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Chapter 9

Periods of varieties

A period or more precisely a period number may be thought of as the value of
an integral that occurs in a geometric context. In their papers [K1] and [KZ],
Kontsevich and Zagier list various ways of how to define a period.

It is stated in their papers without reference that all these variants give the same
definition. We give a proof of this statement in the Period Theorem 11.2.1.

9.1 First definition

We start with the simplest definition. In this section, let k ⊂ C be a subfield.

For this definition the following data is needed:

• X a smooth algebraic variety of dimension d, defined over k,

• D a divisor on X with normal crossings, also defined over k,

• ω ∈ Γ(X,ΩdX/k) an algebraic differential form of top degree,

• Γ a rational d-dimensional C∞-chain on Xan with ∂Γ on Dan, i.e.,

Γ =
n∑

i=1

αiγi

with αi ∈ Q, γi : ∆d → Xan a C∞-map for all i and ∂Γ a chain on Dan

as in Definition 2.2.2.

As before, we denote Xan the analytic space attached to X(C).

Definition 9.1.1. Let k ⊂ C be a subfield.
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204 CHAPTER 9. PERIODS OF VARIETIES

1. Let (X,D, ω,Γ) as above. We will call the complex number

∫

Γ

ω =
n∑

i=1

αi

∫

∆d

f∗i ω .

the period (number) of the quadruple (X,D, ω,Γ).

2. The algebra of effective periods Peff
nc = Peff

nc (k) over k is the set of all period
numbers for all (X,D, ω,Γ) defined over k.

3. The period algebra Pnc = Pnc(k) over k is the set of numbers of the form
(2πi)nα with n ∈ Z and α ∈ Peff

nc .

Remark 9.1.2. 1. The subscript nc refers to the normal crossing divisor D
in the above definition.

2. We will show a bit later (see Proposition 9.1.7) that Peff
nc (k) is indeed an

algebra.

3. Moreover, we will see in the next example that 2πi ∈ Peff
nc . This means

that Pnc is nothing but the localization

Pnc = Peff
nc

[
1

2πi

]
.

4. This definition was motivated by Kontsevich’s discussion of formal effec-
tive periods [K1, def. 20, p. 62]. For an extensive discussion of formal
periods and their precise relation to periods see Chapter 12.

Example 9.1.3. Let X = A1
Q be the affine line, ω = dt ∈ Ω1. Let D =

V (t3 − 2t). Let γ : [0, 1] → A1
Q(C) = C be the line from 0 to

√
2. This is a

singular chain with boundary in D(C) = {0,
√

2,−
√
t). Hence it defines a class

in Hsing
1 (A1(C)an, Dan,Q). We obtain the period

∫

γ

ω =

∫ √2

0

dt =
√

2 .

The same method works for all algebraic numbers.

Example 9.1.4. Let X = Gm = A1 \ {0}, D = ∅ and ω = 1
t dt. We choose

γ : S1 → Gm(C) = C∗ the unit circle. It defines a class in Hsing
1 (C∗,Q). We

obtain the period ∫

S1

t−1dt = 2πi .

In particular, π ∈ Peff
nc (k) for all k.
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Example 9.1.5. Let X = Gm, D = V ((t − 2)(t − 1)), ω = t−1dt, and γ the
line from 1 to 2. We obtain the period

∫ 2

1

t−1dt = log(2) .

For more advanced examples, see Part IV.

Lemma 9.1.6. Let (X,D, ω,Γ) as before. The period number
∫

Γ
ω depends

only on the cohomology classes of ω in relative de Rham cohomology and of Γ
in relative singular homology.

Proof. The restriction of ω to the analytification Dan
j of some irreducible compo-

nent Dj of D is a holomorphic d-form on a complex manifold of dimension d−1,
hence zero. Therefore the integral

∫
4 ω evaluates to zero for smooth singular

simplices 4 that are supported on D. Now if Γ′, Γ′′ are two representatives of
the same relative homology class, we have

Γ′d − Γ′′d ∼ ∂(Γd+1)

modulo simplices living on some Dan
I for a smooth singular chain Γ of dimension

d+ 1
Γ ∈ C∞d+1(Xan, Dan;Q).

Using Stokes’ theorem, we get
∫

Γ′d

ω −
∫

Γ′′d

ω =

∫

∂(Γd+1)

ω =

∫

Γd+1

dω = 0,

since ω is closed.

In the course of the chapter, we are also going to show the converse: every pair
of relative cohomology classes gives rise to a period number.

Proposition 9.1.7. The sets Peff
nc (k) and Pnc(k) are k-algebras. Moreover,

Peff
nc (K) = Peff

nc (k) if K/k is algebraic.

Proof. Let (X,D, ω,Γ) and (X ′, D′, ω′,Γ′) be two quadruples as in the definition
of normal crossing periods.

By multiplying ω by an element of k, we obtain k-multiples of periods.

The product of the two periods is realized by the quadruple (X ×X ′, D×X ′ ∪
X ×D′, ω ⊗ ω′,Γ× Γ′).

Note that the quadruple (A1, {0, 1}, t., [0, 1]) has period 1. By multiplying with
this factor, we do not change the period number of a quadruple, but we change
its dimension. Hence we can assume that X and X ′ have the same dimension.
The sum of their periods is then realized on the disjoint union (X ∪ X ′, D ∪
D′, ω + ω′,Γ + Γ′).
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If K/k is finite algebraic, then we obviously have Peff
nc (k) ⊂ Peff

nc (K). For the
converse, consider a quadruple (X,D, ω,Γ) over K. We may also can view X as
k-variety and write Xk for distinction. By Lemma 3.1.13 or more precisely its
proof, ω can also be viewed as a differential form on Xk/k. The complex points
Yk(C) consist of [K : k] copies of the complex points Y (C). Let Γk be the cycle
Γ on one of them. Then the period of (X,D, ω,Γ) is the same as the period of
(Xk, Dk, ω,Γk). This gives the converse inclusion.

If K/k is infinite, but algebraic, we obviously have Peff
nc (K) =

⋃
L Peff

nc (L) with
L running through all fields K ⊃ L ⊃ k finite over k. Hence, equality also holds
in the general case.

9.2 Periods for the category (k,Q)−Vect
For a clean development of the theory of period numbers, it is of advantage
to formalize the data. Recall from Section 5.1 the category (k,Q)−Vect. Its
objects are a pair of k-vector space Vk and Q-vector space VQ linked by an
isomorphism φC : Vk ⊗k C→ VQ ⊗Q C. This is precisely what we need in order
to define periods abstractly.

Definition 9.2.1. 1. Let V = (Vk, VQ, φC) be an object of (k,Q)−Vect. The
period matrix of V is the matrix of φC in a choice of bases v1, . . . , vn of
Vk and w1, . . . , wn of VQ, respectively. A complex number is a period of
V if is an entry of a period matrix of V for some choice of bases. The set
of periods of V together with the number 0 is denoted P(V ). We denote
by P〈V 〉 the k-subvector space of C generated by the entries of the period
matrix.

2. Let C ⊂ (k,Q)−Vect be a subcategory. We denote by P(C) the set of
periods for all objects in C.

Remark 9.2.2. 1. The object V = (Vk, VQ, φC) gives rise to a bilinear map

Vk × V ∨Q → C , (v, λ) 7→ λ(φ−1
C (v)) ,

where we have extended λ : VQ → Q C-linearly to VQ ⊗Q C → C. The
periods of V are the numbers in its image. Note that it is a set, not a
vector space in general. The period matrix depends on the choice of bases,
but the vector space P〈V 〉 does not.

2. The definition of P(C) does not depend on the morphisms. If the category
has only one object, the second definition specializes to the first.

Lemma 9.2.3. Let C ⊂ (k,Q)−Vect be a subcategory.

1. P(C) is closed under multiplication by k.

2. If C is additive, then P(C) is a k-vector space.
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3. If C is a tensor subcategory, then P(C) is a k-algbra.

Proof. Multiplying a basis element wi by an element α in k multiplies the periods
by α. Hence the set is closed under multiplication by elements of k∗.

Let p be a period of V and p′ a period of V ′. Then p+ p′ is a period of V ⊕ V ′.
If C is additive, then V, V ′ ∈ C implies V ⊕ V ′ ∈ C. Moreover, pp′ is a period
of V ⊗ V ′. If C is a tensor subcategory of (k,Q)−Vect, then V ⊗ V ′ is also in
C.

Proposition 9.2.4. Let C ⊂ (k,Q)−Vect be a subcategory.

1. Let 〈C〉 be the smallest full abelian subcategory of (k,Q)−Vect closed under
subquotients and containing C. Then P(〈C〉) is the abelian subgroup of C
generated by P(C).

2. Let 〈C〉⊗ be the smallest full abelian subcategory of (k,Q)−Vect closed
under subquotients and tensor products and containing C. Then P(〈C〉⊗)
is the (possibly non-unital) subring of C generated by P(C).

Proof. The period algebra P(C) only depends on objects. Hence we can replace
C by the full subscategory with the same objects without changing the period
algebra.

Moreover, if V ∈ C and V ′ ⊂ V in (k,Q)−Vect, then we can extend any basis
for V ′ to a basis to V . In this form, the period matrix for V is block triangular
with one of the blocks the period matrix of V ′. This implies

P(V ′) ⊂ P(V ) .

Hence, P(C) does not change, if we close it up under subobjects in (k,Q)−Vect.
The same argument also implies that P(C) does not change if we close it up
under quotients in (k,Q)−Vect.

After these reductions, the only thing missing to make C additive is closing it up
under direct sums in (k,Q)−Vect. If V and V ′ are objects of C, then the periods
of V ⊕ V ′ are sums of periods of V and periods of V ′ (this is most easily seen
in the pairing point of view in Remark 9.2.2). Hence closing the category up
under direct sums amounts to passing from P(C) to the abelian group generated
by it. It is automatically a k-vector space.

If V and V ′ are objects of C, then the periods of V ⊗ V ′ are sums of products
of periods of V and periods of V ′ (this is again most easily seen in the pairing
point of view in Remark 9.2.2). Hence closing C up under tensor products (and
their subquotients) amounts to passing to the ring generated by P(C).

So far, we fixed the ground field k. We now want to study the behaviour under
change of fields.
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Definition 9.2.5. Let K/k be a finite extension of subfields of C. Let

⊗kK : (k,Q)−Vect→ (K,Q)−Vect , (Vk, VQ, φC) 7→ (Vk ⊗k K,VQ, φC)

be the extension of scalars.

Lemma 9.2.6. Let K/k be a finite extension of subfields of C. Let V ∈
(k,Q)−Vect. Then

P〈V ⊗k K〉 = P〈V 〉 ⊗k K .

Proof. The period matrix for V agrees with the period matrix for V ⊗k K. On
the left hand side, we pass to the K-vector space generated by its entries. On
the right hand side, we first pass to the k-vector space generated by its entries,
and then extend scalars.

Conversely, there is a restriction of scalars where we view a K-vector space VK
as a k-vector space.

Lemma 9.2.7. Let K/k be a finite extension of subfields of C. Then the functor
⊗kK has a right adjoint

RK/k : (K,Q)−Vect→ (k,Q)−Vect

For W ∈ (K,Q)−Vect we have

P〈W 〉 = P〈RK/kW 〉 .

Proof. Choose a k-basis e1, . . . , en of K. We put

RK/k : (K,Q)−Vect→ (k,Q)−Vect , (WK ,WQ, φC) 7→ (WK ,W
[K:k]
Q , ψC) ,

where

ψC : WK ⊗k C = WK ⊗k K ⊗K C ∼= (WK ⊗K C)[K:k] → (WQ ⊗Q C)[K:k]

maps elements of the form w ⊗ ei to φC(w ⊗ ei) in the i-component.

It is easy to check the universal property. We describe the unit and the counit.
The natural map

V → RK/k(V ⊗k K)

is given on the component Vk by the natural inclusion Vk → Vk ⊗K. In order
to describe it on the Q-component, decompose 1 =

∑n
i=1 aiei in K and put

VQ → V nQ v 7→ (aiv)ni=1 .

The natural map
(RK/kW )⊗k K →W

is given on the K-component as the multiplication map

WK ⊗k K →WK
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and on the Q-component
Wn

Q →WQ

by summation.

This shows existence of the right adjoint. In particular, RK/kW is functorial
and independent of the choice of basis.

In order to compute periods, we have to choose bases. Fix a Q-basis x1, . . . , xn
of WQ. This also defines a Q-basis for Wn

Q in the obvious way. Fix a K-basis
y1, . . . , yn of WK . Multiplying by e1, . . . , en, we obtain a k-basis of WK . The
entries of the period matrix of W are the coefficients of φC(yj) in the basis xl
The entries of the period matrix of RK/kW are the coefficients of φC(eiyj) =
in the basis xl. Hence, the K-linear span of the former agrees with the k-linear
span of the latter.

Recall from Example 5.1.4 the object L(α) ∈ (k,Q)−Vect for a complex number
α ∈ C∗. It is given by the data (k,Q, α). It is invertible for the tensor structure.

Definition 9.2.8. Let L(α) ∈ (k,Q)−Vect be invertible. We call a pairing in
(k,Q)−Vect

V ×W → L(α)

perfect, if it is non-degenerate in the k- and Q-components. Equivalently, the
pairing induces an isomorphism

V ∼= W∨ ⊗ L(α)

where ·∨ denotes the dual in (k,Q)−Vect.

Lemma 9.2.9. Assume that

V ×W → L(α)

is a perfect pairing. Then

P〈V,W, V ∨,W∨〉⊕,⊗ ⊂ P〈V,W 〉⊕,⊗[α−1] .

Proof. The left hand side is the ring generated by P(V ), P(W ), P(V ∨) and
P(W∨). Hence we need to show that P(V ∨) and P(W∨) are contained in the
right hand side. This is true because W∨ ∼= V ⊗ L(α−1) and P(V ⊗ L(α−1) =
α−1P(V )

9.3 Periods of algebraic varieties

9.3.1 Definition

Recall from Definition 8.1.1 the directed graph of effective pairs Pairseff . Its
vertices are triples (X,D, j) with X a variety, D a closed subvariety and i an
integer. The edges are not of importance for the consideration of periods.
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Definition 9.3.1. Let (X,D, j) be a vertex of the diagram Pairseff .

1. The set of periods P(X,D, j) is the image of the period paring (see Defi-
nition and 5.3.1 and 5.5.4

per : Hj
dR(X,D)×Hsing

j (Xan, Dan)→ C .

2. In the same situation, the space of periods P〈X,D, j〉 is the Q-vector space
generated by P(X,D, j).

3. Let S be a set of vertices in pairs(k). We define the set of periods P(S) as
the union of the P(X,D, j) for (X,D, j) in S and the k-space of periods
P〈S〉 as the sum of the P〈X,D〉 for (X,D, j) ∈ S.

4. The effective period algebra Peff(k) of k is defined as P(S) for S the set of
(isomorphism classes of) all vertices (X,D, j).

5. The period algebra P(k) of k is defined as the set of complex numbers of
the form (2πi)nα with n ∈ Z and α ∈ Peff(k).

Remark 9.3.2. Note that P(X,D, j) is closed under multiplication by elements
in k but not under addition. However, Peff(k) is indeed an algebra by Corol-
lary 9.3.5. This means that P(k) is nothing but the localization

P(k) = Peff(k)

[
1

2πi

]
.

Passing to this localization is very natural from the point of view of motives: it
corresponds to passing from periods of effective motives to periods of all mixed
motives. For more details, see Chapter 10.

Example 9.3.3. Let X = Pnk . Then (Pnk , ∅, 2j) has period set (2πi)jk∗. The
easiest way to see this is by computing the motive of Pnk , e.g., in Lemma 8.3.6. It
is given by 1(−j). By compatibility with tensor product, it suffices to consider
the case j = 1 where the same motive can be defined from the pair (Gm, ∅, 1).
It has the period 2πi by Example 9.1.4. The factor k∗ appears because we may
multiply the basis vector in de Rham cohomology by a factor in k∗.

Recall from Theorem 5.3.3 and Theorem 5.5.6 that we have an explicit desciption
of the period isomorphism by integration.

Lemma 9.3.4. There are natural inclusions Peff
nc (k) ⊂ Peff(k) and Pnc(k) ⊂

P(k).

Proof. By definition, it suffices to consider the effective case. By Lemma 9.1.6,
the period in Peff

nc (k) only depends on the cohomology class. By Theorem 3.3.19,
the period in Peff(k) is defined by integration, i.e., by the formula in the defini-
tion of Peff

nc (k).

The converse inclusion is deeper, see Theorem 9.4.2.
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9.3.2 First properties

Recall from Definition 5.4.2 that there is a functor

H : Pairseff → (k,Q)−Vect

where the category (k,Q)−Vect was introduced in Section 5.1. By construction,
we have

P(X,D, j) = P(H(X,D, j)),

P〈X,D, j〉 = P〈H(X,D, j)〉,
Peff(k) = P(H(Pairseff)) .

This means that we can apply the abstract considerations of Section 5.1 to our
periods algebras.

Corollary 9.3.5. 1. Peff(k) and P(k) are k-subalgebras of C.

2. If K/k is an algebraic extension of subfields of K, then Peff(K) = Peff(k)
and P(K) = P(k).

3. If k is countable, then so is P(k).

Proof. It suffices to consider the effective case. The image of H is closed under
direct sums because direct sums are realized by disjoint unions of effective pairs.
As in the proof of Proposition 9.1.7, we can use (A1, {0, 1}, 1) in order to shift
the cohomological degree without changing the periods.

The image of H is also closed under tensor product. Hence its period set is a
k-algebra by Lemma 9.2.3.

Let K/k be finite. For (X,D, i) over k, we have the base change (XK , DK , i)
over K. By compatibility of the de Rham realization with base change (see
Lemma 3.2.14), we have

H(X,D, i)⊗K = H(XK , DK , j) .

By Lemma 9.2.6, this implies that the periods of (X,D, j) are contained in the
periods of the base change. Hence Peff(k) ⊂ Peff(K).

Conversely, if (Y,E,m) is defined over K, we may view it as defined over k
via the map SpecK → Speck. We write (Yk, Ek,m) in order to avoid confu-
sion. Note that Yk(C) consists of [K : k] many copies of Y (C). Moreover, by
Lemma 3.2.15, de Rham cohomology of Y/K agrees with de Rham cohomology
of Yk/k. Hence

H(Yk, Ek,m) = RK/kH(Y,E,m)

and their period sets agree by Lemma 9.2.7. Hence, we also have Peff(K) ⊂
Peff(k).



212 CHAPTER 9. PERIODS OF VARIETIES

Let k be countable. For each triple (X,D, j), the cohomologies Hj
dR(X) and

Hsing
j (Xan, Dan,Q) are countable. Hence, the image of period pairing is also

countable. There are only countably many isomorphism classes of pairs (X,D, j),
hence the set Peff(k) is countable.

9.4 The comparison theorem

We introduce two more variants of period algebras. Recall from Corollary 5.5.2
the functor

RΓ : K−(ZSm)→ D+
(k,Q)

and

Hi : K−(ZSm)→ (k,Q)−Vect .

Definition 9.4.1. • Let C(Sm) be the full abelian subcategory of (k,Q)−Vect
closed under subquotients generated by Hi(X•) for X• ∈ K−(ZSm). Let
PSm(k) = P(C(Sm)) be the algebra of periods of complexes of smooth va-
rieties.

• Let C(SmAff) be the full abelian subcategory of (k,Q)−Vect closed under
subquotients generated by Hi(X•) for X• ∈ K−(ZSmAff) with SmAff the
category of smooth affine varieties over k. Let PSmAff(k) = P(C(SmAff))
be the algebra of periods of complexes of smooth affine varieties.

Theorem 9.4.2. Let k ⊂ C be a subfield. Then all definitions of period algebras
given so far agree:

Peff(k) = PSm(k) = PSmAff(k)

and

P(k) = Pnc(k) .

Remark 9.4.3. This is a simple corollary of Theorem 8.2.20 and Corollary 8.2.21,
once we will have discussed the formal period algebra, see Corollary 12.1.9. How-
ever, the argument does not use the full force of Nori’s machine, hence we give
the argument directly. Note that the key input is the same as the key input
into Nori’s construction: the existence of good filtrations.

Remark 9.4.4. We do not know whether Peff(k) = Peff
nc (k). The concrete

definition of Peff
nc (k) only admits de Rham classes which are represented by a

global differential form. This is true for all classes in the affine case, but not in
general.

Proof. We are going to prove the identities on periods by showing that the
subcategories of (k,Q)−Vect appearing in their definitions are the same.

Let C(Pairseff) (respectively, C(nc)) be the full abelian subcategory closed un-
der subquotients generated by H(X,D, j) for (X,D) ∈ Pairseff (respectively
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Hd(X,D) with X smooth affine of dimension d and D a divisor with normal
crossings).

By definition
C(nc) ⊂ C(Pairseff) .

By the construction in Definition 3.3.6, we may compute any H(X,D, j) as
Hj(C•) with C• in C−(ZSm). Actually, the degree cohomology only depends
on a bounded piece of C•. Hence

C(Pairseff) ⊂ C(Sm) .

We next show that
C(Sm) ⊂ C(SmAff) .

Let X• ∈ C−(ZSm). By Lemma 8.2.9, there is a rigidified affine cover ŨX• of
X•. Let C• = C•(ŨX•) be the total complex of the associated complex of Čhech
complexes (see Definition 8.2.10). By construction, C• ∈ C−(ZSmAff). By the
Mayer-Vietoris property, we have

H(X•) = H(C•).

We claim that C(SmAff) ⊂ C(Pairseff). It suffices to consider bounded complexes
because the cohomology of a bounded above complex of varieties only depends
on a bounded quotient. Let X be smooth affine. Recall (see Proposition 8.2.2)
that a very good filtration on X is a sequence of subvarieties

F0X ⊂ F1X ⊂ . . . FnX = X

such that FjX r Fj−1X is smooth with FjX of dimension j or FjX = Fj−1X
of dimension less that j and cohomology of (FjX,Fj−1X) is concentrated in
degree j. The boundary maps for the triples Fj−2X ⊂ Fj−1X ⊂ FjX define a

complex R̃(F.X) in C(Pairseff)

· · · → Hj−1(Fj−1X,Fj−2X)→ Hj(FjX,Fj−1X)→ Hj+1(Fj+1X,FjX)→ . . .

whose cohomology agrees with H•(X).

Let X• ∈ Cb(ZSmAff). By Lemma 8.2.14, we can choose good filtration on all
Xn in a compatible way. The double complex R̃(F.X) has the same cohomology
as X•. By construction, it is a complex in C(Pairseff), hence the cohomology is
in C(Pairseff).

Hence, we have now established that

Peff
nc (k) ⊂ Peff(k) = PSm(k) = PSmAff(k) .

We refine the argument in order to show that PSmAff(k) ⊂ Pnc(k). By the
above computation, this will follow if periods of very good pairs are contained
in Pnc(k). We recall the construction of very good pairs (X,Y, n) by the direct
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proof of Nori’s Basic Lemma I in Section 2.5.1. We let X̃, D0 and D∞ be as
in Lemma 2.5.7. In particular, there is a proper surjective map X̃ \D∞ → X
and D0 \ D0 ∩ D∞ = π−1Y . Hence the periods of (X,Y, n) are the same as
the periods of (X̃ \D0, D∞ \D0 ∩D∞, n). The latter cohomology is Poincaré
dual to the cohomology of the pair (X ′, Y ′, n) = (X̃ \ D∞, D0 \ D0 ∩ D∞, n)
by Theorem 2.4.5. In particular, all three are very good pairs with cohomology
concentrated in degree n and free. Indeed, there is a natural pairing in C

Hd(X,Y )×Hd(X ′, Y ′)→ L((2πi)d).

This is shown by the same arguments as in the proof of Lemma 8.3.7 but with
the functor H instead of Hi

Nori. By Lemma 9.2.9, the periods of (X,Y ) agree up
to multiplication by (2πi)d with the periods of (X ′, Y ′). We are now in the situ-
ation where X ′ is smooth affine of dimension n and Y ′ is a divisor with normal
crossings. By Proposition 3.3.19, every de Rham cohomology class in degree n is
represented by a global differential form on X. Hence all cohomological periods
of (X ′, Y ′, n) are normal crossing periods in the sense of Definition 9.1.1.



Chapter 10

Categories of mixed motives

There are different candidates for the category of mixed motives over a field k
of characteristic zero. The category of Nori motives of Chapter 8 is one of them.
We review two more.

10.1 Geometric motives

We recall the definition of geometrical motives first introduced by Voevodsky,
see [VSF] Chapter 5.

As before let k ⊂ C be a field (most of the time suppressed in the notation).

Definition 10.1.1 ([VSF] Chap. 5, Sect. 2.1). The category of finite corre-
spondences SmCork has as objects smooth k-varieties and as morphisms from
X to Y the vector space of Q-linear combinations of integral correspondences
Γ ⊂ X × Y which are finite over X and dominant over a component of X.

The composition of Γ : X → Y and Γ′ : Y → Z is defined by push-forward of
the intersection of Γ × Z and X × Γ′ in X × Y × Z to X × Z. The identity
morphism is given by the diagonal. There is a natural covariant functor

Smk → SmCork

which maps a smooth variety to itself and a morphism to its graph.

The category SmCork is additive, hence we can consider its homotopy category
Kb(SmCork). The latter is triangulated.

Definition 10.1.2 ([VSF] Ch. 5, Defn. 2.1.1). The category of effective geomet-
rical motives DM eff

gm = DM eff
gm(k) is the pseudo-abelian hull of the localization

of Kb(SmCork) with respect to the thick subcategory generated by objects of
the form

[X × A1 → X]

215
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for all smooth varieties X and

[U ∩ V → U q V → X]

for all open covers U ∪ V = X for all smooth varieties X.

Remark 10.1.3. We think of DM eff
gm as the bounded derived category of the

conjectural abelian category of effective mixed motives.

We denote by
M : SmCork → DM eff

gm

the functor which views a variety as a complex concentrated in degree 0. By
[VSF] Ch. 5 Section 2.2, it extends (non-trivially!) to a functor on the category
of all k-varieties.

DM eff
gm is tensor triangulated such that

M(X)⊗M(Y ) = M(X × Y )

for all smooth varieties X and Y . The unit of the tensor structure is given by

Q(0) = M(Speck) .

The Tate motive Q(1) is defined by the equation

M(P1) = Q(0)⊕Q(1)[2] .

We write M(n) = M ⊗ Q(1)⊗n for n ≥ 0. By [VSF], Chap. 5 Section 2.2, the
functor

(n) : DM eff
gm → DM eff

gm

is fully faithful.

Definition 10.1.4. The category of geometrical motives DMgm is the stabi-
lization of DM eff

gm with respect to Q(1). Objects are of the form M(n) for n ∈ Z
with

HomDMgm
(M(n),M ′(n′)) = HomDMeff

gm
(M(n+N),M ′(n′ +N)) N � 0 .

Remark 10.1.5. We think of DMgm as the bounded derived category of the
conjectural abelian category of mixed motives.

The category DMgm is rigid by [VSF], Chap. 5 Section 2.2, i.e., every object
M has a strong dual M∨ such that

HomDMgm
(A⊗B,C) = HomDMgm

(A,B∨ ⊗ C)

A∨ ⊗B∨ = (A⊗B)∨

(A∨)∨ = A

for all objects A,B,C.
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Remark 10.1.6. Rigidity is a deep result. It depends on a moving lemma for
cycles and computations in Voevodsky’s category of motivic complexes.

Example 10.1.7. If X is smooth and projective of pure dimension d, then

M(X)∨ = M(X)(−d)[−2d] .

10.2 Absolute Hodge motives

The notion of absolute Hodge motives was introduced by Deligne ([DMOS]
Chapter II in the pure case), and independently by Jannsen in ([Ja1]). We follow
the presentation of Jannsen, also used in our own extension to the triangulated
setting ([Hu1]). We give a rough overview over the construction and refer to
the literature for full details.

We fix a subfield k ⊂ C and an algebraic closure k̄/k. Let Gk = Gal(k̄/k). Let
S be the set of embeddings σ : k → C and S̄ the set of embeddings σ̄ : k̄ → C.
Restriction induces S̄ → S.

Definition 10.2.1 ([Hu1] Defn. 11.1.1). Let MR = MR(k) be the additive
category of mixed realizations with objects given by the following data:

• a bifiltered k-vector space AdR;

• for each prime l, a filtered Ql-vector space Al with a continuous operation
of Gk;

• for each prime l and each σ ∈ S, a filtered Ql-vector space Aσ,l;

• for each σ ∈ S, a filtered Q-vector space Aσ;

• for each σ ∈ S, a filtered C-vector space Aσ,C;

• for each σ ∈ S, a filtered isomorphism

IdR,σ;AdR ⊗σ C→ Aσ,C ;

• for each σ ∈ S, a filtered isomorphism

Iσ,C : Aσ ⊗Q C→ Aσ,C ;

• for each σ ∈ S and each prime l, a filtered isomorphism

Iσ̄,l : Aσ ⊗Q Ql → Aσ,l ;

• for each prime l and each σ ∈ S, a filtered isomorphism

Il,σ : Al ⊗Q Ql → Aσ,l .
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These data are subject to the following conditions:

• For each σ, the tuple (Aσ, Aσ,C, Iσ,C) is a mixed Hodge structure;

• For each l, the filtration on Al is the filtration by weights: its graded pieces
grWn Al extends to a model of finite type over Z which is pointwise pure
of weight n in the sense of Deligne, i.e., for each closed point with residue
field κ, the operation of Frobenius has eigenvalues N(κ)n/2.

Morphisms of mixed realizations are morphisms of this data compatible with
all filtrations and comparison isomorphisms.

The above has already used the notion of a Hodge structure as introduced by
Deligne.

Definition 10.2.2 (Deligne [D4]). A mixed Hodge structure consists of the
following data:

• a finite dimensional filtered Q-vector space (VQ,W∗);

• a finite dimensional bifiltered C-vector space (VC,W∗, F ∗);

• a filtered isomorphism IC : (VQ,W∗)⊗ C→ (VC,W∗)

sucht that for all n ∈ Z the induced triple (grWn VQ, grWn VC, grWn I) satisfies

grWn VC =
⊕

p+q=n

F pgrWn VC ⊕ F qgrnVC

with complex conjugation taken with respect to the R-structure defined by
grWn VQ ⊗ R.

A Hodge structure is called pure of weight n if W∗ is concentrated in degree n.
It is called pure if it is direct sum of pure Hodge structures of different weights.

A morphism of Hodge structures are morphisms of this data compatible with
filtration and comparison isomorphism.

By [D4] this is an abelian category. All morphisms of Hodge structures are
automatically strictly compatible with filtrations. This implies immediately:

Proposition 10.2.3 ([Hu1] Lemma 11.1.2). The categoryMR is abelian. Ker-
nels and cokernels are computed componentwise.

The notation is suggestive. If X is a smooth variety, then there is a natural
mixed realization H = H∗MR(X) with

• HdR = H∗dR(X) algebraic de Rham cohomology as in Chapter 3 Sec-
tion 3.1;
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• Hl = H∗(Xk̄,Ql) the l-adic cohomology with its natural Galois operation;

• Hσ = H∗(X ×σ Spec(C),Q) singular cohomology;

• Hσ,C = Hσ ⊗ C and Hσ,l = Hσ ⊗Ql;

• IdR,σ is the period isomorphism of Definition 5.3.1 .

• Il,σ is induced by the comparison isomorphism between l-adic and singular
cohomology over C.

Remark 10.2.4. If we assume the Hodge or the Tate conjecture, then the
functor H∗MR is fully faithful on the category of Grothendieck motives (with
homological or, under these assumptions equivalently, numerical equivalence).
Hence it gives a linear algebra description of the conjectural abelian category of
pure motives.

Jannsen ([Ja1] Theorem 6.11.1) extends the definition to singular varieties. A
refined version of his construction is given in [Hu1]. We sum up its properties.

Definition 10.2.5 ([Hu2] Defn. 2.2.2). Let C+ be the category with objects
given by a tuple of complexes in the additive categories in Definition 10.2.1 with
filtered quasi-isomorphisms between them. The category of mixed realization
complexes CMR is the full subcategory of complexes with strict differentials
and cohomology objects inMR. Let DMR be the localization of the homotopy
category of CMR (see [Hu1]) with respect to quasi-iosmorphisms (see [Hu1]
4.17).

By construction, there are natural cohomology functors:

Hi : CMR →MR

factoring over DMR.

Remark 10.2.6. One should think of DMR as the derived category of MR,
even though this is false in a literal sense.

The main construction of [Hu1] is a functor from varieties to mixed realizations.

Theorem 10.2.7 ([Hu1] Section 11.2, [Hu2] Thm 2.3.1). Let Smk be the cate-
gory of smooth varieties over k. There is a natural additive functor

R̃MR : Smk → CMR ,

such that
Hi
MR(X) = Hi(R̃MR(X)) .

This allows to extend R̃ to the additive category Q[Smk] and even to the category
of complexes C−(Q[Smk]).
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Remark 10.2.8. There is a subtle technical point here. The category C+ is
additive. Taking the total complex of a complex in C+ gives again an object
of C+. That the subcategory CMR is respected is a non-trivial statement, see
[Hu2] Lemma 2.2.5.

Following Deligne and Jannsen, we can now define

Definition 10.2.9. An object M ∈ MR is called an effective absolute Hodge
motive if it is a subquotient of an object in the image of

H∗ ◦ R̃ : Cb(Q[Smk])→MR .

Let MMeff
AH = MMeff

AH(k) ⊂ MR be the category of all effective absolute
Hodge motives over k. Let MMAH = MMAH(k) ⊂ MR be the full abelian
tensor subcategory generated by MMeff and the dual of Q(−1) = H2

MR(P1).
Objects in MMAH are called absolute Hodge motives over k.

Remark 10.2.10. The rationale behind this definition lies in Remark 10.2.4.
Every mixed motive is supposed to be an iterated extension of pure motives.
The latter are conjecturally fully described by their mixed realization. Hence,
it remains to specify which extensions of pure motives are mixed motives.

Jannsen ([Ja1] Definition 4.1) does not use complexes of varieties but only single
smooth varietes. It is not clear whether the two definitions agree, see also the
discussion in [Hu1] Section 22.3. On the other hand, in [Hu1] Definition 22.13
the varieties were allowed to be singular. This is equivalent to the above by the
construction in [Hu3] Lemma B.5.3 where every complex of varieties is replaced
by complex of smooth varieties with the same cohomology.

Recall the abelian category (k,Q)−Vect from Definition 5.1.1.

Fix ι : k → C. The projection

A 7→ (AdR, Aι, I
−1
ι,CIdR,ι)

defines a faithful functor

MR→ (k,Q)−Vect .

Recall the triangulated category D+
(k,Q) from Definition 5.2.1. The projection

K 7→ (KdR,Kι,Kι,C, IdR,ι, Iι,C)

defines a functor
CMR → C+

(k,Q)

which induces also a triangulated functor

forget : DMR → D+
(k,Q) .
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Lemma 10.2.11. There is a natural transformation of functors

K−(Z[Smk])→ D+
(k,Q)

between forget ◦RMR and RΓ.

Proof. This is true by construction of the dR- and σ-components of RMR in
[Hu1]. In fact, the definition of RΓ is a simplified version of the construction
given there. (They are not identical though because MR takes the Hodge and
weight filtration into account.)

10.3 Comparison functors

We now have three candidates for categories of mixed motives: the triangulated
categories of geometric motives and the abelian categories of absolute Hodge
motives and of Nori motives (see Chapter 8).

Theorem 10.3.1. The functor RMR factors via a chain of functors

Cb(Q[Smk])→ DMgm → Db(MMNori)→ Db(MMAH) ⊂ DMR .

The proof will be given at the end of the section. The argument is a bit involved.

Theorem 10.3.2 ([Hu2], [Hu3]). There is a tensor triangulated functor

RMR : DMgm → DMR

such that for smooth X

HiRMR(X) = H∗MR(X) .

For all M ∈ DMgm, the objects HiRMR(M) are absolute Hodge motives.

Proof. This is the main result of [Hu2]. Note that there is a Corrigendum [Hu3].
The second assertion is [Hu2] Theorem 2.3.6.

Proposition 10.3.3. Let k ⊂ C.

1. There is a faithful tensor functor

f :MMNori →MMAH

such that the functor RMR : Cb(Q[Smk])→ DMR factors via Db(MMNori)→
Db(MMAH).

2. Every object in MMAH is a subquotient of an object in the image of
MMNori.
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Proof. We want to use the universal property of Nori motives. Let ι : k ⊂ C
be the fixed embedding. The assignment A 7→ Aι (see Definition 10.2.1) is a
fibre functor on the neutral Tannakian category MMAH. We denote it H∗sing

because it agrees with singular cohomology of X ⊗k C on A = H∗MR(X).

We need to verify that the diagram Pairseff of effective pairs from Chap. 8 can
be represented in MMAH in a manner compatible with singular cohomology.
More explicitly, let X be a variety and Y ⊂ X a subvariety. Then [Y → X] is
an object of DMgm. Hence for every i ≥ 0 there is

Hi
MR(X,Y ) = HiRMR(X,Y ) ∈MMAH .

By construction, we have

H∗singH
i
MR(X,Y ) = Hi

sing(X(C), Y (C)) .

The edges in Pairseff are also induced from morphisms in DMgm. Moreover, the

representation is compatible with the multiplicative structure on Goodeff .

By the universal property of Theorem 8.1.9, this yields a functor MMNori →
MR. It is faithful, exact and a tensor functor. We claim that it factors via
MMAH. AsMMAH is closed under subquotients inMR, it is enough to check
this on generators. By Corollary 8.2.21, the category MMeff

Nori is generated by
objects of the form Hi

Nori(X,Y ) for X = W \ W∞ with X smooth and Y a
divisor with normal crossings. (In fact, it is generated by very good pairs; blow
up the singularities without changing the motive by excision.) Let Y• be the
Čech nerve of the cover of Y by its normalization. This is the simplicial scheme
described in detail in Section 3.3.6. Let

C• = Cone(Y• → X)[−1] ∈ C−(Q[Smk]).

Then Hi
MR(X,Y ) = HiRMR(C•) is an absolute Hodge motive.

Consider X∗ ∈ Cb(Q[Smk]). We apply Proposition 8.2.16 to A = MMNori

and A = MMAH. Hence, there is RNori(X∗) ∈ Db(MMNori) such that the
underlying vector space of HiRNori(X∗) is singular cohomology. We claim that
there is a natural morphism

f : RNori(X∗)→ RMR(X∗).

It will automatically be a quasi-isomorphism because both compute singular
cohomology of X∗.

We continue as in the proof of Proposition 8.2.16. We choose a rigidified affine
cover ŨX∗ of X∗ and a very good filtration on the cover. This induces a very
good filtration on TotC∗(ŨX∗). This induces a double complex of very good
pairs. Each very good pair may in turn be seen as complex with two entries.
We apply R̃MR to this triple complex and take the associated simple complex.
On the one hand, the result is quasi-isomorphic to RMR(X∗) because this is
true in singular cohomology. On the other hand, it agrees with fRNori(X∗), also
by construction.
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Finally, we claim that every M ∈ MMAH it is subquotient of the image of a
Nori motive. By definition of absolute Hodge motives it suffices to consider M of
the form HiRMR(X∗) for X∗ ∈ Cb(Q[Smk]). We have seen that HiRMR(X∗) =
Hif(RNori(X∗)), hence M is in the image of f .

Remark 10.3.4. It is very far from clear whether the functor is also full or
essentially surjective. The two properties are related because every object in
MMAH is a subquotient of an object in the image of MMNori.

Theorem 10.3.5. There is a functor

DMgm → Db(MMNori)

such the composition

Cb(Q[Smk])→ DMgm → Db(MMNori)

agrees with the functor RNori of Proposition 8.2.16.

Proof. This is a result of Harrer, see [Ha].

Proof of Theorem 10.3.1. We put together Theorem 10.3.5 and Theorem 10.3.3.

10.4 Weights and Nori motives

Let k ⊂ C be a subfield. We are now going to explore the connection between
Grothendieck motives and pure Nori motives and weights.

Definition 10.4.1. Let n ∈ N0. An object M ∈ MMeff
Nori is called pure of

weight n if it is a subquotient of a motive of the form Hn
Nori(Y ) with Y smooth

and projective.

A motive is called pure if it is a direct sum of pure motives of some weights.

In particular, H∗Nori(Y ) is pure if Y is smooth and projective.

Definition 10.4.2. 1. The category of effective Chow motives CHMeff is
given by the pseudo-abelian hull of the category with objects given by
smooth, projective varieties and morphism form [X] to [Y ] given by the
Chow group ChdimX(Y ×X) of algebraic cycles of codimension dimY up
to rational equivalence. The category of Chow motives CHM is given by
the localization of the category of effective Chow motives with respect to
the Lefschetz motive L which is the direct complement of [Speck] in P1.

2. The category of effective Grothendieck motives GRMeff is given by the
pseudo-abelian hull of the category with objects given by smooth, projec-
tive varieties and morphism form [X] to [Y ] given by the group AdimX(Y ×
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X) of algebraic cycles of codimension dimY up to homological equiva-
lence with respect to singular cohomology. The category of Grothendieck
motives GRM is given by the localization of the category of effective
Grothendieck motives with respect to the Lefschetz motive L.

In both cases, the composition is given by composition of correspondences.

Remark 10.4.3. There is a contravariant functor X 7→ [X] from the category
of smooth, projective varieties over k to Chow or Grothendieck motives. It maps
a morphism f : Y → X to the transpose of its graph Γf . The dimension of Γf is
the same as the dimension of Y , hence it has codimension dimX in X ×Y . On
the other hand, singular cohomology defines a well-defined covariant functor on
Chow and Grothendieck motives. Note that it is not a tensor functor due to
the signs in the Künneth formula.

This normalization is the original one, see e.g., [Man]. In recent years, it has
also become common to use the covariant normalization instead, in particular
in the case of Chow motives.

The category of Grothendieck motives is conjectured to be abelian and semi-
simple. Jannsen has shown in [Ja2] that this is the case if and only if homological
equivalence agrees with numerical equivalence.

Proposition 10.4.4. Singular cohomology on GRM factors naturally via a
faithful functor

GRM→MMNori

whose image is contained in the category of pure Nori motives.

If the Hodge conjecture holds, then the inclusion is an equivalence of semi-simple
abelian categories.

Proof. The opposite category of CHM is a full subcategory of the category of
geometric motives DMgm by [VSF, Chapter 5, Proposition 2.1.4]. Restricting
the contravariant functor

DMgm → Db(MMNori)
⊕
Hi−−−−→MMNori

to the subcategory yields a covariant functor

CHM→MMNori .

By definition, its image is contained in the category of pure Nori motives. Also
by definition, a morphism in CHM is zero in GRM if it is zero in singular co-
homology, and hence in MMNori. Therefore, the functor automatically factors
via GRM. The induced functor then is faithful.

We now assume the Hodge conjecture. By [Ja1, Lemma 5.5], this implies that
absolute Hodge cycles agree with cycles up to homological equivalence. Equiv-
alently, the functor GRM → MR to mixed realizations is fully faithful. As it
factors via MMNori, the inclusion GRM→MMNori has to be full as well.
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The endomorphisms of [Y ] for Y smooth and projective can be computed in
MR. Hence it is semi-simple because H∗MR(Y ) is polarizable, see [Hu1, Propo-
sition 21.1.2 and 21.2.3]. This implies that its subquotients are the same as
its direct summands. Hence, the functor from GRM to pure Nori motives is
essentially surjective.

Proposition 10.4.5. Every Nori motive M ∈MMNori carries a unique bounded
increasing filtration (WnM)n∈Z inducing the weight filtration in MR. Every
morphism of Nori motives is strictly compatible with the filtration.

Proof. As the functor MMNori → MR is faithful and exact, the filtration on
M ∈ MMNori is indeed uniquely determined by its image in M . Strictness of
morphisms follows from the same property in MR.

We turn to existence. Bondarko [Bo] constructed what he calls a weight struc-
ture on DMgm. It induces a weight filtration on the values of any cohomological
functor. We apply this to the functor to MMNori. In particular, the weight
filtration onHn

Nori(X,Y ) is motivic for every vertex of Pairseff . The weight filtra-
tion on subquotients is the induced filtration, hence also motivic. As any object
inMMeff

Nori is a subquotient of some Hn
Nori(X,Y ), this finishes the proof in the

effective case. The non-effective case follows immediately by localization.

10.5 Periods of motives

Recall the chain of functors

DMgm → Db(MMNori)→ Db(MMAH)→ Db((k,Q)−Vect)

constructed in the last section.

Definition 10.5.1. 1. Let C(gm) be the full subcategory of (k,Q)−Vect
closed under subquotients which is generated by H(M) for M ∈ DMgm.
Let Pgm = P(C(gm))) be the period algebra of geometric motives.

2. Let C(Nori) be the full subcategory of (k,Q)−Vect closed under subquo-
tients which is generated by H(M) for M ∈ MMNori. Let PNori(k) =
P(C(Nori)) be the period algebra of Nori motives.

3. Let C(AH) be the full subcategory of (k,Q)−Vect closed under subquo-
tients which is generated by H(M) for M ∈ MMAH. Let PAH(k) =
P(C(AH)) be the period algebra of absolute Hodge motives.

Proposition 10.5.2. We have

P(k) = Pgm(k) = PNori(k) = PAH(k) .
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Proof. From the functors between categories of motives, we have inclusions of
subcategories of (k,Q)−Vect:

C(gm) ⊂ C(Nori) ⊂ C(AH) .

Moreover, the category C(Smk) of Definition 9.4.1 is contained in C(gm). By
definition, we also have C(AH) = C(Smk). Hence, all categories are equal.
Finally recall, that P(k) = P(Smk) by Theorem 9.4.2.

This allows easily to translate information on motives into information on peri-
ods. Here is an example:

Corollary 10.5.3. Let X be an algebraic space, or, more generally, a Deligne-
Mumford stack over k. Then the periods of X are contained in P(k).

Proof. Every Deligne-Mumford stack defines a geometric motive by work of
Choudhury [Ch]. Their periods are therefore contained in the periods of geo-
metric motives.



Chapter 11

Kontsevich-Zagier Periods

This chapter follows closely the Diploma thesis of Benjamin Friedrich, see [Fr].
The results are due to him.

We work over k = Q or equivalently Q throughout. Denote the integral closure
of Q in R by Q̃. Note that Q̃ is a field.

In this section, we sometimes use X0, ω0 etc. to denote objects over Q̃ and X,
ω etc. for objects over C.

11.1 Definition

Recall the notion of a Q̃-semialgebraic set from Definition 2.6.1.

Definition 11.1.1. Let

• G ⊆ Rn be an oriented compact Q̃-semi-algebraic set which is equidimen-
sional of dimension d, and

• ω a rational differential d-form on Rn having coefficients in Q, which does
not have poles on G.

Then we call the complex number
∫
G
ω a naive period and denote the set of all

naive periods for all G and ω by Pnv.

This set Pnv enjoys additional structure.

Proposition 11.1.2. The set Pnv is a unital Q-algebra.

Proof. Multiplicative structure: In order to show that Pnv is closed under mul-
tiplication, we write

pi : Rn1 × Rn2 −→ Rni , i = 1, 2

227
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for the natural projections and obtain
(∫

G1

ω1

)
·
(∫

G2

ω2

)
=

∫

G1×G2

p∗1ω1 ∧ p∗2ω2 ∈ Pnv

by the Fubini formula.

Multiplication by Q: We find every a ∈ Q as naive period with G = [0, 1] ⊂ R
with respect to the differential form adt. In particular, 1 ∈ Pnv.

Combining the last two steps, we can shift the dimension of the set G in the
definition of a period number. Let α =

∫
G
ω. Represent 1 =

∫
[0,1]

dt and

1α =
∫
G×[0,1]

ω ∧ dt.
Additive structure: Let

∫
G1
ω1 and

∫
G2
ω2 ∈ Pnv be periods with domains of

integration G1 ⊆ Rn1 and G2 ⊆ Rn2 . Using the dimension shift described
above, we may assume without loss of generality that dimG1 = dimG2. Using
the inclusions

i1 : Rn1 ∼= Rn1 × {1/2} × {0} ⊂ Rn1 × R× Rn2 and

i2 : Rn2 ∼= {0} × {−1/2} × Rn2 ⊂ Rn1 × R× Rn2 ,

we can write i1(G1) ∪ i2(G2) for the disjoint union of G1 and G2. With the
projections pj : Rn1 ×R×Rn2 → Rnj for j = 1, 2, we can lift ωj on Rnj to p∗jωj
on Rn1 × R× Rn2 . For q1, q2 ∈ Q we get

q1

∫

G1

ω1+q2

∫

G2

ω2 =

∫

i1(G1)∪i2(G2)

q1 ·(1/2+t)·p∗1ω1+q2 ·(1/2−t)·p∗2ω2 ∈ Pnv,

where t is the coordinate of the “middle” factor R of Rn1×R×Rn2 . This shows
that Pnv is a Q-vector space.

The Definition 11.1.1 was inspired by the one given in [KZ, p. 772]:

Definition 11.1.3 (Kontsevich-Zagier). A Kontsevich-Zagier period is a com-
plex number whose real and imaginary part are values of absolutely convergent
integrals of rational functions with rational coefficients, over domains in Rn
given by polynomial inequalities with rational coefficients.

We will show at the end of this section, that Kontsevich-Zagier periods agree
with naive periods in definition 11.1.1, see Theorem 11.2.4.

Examples of naive periods are

•
∫ 2

1

dt

t
= log(2),

•
∫

x2+y2≤ 1

dx dy = π and
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•
∫

G

dt

s
=

∫ 2

1

dt√
t3 + 1

= elliptic integrals,

for G := {(t, s) ∈ R2 | 1 ≤ t ≤ 2, 0 ≤ s, s2 =
t3 + 1}.

As a problematic example, we consider the following identity.

Proposition 11.1.4 (cf. [K1, p. 62]). We have

∫

0≤ t1≤ t2≤ 1

dt1 ∧ dt2
(1− t1) t2

= ζ(2). (11.1)

Proof. This equality follows by a simple power series manipulation: For 0 ≤
t2 < 1, we have ∫ t2

0

dt1
1− t1

= − log(1− t2) =

∞∑

n=1

tn2
n
.

Let ε > 0. The power series
∑∞
n=1

tn−1
2

n converges uniformly for 0 ≤ t2 ≤ 1 − ε
and we get

∫

0≤ t1≤ t2≤ 1−ε

dt1 dt2
(1− t1) t2

=

∫ 1−ε

0

∞∑

n=1

tn−1
2

n
dt2 =

∞∑

n=1

(1− ε)n
n2

.

Applying Abel’s Theorem [Fi, XII, 438, 6◦, p. 411] at (∗), using
∑∞
n=1

1
n3 <∞

gives us

∫

0≤ t1≤ t2≤ 1

dt1 dt2
(1− t1) t2

= lim
ε→0

∞∑

n=1

(1− ε)n
n2

(∗)
=
∞∑

n=1

1

n2
= ζ(2).

Equation (11.1) is not a valid representation of ζ(2) as an integral for a naive
period in our sense, because the pole locus {t1 = 1} ∪ {t2 = 0} of dt1 ∧ dt2

(1−t1) t2
is

not disjoint with the domain of integration {0 ≤ t1 ≤ t2 ≤ 1}. But (11.1) gives
a valid period integral according to the original definition Kontsevich-Zagier —
see Definition 11.1.3. We will show in Example 14.1 how to circumvent directly
this difficulty by a blow-up. The general blow-up procedure which makes this
possible is used in the proof of Theorem 11.2.4. This argument shows that
Kontsevich-Zagier periods and naive periods are the same.

11.2 Comparison of Definitions of Periods

Theorem 11.2.1 (Friedrich [Fr]).

Peff(Q) = Peff
nc (Q) = Peff

nv and P(Q) = Pnc(Q) = Pnv,
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The proof will take the rest of this section.

Lemma 11.2.2.
Peff

nc (Q) ⊆ Peff
nv .

Proof. By definition its elements of Peff
nc (Q) are of the form

∫
γ
ω where γ ∈

Hsing
d (Xan, Dan,Q) with X0 a smooth variety of dimension d and D0 a divisor

with normal crossings and ω0 ∈ Γ(X0,Ω
d
X0

).

We choose an embedding
X0 ⊆ PnQ

(x0:...:xn)

and equip PnQ with coordinates as indicated. Lemma 2.6.5 provides us with a
map

ψ : CPn ↪→ RN

such that Dan and CPn become Q̃-semi-algebraic subsets of RN . Then, by
Proposition 2.6.8, the cohomology class ψ∗γ has a representative which is a
rational linear combination of singular simplices Γi, each of which is Q̃-semi-
algebraic.

As Peff
nv is a Q-algebra by Proposition 11.1.2, it suffices and to prove

∫

ψ−1(ImΓi)

ω ∈ Peff
nv .

We drop the index i from now. Set G = ImΓ. The claim will be clear as soon
as we find a rational differential form ω′ on RN such that ψ∗ω′ = ω, since then

∫

ψ−1(G)

ω =

∫

ψ−1(G)

ψ∗ω′ =

∫

Gi

ω′ ∈ Peff
nv .

After eventually applying a barycentric subdivision to Γ, we may assume w.l.o.g.
that there exists a hyperplane in CPn, say {x0 = 0}, which does not meet
ψ−1(G). Furthermore, we may assume that ψ−1(G) lies entirely in Uan for U0

an open affine subset of D0 ∩ {x0 6= 0}. (As usual, Uan denotes the complex
analytic space associated to the base change to C of U .) The restriction of ω0 to
the open affine subset can be represented in the form (cf. [Ha2, II.8.4A, II.8.2.1,
II.8.2A])

∑

|J|=d
fJ(x0, . . . , xn) d

(
xj1
x0

)
∧ . . . ∧ d

(
xjd
x0

)

with fJ(x1, · · · , xn) ∈ Q(x0, · · · , xn) being homogenous of degree zero. This
expression defines a rational differential form on all of PnQ with coefficients in Q
and it does not have poles on ψ−1(Gi).

We construct the rational differential form ω′ on RN with coefficients in Q(i)
as follows

ω′I :=
∑

|J|=d
fJ

(
1,
y10 + iz10

y00 + iz00
, · · · , yn0 + izn0

y00 + iz00

)
d

(
yj10 + izj10

y00 + iz00

)
∧ . . .∧ d

(
yjd0 + izjd0

y00 + iz00

)
,
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where we have used the notation from the proof of Lemma 2.6.5. Using the
explicit form of ψ given in this proof, we obtain

ψ∗fJ

(
1,
y10 + iz10

y00 + iz00
, · · · , yn0 + izn0

y00 + iz00

)
= fJ

(
x0x0

|x0|2
,
x1x0

|x0|2
, . . . ,

xnx0

|x0|2
)

= fJ(x0, x1, . . . , xn)

and

ψ∗d

(
yj0 + izj0
y00 + iz00

)
= d

(
xjx0

|x0|2
)

= d

(
xj
x0

)
.

This shows that ψ∗ω′ = ω and we are done.

Lemma 11.2.3.
Peff

nv ⊆ Peff
nc (Q) .

Proof. We will use objects over various base fields. We will use subscripts to
indicate which base field is used: A 0 for Q̃, a 1 for Q, a subscript R for R and
none for C. Furthermore, we fix an embedding Q ⊂ C.

Let
∫
G
ωR ∈ Pnv be a näıve period with

• G ⊂ Rn an oriented Q̃-semi-algebraic set, equidimensional of dimension
d, and

• ωR a rational differential d-form on Rn with coefficients in Q, which does
not have poles on G.

The Q̃-semi-algebraic set G ⊂ Rn is given by polynomial inequalities and equal-
ities. By omitting the inequalities but keeping the equalities in the definition
of G, we see that G is supported on (the set of R-valued points of) a variety

YR ⊆ AnR of same dimension d. This variety YR is already defined over Q̃

YR = Y0 ×Q̃ R

for a variety Y0 ⊆ AnQ̃ over Q̃. Similarly, the boundary ∂G of G is supported on

a variety ER, likewise defined over Q̃

ER = E0 ×Q̃ R.

Note that E0 is a divisor on Y0. By eventually enlarging E0, we may assume
w.l.o.g. that E0 contains the singular locus of Y0. In order to obtain an abstract
period, we need smooth varieties. The resolution of singularities according to
Hironaka [Hi1] provides us with a Cartesian square

Ẽ0 ⊆ Ỹ0

↓ ↓ π0

E0 ⊆ Y0

(11.2)

where
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• Ỹ0 is smooth and quasi-projective,

• π0 is proper, surjective and birational, and

• Ẽ0 is a divisor with normal crossings.

In fact, π0 is an isomorphism away from Ẽ0 since the singular locus of Y0 is
contained in E0

π0|Ũ0
: Ũ0

∼−→ U0 (11.3)

with Ũ0 := Ỹ0 \ Ẽ0 and U0 := Y0 \ E0.

We apply the analytification functor to the base change to C of the map π0 :
Ỹ0 → Y0 and obtain a projection

πan : Ỹ an → Y an.

We want to show that the “strict transform” of G

G̃ := π−1
an (G \ Ean) ⊆ Ỹ an

can be triangulated. Since CPn is the projective closure of Cn, we have Cn ⊂
CPn and thus get an embedding

Y an ⊆ Cn ⊂ CPn.

We also choose an embedding

Ỹ an ⊆ CPm

for some m ∈ N. Using Lemma 2.6.5, we may consider both Y an and Ỹ an as
Q̃-semi-algebraic sets via some maps

ψ : Y an ⊂ CPn ↪→ RN , and

ψ̃ : Ỹ an ⊆ CPm ↪→ RM .

In this setting, the induced projection

πan : Ỹ an −→ Y an

becomes a Q̃-semi-algebraic map. The composition of ψ with the inclusion
G ⊆ Y an is a Q̃-semi-algebraic map; hence G ⊂ RN is Q̃-semi-algebraic by Fact
2.6.4. Since Ean is also Q̃-semi-algebraic via ψ, we find that G \Ean is Q̃-semi-

algebraic. Again by Fact 2.6.4, π−1
an (G \ Ean) ⊂ RM is Q̃-semi-algebraic. Thus

G̃ ⊂ RM , being the closure of a Q̃-semi-algebraic set, is Q̃-semi-algebraic. From
Proposition 2.6.8, we see that G̃ can be triangulated

G̃ = ∪j4j , (11.4)

where the 4j are (homeomorphic images of) d-dimensional simplices.
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Our next aim is to define an algebraic differential form ω̃1 replacing ωR. We
first make a base change in (11.2) from Q̃ to Q and obtain

Ẽ1 ⊆ Ỹ1

↓ ↓ π1

E1 ⊆ Y1 .

The differential d-form ωR can be written as

ωR =
∑

|J|=d
fJ(x1, . . . , xn) dxj1 ∧ . . . ∧ dxjd , (11.5)

where x1, . . . , xn are coordinates of Rn and fJ ∈ Q(x1, . . . , xn). We can use
equation (11.5) to define a differential form ω1 on AnQ

ωR =
∑

|J|=d
fJ(x1, . . . , xn) dxj1 ∧ . . . ∧ dxjd ,

where now x1, . . . , xn denote coordinates of AnQ. The pole locus of ω1 gives us

a variety Z1 ⊂ AnQ. We set

X1 := Y1 \ Z1, D1 := E1 \ Z1, and

X̃1 := π−1
1 (X1), D̃1 := π−1

1 (D1).

The restriction ω1|X1
of ω1 to X1 is a (regular) algebraic differential form on

X1; the pullback
ω̃1 := π∗1(ω1|X1

)

is an algebraic differential form on X̃1.

We consider the complex analytic spaces X̃an, D̃an, Zan associated to the base
change to C of X̃1, D̃1, Z1. Since ωR has no poles on G, we have G ∩ Zan = ∅;
hence G̃ ∩ π−1

an (Zan) = ∅. This shows G̃ ⊆ X̃ = Ỹ \ π−1
an (Zan).

Since G is oriented, so is π−1
an (G \ Ean), because πan is an isomorphism away

from Ean. Every d-simplex 4j in (11.4) intersects π−1
an (G \ Ean) in a dense

open subset, hence inherits an orientation. As in the proof of Proposition 2.6.8,
we choose orientation-preserving homeomorphisms from the standard d-simplex
4std
d to 4j

σj : 4std
d −→ 4j .

These maps sum up to a singular chain

Γ̃ = ⊕j σj ∈ Csing
d (X̃an;Q).

It might happen that the boundary of the singular chain Γ̃ is not supported on
∂G̃. Nevertheless, it will always be supported on D̃an: The set π−1

an (G \Ean) is
oriented and therefore the boundary components of ∂4j that do not belong to
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∂G̃ cancel if they have non-zero intersection with π−1
an (G \ Ean). Thus Γ̃ gives

rise to a singular homology class

γ̃ ∈ Hsing
d (X̃an, D̃an;Q).

We denote the base change to C of ω1 and ω̃1 by ω and ω̃, respectively. Now

∫

G

ωR =

∫

G

ω =

∫

G∩Uan

ω

(11.3)
=

∫

π−1(G∩Uan)

π∗ω =

∫

G̃∩Ũan

ω̃

=

∫

G̃

ω̃ =

∫

Γ̃

ω̃ =

∫

γ̃

ω̃ ∈ Peff
nc (Q)

is a period for the quadruple (X̃1, D̃1, ω̃1, γ̃).

Proof of Theorem 11.2.1. It suffices to consider the effective case. By Theorem
9.4.2, we have Peff(Q) = Peff

nc (Q). By Corollary 9.3.5, this is also the same
as Peff(Q). The result now follows by combining Lemma 11.2.2 and Lemma
11.2.3.

Now, we show that naive periods and Kontsevich-Zagier periods coincide:

Theorem 11.2.4.

Peff
KZ = Peff

nv = Peff , PKZ = Pnv = P.

Proof. We will use that Peff
nv = Peff

nc = Peff (see Theorem 11.2.1) and work with
effective periods only. We partially follow ideas of Belkale and Brosnan [BB].
First we show that Peff

KZ ⊆ Peff
nc : Assume we have given a period through an

n-dimensional absolutely convergent integral
∫

∆
ω, where ω = f(x1,...,xn)

g(x1,...,xn) is a

rational function defined over Q and ∆ a Q-semialgebraic region defined by in-
equalities hi ≥ 0. This defines a rational differential form ω on An. We can
extend ω to a rational differential form on Pn (also denoted by ω) by adding
a homogenous variable x0. The closure ∆̄ of ∆ in Pn(R) is a compact semial-
gebraic region, defined by Hi ≥ 0 for some homogenous polynomials Hi. Let
H =

∏
iHi. Now we use resolution of singularities and obtain a blow-up

σ : X → Pn,

such that we have the following properties:
1. σ is an isomorphism outside the union of the pole locus of ω and the zero
sets of all polynomials Hi.
2. The strict transform of the zero locus of H is a normal crossing divisor in X.
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3. Near each point P ∈ X, there are local algebraic coordinates x1, ..., xn and
integers ej , fj for each j = 1, ..., n, such that

H ◦ σ = unit1 ×
n∏

j=1

x
ej
j , σ

∗ω = unit2 ×
n∏

j=1

x
fj
j dx1 ∧ · · · ∧ dxn.

Let ∆̃ be the analytic closure of ∆ ∩ U , where U is the set where σ is an
isomorphism. Then ∆̃ is compact, since it is a closed subset of the compact set
σ−1(∆̄). The absolute convergence of

∫
∆
ω implies the local convergence of σ∗ω

over regions {0 < xi < ε} at point P ∈ ∆̃. This is only possible, if all fj ≥ 0.
Therefore, σ∗ω is regular (holomorphic) at the point P , and hence on the whole
of ∆̃.

Now we show that Peff
nc ⊆ Peff

KZ: This argument is indicated in Kontsevich-Zagier
[KZ, pg. 773]. First, note that naive periods in Peff

KZ can also be defined with Q̄-
coefficients and the polynomials involved can be replaced by algebraic functions
without changing the set Peff

KZ. A proof is not given in loc. cit., but this can be
achieved by using auxiliary variables and minimal polynomials as in the proof
that

√
2 ∈ Peff

KZ. Assuming this, we now assume that we have given a smooth
algebraic variety X of dimension n, a regular differential from ω of top degree
(hence closed), a normal crossing divisor D ⊂ X, all this data defined over Q,
and a singular chain γ with boundary ∂γ ⊂ D. Now we can use the method of
Lemma 11.2.2 and we can write

∫

γ

ω =

∫

G

ω̃,

where G is a Q̃-semialgebraic subset of the required form, i.e., given by inequal-
ities, and ω̃ is a differential form with algebraic coefficients.
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Chapter 12

Formal periods and the
period conjecture

Following Kontsevich (see [K1]), we now introduce another algebra P̃(k) of for-
mal periods from the same data we have used in order to define the actual period
algebra of a field in Chapter 9. It comes with an obvious surjective map to P(k).

The first aim of the chapter is to give a conceptual interpretation of P̃(k) as
the ring of algebraic functions on the torsor between two fibre functors on Nori
motives: singular cohomomology and algebraic de Rham cohomology.

We then discuss the period conjecture from this point of view.

12.1 Formal periods and Nori motives

Definition 12.1.1. Let k ⊂ C be a subfield. The space of effective formal pe-
riods P̃eff(k) is defined as the Q-vector space generated by symbols (X,D, ω, γ),
where X is an algebraic variety over k, D ⊂ X a subvariety, ω ∈ Hd

dR(X,D),
γ ∈ Hd(X(C), D(C),Q) with relations

1. linearity in ω and γ;

2. for every f : X → X ′ with f(D) ⊂ D′

(X,D, f∗ω′, γ) = (X ′, D′, ω′, f∗γ)

3. for every triple Z ⊂ Y ⊂ X

(Y,Z, ω, ∂γ) = (X,Y, δω, γ)

with ∂ the connecting morphism for relative singular homology and δ the
connecting morphism for relative de Rham cohomology.

237
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We write [X,D, ω, γ] for the image of the generator. The vector space P̃eff(k) is
turned into an algebra via

(X,D, ω, γ)(X ′, D′, ω′, γ′) = (X ×X ′, D ×X ′ ∪D′ ×X,ω ∧ ω′, γ × γ′) .

The space of formal periods is the localization P̃(k) of P̃eff(k) with respect to
[Gm, {1}, dXX , S1], where S1 is the unit circle in C∗.

Remark 12.1.2. This is modeled after Kontsevich [K1] Definition 20, but does
not agree with it. We will discuss this point in more detail in Remark 12.1.7.

Theorem 12.1.3. (Nori) Let k ⊂ C be subfield. Let Gmot(k) be the Tan-
nakian dual of the category of Nori motives with Q-coefficents (sic!), see Defini-
tion 8.1.6. Let X = SpecP̃(k). Then X is naturally isomorphic to the torsor of
isomorphisms between singular cohomology and algebraic de Rham cohomology
on Nori motives. It has a natural torsor structure under the base change of
Gmot(k,Q) to k (in the fpqc-topology on the category of k-schemes):

X ×k Gmot(k,Q)k → X.

Remark 12.1.4. This was first formulated in the case k = Q without proof by
Kontsevich as [K1, Theorem 6]. He attributes it to Nori.

Proof. Consider the diagram Pairseff of Definition 8.1.1 and the representations
T1 = H∗dR(−) and T2 = H∗(−, k) (sic!). Note that Hd(X(C), D(C),Q) is dual
to Hd(X(C), D(C),Q).

By the very definition, P̃eff(k) is the module P1,2(Pairseff) of Definition 7.4.19.

By Theorem 7.4.21, it agrees with the module A1,2(Pairseff) of Definition 7.4.2.
We are now in the situation of Section 7.4 and apply its main result, Theorem
7.4.10. In particular,

A1,2(Pairseff) = A1,2(MMeff
Nori).

Recall that by Theorem 8.2.20, the diagram categories of Pairseff and Goodeff

agree. This also shows that the modules

A1,2(Pairseff) = A1,2(Goodeff)

agree. From now on, we may work with the diagram Goodeff which has the ad-
vantage of admitting a commutative product structure. The algebra structures
on A1,2(Goodeff) = P1,2(Goodeff) = P̃eff(k) agree.

We can apply the same considerations to the localized diagram Good. As in
Proposition 7.2.5, localization on the level of diagrams or categories amounts to
localization on the algebra. Hence,

A1,2(Good) = P1,2(Good) = P̃(k)

and
X = SpecA1,2(Good).
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Also, by definition, G2(Good) is the Tannakian dual of the category of Nori
motives with k coefficients. By base change Lemma 6.5.6 it is the base change
of the Tannaka dual of the category of Nori motives with Q-coefficients. After
these identifications, the operation

X ×k Gmot(k,Q)k → X

is the one of Theorem 7.4.7.

By Theorem 7.4.10, it is a torsor because MMNori is rigid.

Remark 12.1.5. There is a small subtlety here because our to fibre functors
take values in different categories, Q−Mod and k−Mod. As H∗(X,Y, k) =
H∗(X,Y,Q)⊗Q k and P̃(k) already is a k-algebra, the algebra of formal periods
does not change when replacing Q-coefficients with k-coefficients.

We can also view X as torsor in the sense of Definition 1.7.9. The description
of the torsor structure was discussed extensively in Section 7.4, in particular
Theorem 7.4.10. In terms of period matrices, it is given by the formula in [K1]:

Pij 7→
∑

k,`

Pik ⊗ P−1
k` ⊗ P`j .

Corollary 12.1.6. 1. The algebra of effective formal periods P̃eff(k) remains
unchanged when we restrict in Definition 12.1.1 to (X,D, ω, γ) with X
affine of dimension d, D of dimension d − 1 and X r D smooth, ω ∈
Hd

dR(X,D), γ ∈ Hd(X(C), D(C),Q).

2. P̃eff(k) is generated as Q-vector space by elements of the form [X,D, ω, γ]
with X smooth of dimension d, D a divisor with normal crossings ω ∈
Hd

dR(X,D), γ ∈ Hd(X(C), D(C),Q).

Proof. In the proof of Theorem 12.1.3, we have already argued that we can
replace the diagram Pairseff by the diagram Goodeff . The same argument also
allows to replace it by VGoodeff .

By blowing up X, we get another good pair (X̃, D̃, d). By excision, they have the
same de Rham and singular cohomology as (X,D, d). Hence, we may identify
the generators.

Remark 12.1.7. We do not know whether it is enough to work only with
formal periods of the form (X,D, ω, γ) with X smooth and D a divisor with
normal crossings in Definition 12.1.1 as Kontsevich does in [K1, Definition 20].
By the Corollary, these symbols generate the algebra, but it is not clear to us
if they also give all relations. Indeed, Kontsevich in loc. cit. only imposes the
relation given by the connecting morphism of triples in an even more special
case.

Moreover, Kontsevich considers differential forms of top degree rather than co-
homology classes. They are automatically closed. He imposes Stokes’ formula
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as an additional relation, hence this amounts to considering cohomology classes.
Note, however, that not every de Rham class is of this form in general.

All formal effective periods (X,D, ω, γ) can be evaluated by ”integrating” ω
along γ. More precisely, recall (see Definition 5.4.1 the period pairing

Hd
dR(X,D)×Hd(X(C), D(C))→ C

It maps (Gm, {1}, dX/X, S1) to 2πi.

Definition 12.1.8. Let
ev : P̃(k)→ C,

be the ring homomorphism induced by the period pairing. We denote by per
the C-valued point of X = Spec P̃(k) defined by ev.

The elements in the image are precisely the element of the period algebra P(k)
of Definition 9.3.1. By the results in Chapters 9, 10, and 11 (for k = Q), it
agrees with all other definitions of a period algebra. From this perspective, per
is the C-valued point of the torsor X of Theorem 12.1.3 comparing singular
and algebraic de Rham cohomology. It is given by the period isomorphism per
defined in Chapter 5.

The following statement of period number is a corollary from our previous results
on formal periods.

Corollary 12.1.9. The algebra P(k) is Q-linearly generated by number of the
form (2πi)jα with j ∈ Z, and α the period of (X,D, ω, γ) with X smooth affine,
D a divisor with normal crossings, ω ∈ ΩdX(X).

This was also proved without mentioning motives as Theorem 9.4.2.

Proof. Recall that 2πi is itself a period of such a quadruple.

By Corollary 8.2.21, the category MMeff
Nori is generated by motives of good

pairs (X,Y, d) of the form X = W \W∞, Y = W0 \ (W∞ ∩W0) with W smooth
projective of dimension d, W0 ∪W∞ a divisor with normal crossings, X ′ = \W0

affine. Hence, their periods generated Peff(k) as a Q-vector space.

Let Y ′ = W∞ \ (W0 ∩W∞). By Lemma 8.3.7, the motive Hd
Nori(X,Y ) is dual

to Hd
Nori(X

′, Y ′)(d). By Lemma 9.2.9, this implies that the periods of the first
agree with the periods of the latter up to a factor (2πi)d.

As X ′ is affine and Y ′ a divisor with normal crossings, Hd
dR(X ′, Y ′) is generated

by ΩdX′(X
′) by Proposition 3.3.19.

Proposition 12.1.10. Let K/k be algebraic. Then

P̃(K) = P̃(k) ,

and hence also
P(K) = P(k) .
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The second statement was already proved directly Corollary 9.3.5

Proof. It suffices to consider the case K/k finite. The general case follows by
taking limits.

Generators of P̃(k) also define generators of P̃(K) by base change for the field
extension K/k. The same is true for relations, hence we get a well-defined map
P̃(k)→ P̃(K).

We define a map in the opposite direction by viewing a K-variety as k-variety.
More precisely, let (Y,E,m) be vertex of Pairseff(K) and (Yk, Ek,m) the same
viewed as vertex of Pairseff(k). As in the proof of Corollary 9.3.5, we have

H(Yk, Ek,m) = RK/kH(Y,E,m)

with RK/k as defined in Lemma 9.2.7. The same proof as in Lemma 9.2.7
(treating actual periods) also shows that the formal periods of (Yk, Ek,m) agree
with the formal periods (Y,E,m):

12.2 The period conjecture

We exlore the relation to transcendence questions from the point of view of of
Nori motives and their periods. We only treat the case where k/Q is algebraic.
For more general fields, see Ayoub’s remarks in [Ay].

Recall that P̃(Q) = P̃(k) = P̃(Q̄) under this assumption.

Conjecture 12.2.1 (Kontsevich-Zagier). Let k/Q be an algebraic field exten-
sion contained in C. The evaluation map (see Definition 12.1.8)

ev : P̃(k)→ P(k)

is bijective.

Remark 12.2.2. We have already seen that the map is surjective. Hence
injectivity is the true issue. Equivalently, we can conjecture that P̃(k) is an
integral domain and ev a generic point.

In the literature [A1, A2, Ay, BC, Wu], there are sometimes alternative for-
mulations of this conjecture, called ”Grothendieck conjecture”. We will explain
this a little bit more.

Definition 12.2.3. Let M ∈MMNori be a Nori motive. Let

X(M)

be the torsor of isomorphisms between singular and algebraic de Rham coho-
mology on the Tannaka category 〈M,M∨〉⊗ generated by M and

P̃(M) = O(X(M))
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the associated ring of formal periods. If M = H∗Nori(Y ) for a variety Y , we also

write P̃(Y ).

Let Gmot(M) and Gmot(Y ) be the Tannaka duals of the category with respect
to singular cohomology.

These are the finite dimensional building blocks of P̃(k) and Gmot(k), respec-
tively.

Remark 12.2.4. By Theorem 7.4.10, the space X(M) is a Gmot(M)-torsor.
Hence they share all properties that can be tested after a faithfully flat base
change. In particular, they have the same dimension. Moreover, X(M) is
smooth because G(M) is a group scheme over a field of characteristic zero.

Analogous to [Ay] and [A2, Prop. 7.5.2.2 and Prop. 23.1.4.1], we can ask:

Conjecture 12.2.5 (Grothendieck conjecture for Nori motives). Let k/Q be
an algebraic extension contained in C and M ∈ MMNori(k). The following
equivalent assertions are true:

1. The evaluation map
ev : P̃(M)→ C

is injective.

2. The point evM of Spec P̃(M) is a generic point, and X(M) connected.

3. The space X(M) is connected, and the transcendence degree of the sub-
field of C generated by the image of evM is the same as the dimension of
Gmot(M).

Proof of equivalence. Assume that ev is injective. Then P̃(M) is contained in
the field C, hence integral. The map to C factors via the residue field of a
point. It ev is injective, this has to be the generic point. The subfield generated
by ev(M) is isomorphic to the function field. Its transcendence degree is the
dimension of the integral domain.

Conversely, if X(M) is connected, then it P̃(M) is integral because it is already
smooth. If ev factors the generic point, its function field embeds into C and
hence P̃(M) does. If the subfield generated by the image of ev in C has the
maximal possible transcendence degree, then ev has to be generic.

Lemma 12.2.6. If Conjecture 12.2.5 is true for all M , then Conjecture 12.2.1
holds.

Proof. By construction, we have

P̃(k) = colimM P̃(M).

Injectivity of the evaluation maps on the level of every M implies injectivity of
the transition maps and injectivity of ev on the union.
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Remark 12.2.7. The converse is not obvious. It amounts to asking whether
P̃(M) is contained in P̃(k). In our description with generators and relations, this
means that all relations are given by relations within the category 〈M,M∨〉⊗.
This is not clear a priori. We have a conditional result in the pure case.

Proposition 12.2.8. Assume that the Hodge conjecture holds for all varieties.
Let M be a pure Nori motive. Then P̃(M) injects into P̃(k).

Proof. The algebra P̃(M) is generated by classes (ω, γ) with ω ∈ H∗dR(M) ⊕
H∗dR(M)∨ and γ ∈ H∗(M,Q) ⊕H∗(M,Q)∨ of the same cohomological degree.
The relations are given by chains of morphisms and morphisms in the opposite
direction

M →M1 ←M2 → · · · ←M

in the tensor category generated by the direct sum of these Nori motives.

In P̃(k), the relations between these same generators are given by chains in the
category of all Nori motives. A priori, there are more of these.

By Proposition 10.4.5, we have a weight filtration on the category of Nori mo-
tives. Morphisms between pure motives of different weights vanish. We choose
our generators pure and we apply the weight filtration to the whole chain defin-
ing a relation. This implies that there are no relations between pure generators
of different weights. The relations between pure generators of the same weight
are already induced from relations of this fixed weight. We now apply the Hodge
conjecture again and in a semi-simple category. The only relations are the ones
given by the simple objects in the subcategory.

The third version of Conjecture 12.2.5 is very close to the point of view taken
originally by Grothendieck in the pure case. In order to understand the precise
relation, we have to establish some properties first.

We specialize to the case P̃(Y ) for Y smooth and projective. In this case,
singular cohomology H∗(Y,Q) carries a pure Q-Hodge structure, see Defini-
tion 10.2.2. Recall that the Mumford-Tate group MT(V ) of a polarizable pure
Hodge structure V is the smallest Q-algebraic subgroup of GL(V ) such that
Hodge representation h : S → GL(VR) factors via G as h : S → GR. Here,
S = ResC/RGm is the Deligne torus. It is precisely the Q-algebraic subgroup
of GL(VR) that fixes all Hodge tensors in all tensor powers

⊕
V ⊗m ⊗ V ∨⊗n

[M]. Alternatively, it can be understood as the Tannaka dual of the subcate-
gory of the category of Hodge structures generated by V . The group MT(V ) is
a reductive Q-algebraic group by [GGK, Chap. I].

Proposition 12.2.9. Let k = Q̄ and let Y be smooth and projective. Assume
that the Hodge conjecture holds for all powers of Y . Then Gmot(Y ) is the same
as the Mumford-Tate group of Y .

Proof. By Proposition 10.4.4 the Tannaka subcategory ofMMNori generated by
H∗Nori(Y ) agrees with the Tannaka subcategory of the category of Grothendieck
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motives GRM. Note that the statement of Proposition 10.4.4 assumes the full
Hodge conjecture. The same argument also gives the statement on the subcat-
egories under the weaker assumption. For the rest of the argument we refer
to Lemme 7.2.2.1 and Remarque 23.1.4.2 of [A2]. It amounts to saying that
equivalent Tannaka categories have isomorphic Tannaka duals.

Corollary 12.2.10 (Period Conjecture). Let Y be a smooth, projective variety
over Q. Assume Conjecture 12.2.5 for powers of Y and the Hodge conjecture.
Then every polynomial relation among the periods of Y are of motivic nature,
i.e., they are induced by algebraic cycles (correspondences) in powers of Y .

In the case of elliptic curves this was stated as conjecture by Grothendieck
[Gro1].

Proof. By Conjecture 12.2.5 all Q-linear relations between periods are induced
by morphisms of Nori motives. Under the Hodge conjecture, the category of
pure Nori motives is equivalent to the category of Grothendieck motives by
Proposition 10.4.4. By definition of Grothendieck motives (Definition 10.4.2)
this means that morphisms are induced from algebraic cycles.

Polynomial relations are induced from the tensor structure, hence powers of
Y .

Arnold [Ar, pg. 93] remarked in a footnote that this is related to a conjecture
of Leibniz which he made in a letter to Huygens from 1691. Leibniz essentially
claims that all periods of generic meromorphic 1-forms are transcendental. Of
course, precisely the meaning of ”generic” is the essential question. The conjec-
ture of Leibniz can be rephrased in modern form as in [Wu]:

Conjecture 12.2.11 (Integral Conjecture of Leibniz). Any period integral of
a rational algebraic 1-form ω on a smooth projective variety X over a number
field k over a path γ with ∂γ ⊂ D (the polar divisor of ω) which does not come
from a proper mixed k-Hodge substructure H ⊆ H1(X \D) is transcendental.

This is only a statement about periods of type i = 1, i.e., for H1(X,D) (or,
by duality H1(X \ D)) on curves. The Leibniz conjecture follows essentially
from the period conjecture in the case i = 1, since the Hodge conjecture holds
on H1(X) ⊗H1(X) ⊂ H2(X). This conjecture is still open. See also [BC] for
strongly related questions.

Wüstholz [Wu] has related this problem to many other transcendance results.
One can give transcendance proofs assuming this conjecture:

Example 12.2.12. Let us show that log(α) is transcendental for α 6= 0, 1 under
the assumption of the Leibniz conjecture. One takes X = P1, and ω = d log(z)
and γ = [1, α]. The polar divisor of ω is D = {0,∞}, and the Hodge structure
H1(X \D) = H1(C×) = Z(1) is irreducible as a Hodge structure. Hence, log(α)
is transcendental assuming Leibniz’s conjecture.
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There are also examples of elliptic curves in [Wu] related to Chudnovsky’s the-
orem we mention below.

The third form of Conjecture 12.2.5 is also very useful in a computational sense.
In this case, assuming the Hodge conjecture for all powers of Y , the motivic Ga-
lois group Gmot(Y ) is the same as the Mumford-Tate group MT(Y ) by Propo-
sition 12.2.9.

André shows in [A2, Rem. 23.1.4.2]:

Corollary 12.2.13. Let Y be a smooth, projective variety over Q and as-
sume that the Hodge conjecture holds for all powers of Y . Then, assuming
Grothendieck’s conjecture,

trdegQP(Y ) = dimQ MT(Y ).

Proof. We view the right hand side as Gmot(YQ̄) by Proposition 12.2.9. By [A2,
Paragraph 7.6.4] it is of finite index in Gmot(Y ), hence has the same dimen-
sion. It has also the same dimension as the torsor P̃(Y ). Under Grothendieck’s
conjecture this is given by the transcendence degree of P(Y ), see Conjecture
12.2.5.

This corollary give a reasonable, completely unconditional testing conjecture for
transcendence questions.

Example 12.2.14. (Tate motives) If the motive of Y is a Tate motives, e.g.,
Y = Pn, then the conjecture is true, since 2πi is transcendant. The Mumford-
Tate group is the 1-torus here. More generally, the conjecture holds for Artin-
Tate motives, since the transcendance degree remains 1.

Example 12.2.15. (Elliptic curves) Let E be an elliptic curve over Q. Then the
Mumford-Tate group of E is either a 2-torus if E has complex multiplication, or
GL2,Q otherwise (see [M]). Hence, the transcendence degree of P(E) is either 2
or 4. G. V. Chudnovsky [Ch] has proved that trdegQP(E) = 2 if E is an elliptic
curve with complex multiplication, and it is ≥ 2 for all elliptic curves over Q.
Note that in this situation we have actually 5 period numbers ω1, ω2, η1, η2 and
π around (see Section 13.4 for more details), but they are related by Legendre’s
relation ω2η1−ω1η2 = 2πi, so that the transcendence degree cannot go beyond
4. Hence, it remains to show that the transcendence degree of the periods of an
elliptic curve without complex multiplication is precisely 4, as predicted by the
conjecture.

12.3 The case of 0-dimensional varieties

We go through all objects in the baby case of zero motives, i.e., the ones gener-
ated by 0-dimensional varieties.
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Definition 12.3.1. Let Pairs0 ⊂ Pairseff be the subdiagram of vertices (X,Y, n)
with dimX = 0. LetMM0

Nori be its diagram category with respect to the repre-
sentation of Pairseff given by singular cohomology with rational coefficients. Let
Var0 ⊂ Pairs0 be the diagram defined by the opposite category of 0-dimensional
k-varieties, or equivalently, the category of finite separable k-algebras.

If dimX = 0, then dimY = 0 and X decomposes into a disjoint union of Y
and X \ Y . Hence H∗(X,Y,Q) = H∗(X \ Y,Q) and it suffices to consider
only vertices with Y = ∅. Moreover, all cohomology is concentrated in degree
0, and the pairs (X,Y, 0) are all good and even very good. In particular, the
multiplicative structure on Good restricts to the obvious multiplicative structure
on Pairs0 and Var0.

We are always going to work with the multiplicative diagram Var0 in the sequel.

Definition 12.3.2. Let G0
mot(k) be the Tannaka dual of MM0

Nori and P̃0(k)
be the space of periods attached to MM0

Nori.

The notation is a bit awkward because G0 often denotes the connected compo-
nent of unity of a group scheme G. Our G0

mot(k) is very much not connected.

Our aim is to show that G0
mot(k) = Gal(k̄/k) and P̃0(k) ∼= k̄ with the natural

operation. In particular, the period conjecture (in any version) holds for 0-
motives. This is essentially Grothendieck’s treatment of Galois theory.

By construction of the coalgebra in Corollary 6.5.5, we have

A(Var0, H0) = colimFEnd(H0|F )∨ ,

where F runs through a system of finite subdiagrams whose union is D.

We start with the case when F has a single vertex SpecK, with K/k be a finite
field extension, Y = SpecK. The endomorphisms of the vertex are given by the
elements of the Galois group G = Gal(K/k). We spell out H0(Y,Q). We have

Y (C) = Mork(SpecC,SpecK) = Homk−alg(K,C)

the set of field embeddings of K into C, viewed as a finite set with the discrete
topology. Singular cohomology attaches a copy of Q to each point, hence

H0(Y (C),Q) = Maps(Y (C),Q) = Maps(Homk−alg(K,C),Q).

As always, this is contravariant in Y , hence covariant in fields. The left operation
of the Galois group G on K induces a left operation on H0(Y (C),Q).

Let K/k be Galois of degree d. We compute the ring of endomorphisms of H0

on the single vertex SpecK (see Definition 6.1.8)

E = End(H0|SpecK).

By definition, these are the endomorphisms of H0(SpecK,Q) commuting with
the operation of the Galois group. The set Y (C) has a simply transitive action of
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G. Hence, Maps(Y (C),Q) is a free Q[G]op-module of rank 1. Its commutator E
is then isomorphic to Q[G]. This statement already makes the algebra structure
on E explicit.

The diagram algebra does not change when we consider the diagram Var0(K)
containing all vertices of the form A with A =

⊕n
i=1Ki, Ki ⊂ K.

There are two essential cases: If K ′ ⊂ K is a subfield, we have a surjective map
Y (C) → Y ′(C). The compatibility condition with respect to this map implies
that the value of the diagram endomorphism on K ′ is already determined by its
value on K. If A = K

⊕
K, then compatibility with the inclusion of the first

and the second factor implies that the value of the diagram endomorphism on
A is already determined by its value on K.

In more abstract language: The category Var0(K) is equivalent to the category
of finite G-sets. The algebra E is the group ring of the Galois group of this
category under the representation S 7→ Maps(S,Q).

Note that K ⊗k K =
⊕

σK, with σ running through the Galois group, is in
Var0(K). The category has fibre products. In the language of Definition 7.1.3,
the diagram Var0(K) has a commutative product structure (with trivial grad-
ing). By Proposition 7.1.5 and its proof, the diagram category is a tensor
category, or equivalently, E carries a comultiplication.

We go through the construction in the proof of loc.cit. We start with an element
of E and view it as an endomorphism of H0(Y × Y (C),Q) ∼= H0(Y (C),Q) ⊗
H0(Y (C),Q), hence as a tensor product of endomorphisms of H0(Y (C),Q). The
operation of E = Q[G] on Maps(Y (C)×Y (C),Q) is determined by the condition
that it has to be compatible with the diagonal map Y (C)→ Y (C)×Y (C). This
amounts to the diagonal embedding Q[G]→ Q[G]⊗Q[G].

Thus we have shown that E = Q[G] as bialgebra. This means that

Gmot(Y ) = SpecE∨ = G

as a constant monoid (even group) scheme over Q.

Passing to the limit over all K we get

G0
mot(k) = Gal(k̄/k)

as proalgebraic group schemes of dimension 0. As a byproduct, we see that the
monoid attachted to MM0

Nori is a group, hence the category is rigid.

We now turn to periods, again in the case K/k finite and Galois. Note that
H0

dR(SpecK) = K and the period isomorphism

K ⊗k C→ Maps(Homk−alg(K,C),Q)⊗Q C,
v 7→ (f 7→ f(v))

is the base change of the same map with values in K

K ⊗k K → Maps(Homk−alg(K,K),Q)⊗Q K.
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In particular, all entries of the period matrix are in K. The space of formal
periods of K is generated by symbols (ω, γ) where ω runs through a k-basis of
K and γ through the set Homk−alg(K,K) viewed as basis of a Q-vector space.
The relations coming from the operation of Galois group bring us down to a
space of dimension [K : k], hence the evaluation map is injective. Passing to
the limit, we get

P̃0(k) = k̄.

(We would get the same result by applying Proposition 12.1.10 and working only
over k̄.) The operation of Gal(k̄/k) on P̃0(k) is the natural one. More precisely,
g ∈ Gal(k̄/k) operates by applying g−1 because the operation is defined via γ,
which is in the dual space. Note that the dimension of P̃0(k) is also 0.

We have seen from general principles that the operation of Gal(k̄/k) on X0(k) =
P̃0(k) defines a torsor. In this case, we can trivialize it already over k̄. We have

Mork(Speck̄, X0(k)) = Homk−alg(k̄, k̄).

By Galois theory, the operation of Gal(k̄/k) on this set is simply transitive.

When we apply the same discussion to the ground field k̄, we get G0
mot(k̄) =

Gal(k̄/k̄) and P̃0(k̄) = k̄. We see that the (formal) period algebra has not
changed, but the motivic Galois group has. It is still true that Speck̄ is a
torsor under the motivic Galois group, but now viewed as k̄-schemes, where
both consist of a single point!


