
the forgetful functor

D
T̃−→ C(D,T )

fT−−→ R−Mod
p 7→ Tp 7→ Tp.

yields a factorization of T . The functor fT is R-linear, faithful and exact.

Proof. It is a straightforward calculation that the limit category inherits all
structures of an R-linear abelian category. It has well-defined (co)products and
(co)kernels because the transition functors are exact. It has a well-defined R-
linear structure as all transition functors are R-linear. Finally, one shows that
every kernel resp. cokernel is a monomorphism resp. epimorphism using the
fact that all transition functors are faithful and exact.

So for every p ∈ D the R-module Tp becomes an End(T |F )-module for all finite
F ⊂ D with p ∈ F . Thus it represents an object in C(D,T ). This induces a
representation

D
T̃−→ C(D,T )

p 7→ Tp.

The forgetful functor is exact, faithful and R-linear. Composition with the
forgetful functor fT obviously yields the initial diagram T .

We now consider functoriality in D.
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Lemma 6.2.6. Let D1, D2 be diagrams and G : D1 → D2 a map of diagrams.
Let further T : D2 → R−Mod be a representation and

D2
T̃−→ C(D2, T )

fT−−→ R−Mod

the factorization of T through the diagram category C(D2, T ) as constructed in
Proposition 6.2.5. Let

D1
T̃◦G−−−→ C(D1, T ◦G)

fT◦G−−−→ R−Mod

be the factorization of T ◦G.

Then there exists a faithful R-linear, exact functor G, such that the following
diagram commutes.

D1 D2

C(D1, T ◦G) C(D2, T )

R−Mod

G

T̃ ◦G T̃

fT◦G fT

G

Proof. Let D1, D2 be finite diagrams first. Let T1 = T ◦ G|D1
and T2 = T |D2

.
The homomorphism

G∗ : End(T2)→ End(T1)

of Lemma 6.2.2 induces by restriction of scalars a functor on diagram categories
as required.

Let now D1 be finite and D2 arbitrary. Let E2 be finite full subdiagram of
D2 containing G(D1). We apply the finite case to G : D1 → E2 and obtain a
functor

C(D1, T1)→ C(E2, T2)

which we compose with the canonical functor C(E2, T2)→ C(D2, T2). By func-
toriality, it is independent of the choice of E2.

Let now D1 and D2 be arbitrary. For every finite subdiagram E1 ⊂ E1 we have
constructed

C(E1, T1)→ C(D2, T2) .

They are compatible and hence define a functor on the limit.

Isomorphic representations have equivalent diagram categories. More precisely:
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Lemma 6.2.7. Let T1, T2 : D → R−Mod be representations and φ : T1 → T2

an isomorphism of representations. Then φ induces an equivalence of categories
Φ : C(D,T1)→ C(D,T2) together with an isomorphism of representations

φ̃ : Φ ◦ T̃1 → T̃2

such that fT2
◦ φ̃ = φ.

Proof. We only sketch the argument which is analogous to the proof of Lemma 6.2.6.

It suffices to consider the case D = F finite. The functor

Φ : End(T1)−Mod→ End(T2)−Mod

is the extension of scalars for the R-algebra isomorphism End(T1) → End(T2)
induced by conjugating by φ.

6.3 The diagram category of an abelian category

In this section we give the proof of Theorem 6.1.19: the diagram category of the
diagram category of an abelian category with respect to a representation given
by an exact faithful functor is the abelian category itself.

We fix a commutative noetherian ring R with unit and an R-linear abelian cate-
gory A. By R-algebra we mean a unital R-algebra, not necessarily commutative.

6.3.1 A calculus of tensors

We start with some general constructions of functors. We fix a unital R-algebra
E, finitely generated as R-module, not necessarily commutative. The most
important case is E = R, but this is not enough for our application.

In the simpler case where R is a field, the constructions in this sections can
already be found in [DMOS].

Definition 6.3.1. Let E be an R-algebra which is finitely generated as R-
module. We denote E−Mod the category of finitely generated left E-modules.

The algebra E and the objects of E−Mod are noetherian because R is.

Definition 6.3.2. Let A be an R-linear abelian category and p be an object of
A. Let E be a not necessarily commutative R algebra and

Eop
f−→ EndA(p)

be a morphism of R-algebras. We say that p is a right E-module in A.
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Example 6.3.3. Let A be the category of left R′-modules for some R-algebra
R′. Then a right E-module in A is the same thing as an (R′, E)-bimodule, i.e.,
a left R′-module with the structure of a right E-module.

Lemma 6.3.4. Let A be an R-linear abelian category and p be an object of A.
Let E be a not necessarily commutative R-algebra and p a right E-module in A.
Then

HomA(p, ) : A → R−Mod

can naturally be viewed as a functor to E−Mod.

Proof. For every q ∈ A, the algebra E operates on HomA(p, q) via functoriality.

Proposition 6.3.5. Let A be an R-linear abelian category and p be an object
of A. Let E be a not necessarily commutative R algebra and p a right E-module
in A. Then the functor

HomA(p, ) : A −→ E−Mod

has an R-linear left adjoint

p⊗E : E−Mod −→ A.

It is right exact. It satisfies
p⊗E E = p,

and on endomorphisms of E we have (using EndE(E) ∼= Eop)

p⊗E : EndE(E) −→ EndA(p)
a 7−→ f(a).

Proof. Right exactness of p⊗E follows from the universal property. For every
M ∈ E−Mod, the value of p ⊗E M is uniquely determined by the universal
property. In the case of M = E, it is satisfied by p itself because we have for
all q ∈ A

HomA(p, q) = HomE(E,HomA(p, q)).

This identification also implies the formula on endomorphisms of M = E.

By compatibility with direct sums, this implies that p ⊗E En =
⊕n

i=1 p for

free E-modules. For the same reason, morphisms Em
(aij)ij−−−−→ En between free

E-modules must be mapped to
⊕m

i=1 p
f(aij)ij−−−−−→⊕n

i=1 p.

Let M be a finitely presented left E-module. We fix a finite presentation

Em1
(aij)ij−−−−→ Em0

πa�M → 0.

Since p⊗E preserves cokernels (if it exists), we need to define

p⊗E M := Coker(pm1
Ã:=f(aij)ij−−−−−−−→ pm0).
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We check that it satisfies the universal property. Indeed, for all q ∈ A, we have
a commutative diagram

HomA(p⊗ Em1 , q)

∼=
��

HomA(p⊗ Em0 , q)oo

∼=
��

HomA(p⊗M, q)oo

��

0oo

HomE(Em1 ,HomA(p, q)) HomE(Em0 ,HomA(p, q))oo HomE(M,HomA(p, q))oo 0oo

Hence the dashed arrow exists and is an isomorphism.

The universal property implies that p ⊗E M is independent of the choice of
presentation and functorial. We can also make this explicit. For a morphism
between arbitrary modules ϕ : M → N we choose lifts

Em1 Em0 M 0

En1 En0 N 0.

A πA

B πB

ϕ1 ϕ0 ϕ

The respective diagram in A,

pm1 pm0 Coker(Ã) 0

pn1 pn0 Coker(B̃) 0.

Ã πÃ

B̃ πB̃

ϕ̃1 ϕ̃0 ∃!

induces a unique morphism p ⊗E (ϕ) : p ⊗E M → p ⊗E N that keeps the
diagram commutative. It is independent of the choice of lifts as different lifts of
projective resolutions are homotopic. This finishes the construction.

Corollary 6.3.6. Let E be an R-algebra finitely generated as R-module and A
an R-linear abelian category. Let

T : A −→ E−Mod

be an exact, R-linear functor into the category of finitely generated E-modules.
Further, let p be a right E-module A with structure given by

Eop
f−→ EndA(p)

a morphism of R-algebras. Then the composition

Eop
f−→ EndA(p)

T−→ EndE(Tp).
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induces a right action on Tp, making it into an E-bimodule. The composition

E−Mod
p⊗E−→ A T−→ E−Mod

M 7→ p⊗E M 7→ Tp⊗E M

becomes the usual tensor functor of E-modules.

Proof. It is obvious that the composition

E−Mod
p⊗E−→ A T−→ E−Mod

En 7→ p⊗E En 7→ Tp⊗E En

induces the usual tensor functor

Tp⊗E : E−Mod −→ E−Mod

on free E-modules. For arbitrary finitely generated E-modules this follows from
the fact that Tp⊗E is right exact and T is exact.

Remark 6.3.7. Let E be an R-algebra, let M be a right E-module and N be
a left E-module. We obtain the tensor product M ⊗E N by dividing out the
equivalence relation m · e ⊗ n ∼ m ⊗ e · n for all m ∈ M,n ∈ N, e ∈ E of the
tensor product M ⊗RN of R-modules. We will now see that a similar approach
holds for the abstract tensor products p⊗RM and p⊗E M in A as defined in
Proposition 6.3.5. For the easier case that R is a field, this approach has been
used in [DM].

Lemma 6.3.8. Let A be an R-linear, abelian category, E a not necessarily
commutative R-algebra which is finitely generated as R-module and p ∈ A a
right E-module in A. Let M ∈ E−Mod and E′ ∈ E−Mod be in addition a
right E-module. Then p⊗E E′ is a right E-module in A and we have

p⊗E (E′ ⊗E M) = (p⊗E E′)⊗E M.

Moreover,

(p⊗E E)⊗RM = p⊗RM.

Proof. The right E-module structure on p⊗EE′ is defined by functoriality. The
equalities are immediate from the universal property.

Proposition 6.3.9. Let A be an R-linear, abelian category. Let further E be a
unital R-algebra with finite generating family e1, . . . , em. Let p a right E-module
in A with structure given by

Eop
f−→ EndA(p).

Let M be a left E-module.



128 CHAPTER 6. NORI’S DIAGRAM CATEGORY

Then p⊗E M is isomorphic to the cokernel of the map

Σ :

m⊕

i=1

(p⊗RM) −→ p⊗RM

given by
m∑

i=1

(f(ei)⊗ idM − idp ⊗ eiidM )πi

with πi the projection to the i-summand.

More suggestively (even if not quite correct), we write

Σ : (xi ⊗ vi)mi=1 7→
m∑

i=1

(f(ei)(xi)⊗ vi − xi ⊗ (ei · vi))

for xi ∈ p and vi ∈M .

Proof. Consider the sequence

m⊕

i=1

E ⊗R E −→ E ⊗ E −→ E −→ 0

where the first map is given by

(xi ⊗ yi)mi=1 7→
m∑

i=1

xiei ⊗ yi − xi ⊗ eiyi

and the second is multiplication. We claim that it is exact. The sequence
is exact in E because E is unital. The composition of the two maps is zero,
hence the cokernel maps to E. The elements in the cokernel satisfy the relation
x̄ei ⊗ ȳ = x̄ ⊗ eiȳ for all x̄, ȳ and i = 1, . . . ,m. The ei generate E, hence
x̄e ⊗ ȳ = x̄ ⊗ eȳ for all x̄, ȳ and all e ∈ E. Hence the cokernel equals E ⊗E E
which is E via the multiplication map.

Now we tensor the sequence from the left by p and from the right by M and
obtain an exact sequence

m⊕

i=1

p⊗E (E ⊗R E)⊗E M −→ p⊗E (E ⊗R E)⊗E M −→ p⊗E E ⊗E M → 0.

Applying the computation rules of Lemma 6.3.8, we get the sequence in the
proposition.

Similarly to Proposition 6.3.5 and Corollary 6.3.6, but less general, we construct
a contravariant functor HomR(p, ) :
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Proposition 6.3.10. Let A be an R-linear abelian category, and p be an object
of A. Then the functor

HomA( , p) : A◦ −→ R−Mod

has a left adjoint
HomR( , p) : R−Mod −→ A◦.

This means that for all M ∈ R−Mod and q ∈ A, we have

HomA(q,HomR(M,p)) = HomR(M,HomA(q, p)).

It is left exact. It satisfies
HomR(R, p) = p.

If
T : A −→ R−Mod

is an exact, R-linear functor into the category of finitely generated R-modules
then the composition

R−Mod
Hom( ,p)−→ A T−→ R−Mod

M 7→ HomR(M,p) 7→ HomR(M,Tp)

is the usual Hom( , Tp)-functor in R−Mod.

Proof. The arguments are the same as in the proof of Proposition 6.3.5 and
Corollary 6.3.6.

Remark 6.3.11. LetA be anR-linear, abelian category. The functors HomR( , p)
as defined in Proposition 6.3.10 and p ⊗R as defined in Proposition 6.3.6 are
also functorial in p, i.e., we have even functors

HomR( , ) : (R−Mod)◦ ×A −→ A

and
⊗R : A×R−Mod −→ A.

We will denote the image of a morphism p
α−→ q under the functor HomR(M, )

by
HomR(M,p)

α◦−→ HomR(M, q)

This notation α◦ is natural since by composition

A Hom(M, )−→ A T−→ R−Mod
p 7→ HomR(M,p) 7→ HomR(M,Tp)

T (α◦) becomes the usual left action of Tα on HomR(M,Tp).
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Proof. This follows from the universal property.

We will now check that the above functors have very similar properties to usual
tensor and Hom-functors in R−Mod.

Lemma 6.3.12. Let A be an R-linear, abelian category and M a finitely gen-
erated R-module. Then the functor HomR(M, ) is right-adjoint to the functor
⊗RM .

If

T : A −→ R−Mod

is an R-linear, exact functor into finitely generated R-modules, the composed
functors T ◦HomR(M, ) and T ◦( ⊗RM) yield the usual hom-tensor adjunction
in R−Mod.

Proof. The assertion follows from the universal property and the identification
T ◦ HomR(M, ) = HomR(M,T ) in Proposition 6.3.10 and T ◦ ⊗R M =
(T )⊗RM in Proposition 6.3.6.

6.3.2 Construction of the equivalence

Definition 6.3.13. Let A be an abelian category and S a not necessarily
abelian subcategory. With 〈S〉 we denote the smallest full abelian subcate-
gory of A containing S, i.e., the intersection of all full subcategories of A that
are abelian, contain S, and for which the inclusion functor is exact.

Lemma 6.3.14. Let A = 〈F 〉 for a finite set of objects. Let T : 〈F 〉 → R−Mod
be a faithful exact functor. Then the inclusion F → 〈F 〉 induces an equivalence

End(T |F )−Mod −→ C(〈F 〉, T ).

Proof. Let E = End(T |F ). Its elements are tuples of endomorphisms of Tp for
p ∈ F commuting with all morphisms p→ q in F .

We have to show that E = End(T ). In other words, that any element of E
defines a unique endomorphism of Tq for all objects q of 〈F 〉 and commutes
with all morphisms in 〈F 〉.
Any object q is a subquotient of a finite direct sum of copies of objects p ∈ F .
The operation of E on Tp with p ∈ F extends uniquely to an operation on direct
sums, kernels and cokernels of morphisms. It is also easy to see that the action
commutes with Tf for all morphisms f between these objects. This means that
it extends to all objects 〈F 〉, compatible with all morphisms.

We first concentrate on the caseA = 〈p〉. From now on, we abbreviate End(T |{p})
by E(p).
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Lemma 6.3.15. Let 〈p〉 = A be an abelian category. Let 〈p〉 T−→ R−Mod a
faithful exact R-linear functor into the category of finitely generated R-modules.
Let

〈p〉 T̃−→ E(p)−Mod
fT−→ R−Mod

be the factorization via the diagram category of T constructed in Proposition 6.2.5.
Then:

1. There exists an object X(p) ∈ Ob(〈p〉) such that

T̃ (X(p)) = E(p).

2. The object X(p) has a right E(p)-module structure in A

E(p)op → EndA(X(p))

such that the induced E(p)-module structure on E(p) is the product.

3. There is an isomorphism

τ : X(p)⊗E(p) T̃ p→ p

which is natural in f ∈ EndA(p), i.e.,

p p

X(p)⊗E(p) T̃ p X(p)⊗E(p) T̃ p

f

id⊗ T̃ f

τ τ

An easier construction of X(p) in the field case can be found in [DM], the
construction for R being a noetherian ring is due to Nori [N].

Proof. We consider the object HomR(Tp, p) ∈ A. Via the contravariant functor

R−Mod
Hom( ,p)−→ A

Tp 7→ HomR(Tp, p)

of Proposition 6.3.10 it is a right EndR(Tp)-module in A which, after apply-
ing T just becomes the usual right End(Tp)-module HomR(Tp, Tp). For each
ϕ ∈ End(Tp), k we will write ◦ϕ for the action on Hom(Tp, p) as well. By
Lemma 6.3.12 the functors HomR(Tp, ) and ⊗R Tp are adjoint, so we obtain
an evaluation map

ẽv : HomR(Tp, p)⊗R Tp −→ p
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that becomes the usual evaluation in R−Mod after applying T . Our aim is now
to define X(p) as a suitable subobject of HomR(Tp, p) ∈ A. The structures on
X(p) will be induced from the structures on HomR(Tp, p).

Let M ∈ R−Mod. We consider the functor

A HomR(M, )−→ A
p 7→ HomR(M,p)

of Remark 6.3.11. The endomorphism ring EndA(p)) ⊂ EndR(Tp) is finitely
generated as R-module, since T is faithful and R is noetherian. Let α1, ..., αn
be a generating family. Since

E(p) = {ϕ ∈ End(Tp)|Tα ◦ ϕ = ϕ ◦ Tα ∀α : p→ p},

we can write E(p) as the kernel of

Hom(Tp, Tp) −→ ⊕n
i=1 Hom(Tp, Tp)

u 7→ u ◦ Tαi − Tαi ◦ u

By the exactness of T , the kernel X(p) of

Hom(Tp, p) −→ ⊕n
i=1 Hom(Tp, p)

u 7→ u ◦ Tαi − αi ◦ u

is a preimage of E(p) under T in A.

By construction, the right EndR(Tp)-module structure on HomR(Tp, p) restricts
to a right E(p)-module structure on X(p) whose image under T̃ yields the
natural E(p) right-module structure on E(p).

Now consider the evaluation map

ẽv : HomR(Tp, p)⊗R Tp −→ p

mentioned at the beginning of the proof. By Proposition 6.3.9 we know that
the cokernel of the map Σ defined there is isomorphic to X(p) ⊗E(p) T̃ p. The
diagram

⊕k
i=1(X(p)⊗R Tp) X(p)⊗R Tp HomR(Tp, p)⊗R Tp p

X(p)⊗E(p) T̃ p

Σ incl⊗ id ẽv

Coker(Σ)

in A maps via T to the diagram
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⊕k
i=1(E(p)⊗R Tp) E(p)⊗R Tp HomR(Tp, Tp)⊗R Tp Tp

E(p)⊗E(p) T̃ p

Σ incl⊗ id ev

Coker(Σ)

in R−Mod, where the composition of the horizontal maps becomes zero. Since
T is faithful, the respective horizontal maps in A are zero as well and induce a
map

τ : X(p)⊗E(p) Tp −→ p

that keeps the diagram commutative. By definition of Σ in Proposition 6.3.9,
the respective map

T̃ τ : E(p)⊗E(p) T̃ p −→ T̃ p

becomes the natural evaluation isomorphism of E-modules. Since T̃ is faithful,
τ is an isomorphism as well.

Naturality in f holds since T̃ is faithful and

T̃ p T̃ p

E(p)⊗E(p) T̃ p E(p)⊗E(p) T̃ p

T̃ f

id⊗ T̃ f

T̃ τ T̃ τ

commutes in E(p)−Mod.

Proposition 6.3.16. Let 〈p〉 = A be an R-linear, abelian category and

A T−→ R−Mod

be as in Theorem 6.1.19. Let

A T̃−→ C(A, T )
fT−→ R−Mod

be the factorization of T via its diagram category. Then T̃ is an equivalence of
categories with inverse given by X(p) ⊗E(p) with X(p) the object constructed
in Lemma 6.3.15.

Proof. We have A = 〈p〉, thus C(A, T ) = E(p)−Mod. Consider the object X(p)
of Lemma 6.3.15. It is a right E(p)-module in A, in other words

f :
(
E(p)

)op −→ EndA(X(p))
ϕ 7−→ ◦ϕ
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We apply Corollary 6.3.6 to E = E(p), the object X(p), the above f and the
functor

T̃ : 〈p〉 −→ E(p)−Mod .

It yields the functor

X(p)⊗E(p) : E(p)−Mod −→ 〈p〉

such that the composition

E(p)−Mod
X(p)⊗E(p)−→ 〈p〉 T̃−→ E(p)−Mod

M 7−→ X(p)⊗E(p) M 7→ T̃ (X(p))⊗E(p) M = E(p)⊗E(p) M

becomes the usual tensor product of E(p)-modules, and therefore yields the
identity functor.

We want to check that X(p)⊗E(p) is a left-inverse functor of T̃ as well. Thus
we need to find a natural isomorphism τ , i.e., for all objects p1, p2 ∈ A we
need isomorphisms τp1

, τp2
such that for morphisms f : p1 → p2 the following

diagram commutes:

X(p)⊗E(p) T̃ p1 X(p)⊗E(p) T̃ p2

p1 p2

id⊗ T̃ f

f

τp1 τp2

Since the functors T and fT are faithful and exact, and we have T = ft ◦ T̃ ,
we know that T̃ is faithful and exact as well. We have already shown that
T̃ ◦X(p)⊗E(p) is the identity functor. So X(p)⊗E(p) is faithful exact as well.
Since A is generated by p, it suffices to find a natural isomorphism for p and its
endomorphisms. This is provided by the isomorphism τ of Lemma 6.3.15.

Proof of Theorem 6.1.19. If A is generated by one object p, then the functor T̃
is an equivalence of categories by Proposition 6.3.16. It remains to reduce to
this case.

The diagram category C(A, T ) arises as a direct limit, hence we have

2−colimF⊂Ob(A)End(T |F )−Mod

and in the same way we have

A = 2−colimF⊂Ob(A)〈F 〉
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with F ranging over the system of full subcategories of A that contain only a
finite number of objects. Moreover, by Lemma 6.3.14, we have End(T |F ) =
End(T |〈F 〉). Hence it suffices to check equivalence of categories

〈F 〉 T̃ |〈F〉−→ End(T |F )−Mod

for all abelian categories that are generated by a finite number of objects.

We now claim that 〈F 〉 ∼= 〈
⊕

p∈F p〉 are equivalent: indeed, since any endomor-
phism of

⊕
p∈F p is of the form (apq)p,q∈F with apq : p → q, and since F has

all finite direct sums, we know that 〈⊕p∈F p〉 is a full subcategory of 〈F 〉. On
the other hand, for any q, q′ ∈ F the inclusion q ↪→⊕

p∈F p is a kernel and the
projection

⊕
p∈F p � q′ is a cokernel, so for any set of morphisms (aqq′)q,q′∈F ,

the morphism aqq′ : q → q′ by composition

q ↪→
⊕

p∈F

(app′ )p,p′∈F−−−−−−−−→
⊕

p′∈F
p′ � q′

is contained in 〈⊕p∈F p〉. Thus 〈F 〉 is a full subcategory of 〈⊕p∈F p〉.
Similarly one sees that End(T |{p})−Mod is equivalent to End(T |F )−Mod. So
we can even assume that our abelian category is generated by just one object
q =

⊕
p∈F p.

6.3.3 Examples and applications

We work out a couple of explicit examples in order to demonstrate the strength
of Theorem 6.1.19. We also use the arguments of the proof to deduce an ad-
ditional property of the diagram property as a first step towards its universal
property.

Throughout let R be a noetherian unital ring.

Example 6.3.17. Let T : R−Mod → R−Mod be the identity functor viewed
as a representation. Note that R−Mod is generated by the object Rn. By
Theorem 6.1.19 and Lemma 6.3.14, we have equivalences of categories

End(T |{Rn})−Mod −→ C(R−Mod, T ) −→ R−Mod.

By definition, E = End(T |{Rn}) consists of those elements of EndR(Rn) which
commute with all elements of EndA(Rn), i.e., the center of the matrix algebra,
which is R.

This can be made more interesting by playing with the representation.

Example 6.3.18 (Morita equivalence). Let R be a noetherian commutative
unital ring, A = R−Mod. Let P be a flat finitely generated R-module and

T : R−Mod −→ R−Mod, M 7→M ⊗R P.
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It is faithful and exact, hence the assumptions of Theorem 6.1.19 are satisfied
and we get an equivalence

C(R−Mod, T ) −→ R−Mod .

Note that A = 〈R〉 and hence by Lemma 6.3.14, C(R−Mod, T ) = E−Mod with
E = EndR(T |{R}) = EndR(P ). Hence we have shown that

EndR(P )−Mod→ R−Mod

is an equivalence of categories. This is a case of Morita equivalence of categories
of modules.

Example 6.3.19. Let R be a noetherian commutative unital ring and E an
R-algebra finitely generated as an R-module. Let

T : E−Mod→ R−Mod

be the forgetful functor. The category E−Mod is generated by the module E.
Hence by Theorem 6.1.19 and Lemma 6.3.14, we have again equivalences of
categories

E′−Mod −→ C(E−Mod, T ) −→ E−Mod,

where E′ = End(T |{E}) is the subalgebra of EndR(E) of endomorphisms com-
patible with all E-morphisms E → E. Note that EndE(E) = Eop and hence E′

is the centralizer of Eop in EndR(E)

E′ = CEndR(E)(E
op) = E .

Hence in this case the functor A → C(A, T ) is the identity.

We deduce another consequence of the explicit description of C(D,T ).

Proposition 6.3.20. Let D be a diagram and T : D → R−Mod a representa-
tion. Let

D
T̃−→ C(D,T )

fT−−→ R−Mod

its factorization. Then the category C(D,T ) is generated by the image of T̃ :

C(D,T ) = 〈T̃ (D)〉 .

Proof. It suffices to consider the case when D is finite. Let X =
⊕

p∈D Tp and
E = EndR(X). Let S ⊂ E be the R-subalgebra generated by Te for e ∈ E(D)
and the projectors pp : X → T (p). Then

E = End(T ) = CE(S)

is the commutator of S in E. (The endomorphisms commuting with the projec-
tors are those respecting the decomposition. By definition, End(T ) consists of
those endomorphisms of the summands commuting with all Te.)
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By construction C(D,T ) = E−Mod. We claim that it is equal to

A := 〈{T̃ p|p ∈ D}〉 = 〈X̃〉
with X̃ =

⊕
p∈D T̃ p. The category has a faithful exact representation by

fT |A. Note that fT (X̃) = X. By Theorem 6.1.19, the category A is equiv-
alent to its diagram category C(〈X̃〉, fT ) = E′−Mod with E′ = End(fT |A).
By Lemma 6.3.14, E′ consists of elements of E commuting with all elements of
EndA(X̃). Note that

EndA(X̃) = EndE(X) = CE(E)

and hence
E′ = CE(CE(E)) = CE(CE(CE(S)) = CE(S)

because a triple commutator equals the simple commutator. We have shown
E = E′ and the two categories are equivalent.

Remark 6.3.21. This is a direct proof of Proposition 6.1.15.

6.4 Universal property of the diagram category

At the end of this section we will be able to establish the universal property of
the diagram category.

Let T : D −→ R−Mod be a diagram and

D
T̃−→ C(D,T )

fT−−→ R−Mod

the factorization of T via its diagram category. Let A be another R-linear
abelian category, F : D → A a representation, and f : A → R−Mod a faithful,
exact, R-linear functor into the categories of finitely generated R-modules such
that f ◦ F = T .

Our aim is to deduce that there exists - uniquely up to isomorphism - an R-linear
exact faithful functor

L(F ) : C(D,T )→ A,
making the following diagram commute:

D

C(D,T ) A

R−Mod

T̃

F

fT

TA

∃!L(F )
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Proposition 6.4.1. There is a functor L(F ) making the diagram commute.

Proof. We can regard A as a diagram and obtain a representation

A TA−−→ R−Mod,

that factorizes via its diagram category

A T̃A−−→ C(A, TA)
fTA−−→ R−Mod.

We obtain the following commutative diagram

D A

C(D,T ) C(A, TA)

R−Mod

T̃D

F

fT

T̃A

fTA

T TA

By functoriality of the diagram category (see Proposition 6.2.6) there exists an
R-linear faithful exact functor F such that the following diagram commutes:

D A

C(D,T ) C(A, TA)

R−Mod

T̃D

F

fT

T̃A

fTA

F

Since A is R-linear, abelian, and T is faithful, exact, R-linear, we know by
Proposition 6.1.19, that T̃A is an equivalence of categories. The functor

L(F ) : C(D,T )→ A,

is given by the composition of F with the inverse of T̃A. Since an equivalence
of R-linear categories is exact, faithful and R-linear, L(F ) is so as well, as it is
the composition of such functors.

Proposition 6.4.2. The functor L(F ) is unique up to unique isomorphism.
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Proof. Let L′ be another functor satisfying the condition in the diagram. Let C′
be the subcategory of C(D,T ) on which L′ = L(F ). We claim that the inclusion
is an equivalence of categories. Without loss of generality, we may assume D is
finite.

Note that the subcategory is full because f : A → R−Mod is faithful. It contains
all objects of the form T̃ p for p ∈ D. As the functors are additive, this implies
that they also have to agree (up to canonical isomorphism) on finite direct sums
of objects. As the functors are exact, they also have to agree on and all kernels
and cokernels. Hence C′ is the full abelian subcategory of C(D,T ) generated by
T̃ (D). By Proposition 6.3.20 this is all of C(D,T ).

Proof of Theorem 6.1.13. Let T : D → R−Mod be a representation and f :
A → R−Mod, F : D → A as in the statement. By Proposition 6.4.1 the
functor L(F ) exists. It is unique by Proposition 6.4.2. Hence C(D,T ) satisfies
the universal property of Theorem 6.1.13.

Let C be another category satisfying the universal property. By the universal
property for C(D,T ) and the representation of D in C, we get a functor Ψ :
C(D,T ) → C. By interchanging their roles, we obtain a functor Ψ′ in the
opposite direction. Their composition Ψ′ ◦Ψ satisfies the universal property for
C(D,T ) and the representation T̃ . By the uniqueness part, it is isomorphic to
the identity functor. The same argument also applies to Ψ ◦Ψ′. Hence Ψ is an
equivalence of categories.

Functoriality of C(D,T ) in D is Lemma 6.2.6.

The generalized universal property follows by a trick.

Proof of Corollary 6.1.14. Let T : D → R−Mod, f : A → R−Mod und F :
D → A be as in the corollary. Let S be a faithfully flat R-algebra and

φ : TS → (f ◦ F )S

an isomorphism of representations into S−Mod. We first show the existence of
L(F ).

Let A′ be the category with objects of the form (V1, V2, ψ) where V1 ∈ R−Mod,
V2 ∈ A and ψ : V1⊗R S → f(V2)⊗R S an isomorphism. Morphisms are defined
as pairs of morphisms in R−Mod and A such the obvious diagram commutes.
This category is abelian because S is flat over R. Kernels and cokernels are
taken componentwise. Let f ′ : A′ → R−Mod be the projection to the first
component. It is faithful and exact because S is faithfully flat over R.

The data T , F and φ define a representation F ′ : D → A′ compatible with T .
By the universal property of Theorem 6.1.13, we obtain a factorization

F ′ : D
T̃−→ C(D,T )

L(F ′)−−−−→ A′ .
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We define L(F ) as the composition of L(F ′) with the projection to the second
component. The transformation

φ̃ : (fT )S → fS ◦ L(F )

is defined onX ∈ C(D,T ) using the isomorphism ψ part of the object L(F ′)(X) ∈
A′.
Conversely, the triple (f, L(F ), φ̃) satisfies the universal property of L(F ′). By
the uniqueness part of the universal property, this means that it agrees with
L(F ′). This makes L(F ) unique.

6.5 The diagram category as a category of co-
modules

Under more restrictive assumptions on R and T , we can give a description of
the diagram category of comodules, see Theorem 6.1.12.

6.5.1 Preliminary discussion

In [DM] Deligne and Milne note that if R is a field, E a finite-dimensional R-
algebra, and V an E-module that is finite-dimensional as R-vector space then
V has a natural structure as comodule over the coalgebra E∨ := HomR(E,R).
For an algebra E finitely generated as an R-module over an arbitrary noetherian
ring R, the R-dual E∨ does not even necessarily carry a natural structure of an
R-coalgebra. The problem is that the dual map to the algebra multiplication

E∨
µ∗−→ (E ⊗R E)∨

does not generally define a comultiplication because the canonical map

ρ : E∨ ⊗R E∨ → Hom(E,E∨) ∼= (E ⊗R E)∨

fails to be an isomorphism in general. In this chapter we will see that this
isomorphism holds true for the R-algebras End(TF ) if we assume that R is a
Dedekind domain or field. We will then show that by

C(D,T ) = 2−colimF⊂D(End(TF )−Mod)

= 2−colimF⊂D(End(TF )∨−Comod) = (2−colimF⊂DEnd(TF )∨)−Comod

we can view the diagram category C(D,T ) as the category of finitely generated
comodules over the coalgebra 2−colimF⊂DEnd(TF )∨.

Remark 6.5.1. Note that the category of comodules over an arbitrary coal-
gebra C is not abelian in general, since the tensor product X ⊗R − is right
exact, but in general not left exact. If C is flat as R-algebra (e.g. free), then
the category of C-comodules is abelian [MM, pg. 219].
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6.5.2 Coalgebras and comodules

Let R be a noetherian ring with unit.

Proposition 6.5.2. Let E be an R-algebra which is finitely generated as R-
module. Then the canonical map

ρ : E∨ ⊗RM → Hom(E,M)
ϕ⊗m 7→ (n 7→ ϕ(n) ·m)

becomes an isomorphism for all R-modules M if and only if E is projective.

Proof. [Str, Proposition 5.2]

Lemma 6.5.3. Let E be an R-algebra which is finitely generated and projective
as an R-module.

1. The R-dual module E∨ carries a natural structure of a counital coalgebra.

2. Any left E-module that is finitely generated as R-module carries a natural
structure as left E∨-comodule.

3. We obtain an equivalence of categories between the category of finitely
generated left E-modules and the category of finitely generated left E∨-
comodules.

Proof. By the repeated application of Proposition 6.5.2, this becomes a straight-
forward calculation. We will sketch the main steps of the proof.

1. If we dualize the associativity constraint of E we obtain a commutative
diagram of the form

(E ⊗R E ⊗R E)∨ (E ⊗R E)∨

(E ⊗R E)∨ E∨.

(µ⊗ id)∗

(id⊗ µ)∗

µ∗

µ∗

By the use of the isomorphism in Propostion 6.5.2 and Hom-Tensor ad-
junction we obtain the commutative diagram

E∨ ⊗R E∨ ⊗R E∨ E∨ ⊗R E∨

E∨ ⊗R E∨ E∨,

µ∗ ⊗ id∗

id∗ ⊗ µ∗

µ∗

µ∗
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which induces a cocommutative comultiplication on E∨. Similarly we ob-
tain the counit diagram, so E∨ naturally gets a coalgebra structure.

2. For an E-module M we analogously dualize the respective diagram

M E ⊗RM

E ⊗RM E ⊗R E ⊗RM

m

m id⊗m

µ⊗ id

and use Proposition 6.5.2 and Hom-Tensor adjunction to see that the E-
multiplication induces a well-defined E∨-comultiplication

M E∨ ⊗RM

E∨ ⊗RM E∨ ⊗R E∨ ⊗RM

m̂

m̂

µ∗ ⊗ id

id⊗ m̂

on M .

3. For any homomorphism f : M −→ N of left E-modules, the commutative
diagram

M N

E ⊗RM E ⊗R N

f

id⊗ f

µ µ

induces a commutative diagram

E∨ ⊗RM E∨ ⊗R N,

M N

id⊗ f

f

µ̂ µ̂

thus f is a homomorphism of left E∨-comodules.
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4. Conversely, we can dualize the E∨-comodule structure to obtain a (E∨)∨ =
E-module structure. The two constructions are inverse to each other.

Definition 6.5.4. Let A be a coalgebra over R. Then we denote by A−Comod
the category of comodules over A that are finitely generated as a R-modules.

Recall that R−Proj denotes the category of finitely generated projective R-
modules.

Corollary 6.5.5. Let R be a field or Dedekind domain, D a diagram and

T : D −→ R−Proj

a representation. Set A(D,T ) := lim−→F⊂D finite
End(TF )∨. Then A(D,T ) has

the structure of a coalgebra and the diagram category of T is the abelian category
A(D,T )−Comod.

Proof. For any finite subset F ⊂ D the algebra End(TF ) is a submodule of
the finitely generated projective R-module

∏
p∈F End(Tp). Since R is a field or

Dedekind domain, for a finitely generated module to be projective is equivalent
to being torsion free. Hence the submodule End(TF ) is also finitely generated
and torsion-free, or equivalently, projective. By the previous lemma, End(TF )∨

is an R-coalgebra and End(TF )−Mod ∼= End(TF )∨−Comod. From now on, we
denote End(TF )∨ with A(F, T ). Taking limits over the direct system of finite
subdiagrams as in Definition 6.1.10, we obtain

C(D,T ) := 2−colimF⊂D finiteEnd(TF )−Mod

= 2−colimF⊂D finiteA(F, T )−Comod.

Since the category of coalgebras is cocomplete, A(D,T ) = lim−→F⊂D A(F, T ) is a

coalgebra as well.

We now need to show that the categories 2−colimF⊂D finite(A(F, T )−Comod)
andA(D,T )−Comod are equivalent. For any finite F the canonical mapA(F, T ) −→
A(D,T ) via restriction of scalars induces a functor

φF : A(F, T )−Comod −→ A(D,T )−Comod

and therefore by the universal property a unique functor

u : lim−→A(F, T )−Comod −→ A(D,T )−Comod.

such that for all finite F ′, F ′′ ⊂ D with F ′ ⊂ F ′′ and the canonical functors

ψF : A(F ′, T )−Comod −→ lim−→
F⊂D

A(F, T )−Comod

the following diagram commutes:



144 CHAPTER 6. NORI’S DIAGRAM CATEGORY

A(F ′, T )−Comod A(F ′′, T )−Comod

lim−→F⊂D(A(F, T )−Comod)

A(D,T )−Comod

φF ′F ′′

ψF ′

φF ′

ψF ′′

φF ′′

∃!u

We construct an inverse map to u: Let M be an A(D,T )-comodule and

m : M →M ⊗R A(D,T )

be the comultiplication. Let M = 〈x1, .., xn〉R. Then m(xi) =
∑n
k=1 aki ⊗ xk

for certain aki ∈ A(D,T ). Every aki is already contained in an A(F, T ) for
sufficiently large F . By taking the union of these finitely many F , we can
assume that all aki are contained in one coalgebra A(F, T ). Since x1, .., xn
generate M as R-module, m defines a comultiplication

m̃ : M →M ⊗R A(F, T ).

So M is an A(F, T )-comodule in a natural way, thus via ψF an object of
2−colimI(Ai−Comod).

We also need to understand the behavior of A(D,T ) under base-change.

Lemma 6.5.6 (Base change). Let R be a field or a Dedekind domain and
T : D → R−Proj a representation. Let R→ S be flat. Then

A(D,TS) = A(D,T )⊗R S .

Proof. Let F ⊂ D be a finite subdiagram. Recall that

A(F, T ) = HomR(End(T |F ), R) .

Both R and EndR(T |F ) are projective because R is a field or a Dedekind domain.
Hence by Lemma 6.2.2

HomR(EndR(T |F ), R)⊗S ∼= HomS(EndR(T |F )⊗S, S) ∼= HomS(EndS((TS)|F ), S).

This is nothing but A(F, TS). Tensor products commute with direct limits,
hence the statement for A(D,T ) follows immediately.



Chapter 7

More on diagrams

We study additional structures on a diagram and a representation that lead to
the construction of a tensor product on the diagram category. The aim is then
to turn it into a rigid tensor category with a faithful exact functor to a category
of R-modules. The chapter is formal, but the assumptions are tailored to the
application to Nori motives.

A particularly puzzling and subtle question is how the question of graded com-
mutativity of the Künneth formula is dealt with.

We continue to work in the setting of Chapter 6.

7.1 Multiplicative structure

Let R a fixed noetherian unital commutative ring.

Recall that R−Proj is the category of projective R-modules of finite type over
R. We only consider representations T : D −→ R−Proj where D is a diagram
with identities, see Definition 6.1.1.

Definition 7.1.1. Let D1, D2 be diagrams with identities. Then D1 × D2 is
defined as the diagram with vertices of the form (v, w) for v a vertex of D1, w
a vertex of D2, and with edges of the form (α, id) and (id, β) for α an edge of
D1 and β an edge of D2 and with id = (id, id).

Remark 7.1.2. Levine in [L1] p.466 seems to define D1 × D2 by taking the
product of the graphs in the ordinary sense. He claims (in the notation of loc.
cit.) a map of diagrams

H∗Sch′ ×H∗Sch′ → H∗Sch′.

It is not clear to us how this is defined on general pairs of edges. If α, β are
edges corresponding to boundary maps and hence lower the degree by 1, then

145
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we would expect α × β to lower the degree by 2. However, there are no such
edges in H∗Sch′.

Our restricted version of products of diagrams is enough to get the implications
we want.

In order to control signs in the Künneth formula, we need to work in a graded
commutative setting.

Definition 7.1.3. A graded diagram is a diagram D with identities together
with a map

| · | : {vertices of D } → Z/2Z .

For an edge γ : v → v′ we put |γ| = |v| − |v′|. If D is a graded diagram, D ×D
is equipped with the grading |(v, w)| = |v|+ |w|.
A commutative product structure on a graded D is a map of graded diagrams

× : D ×D → D

together with choices of edges

αv,w : v × w → w × v
βv,w,u : v × (w × u)→ (v × w)× u
β′v,w,u : (v × w)× u→ v × (w × u)

for all vertices v, w, h of D.

A graded multiplicative representation T of a graded diagram with commutative
product structure is a representation of T in R−Proj together with a choice of
isomorphism

τ(v,w) : T (v × w)→ T (v)⊗ T (w)

such that:

1. The composition

T (v)⊗ T (w)
τ−1
(v,w)−−−−→ T (v × w)

T (αv,w)−−−−−→ T (w × v)
τ(w,v)−−−−→ T (w)⊗ T (v)

is (−1)|v||w| times the natural map of R-modules.

2. If γ : v → v′ is an edge, then the diagram

T (v × w)
T (γ×id)−−−−−→ T (v′ × w)

τ

y
yτ

T (v)⊗ T (w)
(−1)|γ||w|T (γ)⊗id−−−−−−−−−−−−→ T (v′)⊗ T (w)

commutes.
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3. If γ : v → v′ is an edge, then the diagram

T (w × v)
T (id×γ)−−−−−→ T (w × v′)

τ

y
yτ

T (w)⊗ T (v)
id⊗T (γ)−−−−−→ T (w)⊗ T (v′)

commutes.

4. The diagram

T (v × (w × u))
T (βv,w,u)−−−−−−→ T ((v × w)× u)

y
y

T (v)⊗ T (w × u) T (v × w)⊗ T (u)
y

y

T (v)⊗ (T (w)⊗ T (u)) −−−−→ (T (v)⊗ T (w))⊗ T (u)

commutes under the standard identification

T (v)⊗ (T (w)⊗ T (u)) ∼= (T (v)⊗ T (w))⊗ T (u).

The maps T (βv,w,u) and T (β′v,w,u) are inverse to each other.

A unit for a graded diagram with commutative product structure D is a vertex
1 of degree 0 together with a choice of edges

uv : v → 1× v

for all vertices of v. A graded multiplicative representation is unital if T (uv) is
an isomorphism for all vertices v.

Remark 7.1.4. 1. In particular, T (αv,w) and T (βv,w,u) are isomorphisms.
If v = w then T (αv,v) = (−1)|v|. If 1 is a unit, then T (1) satisfies
T (1) ∼= T (1)⊗ T (1). Hence it is a free R-module of rank 1.

2. Note that the first and the second factor are not treated symmetrically.
There is a choice of sign convention involved. The convention above is
chosen to be conform with the one of Section 1.3. Eventually, we want to
view relative singular cohomology as graded multiplicative representation
in the above sense.

3. For the purposes immediately at hand, the choice of β′v,w,u is not needed.
However, it is needed later on in the definition of the product structure
on the localized diagram, see Remark 7.2.2.
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Let T : D −→ R−Proj be a representation of a diagram with identities. Recall
that we defined its diagram category C(D,T ) (see Definition 6.1.10). It R is a
field or a Dedekind domain, then C(D,T ) can be described as the category of
A(D,T )-comodules of finite type over R for the coalgebra A(D,T ) defined in
Theorem 6.1.12.

Proposition 7.1.5. Let D be a graded diagram with commutative product
structure with unit and T a unital graded multiplicative representation of D
in R−Proj

T : D −→ R−Proj.

1. Then C(D,T ) carries the structure of a commutative and associative ten-
sor category with unit and T : C(D,T ) → R−Mod is a tensor functor.
On the generators T̃ (v) of C(D,T ) the associativity constraint is induced
by the edges βv,w,u, the commutativity constraint is induced by the edges
αv,w, the unit object is 1̃ with unital maps induced from the edges uv.

2. If, in addition, R is a field or a Dedekind domain, the coalgebra A(D,T )
carries a natural structure of commutative bialgebra (with unit and counit).

The unit object is going to be denoted 1.

Proof. We consider finite diagrams F and F ′ such that

{v × w|v, w ∈ F} ⊂ F ′ .

We are going to define natural maps

µ∗F : End(T |F ′)→ End(T |F )⊗ End(T |F ).

Assume this for a moment. Let X,Y ∈ C(D,T ). We want to define X ⊗ Y in
C(D,T ) = 2−colimFC(F, T ). Let F such that X,Y ∈ C(F, T ). This means that
X and Y are finitely generated R-modules with an action of End(T |F ). We
equip the R-module X ⊗ Y with a structure of End(T |F ′)-module. It is given
by

End(T |F ′)⊗X ⊗ Y → End(T |F )⊗ End(T |F )⊗X ⊗ Y → X ⊗ Y

where we have used the comultiplication map µ∗F and the module structures of
X and Y . This will be independent of the choice of F and F ′. Properties of ⊗
on C(D,T ) follow from properties of µ∗F .

If R is a field or a Dedekind domain, let

µF : A(F, T )⊗A(F, T )→ A(F ′, T )

be dual to µ∗F . Passing to the direct limit defines a multiplication µ on A(D,T ).
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We now turn to the construction of µ∗F . Let a ∈ End(T |F ′), i.e., a compatible
system of endomorphisms av ∈ End(T (v)) for v ∈ F ′. We describe its image
µ∗F (a). Let (v, w) ∈ F × F . The isomorphism

τ : T (v × w)→ T (v)⊗ T (w)

induces an isomorphism

End(T (v × w)) ∼= End(T (v))⊗ End(T (w)).

We define the (v, w)-component of µ∗(a) by the image of av×w under this iso-
morphism.

In order to show that this is a well-defined element of End(T |F ) ⊗ End(T |F ),
we need to check that diagrams of the form

T (v)⊗ T (w)
µ∗(a)(v,w)//

T (α)⊗T (β)

��

T (v)⊗ T (w)

T (α)⊗T (β)

��
T (v′)⊗ T (w′)

µ∗(a)(v′,w′)

// T (v′)⊗ T (w′)

commute for all edges α : v → v′, β : w → w′ in F . We factor

T (α)⊗ T (β) = (T (id)⊗ T (β)) ◦ (T (α) ◦ T (id))

and check the factors separately.

Consider the diagram

T (v × w)
av×w

//

T (α×id)

��

τ

''

T (v × w)

τ

ww

T (α×id)

��

T (v)⊗ T (w)
µ∗(a)(v,w)//

T (α)⊗T (id)

��

T (v)⊗ T (w)

T (α)⊗T (id)

��
T (v′)⊗ T (w)

µ∗(a)(v′,w)

// T (v′)⊗ T (w)

T (v′ × w)
av′×w //

τ

77

T (v′ × w)

τ

gg

The outer square commutes because a is a diagram endomorphism. Top and
bottom commute by definition of µ∗(a). Left and right commute by property
(3) up to the same sign (−1)|w||α|. Hence the middle square commutes without
signs. The analogous diagram for id× β commutes on the nose. Hence µ∗(a) is
well-defined.
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We now want to compare the (v, w)-component to the (w, v)-component. Recall
that there is a distinguished edge αv,w : v × w → w × v. Consider the diagram

T (v)⊗ T (w)
µ∗(a)(v,w)//

��

T (v)⊗ T (w)

��

T (v × w)

τ

77

T (αv,w)

��

av×w // T (v × w)

τ

gg

T (αv,w)

��
T (w × v)

τ
''

aw×v // T (w × v)

τ
ww

T (w)⊗ T (v)
µ∗(a)(w,v)

// T (w)⊗ T (v)

By the construction of µ∗(a)(v,w) (resp. µ∗(a)(w,v)), the upper (resp. lower)
tilted square commutes. By naturality, the middle rectangle with αv,w com-
mutes. By property (1) of a representation of a graded diagram with commu-
tative product, the left and right faces commute where the vertical maps are
(−1)|v||w| times the natural commutativity of tensor products of T -modules.
Hence the inner square also commutes without the sign factors. This is cocom-
mutativity of µ∗.

The associativity assumption (3) for representations of diagrams with product
structure implies the coassociativity of µ∗.

The compatibility of multiplication and comultiplication is built into the defi-
nition.

In order to define a unit object in C(D,T ) it suffices to define a counit for
End(T |F ). Assume 1 ∈ F . The counit

u∗ : End(T |F ) ⊂
∏

v∈F
End(T (v))→ End(T (1)) = R

is the natural projection. The assumption on unitality of T allows to check that
the required diagrams commute.

Remark 7.1.6. The proof of Proposition 7.1.5 works without any changes in
the arguments when we weaken the assumptions as follows: in Definition 7.1.3
replace × by a map of diagrams

× : D ×D → P(D)

where P(D) is the path category of D: objects are the vertices of D and mor-
phisms the paths. A representation T of D extends canonically to a functor on
P(D).
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7.2 Localization

The purpose of this section is to give a diagram version of the localization
of a tensor category with respect to one object, i.e., a distinguished object
X becomes invertible with respect to tensor product. This is the standard
construction used to pass e.g. from effective motives to all motives.

We restrict to the case when R is a field or a Dedekind domain and all repre-
sentations of diagrams take values in R−Proj.

Definition 7.2.1 (Localization of diagrams). Let Deff be a graded diagram
with a commutative product structure with unit 1. Let v0 ∈ Deff be a vertex.
The localized diagram D has vertices and edges as follows:

1. for every v a vertex of Deff and n ∈ Z a vertex denoted v(n);

2. for every edge α : v → w in Deff and every n ∈ Z, an edge denoted
α(n) : v(n)→ w(n) in D;

3. for every vertex v in Deff and every n ∈ Z an edge denoted (v× v0)(n)→
v(n+ 1).

Put |v(n)| = |v|.
We equip D with a weak commutative product structure in the sense of Re-
mark 7.1.6

× : D ×D → P(D) v(n)× w(m) 7→ (v × w)(n+m)

together with

αv(n),w(m) = αv,w(n+m)

βv(n),w(m),u(r) = βv,w,u(n+m+ r)

β′v(n),w(m),u(r) = β′v,w,u(n+m+ r)

Let 1(0) together with
uv(n) = uv(n)

be the unit.

Note that there is a natural inclusion of multiplicative diagrams Deff → D which
maps a vertex v to v(0).

Remark 7.2.2. The above definition does not spell out × on edges. It is
induced from the product structure on Deff for edges of type (2). For edges of
type (3) there is an obvious sequence of edges. We take their composition in
P(D). E.g. for γv,n : (v × v0)(n) → v(n + 1) and idw(m) = idw(m) : w(m) →
w(m) we have

γv,n × id(m) : (v × v0)(n)× w(m)→ v(n+ 1)× w(m)
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via

(v × v0)(n)× w(m) = ((v × v0)× w)(n+m)

β′v,v0,w(n+m)
−−−−−−−−−→ (v × (v0 × w))(n+m)

id×αv0,w(n+m)−−−−−−−−−−→ (v × (w × v0))(n+m)

βv,w,v0 (n+m)−−−−−−−−−→ ((v × w)× v0)(n+m)
γv×w,n+m−−−−−−−→ (v × w)(n+m+ 1) = v(n+ 1)× w(m) .

Assumption 7.2.3. Let R be a field or a Dedekind domain. Let T be a
multiplicative unital representation of Deff with values in R−Proj such that
T (v0) is locally free of rank 1 as R-module.

Lemma 7.2.4. Under Assumption 7.2.3, the representation T extends uniquely
to a graded multiplicative representation of D such that T (v(n)) = T (v) ⊗
T (v0)⊗n for all vertices and T (α(n)) = T (α) ⊗ T (id)⊗n for all edges. It is
multiplicative and unital with the choice

T (v(n)× w(m))
τv(n),w(m)−−−−−−−→ T (v(n))⊗ T (w(m))

τv,w(n+m)

y
y=

T (v)⊗ T (w)⊗ T (v0)⊗n+m
∼=−−−−→ T (v)⊗ T (v0)⊗n ⊗ T (w)⊗ T (v0)⊗m

where the last line is the natural isomorphism.

Proof. Define T on the vertices and edges of D via the formula. It is tedious
but straightforward to check the conditions.

Proposition 7.2.5. Let Deff , D and T be as above. Assume Assumption 7.2.3.
Let A(D,T ) and A(Deff , T ) be the corresponding bialgebras. Then:

1. C(D,T ) is the localization of the category C(Deff , T ) with respect to the
object T̃ (v0).

2. Let χ ∈ End(T (v0))∨ = A({v0}, T ) be the dual of id ∈ End(T (v0)). We
view it in A(Deff , T ). Then A(D,T ) = A(Deff , T )χ (localization of alge-
bras).

Proof. Let D≥n ⊂ D be the subdiagram with vertices of the form v(n′) with
n′ ≥ n. Clearly, D = colimnD

≥n, and hence

C(D,T ) ∼= 2−colimnC(D≥n, T ) .

Consider the morphism of diagrams

D≥n → D≥n+1, v(m) 7→ v(m+ 1).
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It is clearly an isomorphism. We equip C(D≥n+1, T ) with a new fibre functor
fT ⊗T (v0)∨. It is faithful exact. The map v(m) 7→ T̃ (v(m+ 1)) is a representa-
tion of D≥n in the abelian category C(D≥n+1, T ) with fibre functor fT ⊗T (v0)∨.
By the universal property, this induces a functor

C(D≥n, T )→ C(D≥n+1, T ) .

The converse functor is constructed in the same way. Hence

C(D≥n, T ) ∼= C(D≥n+1, T ), A(D≥n, T ) ∼= A(D≥n+1, T ).

The map of graded diagrams with commutative product and unit

Deff → D≥0

induces an equivalence on tensor categories. Indeed, we represent D≥0 in
C(Deff , T ) by mapping v(m) to T̃ (v)⊗ T̃ (v0)m. By the universal property (see
Corollary 6.1.18), this implies that there is a faithful exact functor

C(D≥0, T )→ C(Deff , T )

inverse to the obvious inclusion. Hence we also have A(Deff , T ) ∼= A(D≥0, T ) as
unital bialgebras.

On the level of coalgebras, this implies

A(D,T ) = colimnA(D≥n, T ) = colimnA(Deff , T )

because A(D≥n, T ) isomorphic to A(Deff , T ) as coalgebras. A(Deff , T ) also has a
multiplication, but the A(D≥n, T ) for general n ∈ Z do not. However, they carry
a weak A(Deff , T )-module structure analogous to Remark 7.1.6 corresponding
to the map of graded diagrams

Deff ×D≥n → P(D≥n).

We want to describe the transition maps of the direct limit. From the point of
view of Deff → Deff , it is given by v 7→ v × v0.

In order to describe the transition maps A(Deff , T ) → A(Deff , T ), it suffices to
describe End(T |F )→ End(T |F ′) where F, F ′ are finite subdiagrams of Deff such
that v × v0 ∈ V (F ′) for all vertices v ∈ V (F ). It is induced by

End(T (v))→ End(T (v × v0))
τ−→ End(T (v))⊗ End(T (v0)) a 7→ a⊗ id.

On the level of coalgebras, this corresponds to the map

A(Deff , T )→ A(Deff , T ), x 7→ xχ.

Note finally, that the direct limit colimA(Deff , T ) with transition maps given by
multiplication by χ agrees with the localization A(Deff , T )χ.
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7.3 Nori’s Rigidity Criterion

Implicit in Nori’s construction of motives is a rigidity criterion, which we are
now going to formulate and prove explicitly.

Let R be a Dedekind domain or a field and C an R-linear tensor category. Recall
that R−Mod is the category of finitely generated R-modules and R−Proj the
category of finitely generated projective R-modules.

We assume that the tensor product on C is associative, commutative and unital.
Let 1 be the unit object. Let T : C → R−Mod be a faithful tensor functor with
values in R−Mod. In particular, T (1) ∼= R.

We introduce an ad-hoc notion.

Definition 7.3.1. Let V be an object of C. We say that V admits a perfect
duality if there is morphism

q : V ⊗ V → 1

or

1→ V ⊗ V
such that T (V ) is projective and T (q) (respectively its dual) is a non-degenerate
bilinear form.

Definition 7.3.2. Let V be an object of C. By 〈V 〉⊗ we denote the smallest
full abelian unital tensor subcategory of C containing V .

We start with the simplest case of the criterion.

Lemma 7.3.3. Let V be an object such that C = 〈V 〉⊗ and such that V admits
a perfect duality. Then C is rigid.

Proof. By standard Tannakian formalism, C is the category of comodules for a
bialgebra A, which is commutative and of finite type as an R-algebra. Indeed:
The construction of A as a coalgebra was explained in Proposition 6.1.12. We
may view C as graded diagram (with trivial grading) with a unital commutative
product structure in the sense of Definition 7.1.3. The fibre functor T is a unital
graded multiplicative representation. The algebra structure on A is the one of
Proposition 7.1.5. It is easy to see that A is generated by A({V }, T,) as an
algebra. The argument is given in more detail below.

We want to show that A is a Hopf algebra, or equivalently, that the algebraic
monoid M = SpecA is an algebraic group.

By Lemma 7.3.6 it suffices to show that there is a closed immersion M → G
of monoids into an algebraic group G. We are going to construct this group or
rather its ring of regular functions. We have

A = limAn
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with An = A(Cn, T ) for Cn = 〈1, V, V ⊗2, . . . , V ⊗n〉, the smallest full abelian
subcategory containing 1, V, . . . , V ⊗n. By construction, there is a surjective
map

n⊕

i=0

EndR((T (V )⊗i)∨ → An

or, dually, an injective map

A∨n →
n⊕

i=0

EndR(T (V )⊗i)

where A∨n consists of those endomorphisms compatible with all morphisms in
Cn. In the limit, there is a surjection of bialgebras

∞⊕

i=0

EndR((T (V )⊗i)∨)→ A

and the kernel is generated by the relation defined by compatibility with mor-
phisms in C. One such relation is the commutativity constraint, hence the map
factors via the symmetric algebra

S∗(End(T (V )∨)→ A .

Note that S∗(End(T (V )∨) is canonically the ring of regular functions on the
algebraic monoid End(T (V )). Another morphism in C is the pairing q : V ⊗V →
1. We want to work out the explicit equation induced by q.

We choose a basis e1, . . . , er of T (V ). Let

ai,j = T (q)(ei, ej) ∈ R

By assumption, the matrix is invertible. Let Xst be the matrix coefficients on
End(T (V )) corresponding to the basis ei. Compatibility with q gives for every
pair (i, j) the equation

aij = q(ei, ej)

= q((Xrs)ei, (Xr′s′)ej)

= q

(∑

r

Xrier,
∑

r′

Xr′jer′

)

=
∑

r,r′

XriXr′jq(er, er′)

=
∑

r,r′

XriXr′jarr′

Note that the latter is the (i, j)-term in the product of matrices

(Xir)
t(arr′)(Xr′j) .
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Let (bij) = (aij)
−1. With

(Yij) = (bij)(Xi′r)
t(arr′)

we have the coordinates of the inverse matrix. In other words, our set of equa-
tions defines the isometry group G(q) ⊂ End(T (V )). We now have expressed A
as quotient of the ring of regular functions of G(q).

The argument works in the same way, if we are given

q : 1→ V ⊗ V

instead.

Proposition 7.3.4 (Nori). Let C and T : C → R−Mod be as defined at the
beginning of the section. Let {Vi|i ∈ I} be a set of objects of C with the properties:

1. It generates C as an abelian tensor category, i.e., the smallest full abelian
tensor subcategory of C containing all Vi is equal to C.

2. For every Vi there is an object Wi and a morphism

qi : Vi ⊗Wi → 1

such that T (qi) : T (Vi) ⊗ T (Wi) → T (1) = R is a perfect pairing of free
R-modules.

Then C is rigid, i.e., for every object V there is a dual object V ∨ such that

Hom(V ⊗A,B) = Hom(A, V ∨⊗B) , Hom(V ∨⊗A,B) = Hom(A, V ⊗B) .

This means that the Tannakian dual of C is not only a monoid but a group.

Remark 7.3.5. The Proposition also holds with the dual assumption, existence
of morphisms

qi : 1→ Vi ⊗Wi

such that T (qi)
∨ : T (V )∨ ⊗ T (Wi)

∨ → R is a perfect pairing.

Proof. Consider V ′i = Vi⊕Wi. The pairing qi extends to a symmetric map q′i on
V ′i ⊗ V ′i such that T (q′i) is non-degenerate. We now replace Vi by V ′i . Without
loss of generality, we can assume Vi = Wi.

For any finite subset J ⊂ I, let VJ =
⊕

j∈J Vj . Let qJ be the orthogonal sum
of the qj for j ∈ J . It is again a symmetric perfect pairing.

For every object V of C, we write 〈V 〉⊗ for the smallest full abelian tensor
subcategory of C containing V . By assumption we have

C =
⋃

J

〈VJ〉⊗
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We apply the standard Tannakian machinery. It attaches to every 〈VJ〉⊗ an
R-bialgebra AJ such that 〈VJ〉⊗ is equivalent to the category of AJ -comodules.
If we put

A = limAJ

then C will be equivalent to the category of A-comodules. It suffices to show
that AJ is a Hopf-algebra. This is the case by Lemma 7.3.3.

Finally, the missing lemma on monoids.

Lemma 7.3.6. Let R be noetherian ring, G be an algebraic group scheme of
finite type over R and M ⊂ G a closed immersion of a submonoid with 1 ∈
M(R). Then M is an algebraic group scheme over R.

Proof. This seems to be well-known. It is appears as an exercise in [Re] 3.5.1 2.
We give the argument:

Let S be any finitely generated R-algebra. We have to show that the value
S 7→ M(S) is a group. We take base change of the situation to S. Hence
without loss of generality, it suffices to consider R = S. If g ∈ G(R), we denote
the isomorphism G→ G induced by left multiplication with g also by g : G→ G.
Take any g ∈ G(R) such that gM ⊂M (for example g ∈M(R)). Then one has

M ⊇ gM ⊇ g2M ⊇ · · ·

As G is Noetherian, this sequence stabilizes, say at s ∈ N:

gsM = gs+1M

as closed subschemes of G. Since every gs is an isomorphism, we obtain that

M = g−sgsM = g−sgs+1M = gM

as closed subschemes of G. So for every g ∈ M(R) we showed that gM = M .
Since 1 ∈M(R), this implies that M(R) is a subgroup.
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Chapter 8

Nori motives

We explain Nori’s construction of an abelian category of motives. It is defined as
the diagram category (see Chapters 6 and 7) of a certain diagram. It is universal
for all cohomology theories that can be compared with singular cohomology.

8.1 Essentials of Nori Motives

As before, we denote Z−Mod the category of finitely generated Z-modules and
Z−Proj the category of finitely generated free Z-modules.

8.1.1 Definition

Let k be a subfield of C. For a variety X over k, we define singular cohomology
as singular cohomology of X(C) = X ×k C. As in Chapter 2.1, we denote it
simply by Hi(X,Z).

Definition 8.1.1. Let k be a subfield of C. The diagram Pairseff of effective
pairs consists of triples (X,Y, i) with X a k-variety, Y ⊂ X a closed subvariety
and an integer i. There are two types of edges between effective pairs:

1. (functoriality) For every morphism f : X → X ′ with f(Y ) ⊂ Y ′ an edge

f∗ : (X ′, Y ′, i)→ (X,Y, i) .

2. (coboundary) For every chain X ⊃ Y ⊃ Z of closed k-subschemes of X
an edge

∂ : (Y,Z, i)→ (X,Y, i+ 1) .

The diagram has identities (see Definition 6.1.1) given by the identity morphism.
The diagram is graded (see Definition 7.1.3) by |(X,Y, i)| = i.

159
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Proposition 8.1.2. The assignment

H∗ : Pairseff → Z−Mod

which maps to (X,Y, i) relative singular cohomology Hi(X(C), Y (C),Z) is a
representation in the sense of Definition 6.1.4. It maps (Gm, {1}, 1) to Z.

Proof. Relative singular cohomology was defined in 2.1.1. By definition, it is
contraviantly functorial. This defines H∗ on edges of type 1. The connecting
morphism for triples, see Corollary 2.1.4, defines the representation on edges of
type 2. We compute H1(Gm, {1},Z) via the sequence for relative cohomology

H0(C∗,Z)→ H0({1},Z)→ H1(C∗, {1},Z)→ H1(C∗,Z)→ H1({1},Z)

The first map is an isomorphism. The last group vanishes for dimension reasons.
Finally, H1(C∗,Z) ∼= Z because C∗ is homotopy equivalent to the unit circle.

Definition 8.1.3. 1. The category of effective mixed Nori motivesMMeff
Nori =

MMeff
Nori(k) is defined as the diagram category C(Pairseff , H∗) from The-

orem 6.1.13.

2. For an effective pair (X,Y, i), we write Hi
Nori(X,Y ) for the corresponding

object in MMeff
Nori. We put

1(−1) = H1
Nori(Gm, {1}) ∈MMeff

Nori ,

the Lefschetz motive.

3. The category MMNori = MMNori(k) of Nori motives is defined as the
localization of MMeff

Nori with respect to Z(−1).

4. We also write H∗ for the extension of H∗ to MMNori.

Remark 8.1.4. This is equivalent to Nori’s orginal definition by Theorem 8.3.4.

8.1.2 Main results

Theorem 8.1.5 (Nori). 1. MMeff
Nori has a natural structure of commutative

tensor category with unit such that H∗ is a tensor functor.

2. MMNori is a rigid tensor category.

3. MMNori is equivalent to the category of representations of a pro-algebraic
group scheme Gmot(k,Z) over Z.

For the proof see Section 8.3.1.

Definition 8.1.6. The group scheme Gmot(k,Z) is called the motivic Galois
group in the sense of Nori.
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Remark 8.1.7. The first statement also holds with the coefficient ring Z re-
placed by any noetherian ring R. The other two hold if R is a Dedekind ring R
or field. Of particular interest is the case R = Q.

The proof of this theorem will take the rest of the chapter. We now explain the
key ideas. In order to define the tensor structure, we would like to apply the
abstract machine developed in Section 7.1. However, the shape of the Künneth
formula

Hn(X × Y,Q) ∼=
⊕

i+j=n

Hi(X,Q)⊗Hi(Y,Q)

is not of the required kind. Nori introduces a subdiagram of good pairs where
relative cohomology is concentrated in a single degree and free, so that the
Künneth formula simplifies. The key insight now becomes that it is possible to
recover all pairs from good pairs. This is done via an algebraic skeletal filtration
constructed from the Basic Lemma as discussed in Section 2.5. As a byproduct,
we will also know that MMeff

Nori and MMNori are given as representations of
an algebra monoid. In the next step, we have to verify rigidity, i.e., we have
to show that the monoid is an algebraic group. We do this by verifying the
abstract criterion of Section 7.3.

On the way, we need to establish a general ”motivic” property of Nori motives.

Theorem 8.1.8. There is a natural contravariant triangulated functor

R : Kb(Z[Var])→ Db(MMeff
Nori)

on the homotopy category of bounded homological complexes in Z[Var] such that
for every effective pair (X,Y, i) we have

Hi(R(Cone(Y → X)) = Hi
Nori(X,Y ).

For the proof see Section 8.3.1. The theorem allows, for example, to define
motives of simplicial varieties or motives with support.

The category of motives is supposed to be the universal abelian category such
that all cohomology theories with suitable properties factor via the category of
motives. We do not yet have such a theory, even though it is reasonable to
conjecture that MMNori is the correct description. In any case, it does have a
universal property which is good enough for many applications.

Theorem 8.1.9 (Universal property). Let A be an abelian category with a
faithful exact functor f : A → R−Mod for a noetherian ring R. Let

H ′∗ : Pairseff → A

be a representation. Assume that there is an extension R → S such that S is
faithfully flat over R and Z and an isomorphism of representations

Φ : H ′∗S → (f ◦H ′∗)S .
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Then H ′∗ extends to MMNori:

Pairseff →MMNori → A[H ′∗(1(−1))]−1.

More precisely, there exists a functor L(H ′∗) :MMNori → A[1(−1)]−1 and an
isomorphism of functors

Φ̃ : (fH∗)S → fS ◦ L(H ′∗)

such that

MMNori

Pairseff S−Mod

A[H ′∗(1(−1))]−1

H̃∗

H′∗ fS

(fH∗ )S

H∗S

L(H ′∗)

commutes up to φ and φ̃. The pair (L(H ′∗), φ̃) is unique up to unique isomor-
phism of functors.

If, moreover, A is a tensor category, f a tensor functor and H ′∗ a graded
multiplicative representation on Goodeff , then L(H ′∗) is a tensor functor and φ̃
is an isomorphism of tensor functors.

For the proof see Section 8.3.1. This means that MMNori is universal for all
cohomology theories with a comparison isomorphism to singular cohomology.
Actually, it suffice to have a representation of Goodeff or VGoodeff , see Defini-
tion 8.2.1.

Example 8.1.10. Let R = k, A = k−Mod, H ′∗ algebraic de Rham cohomology
see Chapter 3. Let S = C, and let the comparison isomorphism Φ be the period
isomorphism of Chapter 5. By the universal property, de Rham cohomology
extends toMMNori. We will study this example in a lot more detail in Part III
in order to understand the period algebra.

Example 8.1.11. Let R = Z, A the category of mixed Z-Hodge structures,
H ′∗ the functor assigning a mixed Hodge structure to a variety or a pair. Then
S = Z and Φ is the functor mapping a Hodge structure to the underlying Z-
module. By the universal property, H ′∗ factors canonically via MMNori. In
other words, motives define mixed Hodge structures.
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Example 8.1.12. Let ` be a prime, R = Z`, and A the category of finitely
generated Z`-modules with a continuous operation of Gal(k̄/k). Let H ′∗ be `-
adic cohomology over k̄. For X a variety and Y ⊂ X a closed subvariety with
open complement j : U → X, we have

(X,Y, i) 7→ Hi
et(Xk̄, j!Z`).

In this case, we let S = Zl and use the comparison isomorphism between `-adic
and singular cohomology.

Corollary 8.1.13. The category MMNori is independent of the choice of em-
bedding σ : k → C. More precisely, σ′ : k → C be another embedding. Let
H ′∗ be singular cohomology with respect to this embedding. Then there is an
equivalence of categories

MMNori(σ)→MMNori(σ
′).

Proof. Use S = Z` and the comparison isomorphism given by comparing both
singular cohomology functors with `-adic cohomology. This induces the functor.

Remark 8.1.14. Note that the equivalence is not canonical. In the argument
above it depends on the choice of embeddings of k̄ into C extending σ and σ′,
respectively. If we are willing to work with rational coefficients instead, we can
compare both singular cohomologies with algebraic de Rham cohomology (with
S = k). This gives a compatible system of comparison equivalences.

8.2 Yoga of good pairs

We now turn to alternative descriptions ofMMeff
Nori better suited to the tensor

structure.

8.2.1 Good pairs and good filtrations

Definition 8.2.1. Let k be a subfield of C.

1. The diagram Goodeff of effective good pairs is the full subdiagram of
Pairseff with vertices the triples (X,Y, i) such that singular cohomology
satisfies

Hj(X(C), Y (C);Z) = 0, unless j = i.

and is free for j = i.

2. The diagram VGoodeff of effective very good pairs is the full subdiagram
of those effective good pairs (X,Y, i) with X affine, X r Y smooth and
either X of dimension i and Y of dimension i− 1, or X = Y of dimension
less than i.
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We will later (see Definition 8.3.2) also introduce the diagrams Pairs of pairs,
Good of good pairs and VGood of very good pairs as localization (see Definition
7.2.1) with respect to (Gm, {1}, 1).

Good pairs exist in abundance by the basic lemma, see Theorem 2.5.2.

Our first aim is to show that the diagram categories attached to Pairseff , Goodeff

and VGoodeff are equivalent. By the general principles of diagram categories
this means that we have to represent the diagram Pairseff in C(VGoodeff , H∗).
We do this in two steps: a general variety is replaced by the Čech complex at-
tached to an affine cover; affine varieties are replaced by complexes of very good
pairs using the key idea of Nori. The construction proceeds in a complicated
way because both steps involve choices which have to be made in a compatible
way. We handle this problem in the same way as in [Hu3].

We start in the affine case. Using induction, one gets from the Basic Lemma 2.5.2:

Proposition 8.2.2. Every affine variety X has a filtration

∅ = F−1X ⊂ F0X ⊂ · · · ⊂ Fn−1X ⊂ FnX = X,

such that (FjX,Fj−1X, j) is very good.

Filtrations of the above type are called very good filtrations.

Proof. Let dimX = n. Put FnX = X. Choose a subvariety of dimension n− 1
which contains all singular points of X. By the Basic Lemma 2.5.2, there is a
subvariety Fn−1X of dimension n − 1 such that (FnX,Fn−1X,n) is good. By
construction Fn−1X r Fn−1X is smooth and hence the pair is very good. We
continue by induction.

Corollary 8.2.3. Let X be an affine variety. The inductive system of all very
good filtrations of X is filtered and functorial.

Proof. Let F∗X and F ′∗X be two very good filtrations of X. Fn−1X ∪ F ′n−1X
has dimension n−1. By the Basic Lemma 2.5.2, there is subvariety Gn−1X ⊂ X
of dimension n− 1 such that (X,Gn−1X,n) is a good pair. It is automatically
very good. We continue by induction.

Consider a morphism f : X → X ′. Let F∗X be a very good filtration. Then
f(FiX) has dimension at most i. As in the proof of Corollary 8.2.2, we construct
a very good filtration F∗X ′ with the additional property f(FiX) ⊂ FiX ′.

Remark 8.2.4. This allows to construct a functor from the category of affine
varieties to the diagram category C(VGoodeff , H∗) as follows: Given an affine
variety X, let F∗X be a very good filtration. The boundary maps of the triples
Fi−1X ⊂ FiX ⊂ Fi+1X define a complex in C(VGoodeff , H∗)

· · · → Hi
Nori(FiX,Fi−1X)→ Hi+1

Nori(Fi+1X,FiX)→ . . .
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Taking i-th cohomology of this complex defines an object in C(VGoodeff , H∗)
whose underlying Z-module is nothing but singular cohomology Hi(X,Z). Up
to isomorphism it is independent of the choice of filtration. In particular, it is
functorial.

We are going to refine the above construction such that is also applies to com-
plexes of varieties.

8.2.2 Čech complexes

The next step is to replace arbitrary varieties by affine ones. The idea for the
following construction is from the case of étale coverings, see [F] Definition 4.2.

Definition 8.2.5. Let X a variety. A rigidified affine cover is a finite open
affine covering {Ui}i∈I together with a choice of an index ix for every closed
point x ∈ X such that x ∈ Uix . We also assume that in the covering every index
i ∈ I occurs as ix for some x ∈ X.

Let f : X → Y be a morphism of varieties, {Ui}i∈I a rigidified open cover of X
and {Vj}j∈J a rigidified open cover of Y . A morphism of rigidified covers (over
f)

φ : {Ui}i∈I → {Vj}j∈J
is a map of sets φ : I → J such that f(Ui) ⊂ Vφ(i) and for all x ∈ X we have
φ(ix) = jf(x).

Remark 8.2.6. The rigidification makes φ unique if it exists.

Lemma 8.2.7. The projective system of rigidified affine covers is filtered and
strictly functorial, i.e., if f : X → Y is a morphism of varieties, pull-back
defines a map of projective systems.

Proof. Any two covers have their intersection as common refinement with index
set the product of the index sets. The rigidification extends in the obvious way.
Preimages of rigidified covers are rigidified open covers.

We need to generalize this to complexes of varieties. Recall from Definition
1.1.1 the additive categories Z[Aff] and Z[Var] with objects (affine) varieties
and morphisms roughly Z-linear combinations of morphisms of varieties. The
support of a morphism in Z[Var] is the set of morphisms occuring in the linear
combination.

Definition 8.2.8. Let X∗ be a homological complex of varieties, i.e., an object
in Cb(Z[Var]). An affine cover of X∗ is a complex of rigidified affine covers,
i.e., for every Xn the choice of a rigidified open cover ŨXn and for every g :
Xn → Xn−1 in the support of the differential Xn → Xn−1 in the complex X∗ a
morphism of rigidified covers g̃ : ŨXn → ŨXn−1

over g.
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Let F∗ : X∗ → Y∗ be a morphism in Cb(Z[Var]) and ŨX∗ , ŨY∗ affine covers of
X∗ and Y∗. A morphism of affine covers over F∗ is a morphism of rigidified
affine covers fn : ŨXn → ŨYn over every morphism in the support of Fn.

Lemma 8.2.9. Let X∗ ∈ Cb(Z[Var]). Then the projective system of rigidified
affine covers of X∗ is non-empty, filtered and functorial, i.e., if f∗ : X∗ → Y∗
is a morphism of complexes and ŨX∗ an affine cover of X∗, then there is an
affine cover ŨY∗ and a morphism of complexes of rigidified affine covers. Any
two choices are compatible in the projective system of covers.

Proof. Let n be minimal with Xn 6= ∅. Choose a rigidified cover of Xn. The
support of Xn+1 → Xn has only finitely many elements. Choose a rigidified
cover of Xn+1 compatible with all of them. Continue inductively.

Similar constructions show the rest of the assertion.

Definition 8.2.10. Let X be a variety and ŨX = {Ui}i∈I a rigidified affine
cover of X. We put

C?(ŨX) ∈ C−(Z[Aff]),

the Čech complex associated to the cover, i.e.,

Cn(ŨX) =
∐

i∈In

⋂

i∈i
Ui,

where In is the set of tuples (i0, . . . , in). The boundary maps are the ones
obtained by taking the alternating sum of the boundary maps of the simplicial
scheme.

If X∗ ∈ Cb(Z[Var]) is a complex, and ŨX∗ a rigidified affine cover, let

C?(ŨX∗) ∈ C−,b(Z[Aff])

be the double complex Ci(ŨXj ).

Note that all components of C?(ŨX∗) are affine. The projective system of these
complexes is filtered and functorial.

Definition 8.2.11. Let X be a variety, {Ui}i∈I a rigidified affine cover of X.
A very good filtration on ŨX is the choice of very good filtrations for

⋂

i∈J
Ui

for all J ⊂ I compatible with all inclusions between these.

Let f : X → Y be a morphism of varieties, φ : {Ui}i∈I → {Vj}j∈J a morphism
of rigidified affine covers above f . Fix very good filtrations on both covers. The
morphism φ is called filtered, if for all J ⊂ I the induced map

⋂

i∈I′
Ui →

⋂

i∈I′
Vφ(i)
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is compatible with the filtrations.

Let X∗ ∈ Cb(Z[Var]) be a bounded complex of varieties, ŨX∗ an affine cover of
X∗. A very good filtration on ŨX∗ is a very good filtration on all ŨXn compatible
with all morphisms in the support of the boundary maps.

Note that the Čech complex associated to a rigidified affine cover with very
good filtration is also filtered in the sense that there is a very good filtration on
all Cn(ŨX) and all morphisms in the support of the differential are compatible
with the filtrations.

Lemma 8.2.12. Let X be a variety, ŨX a rigidified affine cover. Then the
inductive system of very good filtrations on ŨX is non-empty, filtered and func-
torial.

The same statement also holds for a complex of varieties X∗ ∈ Cb(Z[Var]).

Proof. Let ŨX = {Ui}i∈I be the affine cover. We choose recursively very good
filtrations on

⋂
i∈J Ui with decreasing order of J , compatible with the inclusions.

We extend the construction inductively to complexes, starting with the highest
term of the complex.

Definition 8.2.13. Let X∗ ∈ C−(Z[Aff]). A very good filtration of X∗ is given
by a very good filtration F.Xn for all n which is compatible with all morphisms
in the support of the differentials of X∗.

Lemma 8.2.14. Let X∗ ∈ Cb(Z[Var]) and ŨX∗ an affine cover of X∗ with a
very good filtration. Then the total complex of C?(ŨX∗) carries a very good
filtration.

Proof. Clear by construction.

8.2.3 Putting things together

Let A be an abelian category with a faithful forgetful functor f : A → R−Mod
with R noetherian. Let T : VGoodeff → A be a representation of the diagram
of very good pairs.

Definition 8.2.15. Let F•X be an affine variety X together with a very good
filtration F•. We put R̃(F•X) ∈ Cb(A)

· · · → T (FjX∗, Fj−1X∗)→ T (Fj+1X∗, FjX∗)→ . . .

Let F•X∗ be a very good filtration of a complex X∗ ∈ C−(Z[Aff]). We put
R̃(F•X∗) ∈ C+(A) the total complex of the double complex R̃(F.Xn)n∈Z.

Proposition 8.2.16. Let A be an R-linear abelian category with a faithful
forgetful functor f to R−Mod. Let T : VGoodeff → A be a representation such
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that f ◦ T is singular cohomology with R-coefficients. Then there is a natural
contravariant triangulated functor

R : Cb(Z[Var])→ Db(A)

on the category of bounded homological complexes in Z[Var] such that for every
good pair (X,Y, i) we have

Hj(R(Cone(Y → X)) =

{
0 j 6= i,

T (X,Y, i) j = i.

Moreover, the image of R(X) in Db(R−Mod) computes singular cohomology of
X(C).

Proof. We first defineR : Cb(Z[Var])→ Db(A) on objects. LetX∗ ∈ Cb(Z[Var]).
Choose a rigidified affine cover ŨX∗ of X∗. This is possible by Lemma 8.2.9.
Choose a very good filtration on the cover. This is possible by 8.2.12. It induces
a very good filtration on TotC?(ŨX∗). Put

R(X∗) = R̃(TotC?(ŨX∗)).

Note that any other choice yields a complex isomorphic to this one in D+(A) be-
cause f is faithful and exact and the image of R(X∗) in D+(R−Mod) computes
singular cohomology with R-coefficients.

Let f : X∗ → Y∗ be a morphism. Choose a refinement Ũ ′X∗ of ŨX∗ which

maps to ŨY∗ and a very good filtration on Ũ ′X∗ . Choose a refinement of the

filtrations on ŨX∗ and ŨY∗ compatible with the filtration on Ũ ′X∗ . This gives a

little diagram of morphisms of complexes R̃ which defines R(f) in D+(A).

Remark 8.2.17. Nori suggests working with Ind-objects (or rather pro-object
in our dual setting) in order to get functorial complexes attached to affine va-
rieties. However, the mixing between inductive and projective systems in our
construction does not make it obvious if this works out for the result we needed.
In order to avoid this situation, it might, however, be possible to do the con-
struction in two steps. This approach is used in Harrer’s generalization to
complexes of smooth correspondences, [Ha], which completely avoids discussing
Čech complexes.

As a corollary of the construction in the proof, we also get:

Corollary 8.2.18. Let X be a variety, ŨX a rigidified affine cover with Čech
complex C?(ŨX). Then

R(X)→ R(C?(ŨX))

is an isomorphism in D+(A).

We are mostly interested in two explicit examples of complexes.
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Definition 8.2.19. Consider the situation of Proposition 8.2.16. Let Y ⊂ X
be a closed subvariety with open complement U , i ∈ Z. Then we put

R(X,Y ) = R(Cone(Y → X)), RY (X) = R(Cone(U → X)) ∈ Db(A)

H(X,Y, i) = Hi(R(X,Y )), HY (X, i) = Hi(RY (X)) ∈ A

H(X,Y, i) is called relative cohomology. HY (X, i) is called cohomology with
support.

8.2.4 Comparing diagram categories

We are now ready to proof the first key theorems.

Theorem 8.2.20. The diagram categories C(Pairseff , H∗), C(Goodeff , H∗) and
C(VGoodeff , H∗) are equivalent.

Proof. The inclusion of diagrams induces faithful functors

i : C(VGoodeff, H∗)→ C(Goodeff , H∗)→ C(Pairseff , H∗).

We want to apply Corollary 6.1.18. Hence it suffices to represent the diagram
Pairseff in C(VGoodeff , H∗) such that the restriction of the representation to
VGoodeff gives back H∗ (up to natural isomorphism).

We turn to the construction of the representation of Pairseff in C(VGoodeff , H∗).
We apply Proposition 8.2.16 to

H∗ : VGoodeff → C(VGoodeff , H∗)

and get a functor

R : Cb(Z[Var])→ Db(C(VGoodeff , H∗)).

Consider an effective pair (X,Y, i) in D. It is represented by

H(X,Y, i) = Hi(R(X,Y )) ∈ C(VGoodeff , H∗)

where
R(X,Y ) = R(Cone(Y → X)) .

The construction is functorial for morphisms of pairs. This allows to represent
edges of type f∗.

Finally, we need to consider edges corresponding to coboundary maps for triples
X ⊃ Y ⊃ Z. In this case, it follows from the construction of R that there is a
natural exact triangle

R(X,Y )→ R(X,Z)→ R(Y, Z).

We use the connecting morphism in cohomology to represent the edge (Y, Z, i)→
(X,Y, i+ 1).
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For further use, we record a number of corollaries.

Corollary 8.2.21. Every object of MMeff
Nori is a subquotient of a direct sum of

objects of the form Hi
Nori(X,Y ) for a good pair (X,Y, i) where X = W rW∞

and Y = W0 r (W0 ∩W∞) with W smooth projective, W∞ ∪W0 a divisor with
normal crossings.

Proof. By Proposition 6.1.15, every object in the diagram category of VGoodeff

(and henceMMNori) is a subquotient of a direct sum of some Hi
Nori(X,Y ) with

(X,Y, i) very good. In particular, X r Y can be assumed smooth.

We follow Nori: By resolution of singularities, there is a smooth projective
variety W and a normal crossing divisor W0∪W∞ ⊂W together with a proper,
surjective morphism π : W rW∞ → X such that one has π−1(Y ) = W0 rW∞
and π : W r π−1(Y )→ X r Y is an isomorphism. This implies that

H∗Nori(W rW∞,W0 r (W0 ∩W∞))→ H∗Nori(X,Y )

is also an isomorphism by proper base change, i.e., excision.

Remark 8.2.22. Note that the pair (W rW∞,W0 r (W0 ∩W∞) is good, but
not very good in general. Replacing Y by a larger closed subset Z, one may,
however, assume that W0 r (W0 ∩W∞) is affine. Therefore, by Lemma 8.3.7,
the dual of each generator can be assumed to be very good.

It is not clear to us if it suffices to construct Nori’s category using the diagram
of (X,Y, i) with X smooth, Y a divisor with normal crossings. The corollary
says that the diagram category has the right ”generators”, but there might be
too few ”relations”.

Corollary 8.2.23. Let Z ⊂ X be a closed immersion. Then there is a natural
object Hi

Z(X) in MMNori representing cohomology with supports. There is a
natural long exact sequence

· · · → Hi
Z(X)→ Hi

Nori(X)→ Hi
Nori(X r Z)→ Hi+1

Z (X)→ · · ·

Proof. Let U = X r Z. Put

RZ(X) = R(Cone(U → X)), Hi
Z(X) = Hi(RZ(X)) .

8.3 Tensor structure

We now introduce the tensor structure using the formal set-up developed in
Section 7.1. Recall that Pairseff , Goodeff and VGoodeff are graded diagrams
with |(X,Y, i)| = i.
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Proposition 8.3.1. The graded diagrams Good and VGoodeff carry a weak
commutative product structure (see Definition 7.1.3) defined as follows: for all
vertices (X,Y, i), (X ′, Y ′, i′)

(X,Y, i)× (X ′, Y ′, i′) = (X ×X ′, X × Y ′ ∪ Y ×X ′, i+ i′).

with the obvious definition on edges. Let also

α : (X,Y, i)× (X ′, Y ′, i′)→ (X ′, Y ′, i′)× (X,Y, i)

β : (X,Y, i)× ((X ′, Y ′, i′)× (X ′′, Y ′′, i′′))→ ((X,Y, i)× (X ′, Y ′, i′))× (X ′′, Y ′′, i′′)

β′ : ((X,Y, i)× (X ′, Y ′, i′))× (X ′′, Y ′′, i′′)→ (X,Y, i)× ((X ′, Y ′, i′)× (X ′′, Y ′′, i′′))

be the edges given by the natural isomorphisms of varieties.

There is a unit given by (Spec k, ∅, 0) and

u : (X,Y, i)→ (Spec k, ∅, 0)× (X,Y, i) = (Spec k ×X,Spec k × Y, i)

be given by the natural isomorphism of varieties.

Moreover, H∗ is a graded multiplicative representation (see Definition 7.1.3)
with

τ : Hi+i′(X ×X ′, X × Y ′ ∪X ′ × Y,Z)→ Hi(X,Y,Z)⊗Hi′(X ′, Y ′,Z)

the Künneth isomorphism (see Theorem 2.4.1).

Proof. If (X,Y, i) and (X ′, Y ′, i′) are good pairs, then by the Küennth formula
so is (X × X ′, X × Y ′ ∪ Y × X ′, i + i′). If they are even very good, then so
is their product. Hence × is well-defined on vertices. Recall that edges id
Goodeff ×Goodeff are of the form γ× id or id× γ for an edge γ of Goodeff . The
definition of × on these edges is the natural one.

We need to check that H∗ satisfies the conditions of Definition 7.1.3. This is
tedious, but straightforward from the properties of the Künneth formula, see in
particular Proposition 2.4.3 for compatibility with edges of type ∂ changing the
degree. Associativity and graded commutativity are stated in Proposition 2.4.2.

Definition 8.3.2. Let Good and VGood be the localizations (see Definition
7.2.1) of Goodeff and VGoodeff , respectively, with respect to the vertex 1(−1) =
(Gm, {1}, 1).

Proposition 8.3.3. Good and VGood are graded diagrams with a weak com-
mutative product structure (see Remark 7.1.6). Moreover, H∗ is a graded mul-
tiplicative representation of Good and VGood.

Proof. This follows formally from the effective case and Lemma 7.2.4. The
Assumption 7.2.3 that H∗(1(−1)) = Z is satisfied by Proposition 8.1.2.
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Theorem 8.3.4. 1. This definition ofMMNori is equivalent to Nori’s orig-
inal definition.

2. MMeff
Nori ⊂ MMNori are commutative tensor categories with a faithful

fiber functor H∗.

3. MMNori is equivalent to the digram categories C(Good, H∗) and C(VGood, H∗).

Proof. We already know by Theorem 8.2.20 that

C(VGoodeff , H∗)→ C(Goodeff , H∗)→ C(Pairseff , H∗) =MMeff
Nori

are equivalent. Moreover, this agrees with Nori’s definition using either Goodeff

or Pairseff .

By Proposition 8.3.1, the diagrams VGoodeff and Goodeff carry a mulitplicative
structure. Hence by Proposition 7.1.5, the category MMeff

Nori carries a tensor
structure.

By Proposition 7.2.5, the diagram categories of the localized diagrams Good
and VGood also have tensor structure and can be equivalently defined as the
localization with respect to he Lefschetz object 1(−1).

In [L1], the category of Nori motives is defined as the category of comodules of
finite type over Z for the localization of the ring Aeff with respect to the element
χ ∈ A(1(−1)) considered in Proposition 7.2.5. By this same Proposition, the
category of Aeff

χ -comodules agrees with MMNori.

Our next aim is to establish rigidity using the criterion of Section 7.3. Hence
we need to check that Poincaré duality is motivic, at least in a weak sense.

Definition 8.3.5. Let 1(−1) = H1
Nori(Gm) and 1(−n) = 1(−1)⊗n.

Lemma 8.3.6. 1. H2n
Nori(PN ) = 1(−n) for N ≥ n ≥ 0.

2. Let Z be a projective variety of dimension n. Then H2n
Nori(Z) ∼= 1(−n).

3. Let X be a smooth variety, Z ⊂ X a smooth, irreducible, closed subvariety
of pure codimension n. Then the motive with support of Corollary 8.2.23
satisfies

H2n
Z (X) ∼= 1(−n).

Proof. 1. Embedding projective spaces linearly into higher dimensional projec-
tive spaces induces isomorphisms on cohomology and hence motives. Hence it
suffices to check the top cohomology of PN .

We start with P1. Consider the standard cover of P1 by U1 = A1 and U2 =
P1 r {0}. We have U1 ∩ U2 = Gm. By Corollary 8.2.18,

R(P1)→ Cone

(
R(U1)⊕R(U2)→ R(Gm)

)
[−1]
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is an isomorphism in the derived category. This induces the isomorphism
H2

Nori(P1) → H1
Nori(Gm). Similarly, the Čech complex (see Definition 8.2.10)

for the standard affine cover of PN relates H2N
Nori(PN ) with HN

Nori(GNm).

2. Let Z ⊂ PN be a closed immersion with N large enough. Then H2n
Nori(Z)→

H2n
Nori(PN ) is an isomorphism in MMNori because it is in singular cohomology.

3. We note first that under our assumptions 3. holds in singular cohomology
by the Gysin isomorphism 2.1.8

H0(Z)
∼=−→H2n

Z (X).

For the embedding Z ⊂ X one has the deformation to the normal cone [Fu, Sec.
5.1], i.e., a smooth scheme D(X,Z) together with a morphism to A1 such that
the fiber over 0 is given by the normal bundle NZX of Z in X, and the other
fibers by X. The product Z × A1 can be embedded into D(X,Z) as a closed
subvariety of codimension n, inducing the embeddings of Z ⊂ X as well as the
embedding of the zero section Z ⊂ NZX over 0. Hence, using the three Gysin
isomorphisms and homotopy invariance, it follows that there are isomorphisms

H2n
Z (X)← H2n

Z×A1(D(X,Z))→ H2n
Z (NZX)

in singular cohomology and hence in our category. Thus, we have reduced the
problem to the embedding of the zero section Z ↪→ NZX. However, the normal
bundle π : NZX → Z trivializes on some dense open subset U ⊂ Z. This
induces an isomorphism

H2n
Z (NZX)→ H2n

U (π−1(U)),

and we may assume that the normal bundle NZX is trivial. In this case, we
have

NZ(X) = NZ×{0}(Z × An) = N{0}(An),

so that we have reached the case of Z = {0} ⊂ An. Using the Künneth formula
with supports and induction on n, it suffices to consider H2

{0}(A
1) which is

isomorphic to H1(Gm) = 1(−1) by Corollary 8.2.23.

The following lemma (more precisely, its dual) is formulated implicitly in [N] in
order to establish rigidity of MMNori.

Lemma 8.3.7. Let W be a smooth projective variety of dimension i, W0,W∞ ⊂
W divisors such that W0 ∪W∞ is a normal crossing divisor. Let

X = W rW∞
Y = W0 rW0 ∩W∞
X ′ = W rW0

Y ′ = W∞ rW0 ∩W∞

We assume that (X,Y ) is a very good pair.
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Then there is a morphism in MMNori

q : 1→ Hi
Nori(X,Y )⊗Hi

Nori(X
′, Y ′)(i)

such that the dual of H∗(q) is a perfect pairing.

Proof. We follow Nori’s construction. The two pairs (X,Y ) and (X ′, Y ′) are
Poincaré dual to each other in singular cohomology, see Proposition 2.4.5 for
the proof. This implies that they are both good pairs. Hence

Hi
Nori(X,Y )⊗Hi

Nori(X
′, Y ′)→ H2i

Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)

is an isomorphism. Let ∆ = ∆(W r (W0 ∪W∞)) via the diagonal map. Note
that

X × Y ′ ∪X ′ × Y ⊂ X ×X ′ r ∆.

Hence, by functoriality and the definition of cohomology with support, there is
a map

H2i
Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)← H2i

∆ (X ×X ′).
Again, by functoriality, there is a map

H2i
∆ (X ×X ′)← H2i

∆̄ (W ×W )

with ∆̄ = ∆(W ). By Lemma 8.3.6, it is isomorphic to 1(−i). The map q
is defined by twisting the composition by (i). The dual of this map realizes
Poincaré duality, hence it is a perfect pairing.

Theorem 8.3.8 (Nori). MMNori is rigid, hence a neutral Tannakian category.
Its Tannaka dual is given by Gmot = Spec(A(Good, H∗)).

Proof. By Corollary 8.2.21, every object of MMNori is a subquotient of M =
Hi

Nori(X,Y )(j) for a good pair (X,Y, i) of the particular form occurring in
Lemma 8.3.7. By this Lemma, they all admit a perfect pairing.

By Proposition 7.3.4, the category MMNori is neutral Tannakian. The Hopf
algebra of its Tannaka dual agrees with Nori’s algebra by Theorem 6.1.20.

8.3.1 Collection of proofs

We go through the list of theorems of Section 8.1 and give the missing proofs.

Proof of Theorem 8.1.5. By Theorem 8.3.4, the categoriesMMeff
Nori andMMNori

are tensor categories. By construction, H∗ is a tensor functor. The category
MMNori is rigid by Theorem 8.3.8. By loc. cit., we have a description of its
Tannaka dual.

Proof of Theorem 8.1.8. We apply Proposition 8.2.16 with A = MMeff
Nori and

T = H∗, R = Z.
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Proof of Theorem 8.1.9. We apply the universal property of the diagram cate-
gory (see Corollary 6.1.14) to the diagram Goodeff , T = H∗ and F = H ′∗. This
gives the universal property for MMeff

Nori.

Note that H ′∗(1(−1)) ∼= R by comparison with singular cohomology. Hence
everything extends to MMNori by localizing the categories.

If A is a tensor category and H ′∗ a graded multiplicative representation, then
all functors are tensor functors by construction.
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