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Chapter 13

Elementary examples

This chapter follows partly the Diploma thesis of Benjamin Friedrich, see [Fr].

13.1 Logarithms

In this section, we give one of the most simple examples for a cohomological
period in the sense of Chap. 9. Let

X := A1
Q \ {0} = SpecQ[t, t−1]

be the affine line with the point 0 deleted and

D := {1, α} with α 6= 0, 1

a divisor on X. The singular homology of the pair (X(C), D(C)) = (C×, {1, α})
is generated by a small loop σ turning counter-clockwise around 0 once and
the interval [1, α]. In order to compute the algebraic de Rham cohomology of
(X,D), we first note that by Section 3.2, H•dR(X,D) is the cohomology of the

complex of global sections of the cone complex Ω̃•X,D, since X is affine and the

sheaves Ω̃pX,D are quasi-coherent, hence acyclic for the global section functor.

We spell out the complex Γ(X, Ω̃•X,D) in detail

0x

Γ(X, Ω̃1
X,D) = Γ

(
X,Ω1

X ⊕
⊕

j

i∗ODj
)

= Q[t, t−1]dt⊕Q
1
⊕Q

αxd
Γ(X,OX) = Q[t, t−1]
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244 CHAPTER 13. ELEMENTARY EXAMPLES

and observe that the evaluation map

Q[t, t−1] � Q
1
⊕Q

α

f(t) 7→
(
f(1), f(α)

)

is surjective with kernel

(t− 1)(t− α)Q[t, t−1] = spanQ{tn+2 − (α+ 1)tn+1 + αtn |n ∈ Z}.
Differentiation maps this kernel to

spanQ{(n+ 2)tn+1 − (n+ 1)(α+ 1)tn − nαtn−1 |n ∈ Z}dt.
Therefore we get

H1
dR(X,D) = Γ(X0, Ω̃X,D) /Γ(X,OX)

= Q[t, t−1]dt⊕Q
1
⊕Q

α
/ d(Q[t, t−1])

= Q[t, t−1]dt/ spanQ{(n+ 2)tn+1 − (n+ 1)(α+ 1)tn − nαtn−1}dt.

By the last line, we see that the class of tndt in H1
dR(X,D) for n 6= −1 is linearly

dependent of

• tn−1dt and tn−2dt, and

• tn+1dt and tn+2dt,

hence we see by induction that dt
t and dt generate H1

dR(X,D). Therefore,
H1

dR(X,D) is spanned by

dt

t
and

1

α− 1
dt.

We obtain the following period matrix P for H1(X,D):

1
α−1dt

dt
t

[1, α] 1 logα

σ 0 2πi

(13.1)

In Section 7.4.3 we have seen how the torsor structure on the periods of (X,D)
is given by a triple coproduct ∆ in terms of the matrix P :

Pij 7→
∑

k,`

Pik ⊗ P−1
k` ⊗ P`j .

The inverse period matrix in this example is given by:

P−1 =

(
1 − logα

2πi

0 1
2πi

)

and thus we get for the triple coproduct of the most important entry log(α)

∆(logα) = logα⊗ 1
2πi ⊗ 2πi− 1⊗ logα

2πi ⊗ 2πi+ 1⊗ 1⊗ logα . (13.2)
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13.2 More Logarithms

In this section, we describe a variant of the cohomological period in the previous
section. We define

D0 := {1, α, β} with α 6= 0, 1 and β 6= 0, 1, α,

but keep X := A1
Q \ {0} = SpecQ[t, t−1].

Then, Hsing
1 (X,D;Q) is generated by the loop σ from the first example and the

intervals [1, α] and [α, β]. Hence, the differential forms dt
t , dt and 2t dt give a

basis of H1
dR(X,D): If they were linearly dependent, the period matrix P would

not be of full rank

dt
t dt 2t dt

σ 2πi 0 0

[1, α] logα α− 1 α2 − 1

[α, β] log
(
β
α

)
β − α β2 − α2 .

We observe that detP = 2πi(α− 1)(β − α)(β − 1) 6= 0.

We have

P−1 =




1
2πi 0 0

log β(α2−1)−logα(β2−1)
2πi(β−α)(α−1)(β−1)

α+β
(α−1)(β−1)

α+1
(α−β)(β−1)

− log β(α−1)+logα(β−1)
2πi(β−α)(α−1)(β−1)

−1
(α−1)(β−1)

−1
(α−β)(β−1)


 ,

and therefore we get for the triple coproduct for the entry log(α):

∆(logα) = logα⊗ 1

2πi
⊗ 2πi

+ (α− 1)⊗ − log β(α2 − 1) + logα(β2 − 1)

2πi(β − α)(α− 1)(β − 1)
⊗ 2πi

+ (α− 1)⊗ α+ β

(α− 1)(β − 1)
⊗ logα

+ (α− 1)⊗ α+ 1

(α− β)(β − 1)
⊗ log

(
β

α

)

+ (α2 − 1)⊗ log β(α− 1)− logα(β − 1)

2πi(β − α)(α− 1)(β − 1)
⊗ 2πi

+ (α2 − 1)⊗ −1

(α− 1)(β − 1)
⊗ logα

+ (α2 − 1)⊗ −1

(α− β)(β − 1)
⊗ log

(
β

α

)

= logα⊗ 1

2πi
⊗ 2πi− 1⊗ logα

2πi
⊗ 2πi+ 1⊗ 1⊗ logα .

Compare this with Equation 13.2 !
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13.3 Quadratic Forms

Let
Q(x) : Q3 −→ Q

x = (x0, x1, x2) 7→ xAxT

be a quadratic form with A ∈ Q3×3 being a regular, symmetric matrix.

The zero-locus of Q(x)

X := {x ∈ P2(Q) |Q(x) = 0}

is a quadric or non-degenerate conic. We are interested in its affine piece

X := X ∩ {x0 6= 0} ⊂ Q2 ⊂ P2(Q).

We show that we can assume Q(x) to be of a particular nice form. A non-zero
vector v ∈ Q3 is called Q-anisotropic, if Q(v) 6= 0. Since charQ 6= 2, there exist
such vectors, just suppose the contrary:

Q(1, 0, 0) = 0 gives A11 = 0,

Q(0, 1, 0) = 0 gives A22 = 0,

Q(1, 1, 0) = 0 gives 2 ·A12 = 0

and A would be degenerate. In particular

Q(1, λ, 0) = Q(1, 0, 0) + 2λQ(1, 1, 0) + λ2Q(0, 1, 0)

will be different form zero for almost all λ ∈ Q. Hence, we can assume that
(1, 0, 0) is anisotropic after applying a coordinate transformation of the form

x′0 := x0, x′1 := −λx0 + x1, x′2 := x2.

After another affine change of coordinates, we can also assume that A is a
diagonal matrix. An inspection reveals that we can choose this coordinate
transformation such that the x0-coordinate is left unaltered. (Just take for e1

the anisotropic vector (1, 0, 0) in the proof.) Such a transformation does not
change the isomorphism type of X, and we can take X to be cut out by an
equation of the form

ax2 + by2 = 1 for a, b ∈ Q×

with affine coordinates x := x1

x0
and y := x2

x0
. Since X is affine, the sheaves ΩpX

are acyclic, hence we can compute its algebraic de Rham cohomology by

H•dR(X) = h•Γ(X,Ω•X),
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so we write down the complex Γ(X,Ω•X) in detail

0

↑
Γ(X,Ω1

X) = Q[x, y]/(ax2 + by2 − 1){dx, dy} / (axdx+ bydy)

d ↑
Γ(X,OX) = Q[x, y]/(ax2 + by2 − 1).

Obviously, H1
dR(X) can be presented with generators xnymdx and xnymdy for

m,n ∈ N0 modulo numerous relations. Using axdx+ bydy = 0, we get

• ym dy = d y
m+1

m+1 ∼ 0

• xn dx = d x
n+1

n+1 ∼ 0

n ≥ 1 • xnym dy = −n
m+1x

n−1ym+1 dx+ d x
nym+1

m+1

∼ −n
m+1x

n−1ym+1 dx for n ≥ 1,m ≥ 0

• xny2m dx = xn
(

1−ax2

b

)m
dx ∼ 0

• xny2m+1 dx = xn
(

1−ax2

b

)m
y dx

• xy dx = −x2

2 dy + d x
2y
2

∼ by2−1
2a dy

= b
2ay

2 dy − 1
2a dy ∼ 0

n ≥ 2 • xny dx = −b
a x

n−1y2 dy + xny dx+ b
ax

n−1y2 dy

= −b
a x

n−1y2 dy + xn−1y
2a d(ax2 + by2 − 1)

= −b
a x

n−1y2 dy + d
( (xn−1y)(ax2+by2−1)

2a

)

∼ −ba xn−1y2 dy

=
(
xn+1 − xn−1

a

)
dy

=
(
− (n+ 1)xny + n−1

a xn−2y
)
dx+ d

(
xn+1y − xn−1

a y
)

⇒ xny dx ∼ n−1
(n+2)ax

n−2y dx for n ≥ 2.

Thus we see that all generators are linearly dependent of y dx

H1
dR(X) = h1Γ(X,Ω•X) = Q y dx.

What about the base change to C of X? We use the symbol
√

for the principal
branch of the square root. Over C, the change of coordinates

u :=
√
ax− i

√
by, v :=

√
ax+ i

√
by
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gives

X = SpecC[x, y]/(ax2 + by2 − 1)

= SpecC[u, v]/(uv − 1)

= SpecC[u, u−1]

=A1
C \ {0}.

Hence, the first singular homology group Hsing
• (X,Q) of X is generated by

σ : [0, 1]→ X(C), s 7→ u = e2πis,

i.e., a circle with radius 1 turning counter-clockwise around u = 0 once.

The period matrix consists of a single entry
∫

σ

y dx =

∫

σ

v − u
2i
√
b
d
u+ v

2
√
a

Stokes
=

∫

σ

v du− u dv
4i
√
ab

=
1

2i
√
ab

∫

σ

du

u

=
π√
ab
.

The denominator squared is nothing but the discriminant of the quadratic form
Q

discQ := detA ∈ Q×/Q×2
.

This is an important invariant, that distinguishes some, but not all isomorphism
classes of quadratic forms. Since discQ is well-defined modulo (Q×)2, it makes
sense to write

H1
dR(X) = Q

π√
discQ

⊂ H1
sing(X,Q)⊗Q C.

13.4 Elliptic Curves

In this section, we give another well-known example for a cohomological period
in the sense of Chap. 9.

An elliptic curve E is a one-dimensional non-singular complete and connected
group variety over a field k, together with the origin 0, a k-rational point. An
elliptic curve has genus g = 1, where the genus g of a smooth projective curve
is defined as

g := dimk Γ(E,Ω1
E) .

We refer to the book [Sil] of Silverman for the theory of elliptic curves, but try
to be self-contained in the following. For simplicity, we assume k = Q. It can
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be shown, using the Riemann-Roch theorem that such an elliptic curve E can
be given as the zero locus in P2(Q) of a Weierstraß equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3 (13.3)

with Eisenstein series coefficients g2 = 60G4, g3 = 140G6 and projective coordi-
nates X, Y and Z.

By the classification of compact, oriented real surfaces, the base change of E to
C gives us a complex torus Ean, i.e., an isomorphism

Ean ∼= C/Λω1, ω2 (13.4)

in the complex analytic category with

Λω1, ω2
:= ω1Z⊕ ω2Z

for ω1, ω2 ∈ C linearly independent over R,

being a lattice of full rank. Thus, all elliptic curves over C are diffeomorphic
to the standard torus S1 × S1, but carry different complex structures as the
parameter τ := ω2/ω1 varies. We can describe the isomorphism (13.4) quite
explicitly using periods. Let α and β be a basis of

Hsing
1 (E,Z) = Hsing

1 (S1 × S1,Z) = Zα ⊕ Zβ.

The Q-vector space Γ(E,Ω1
E) is spanned by the holomorphic differential

ω =
dX

Y
.

The map
Ean → C/Λω1, ω2

P 7→
∫ P

O

ω modulo Λω1, ω2

(13.5)

then gives the isomorphism of Equation 13.4. Here O = [0 : 1 : 0] denotes the
group theoretic origin in E. The integrals

ω1 :=

∫

α

ω and ω2 :=

∫

β

ω

are called the periods of E. Up to a Z-linear change of basis, they are precisely
the above generators of the lattice Λω1, ω2 .

The inverse map C/Λω1, ω2
→ Ean for the isomorphism (13.5) can be described

in terms of the Weierstraß ℘-function of the lattice Λ := Λω1, ω2

℘(z) = ℘(z,Λ) :=
1

z2
+
∑

ω∈Λ
ω 6=0

1

(z − ω)2
− 1

ω2
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and takes the form

C/Λω1, ω2
→ Ean ⊂ CPan

2

z 7→ [℘(z) : ℘′(z) : 1],Λω1,ω2
7→ (0 : 1 : 0).

Note that under the natural projection π : C → C/Λω1, ω2 any meromorphic
function f on the torus C/Λω1, ω2

lifts to a doubly-periodic function π∗f on the
complex plane C with periods ω1 and ω2

f(x+ nω1 +mω2) = f(x) for all n,m ∈ Z and x ∈ C.

This example is possibly the origin of the “period” terminology.

The defining coefficients G4, G6 of E can be recovered from Λω1, ω2 by the Eisen-
stein series

G2k :=
∑

ω∈Λ
ω 6=0

ω−2k for k = 2, 3.

Therefore, the periods ω1 and ω2 determine the elliptic curve E uniquely. How-
ever, they are not invariants of E, since they depend on the chosen Weierstraß
equation of E. A change of coordinates which preserves the shape of (13.3),
must be of the form

X ′ = u2X, Y ′ = u3Y, Z ′ = Z for u ∈ Q×.

In the new parametrization X ′, Y ′, Z ′, we have

G′4 = u4G4, G′6 = u6G6,

ω′ = u−1ω

ω′1 = u−1ω1 and ω′2 = u−1ω2.

Hence, τ = ω2/ω1 is a better invariant of the isomorphism class of E. The value
of the j-function (a modular function)

j(τ) = 1728
g3

2

g3
2 − 27g2

3

= q−1 + 744 + 196884q + · · · (q = exp(2πiτ)

on τ indeed distinguishes non-isomorphic elliptic curves E over C:

E ∼= E′ if and only if j(E) = j(E′) .

Hence, the moduli space of elliptic curves over C is the affine line.

A similar result holds over any algebraically closed field K of characteristic
different from 2, 3. For fields K that are not algebraically closed, the set of K-
isomorphism classes of elliptic curves isomorphic over K̄ to a fixed curve E/K
is the Weil-Châtelet group of E [Sil], an infinite group for K a number field.
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However, E has two more cohomological periods which are also called quasi-
periods. In section 13.5, we will prove that the meromorphic differential form

η := X
dX

Y

spans H1
dR(E) together with ω = dX

Y , i.e., modulo exact forms this form is a
generator of H1(E,OE) in the Hodge decomposition. Like ω corresponds to dz
under (13.5), η corresponds to ℘(z)dz. The quasi-periods then are

η1 :=

∫

α

η, η2 :=

∫

β

η.

We obtain the following period matrix for E:

dX
Y X dX

Y

α ω1 η1

β ω2 η2

(13.6)

Lemma 13.4.1. One has the Legendre relation (negative determinant of period
matrix)

ω2η1 − ω1η2 = ±2πi.

Proof. Consider the Weierstraß ζ-function [Sil]

ζ(z) :=
1

z
+
∑

ω∈Λ
ω 6=0

(
1

z − ω +
1

ω
+

z

ω2

)
.

It satisfies ζ ′(z) = −℘(z). Since ζ ′(z) = −℘(z) and ℘ is periodic, we have
that η(w) = ζ(z + w) − ζ(z) is independent of z. Hence, the complex path
integral counter-clockwise around the fundamental domain centered at some
point a /∈ Λω1,ω2 yields

2πi =

∫ a+ω1

a

ζ(z)dz +

∫ a+ω1+ω2

a+ω1

ζ(z)dz −
∫ a+ω1+ω2

a+ω2

ζ(z)dz −
∫ a+ω2

a

ζ(z)dz

=

∫ a+ω2

a

(ζ(z + ω1)− ζ(z)) dz −
∫ a+ω1

a

(ζ(z + ω2)− ζ(z)) dz

= ω2η1 − ω1η2,

where ηi = η(ωi).

In the following two examples all four periods are calculated and yield Γ-
values besides

√
π, π and algebraic numbers. Such period expressions for ellip-

tic curves with complex multiplication are nowadays called the Chowla-Lerch-
Selberg formula, after Lerch [L] and Chowla-Selberg [CS]. See also the thesis of
B. Gross [Gr].
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Example 13.4.2. Let E be the elliptic curve with G6 = 0 and affine equation
Y 2 = 4X3 − 4X.Then one has [Wa]

ω1 =

∫ ∞

1

dx√
x3 − x

=
1

2
B

(
1

4
,

1

2

)
=

Γ(1/4)2

23/2π1/2
, ω2 = iω1,

and

η1 =
π

ω1
=

(2π)3/2

Γ(1/4)2
, η2 = −iη1.

E has complex multiplication with ring Z[i] (Gaußian integers).

Example 13.4.3. Look at the elliptic curve E with G4 = 0 and affine equation
Y 2 = 4X3 − 4.Then one has [Wa]

ω1 =

∫ ∞

1

dx√
x3 − 1

=
1

3
B

(
1

6
,

1

2

)
=

Γ(1/3)3

24/3π
, ω2 = ρω1,

(ρ = −1+
√−3
2 ) and

η1 =
2π√
3ω1

=
27/3π2

31/2Γ(1/3)3
, η2 = ρ2η1.

E has complex multiplication with ring Z[ρ] (Eisenstein numbers).

Both of these example have complex multiplication. As we have explained in
Example 12.1.15, G. V. Chudnovsky [Ch] has proved that trdegQP(E) = 2 if
E is an elliptic curve with complex multiplication. This means that ω1 and
π are both transcendant and algebraically independent, and ω2, η1 and η2 are
algebraically dependent. The transcendance of ω1 for all elliptic curves is a
theorem of Th. Schneider [S]. Of course, the transcendance of π is Lindemann’s
theorem.

For elliptic without complex multiplication it is conjectured that the Legendre
relation is the only algebraic relation among the 5 period numbers ω1, ω2, η1,
η2 and π. But this is still open.

13.5 Periods of 1-forms on arbitrary curves

Let X be a smooth, projective curve of geometric genus g over k, where k ⊂ C.
We denote the associated analytic space by Xan.

In the classical literature, different types of meromorphic differential forms on
Xan and their periods were considered. The survey of Messing [Me] gives a
historical account, see also [GH, pg. 459]. In this section, we mention these no-
tions, translate them into a modern language, and relate them to cohomological
periods in the sense of Chap. 9, since the terminology is still used in many areas
of mathematics, e.g., in transcendence theory.
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A meromorphic 1-form ω on Xan is locally given by f(z)dz, where f is meromor-
phic. Any meromorphic function has poles in a discrete and finite set D in Xan.
Using a local coordinate z at a point P ∈ Xan, we can write f(z) = z−ν(P ) ·h(z),
where h is holomorphic and h(P ) 6= 0. In particular, a meromorphic 1-form is
a section of the holomorphic line bundle Ω1

Xan(kD) for some integer k ≥ 0. We
say that ω has logarithmic poles, if ν(P ) ≤ 1 at all points of D. A rational 1-
form is a section of the line bundle Ω1

X(kD) on X. In particular, we can speak
of rational 1-forms defined over k, if X is defined over k.

Proposition 13.5.1. Meromorphic 1-forms on Xan are the same as rational
1-forms on X.

Proof. Since X is projective, and meromorphic 1-forms are section of the line
bundle Ω1

X(kD) for some integer k ≥ 0, this follows from Serre’s GAGA principle
[Se1].

In the following, we will mostly use the analytic language of meromorphic forms.

Definition 13.5.2. A differential of the first kind on Xan is a holomorphic
1-form (hence closed). A differential of the second kind is a closed meromorphic
1-form with vanishing residues. A differential of the third kind is a closed mero-
morphic 1-form with at most logarithmic poles along some divisor Dan ⊂ Xan.

Note that forms of the second and third kind include forms of the first kind.

Theorem 13.5.3. Any meromorphic 1-form ω on Xan can be written as

ω = df + ω1 + ω2 + ω3,

where df is an exact form, ω1 is of the first kind, ω2 is of the second kind, and
ω3 is of the third kind. This decomposition is unique up to exact forms, if ω3 is
chosen not to be of second kind, and ω2 not to be of the first kind.

The first de Rham cohomology of Xan is given by

H1
dR(Xan,C) ∼= 1− forms of the second kind

exact forms

The inclusion of differentials of the first kind into differentials of the second
kind is given by the Hodge filtration

H0(Xan,Ω1
Xan) ⊂ H1

dR(Xan,C).

For differentials of the third kind, we note that

H0(Xan,Ω1
Xan〈Dan〉) ∼= 1− forms of the third kind with poles in Dan

exact forms + forms of the first kind
.
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Proof. Let ω be a meromorphic 1-form on Xan. The residue theorem states
that the sum of the residues of ω is zero. Suppose that ω has poles in the finite
subset D ⊂ Xan. Then look at the exact sequence

0→ H0(Xan,Ω1
Xan)→ H0(Xan,Ω1

Xan〈D〉)Res→
⊕

P∈D
C Σ→H1(Xan,Ω1

Xan).

It shows that there exists a 1-form ω3 ∈ H0(Xan,Ω1
Xan(logD)) of the third kind

which has the same residues as ω. In addition, the form ω−ω3 is of the second
kind, i.e., it has perhaps poles but no residues. Now, look at the meromorphic
de Rham complex

Ω0
Xan(∗) d−→Ω1

Xan(∗)
of all meromorphic differential forms on Xan (with arbitrary poles along arbi-
trary divisors). The cohomology sheaves of it are given by [GH, pg. 457]

H0Ω•Xan(∗) = C, H1Ω•Xan(∗) =
⊕

P∈Xan

C .

These isomorphisms are induced by the inclusion of constant functions and the
residue map respectively. With the help of the spectral sequence abutting to
H∗(Xan,Ω∗Xan(∗)) [GH, pg. 458], one obtains an exact sequence

0→ H1
dR(Xan,C)→ H0(Xan,Ω1

Xan(∗))
exact forms

Res−→
⊕

P∈Xan

C,

and the claim follows.

Corollary 13.5.4. In the algebraic category, if X is defined over k ⊂ C, we
have that

H1
dR(X) ∼= 1− rational forms of the second kind over k

exact forms

We can now define periods of differentials of the first, second, and third kind.

Definition 13.5.5. Periods of the n-th kind (n=1,2,3) in the sense of Defini-
tion 9.1.1 are periods of differentials ω of the n-th kind, i.e., integrals

∫

γ

ω ,

where γ is a closed path avoiding the poles of D for n = 2 and which is contained
in X \D for n = 3.

Usually, in the literature periods of 1-forms of the first kind are called periods,
and periods of 1-forms of the second kind and not of the first kind are called
quasi-periods.
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Theorem 13.5.6. Let X be a smooth, projective curve over k as above.

Periods of the second kind (and hence also periods of the first kind) are coho-
mological periods in the sense of 9.3.1 of the first cohomology group H1(X).
Periods of the third kind with poles along D are periods of the cohomology group
H1(U), where U = X \D.

Every period of any smooth, quasiprojective curve U over k is of the first, second
or third kind on a smooth compacification X of U .

Proof. The first assertion follows from the definition of periods of the n-th kind,
since differentials of the n-th kind represent cohomology classes in H1(X) for
n = 1, 2 and in H1(X \D) for n = 3. If U is a smooth, quasiprojective curve
over k, then we choose a smooth compactification X and the assertion follows
from the exact sequence

0→ H0(Xan,Ω1
Xan)→ H0(Xan,Ω1

Xan〈D〉)Res→
⊕

P∈D
C Σ→H1(Xan,Ω1

Xan).

by Theorem 13.5.3.

Examples 13.5.7. In the elliptic curve case of section 13.4, ω = dX
Y is 1-form

of the first kind, and η = X dX
Y a 1-form of the second kind, but not of the first

kind. Some periods (and quasi-periods) of this sort were computed in the two
Examples 13.4.2,13.4.3. For an example of the third kind, look at X = P1 and
D = {0,∞} where ω = dz

z is a generator with period 2πi. Compare this with
section 13.1 where also logarithms occur as periods. For periods of differentials
of the third kind on modular and elliptic curves see [Br].

Finally, let X be a smooth, projective curve of genus g defined over Q. Then
there is a Q-basis ω1, . . . , ωg, η1, . . . , ηg of H1

dR(X), where the ωi are of the first
kind and the ηj of the second kind. One may choose a basis α1, . . . , αg, β1, . . . , βg
for Hsing

1 (Xan,Z), such that after a change of basis over Q, we have
∫
αj
ωi = δij

and
∫
βj
ηi = δij .

The period matrix is then given by a block matrix:

ω• η•
α• I τ ′

β• τ I
(13.7)

where, by Riemann’s bilinear relations [GH, pg. 123], τ is a matrix in the
Siegel upper half space Hg of symmetric complex matrices with positive definite
imaginary part. In the example of elliptic curves, section 13.4 the matrix τ is
the (1× 1)-matrix given by τ = ω2/ω1 ∈ H.
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Chapter 14

Multiple zeta values

This chapter follows partly the Diploma thesis of Benjamin Friedrich, see [Fr].
We study in some detail the very important class of periods called multiple zeta
values (MZV). These are periods of mixed Tate motives.

14.1 A ζ-value

In Prop. 11.1.4, we saw how to write ζ(2) as a Kontsevich-Zagier period:

ζ(2) =

∫

0≤ x≤ y≤ 1

dx ∧ dy
(1− x) y

.

The problem was that this identity did not give us a valid representation of
ζ(2) as a näıve period, since the pole locus of the integrand and the domain of
integration are not disjoint. We show how to circumvent this difficulty, as an
example of Theorem 11.2.1.

First we define (often ignoring the difference between X and Xan),

Y := A2 with coordinates x and y,

Z := {x = 1} ∪ {y = 0},
X := Y \ Z,
D := ({x = 0} ∪ {y = 1} ∪ {x = y}) \ Z,
4 := {(x, y) ∈ Y |x, y ∈ R, 0 ≤ x ≤ y ≤ 1} a triangle in Y, and

ω :=
dx ∧ dy
(1− x) y

,

thus getting

ζ(2) =

∫

4
ω,

257
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Figure 14.1: The configuration Z,D,4

with ω ∈ Γ(X,Ω2
X) and ∂4 ⊂ D ∪ {(0, 0), (1, 1)}, see Figure 14.1.

Now we blow up Y in the points (0, 0) and (1, 1) obtaining π : Ỹ → Y . We

denote the strict transform of Z by Z̃, π∗ω0 by ω̃ and Ỹ \ Z̃ by X̃. The “strict

transform” π−1(4 \ {(0, 0), (1, 1)}) will be called 4̃ and (being Q̃-semi-algebraic
hence triangulable — cf. Proposition 2.6.9) gives rise to a singular chain

γ̃ ∈ Hsing
2 (X̃, D̃;Q).

Since π is an isomorphism away from the exceptional locus, this exhibits

ζ(2) =

∫

4
ω =

∫

γ̃

ω̃ ∈ Pa = P

as a näıve period, see Figure 14.2.

Figure 14.2: The configuration Z̃, D̃, 4̃

We will conclude this example by writing out ω̃ and 4̃ more explicitly. Note
that Ỹ can be described as the subvariety

A2
Q × P1(Q)× P1(Q) with coordinates (x̃, ỹ, λ0 : λ1, µ0 : µ1)
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cut out by
x̃λ0 = ỹλ1 and (x̃− 1)µ0 = (ỹ − 1)µ1.

With this choice of coordinates π takes the form

π : Ỹ → Y
(x̃, ỹ, λ0 : λ1, µ0 : µ1) 7→ (x̃, ỹ)

and we have X̃ := Ỹ \ ({λ0 = 0}∪{µ1 = 0}). We can embed X̃ into affine space

X̃ → A4
Q

(x̃, ỹ, λ0 : λ1, µ0 : µ1) 7→ (x̃, ỹ,
λ1

λ0
,
µ0

µ1
)

and so have affine coordinates x̃, ỹ, λ := λ1

λ0
and µ := µ0

µ1
on X̃.

Now, near π−1(0, 0), the form ω̃ is given by

ω̃ =
dx̃ ∧ dỹ
(1− x̃) ỹ

=
d(λỹ) ∧ dỹ
(1− x̃) ỹ

=
dλ ∧ dỹ
1− x̃ ,

while near π−1(1, 1) we have

ω̃ =
dx̃ ∧ dỹ
(1− x̃) ỹ

=
dx̃ ∧ d(ỹ − 1)

(1− x̃) ỹ
=
dx̃ ∧ d(µ(x̃− 1))

(1− x̃) ỹ
=
−dx̃ ∧ dµ

ỹ
.

The region 4̃ is given by

4̃ = {(x̃, ỹ, λ, µ) ∈ X̃(C) | x̃, ỹ, λ, µ ∈ R, 0 ≤ x̃ ≤ ỹ ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1}.

14.2 Definition of multiple zeta values

Recall that the Riemann ζ-function is defined as

ζ(s) :=
∞∑

n=1

n−s, Re(s) > 1.

It has an analytic continuation to the whole complex plane with a simple pole
at s = 1.

Definition 14.2.1. For integers s1, ..., sr ≥ 1 with s1 ≥ 2 one defines the
multiple zeta values (MZV)

ζ(s1, ..., sr) :=
∑

n1>n2>...>nr≥1

n−s11 · · ·n−srr .

The number n = s1 + · · ·+ sr is the weight of ζ(s1, ..., sr). The length is r.
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Lemma 14.2.2. ζ(s1, ..., sr) is convergent.

Proof. Clearly, ζ(s1, ..., sr) ≤ ζ(2, 1, ..., 1). We use the formula

m−1∑

n=1

n−1 ≤ 1 + log(m− 1),

which is proved by comparing with the Riemann integral of 1/x. Using induc-
tion, this implies that

ζ(2, 1, ..., 1) ≤
∞∑

n1=1

n−2
1

∑

1≤nr<···<n2≤n1−1

n−1
2 · · ·n−1

r ≤
∞∑

n1=1

(1 + log(n1 − 1))r

n2
1

,

which is convergent.

Lemma 14.2.3. The positive even ζ-values are given by

ζ(2m) = (−1)m+1 (2π)2m

2(2m)!
B2m,

where B2m is a Bernoulli number, defined via

t

et − 1
=

∞∑

m=0

Bm
tm

m!
.

The first Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0,
B4 = −1/30. All odd Bernoulli Bm numbers vanish for odd m ≥ 3.

Proof. One uses the power series

x cot(x) = 1− 2
∞∑

n=1

x2

n2π2 − x2
.

The geometric series expansion gives

x cot(x) = 1− 2
∞∑

n=1

(
x
nπ

)2

1−
(
x
nπ

)2 = 1− 2
∞∑

m=1

x2m

π2m
ζ(2m).

On the other hand,

x cot(x) = ix
eix + e−ix

eix − e−ix = ix
e2ix + 1

e2ix − 1
= ix+

2ix

e2ix − 1
= ix+

∞∑

m=0

Bm
(2ix)m

m!
.

The claim then follows by comparing coefficients.

Corollary 14.2.4. ζ(2) = π2

6 and ζ(4) = π4

90 .
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ζ(s) satisfies a functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Using it, one can show:

Corollary 14.2.5. ζ(−m) = −Bm+1

m+1 for m ≥ 1. In particular, ζ(−2m) = 0 for
m ≥ 1. These are called the trivial zeroes of ζ(s).

Remark 14.2.6. J. Zhao has generalized the analytic continuation and the
functional equation for multiple zeta values [Z2].

In the following, we want to study MZV as periods. They satisfy many relations.
Already Euler knew that ζ(2, 1) = ζ(3). This can be shown as follows:

ζ(3) + ζ(2, 1) =

∞∑

n=1

1

n3
+
∑

1≤k<n

1

n2k
=

∑

1≤k≤n

1

n2k
=

∞∑

n=1

1

n2

n∑

k=1

1

k

=
∑

k,n≥1

1

n2

(
1

k
− 1

n+ k

)
=
∑

k,n≥1

1

nk(n+ k)

=
∑

k,n≥1

(
1

n
+

1

k

)
1

(n+ k)2
=
∑

k,n≥1

1

n(n+ k)2
+
∑

k,n≥1

1

k(n+ k)2

= 2ζ(2, 1).

Other relations of this type are

ζ(2, 1, 1) = ζ(4),

ζ(2, 2) =
3

4
ζ(4),

ζ(3, 1) =
1

4
ζ(4),

ζ(2)2 =
5

2
ζ(4),

ζ(5) = ζ(3, 1, 1) + ζ(2, 1, 2) + ζ(2, 2, 1)

ζ(5) = ζ(4, 1) + ζ(3, 2) + ζ(2, 3).

The last two relations are special cases of the sum relation:

ζ(n) =
∑

s1+···+sr=n

ζ(s1, ..., sr).

It was conjectured by Zagier [Z] that the Q-vector space Zn of MZV of weight
n has dimension dn, where dn is the coefficient of tn in the power series

∞∑

n=0

dnt
n =

1

1− t2 − t3 ,
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so that one has a recursion dn = dn−2 + dn−3. For example d4 = 1, which can
be checked using the above relations. By convention, d0 = 1. This conjecture is
still open, however one knows that dn is an upper bound for dimQ(Zn) [B1, Te].
It is also conjectured that the MZV of different weights are independent over
Q, so that the space of all MZV should be a direct sum

Z =
⊕

n≥0

Zn.

Hoffman [Hof] conjectured that all MZV containing only si ∈ {2, 3} form a
basis of Z. Brown [B1] showed in 2010 that this set forms a generating set.
Broadhurst et. al. [BBV] conjecture that the ζ(s1, ..., sr) with si ∈ {2, 3} a
Lyndon word form a transcendence basis. A Lyndon word in two letters with
an order, e.g. 2 < 3, is a string in these two letters that is strictly smaller in
lexicographic order than all of its circular shifts.

14.3 Kontsevich’s integral representation

Define one-forms ω0 := dt
t and ω1 := dt

1−t . We have seen that

ζ(2) =

∫

0≤t1≤t2≤1

ω0(t2)ω1(t1).

In a similar way, we get that

ζ(n) =

∫

0≤t1≤···≤tn≤1

ω0(tn)ω0(tn−1) · · ·ω1(t1).

We will now write this as
ζ(n) = I(0 . . . 01︸ ︷︷ ︸

n

).

Definition 14.3.1. For ε1, ..., εn ∈ {0, 1}, we define the Kontsevich-Zagier
periods

I(εn . . . ε1) :=

∫

0≤t1≤···≤tn≤1

ωεn(tn)ωεn−1(tn−1) · · ·ωε1(t1).

Note that this definition differs from parts of the literature in terms of the order,
but it has the advantage that there is no sign in the following formula:

Theorem 14.3.2 (Attributed to Kontsevich by Zagier [Z]).

ζ(s1, ..., sr) = I(0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

).

In particular, the MZV are Kontsevich-Zagier periods.
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Proof. We will define more generally

I(0; εn . . . ε1; z) :=

∫

0≤t1≤···≤tn≤z
ωεn(tn)ωεn−1

(tn−1) · · ·ωε1(t1)

for 0 ≤ z ≤ 1. Then we show that

I(0; 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

; z) =
∑

n1>n2>...>nr≥1

zn1

ns11 · · ·nsrr
.

Convergence is always ok for z < 1, but at the end we will have it for z = 1
be Abel’s theorem. We proceed by induction on n =

∑r
i=1 si. We start with

n = 1:

I(0; 1; z) =

∫ z

0

ω1(t) =

∫ z

0

∑

n≥0

tndt =
∑

n≥0

zn+1

n+ 1
=
∑

n≥1

zn

n
.

The induction step has two cases:

I(0; 0 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

; z) =

∫ z

0

dtn
tn
I(0; 0 . . . 01︸ ︷︷ ︸

s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

; tn)

=

∫ z

0

dtn
tn

∑

n1>n2>...>nr≥1

tn1
n

ns11 · · ·nsrr
=

∑

n1>n2>...>nr≥1

zn1

ns1+1
1 · · ·nsrr

.

I(0; 1 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

; z) =

∫ z

0

dtn
1− tn

I(0; 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

; tn)

=

∫ z

0

dtn

∞∑

m=0

tmn
∑

n1>n2>...>nr≥1

tn1
n

ns11 · · ·nsrr
=
∞∑

m=0

∑

n1>n2>...>nr≥1

∫ z

0

dtn
tn1+m
n

ns11 · · ·nsrr

=
∑

n0>n1>n2>...>nr≥1

zn0

ns11 · · ·nsrr
.

In the latter step we strictly use z < 1 to have convergence. It does not occur at
the end of the induction, since the string starts with a 0. Convergence is proven
by Abel’s theorem at the end.

14.4 Shuffle and Stuffle relations for MZV

In this section, we present a slightly more abstract viewpoint on multiple zeta
values and their relations by looking only at the strings representing a MZV
integral. It turns out that there are two types of multiplications on those strings,
called the shuffle and stuffle products, which induce the usual multiplication on
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the integrals, but which have a different definition. Comparing both leads to
all kind of relations between multiple zeta values. The reader may also consult
[IKZ, Hof, HO, He] for more information.

A MZV can be represented via a tuple (s1, ..., sr) of integers or a string

s = 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

of 0’s and 1’s. There is a one-to-one correspondence between strings with a 0
on the left and a 1 on the right and all tuples (s1, ..., sr) with all si ≥ 1 and
s1 ≥ 2. For any tuple s = (s1, ..., sr), we denote the associated string by s̃. We
will formalize the algebras arising from this set-up.

Definition 14.4.1 (Hoffman Algebra). Let

h := Q〈x, y〉 = Q⊕Qx⊕Qy ⊕Qxy ⊕Qyx⊕ · · ·

be the free non-commutative graded algebra in two variables x, y (both of degree
1). There are subalgebras

h1 := Q⊕ hy, h0 := Q⊕ xhy.

The generator in degree 0 is denoted by I.

We will now identify x and y with 0 and 1, if it is convenient. For example any
generator, i.e., a noncommutative word in x and y of length n can be viewed as a
string εn · · · ε1 in the letters 0 and 1. With this identification, there is obviously
an evaluation map such that

ζ : h −→ R, εn · · · ε1 7→ I(εn, ..., ε1)

holds on the generators of h. In addition, if s is the string

s = εn · · · ε1 = 0 . . . 01︸ ︷︷ ︸
s1

0 . . . 01︸ ︷︷ ︸
s2

. . . 0 . . . 01︸ ︷︷ ︸
sr

,

then we have ζ(s1, ..., sn) = ζ(s) by Theorem 14.3.2.

We will now define two different multiplications

X, ∗ : h× h −→ h,

called shuffle and stuffle, such that ζ becomes a ring homomorphism in both
cases.

Definition 14.4.2. Define the shuffle permutations for r + s = n as

Σr,s := {σ ∈ Σn | σ(1) < σ(2) < · · · < σ(r), σ(r+1) < σ(r+2) < · · · < σ(r+s)}.

Define the action of σ ∈ Σr,s on the set {1, 2, ..., n} as

σ(x1...xn) := xσ−1(1)...xσ−1(n).



14.4. SHUFFLE AND STUFFLE RELATIONS FOR MZV 265

The shuffle product is then defined as

x1...xrXxr+1...xn :=
∑

σ∈Σr,s

σ(x1...xn).

Theorem 14.4.3. The shuffle product X defines an associative, bilinear op-
eration with unit I and hence an algebra structure on h such that ζ is a ring
homomorphism. It satisfies the recursive formula

uXv = a(u′Xv) + b(uXv′),

if u = au′ and v = bv′ as strings.

Proof. We only give a proof for the product formula ζ(ãXb̃) = ζ(a)ζ(b); the
rest is straightforward. Assume a = (a1, ..., ar) is of weight m and b = (b1, ..., bs)
is of weight n. Then, by Fubini, the product ζ(a)ζ(b) is an integral over the
product domain

∆ = {0 ≤ t1 ≤ · · · ≤ tm ≤ 1} × {0 ≤ tm+1 ≤ · · · ≤ tm+n ≤ 1}.

Ignoring subsets of measure zero,

∆ =
∐

σ

∆σ

indexed by all shuffles σ ∈ Σr,s, and where

∆σ = {(t1, ..., tm+s | 0 ≤ tσ−1(1) ≤ · · · ≤ tσ−1(n) ≤ 1}.

The proof follows then from the additivity of the integral.

This induces binary relations as in the following examples.

Example 14.4.4. One has

(01)X(01) = 2(0101) + 4(0011)

and hence we have
ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1).

In a similar way,

(01)X(001) = (010011) + 3(001011) + 9(000111) + (001101),

which implies that

ζ(2)ζ(3, 1) = ζ(2, 3, 1) + 3ζ(3, 2, 1) + 9ζ(4, 1, 1) + ζ(3, 1, 2),

and
(01)X(011) = 3(01011) + 6(00111) + (01101)

implies that

ζ(2)ζ(2, 1) = 3ζ(2, 2, 1) + 6ζ(3, 1, 1) + ζ(2, 1, 2).
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Definition 14.4.5. The stuffle product

∗ : h× h −→ h

is defined on tuples a = (a1, ..., ar) and b = (b1, ..., bs) as

a ∗ b : = (a1, ..., ar, b1, ..., bs) + (a1, ..., ar + b1, ..., bs)

+ (a1, ..., ar−1, b1, ar, b2, ..., bs) + (a1, ..., ar−1 + b1, ar, b2, ..., bs) + · · ·

The definition is made such that one has the formula ζ(a)ζ(b) = ζ(a ∗ b) in the
formula defining multiple zeta values.

Theorem 14.4.6. The stuffle product ∗ defines an associative, bilinear multi-
plication on h inducing an algebra (h, ∗) with unit I. One has ζ(a)ζ(b) = ζ(a∗b)
on tuples a and b. Furthermore, there is a recursion formula

u ∗ v = (a, u′ ∗ v) + (b, u ∗ v′) + (a, b, u′ ∗ v′)

for tuples u = (a, u′) and v = (b, v′) with first entry a and b.

Proof. Again, we only give a proof for the product formula ζ(a)ζ(b) = ζ(a ∗ b).
Assume a = (a1, ..., ar) is of weight m and b = (ar+1, ..., ar+s) is of weight n.
The claim follows from a decomposition of the summation range:

ζ(a1, ..., ar)ζ(ar+1, ..., ar+s)

=
∑

n1>n2>...>nr≥1

n−a1
1 · · ·n−arr ·

∑

nr+1>nr+2>...>nr+s≥1

n
−ar+1

r+1 · · ·n−ar+sr+s =

=
∑

n1>n2>...>nr>nr+1>nr+2>...>nr+s≥1

n−a1
1 · · ·n−arr n

−ar+1

r+1 · · ·n−ar+sr+s

+
∑

n1>n2>...>nr=nr+1>nr+2>...>nr+s≥1

n−a1
1 · · ·n−(ar+ar+1)

r · · ·n−ar+sr+s

+ etc.

where all terms in the stuffle set occur once.

This induces again binary relations as in the following examples.

Example 14.4.7.

ζ(2)ζ(3, 1) = ζ(2, 3, 1) + ζ(5, 1) + ζ(3, 2, 1) + ζ(3, 3) + ζ(3, 1, 2)

ζ(2)2 = 2ζ(2, 2) + ζ(4).

More generally,

ζ(a)ζ(b) = ζ(a, b) + ζ(a+ b) + ζ(b, a), for a, b ≥ 2..
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Since we have ζ(ãXb̃) = ζ(a∗ b) we can define the unary double-shuffle relation
as

ζ(ãXb̃− a ∗ b) = 0.

Example 14.4.8. We have ζ(2)2 = 2ζ(2, 2)+4ζ(3, 1) using shuffle and ζ(2)2 =
2ζ(2, 2) + ζ(4) using the stuffle. Therefore one has

4ζ(3, 1) = ζ(4).

In the literature [Hof, HO, IKZ, He] more relations were found, e.g., a modified
version of this relation, called the regularized double-shuffle relation:

ζ


 ∑

b∈(1)∗a
b−

∑

c̃∈(1)Xã

c


 = 0.

Example 14.4.9. Let a = (̃2) = (01). Then (1)X(01) = (101) + 2(011) and
(1) ∗ (2) = (1, 2) + (3) + (2, 1). Therefore, the corresponding relation is

ζ(1, 2) + 2ζ(2, 1) = ζ(1, 2) + ζ(3) + ζ(2, 1), hence

ζ(2, 1) = ζ(3).

Like in this example, all non-convergent contributions cancel in the relation. It
is conjectured that the regularized double-shuffle relation generates all relations
among MZV. There are more relations: the sum theorem (mentioned above),
the duality theorem, the derivation theorem and Ohno’s theorem, which implies
the first three [HO, He].

We will finish this subsection with some formulas mentioned by Brown [B1],
mainly due to Broadhurst and Zagier:

ζ(3, 1, . . . , 3, 1︸ ︷︷ ︸
2n

) =
1

2n+ 1
ζ(2, 2, . . . , 2︸ ︷︷ ︸

2n

) =
2π4n

(4n+ 2)!
.

ζ(2, ..., 2︸ ︷︷ ︸
b

, 3, 2, ..., 2︸ ︷︷ ︸
a

) =
∑

m+r=a+b+1

cm,r,a,b
π2m

(4m+ 1)!
ζ(2r + 1),

where cm,r,a,b = 2(−1)r
((

2r
2a+2

)
−
(
1− 2−2r

) (
2r

2b+1

))
∈ Q (m ≥ 0, r ≥ 1).

In the next section, we relate multiple zeta values to Nori motives and also to
mixed Tate motives. This give a more conceptual embedding of such periods in
the sense of Chapter 10, see in particular Section 10.4.
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14.5 Multiple zeta values and moduli space of
marked curves

In this short section, we indicate how one can relate multiple zeta values to Nori
motives and to mixed Tate motives.

Multiple zeta values can also be seen as periods of certain cohomology groups of
moduli spaces in such a way that they appear naturally as Nori motives. Recall
that the moduli space M0,n of smooth rational curves with n marked points
can be compactified to the space M0,n of stable curves with n markings [K2].
Manin and Goncharov [GM] have observed the following.

Theorem 14.5.1. For each convergent multiple zeta value p = ζ(s1, ...., sr) of
weight n = s1 + ...+ sr, one can construct divisors A,B in M0,n+3 such that p
is a period of the cohomology group Hn(M0,n+3 \A,B \ (A ∩B)).

The group Hn(M0,n+3 \A,B \ (A∩B)) defines of course immediately a motive
in Nori’s sense.

Example 14.5.2. The fundamental example is ζ(2), which we already de-
scribed in section 14.1. Here M0,5 is a compactification of

M0,5 = (P \ {0, 1,∞})2 \ diagonal,

since M0,5 is the blow up (0, 0), (1, 1) and (∞,∞) in P1×P1. This realizes ζ(2)
as the integral

ζ(2) =

∫

0≤t1≤t2≤1

dt1
1− t2

dt2
t2

.

We leave it to the reader to make the divisors A and B explicit.

This viewpoint was very much refined in Brown’s thesis [B3]. Recent related
research for higher polylogarithms and elliptic polylogarithms can be found in
[B4].

Levine [L2] has defined an abelian category as a full subcategory of the tri-
angulated category of geometrical motives, see Chapter 10 for the notion of
geometric motives. It is a full subcategory generated by the Tate objects Q(n).
There is also a variant, called mixed Tate motives over Z, see [Te, DG, B1]. The
Theorem above implies:

Theorem 14.5.3 (Brown). Multiple zeta values together with (2πi)n are pre-
cisely all the periods of all mixed Tate motives over Z.

Proof. This is a result of Brown, see [B1, D3].
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14.6 Multiple Polylogarithms

In this section, we study a variation of cohomology groups in a 2-parameter
family of varieties over Q, the so-called double logarithm variation, for which
multiple polylogarithms appear as coefficients. This viewpoint gives more exam-
ples of Kontsevich-Zagier periods occuring as cohomological periods of canonical
cohomology groups at particular values of the parameters. The degeneration of
the parameters specializes such periods to simpler ones.

First define the hyperlogarithm as the iterated integral

In(a1, . . . , an) :=

∫

0≤t1≤···≤tn≤1

dt1
t1 − a1

∧ · · · ∧ dtn
tn − an

with a1, . . . , an ∈ C (cf. [Z1, p. 168]). Note that, the order of terms here is
different from the previous order, also in the infinite sum below.

These integrals specialize to the multiple polylogarithm (cf. [loc. cit.])

Lim1,...,mn

(
a2

a1
, · · · , an

an−1
,

1

an

)
:= (−1)n I∑mn(a1, 0, . . . , 0︸ ︷︷ ︸

m1−1

, . . . , an, 0, . . . , 0︸ ︷︷ ︸
mn−1

),

which is convergent if 1 < |a1| < · · · < |an| (cf. [G3, 2.3, p. 9]). Alternatively,
we can describe the multiple polylogarithm as a power series (cf. [G3, Thm. 2.2,
p. 9])

Lim1,...,mn(x1, . . . , xn) =
∑

0<k1<···<kn

xk1
1 · · ·xknn

km1
1 · · · kmnn

for |xi| < 1. (14.1)

Of special interest to us will be the dilogarithm Li2(x) =
∑
k>0

xk

k2 and the

double logarithm Li1,1(x, y) =
∑

0<k<l
xkyl

kl .

Remark 14.6.1. At first, the functions Lim1,...,mn(x1, . . . , xn) only make sense
for |xi| < 1, but they can be analytically continued to multivalued meromorphic
functions on Cn (cf. [Z1, p. 2]), for example Li1(x) = − log(1 − x). One has

Li2(1) = π2

6 .

14.6.1 The Configuration

Let us consider the configuration

Y := A2 with coordinates x and y,

Z := {x = a} ∪ {y = b} with a 6= 0, 1 and b 6= 0, 1

X := Y \ Z
D := ({x = 0} ∪ {y = 1} ∪ {x = y}) \ Z,
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see Figure 14.3.

We denote the irreducible components of the divisor D as follows:

D1 := {x = 0} \ {(0, b)},
D2 := {y = 1} \ {(a, 1)}, and

D3 := {x = y} \ {(a, a), (b, b)}.

By projecting from Y onto the y- or x-axis, we get isomorphisms for the asso-
ciated complex analytic spaces

Dan
1
∼= C \ {b}, Dan

2
∼= C \ {a}, and Dan

3
∼= C \ {a, b}.

Figure 14.3: The algebraic pair (X,D)

14.6.2 Singular Homology

We can easily give generators for the second singular homology of the pair
(X,D), see Figure 14.4.

• Let α : [0, 1] → C be a smooth path, which does not meet a or b. We
define a “triangle”

4 := {
(
α(s), α(t)

)
| 0 ≤ s ≤ t ≤ 1}.

• Consider the closed curve in C

Cb :=

{
a

b+ εe2πis
| s ∈ [0, 1]

}
,

which divides C into two regions: an inner one containing a
b and an outer

one. We can choose ε > 0 small enough such that Cb separates a
b from 0

to 1, i.e., such that 0 and 1 are contained in the outer region. This allows
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us to find a smooth path β : [0, 1] → C from 0 to 1 not meeting Cb. We
define a “slanted tube”

Sb :=
{(
β(t) · (b+ εe2πis), b+ εe2πis

)
| s, t ∈ [0, 1]

}

which winds around {y = b} and whose boundary components are sup-
ported on D1 (corresponding to t = 0) and D3 (corresponding to t = 1).
The special choice of β guarantees Sb ∩ Z(C) = ∅.

• Similarly, we choose ε > 0 such that the closed curve

Ca :=

{
b− 1

a− 1− εe2πis
| s ∈ [0, 1]

}

separates b−1
a−1 form 0 and 1. Let γ : [0, 1] → C be a smooth path from 0

to 1 which does not meet Ca. We have a “slanted tube”

Sa :=
{(
a+ εe2πis, 1 + γ(t) · (a+ εe2πis − 1)

)
| s, t ∈ [0, 1]

}

winding around {x = a} with boundary supported on D2 and D3.

• Finally, we have a torus

T := {(a+ εe2πis, b+ εe2πit) | s, t ∈ [0, 1]}.

The 2-form ds∧dt defines an orientation on the unit square [0, 1]2 = {(s, t) | s, t ∈
[0, 1]}. Hence the manifolds with boundary 4, Sb, Sa, T inherit an orientation,
and since they can be triangulated, they give rise to smooth singular chains.
By abuse of notation we will also write 4, Sb, Sa, T for these smooth singular
chains. The homology classes of 4, Sb, Sa and T will be denoted by γ0, γ1, γ2

and γ3, respectively.

Figure 14.4: Generators of Hsing
2 (X,D;Q)
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An inspection of the long exact sequence in singular homology will reveal that
γ0, . . . , γ3 form a system generators (see the following proof)

Hsing
2 (D,Q) −−−−→ Hsing

2 (X,Q) −−−−→ Hsing
2 (X,D,Q) −−−−→

Hsing
1 (D,Q)

i1−−−−→ Hsing
1 (X,Q) .

Proposition 14.6.2. With notation as above, we have for the second singular
homology of the pair (X,D)

Hsing
2 (X,D;Q) = Q γ0 ⊕Q γ1 ⊕Q γ2 ⊕Q γ3.

Proof. For c := a and c := b, the inclusion of the circle {c + εe2πis | s ∈ [0, 1]}
into C \ {c} is a homotopy equivalence, hence the product map T ↪→ X(C) is
also a homotopy equivalence. This shows

Hsing
2 (X,Q) = QT,

while Hsing
1 (X,Q) has rank two with generators

• one loop winding counterclockwise around {x = a} once, but not around
{y = b}, thus being homologous to both ∂Sa ∩D2(C) and −∂Sa ∩D3(C),
and

• another loop winding counterclockwise around {y = b} once, but not
around {x = a}, thus being homologous to ∂Sb∩D1(C) and −∂Sb∩D3(C).

In order to compute the Betti-numbers bi of D, we use the spectral sequence
for the closed covering {Di}

Ep,q2 :=

· · · 0 0 0 0 · · ·
· · · 0

⊕3
i=1H

1
dR(Di,C) 0 0 · · ·

· · · 0 Kerδ Cokerδ 0 · · ·
· · · 0 0 0 0 · · ·

⇒ En∞ := Hn
dR(D,C),

where

δ :
3⊕

i=1

H0
dR(Di,C) −→

⊕

i<j

H0
dR(Dij ,C).

Note that this spectral sequence degenerates. Since D is connected, we have
b0 = 1, i.e.,

1 = b0 = rankCE
0
∞ = rankCE

0,0
2 = rankCKerδ.

Hence

rankCCokerδ = rankCcodomain δ − rankCdomain δ + rankCKerδ

= (1 + 1 + 1)− (1 + 1 + 1) + 1 = 1,
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and so

b1 = rankCE
1
∞ = rankCE

1,0
2 + rankCE

0,1
2

=
3∑

i=1

rankCH
1
dR(Di,C) + rankCCokerδ

= rankCH
1(C \ {b},C) + rankCH

1(C \ {a},C) + rankCH
1(C \ {a, b},C) + 1

= (1 + 1 + 2) + 1 = 5.

We can easily specify generators of Hsing
1 (D,Q) as follows

Hsing
1 (D,Q) = Q·(∂Sb∩D1)⊕Q·(∂Sa∩D2)⊕Q·(∂Sb∩D3)⊕Q·(∂Sa∩D3)⊕Q·∂4.

Clearly b2 = rankCH
sing
2 (D,Q) = 0. Now we can compute Keri1 and obtain

Keri1 = Q·∂4⊕Q·(∂Sb∩D1(C)+∂Sb∩D3(C))⊕Q·(∂Sa∩D2(C)+∂Sa∩D3(C)).

This shows finally

rankQH
sing
2 (X,D;Q) = rankQH

sing
2 (X,Q) + rankQKeri1 = 1 + 3 = 4.

From these explicit calculations we also derive the linear independence of γ0 =
[4], γ1 = [Sb], γ2 = [Sa], γ3 = [T ] and Proposition 14.6.2 is proved.

14.6.3 Smooth Singular Homology

Recall the definition of smooth singular cohomology (cf. Theorem 2.2.5). With
the various sign conventions made so far, the boundary map δ : C∞2 (X,D;Q)→
C∞1 (X,D;Q) is given by

δ : C∞2 (X,Q)⊕
3⊕

i=1

C∞1 (Di,Q)⊕
⊕

i<j

C∞0 (Dij ,Q)→ C∞1 (X,Q)⊕
3⊕

i=1

(Di,Q)

(σ
∅
, σ1

1
, σ2

2
, σ3

3
, σ12

12
, σ13

13
, σ23

23
) 7→

(∂σ + σ1 + σ2 + σ3
∅

,−∂σ1 + σ12 + σ13
1

,−∂σ2 − σ12 + σ23
2

,−∂σ3 − σ13 − σ23
3

).

Thus the following elements of C∞2 (X,D;Q) are cycles

• Γ0 := (4
∅
,−∂4∩D1(C)

1
,−∂4∩D2(C)

2
,−∂4∩D3(C)

3
, D12(C)

12
,−D13(C)

13
, D23(C)

23
),

• Γ1 := (Sb
∅
,−∂Sb ∩D1(C)

1
, 0

2
,−∂Sb ∩D3(C)

3
, 0
12
, 0
13
, 0
23

),

• Γ2 := (Sa
∅
, 0

1
,−∂Sa ∩D2(C)

2
, 0

3
,−∂Sa ∩D3(C)

12
, 0
13
, 0
23

) and

• Γ3 := (T
∅
, 0

1
, 0

2
, 0

3
, 0
12
, 0
13
, 0
23

).

Under the isomorphism H∞2 (X,D;Q)
∼−→ Hsing

2 (X,D;Q) the classes of these
cycles [Γ0], [Γ1], [Γ2], [Γ3] are mapped to γ0, γ1, γ2, γ3, respectively.
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14.6.4 Algebraic de Rham cohomology and period matrix
of (X,D)

Recall the definition of the complex Ω̃•X,D. We consider

Γ(X, Ω̃2
X,D) = Γ(X,Ω2

X)⊕
3⊕

i=1

Γ(Di,Ω
1
Di)⊕

⊕

i<j

Γ(Dij ,ODij )

together with the following cycles of Γ(X, Ω̃2
X,D)

• ω0 := ( dx∧dy
(x−a)(y−b)

∅
, 0

1
, 0

2
, 0

3
, 0
12
, 0
13
, 0
23

),

• ω1 := (0
∅
, −dyy−b

1

, 0
2
, 0

3
, 0
12
, 0
13
, 0
23

),

• ω2 := (0
∅
, 0

1
, −dxx−a

2

, 0
3
, 0
12
, 0
13
, 0
23

), and

• ω3 := (0
∅
, 0

1
, 0

2
, 0

3
, 0
12
, 0
13
, 1
23

).

By computing the (transposed) period matrix Pij := 〈Γj , ωi〉 and checking its
non-degeneracy, we will show that ω0, . . ., ω3 span H2

dR(X,D).

Proposition 14.6.3. Let X and D be as above. Then the second algebraic de
Rham cohomology group H2

dR(X,D) of the pair (X,D) is generated by the cycles
ω0, . . . , ω3 considered above.

Proof. Easy calculations give us the (transposed) period matrix P :

Γ0 Γ1 Γ2 Γ3

ω0 1 0 0 0
ω1 Li1( 1

b ) 2πi 0 0
ω2 Li1( 1

a ) 0 2πi 0

ω3 ? 2πiLi1( ba ) 2πi log
(
a−b
1−b

)
(2πi)2.

For example,

• P1,1 = 〈Γ1, ω1〉 =
∫
−∂Sb∩D1(C)

−dy
y−b

=
∫
|y−b|=ε

dy
y−b

= 2πi,

• P3,3 = 〈Γ3, ω3〉 =
∫
T

dx
x−a ∧

dy
y−b

=
(∫
|x−a|=ε

dx
x−a

)
·
(∫
|y−b|=ε

dy
y−b

)
by Fubini

= (2πi)2,
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• P1,0 = 〈Γ0, ω1〉 =
∫
−∂4∩D1(C)

−dy
y−b

=
∫ 1

0
−α(t)
α(t)−b

= −[log(α(t))− b]10
= − log

(
1−b
−b

)

= − log
(
1− 1

b

)

= Li1
(

1
b

)
, and

• P3,1 = 〈Γ1, ω3〉 =
∫
Sb

dx
x−a ∧

dy
y−b

=
∫

[0,1]2
d(β(t)·(b+εe2πis))
β(t)·(b+εe2πis)−a ∧

d(b+εe2πis)
εe2πis

=
∫

[0,1]2
b+εe2πis

β(t)·(b+εe2πis)−adβ(t) ∧ 2πids

= −
∫ 1

0

[
a log(β(t)·(b+εe2πis)−a)−2πiβ(t)bs

β(t)·(−β(t)b+a)

]1

0

dβ(t)

= −2πi
∫ 1

0
dβ(t)
β(t)− ab

= −2πi
[
log
(
β(t)− a

b

)]1
0

= −2πi log
(

1− ab
− ab

)

= −2πi log
(
1− a

b

)

= 2πiLi1
(
b
a

)
.

Obviously the period matrix P is non-degenerate and so Proposition 14.6.3 is
proved.

What about the entry P3,0?

Proposition 14.6.4. P3,0 = Li1,1
(
b
a ,

1
b

)
.

For the proof we need to show that 〈Γ0, ω3〉 = Li1,1
(
b
a ,

1
b

)
, where Li1,1(x, y)

is an analytic continuation of the double logarithm defined for |x|, |y| < 1 in
Subsection 14.6.

Lemma 14.6.5. The integrals

Iα2

(
1

xy
,

1

y

)
=

∫

0≤s≤t≤1

dα(s)

α(s)− 1
xy

∧ dα(t)

α(t)− 1
y

with α : [0, 1] → C a smooth path from 0 to 1, and 1
xy ,

1
b ∈ C \ Imα, defined

above on page 276, provide a genuine analytic continuation of Li1,1(x, y) to a
multivalued function which is defined on {(x, y) ∈ C2 |x, y 6= 0, xy 6= 1, y 6= 1}.

Proof. We describe this analytic continuation in detail. Our approach is similar
to the one taken in [G3, 2.3, p. 9], but differs from that in [Z2a, p. 7].
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Let Ban := (C\{0, 1})2 be the parameter space and choose a point (a, b) ∈ Ban.
For ε > 0 we denote by Dε(a, b) the polycylinder

Dε(a, b) := {(a, b) ∈ Ban | |a′ − a| < ε, |b′ − b| < ε}.

If α : [0, 1] → C is a smooth path from 0 to 1 passing through neither a nor b,
then there exists an ε > 0 such that Imα does not meet any of the discs

D2ε(a) := {a′ ∈ C | |a′ − a| < 2ε}, and

D2ε(b) := {b ′ ∈ C | |b ′ − b| < 2ε}.

Hence the power series (14.2) below

1

α(s)− a′
1

α(t)− b ′ =
1

α(s)− a
1

1− a′−a
α(s)−a

1

α(t)− b
1

1− b ′−b
α(t)−b

=
∞∑

k,l=0

1

(α(s)− a)k+1(α(t)− b)l+1

︸ ︷︷ ︸
ck.l

(a′ − a)k(b ′ − b)l (14.2)

has coefficients ck,l satisfying

|ck,l| <
(

1

2ε

)k+l+2

.

In particular, (14.2) converges uniformly for (a′, b ′) ∈ Dε(a, b) and we see that
the integral

Iα2 (a′, b ′) :=

∫

0≤s≤t≤1

dα(s)

α(s)− a′ ∧
dα(t)

α(t)− b ′

=
∑

k,l=0

(∫

0≤s≤t≤1

dα(s)

(α(s)− a)k+1
∧ dα(t)

(α(t)− b)l+1

)
(a′ − a)k(b ′ − b)l

defines an analytic function of Dε(a, b). In fact, by the same argument we get
an analytic function Iα2 on all of (C \ Imα)2.

Now let αr : [0, 1]→ C\(D2ε(a) ∪D2ε(b)) with r ∈ [0, 1] be a smooth homotopy
of paths from 0 to 1, i.e. αr(0) = 0 and αr(1) = 1 for all r ∈ [0, 1]. We show

Iα0
2 (a′, b ′) = Iα1

2 (a′, b ′) for all (a′, b ′) ∈ Dε(a, b).

Define a subset Γ ⊂ C2

Γ := {(αr(s), αr(t)) | 0 ≤ s ≤ t ≤ 1, r ∈ [0, 1]}.

The boundary of Γ is built out of five components (each being a manifold with
boundary)

• Γs=0 := {(0, αr(t)) | r, t ∈ [0, 1]},
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• Γs=t := {(αr(s), αr(s)) | r, s ∈ [0, 1]},

• Γt=1 := {(αr(s), 1) | r, s ∈ [0, 1]},

• Γr=0 := {(α0(s), α0(t) | 0 ≤ s ≤ t ≤ 1},

• Γr=1 := {(α1(s), α1(t) | 0 ≤ s ≤ t ≤ 1}.

Let (a′, b ′) ∈ Dε(a, b). Since the restriction of dx
x−a′ ∧

dy
y−b ′ to Γs=0, Γs=t and

Γt=1 is zero, we get by Stokes’ theorem

0 =

∫

Γ

0 =

∫

Γ

d
dx

x− a′ ∧
dy

y − b ′

=

∫

∂Γ

dx

x− a′ ∧
dy

y − b ′

=

∫

Γr=1−Γr=0

dx

x− a′
dy

y − b ′
= Iα1

2 (a′, b ′)− Iα0
2 (a′, b ′).

For each pair of smooth paths α0, α1 : [0, 1] → C from 0 to 1, we can find a
homotopy αr relative to {0, 1} between both paths. Since Imαr is compact, we
also find a point (a, b) ∈ Ban = (C \ {0, 1})2 and an ε > 0 such that Imαr does
not meet D2ε(a, b) or D2ε(a, b). Then Iα0

2 and Iα1
2 must agree on Dε(a, b). By

the identity principle for analytic functions of several complex variables [Gun,
A, 3, p. 5], the functions Iα2 (a′, b ′), each defined on (C \ Imα)2, patch together
to give a multivalued analytic function on Ban = (C \ {0, 1})2.

Now assume 1 < |b| < |a|, then we can take α = id : [0, 1] → C, s 7→ s, and
obtain

Iid
2 (a, b) = I2(a, b) = Li1,1

(
b

a
,

1

y

)
,

where Li1,1(x, y) is the double logarithm defined for |x|, |y| < 1 in Subsection
14.6. Thus we have proved the lemma.

Definition 14.6.6 (Double logarithm). We call the analytic continuation from
Lemma 14.6.5 the double logarithm as well and continue to use the notation
Li1,1(x, y).

The period matrix P is thus given by:

Γ0 Γ1 Γ2 Γ3

ω0 1 0 0 0
ω1 Li1( 1

b ) 2πi 0 0
ω2 Li1( 1

a ) 0 2πi 0

ω3 Li1,1
(
b
a ,

1
b

)
2πiLi1( ba ) 2πi log

(
a−b
1−b

)
(2πi)2.
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14.6.5 Varying parameters a and b

The homology groupHsing
2 (X,D;Q) of the pair (X,D) carries a Q-MHS (W•, F •).

The weight filtration is given in terms of the {γj}:

WpH
sing
2 (X,D;Q) =





0 for p ≤ −5

Qγ3 for p = −4,−3

Qγ1 ⊕Qγ2 ⊕Qγ3 for p = −2,−1

Qγ0 ⊕Qγ1 ⊕Qγ2 ⊕Qγ3 for p ≥ 0,

The Hodge filtration is given in terms of the {ω∗i }:

F pHsing
2 (X,D;Q) =





Cω∗0 ⊕ Cω∗1 ⊕ Cω∗2 ⊕ Cω∗3 for p ≤ −2

Cω∗0 ⊕ Cω∗1 ⊕ Cω∗2 for p = −1

Cω∗0 for p = 0

0 for p ≥ 1.

This Q-MHS resembles very much the Q-MHS considered in [G1, 2.2, p. 620]
and [Z2a, 3.2, p. 6]. Nevertheless a few differences are note-worthy:

• Goncharov defines the weight filtration slightly different, for example his
lowest weight is −6.

• The entry P3,2 = 2πi log
(
a−b
1−b

)
of the period matrix P differs by (2πi)2,

or put differently, the basis {γ0, γ1, γ2 − γ3, γ3} is used.

Up to now, the parameters a and b of the configuration (X,D) have been fixed.
By varying a and b, we obtain a family of configurations: Equip A2

C with coor-
dinates a and b and let

B := A2
C \ ({a = 0} ∪ {a = 1} ∪ {b = 0} ∪ {b = 1})

be the parameter space. Take another copy of A2
C with coordinates x and y and

define total spaces

X := (B × A2
C

(a,b,x,y)

) \ ({x = a} ∪ {y = b}) , and

D := “B ×D” = X ∩ ({x = 0} ∪ {y = 1} ∪ {x = y}) .
We now have a projection

D ↪→ X (a, b, x, y)

↘
yπ

y
B (a, b)

,

whose fiber over a closed point (a, b) ∈ B is precisely the configuration (X,D)
for the parameter choice a, b. π is a flat morphism. The assignment

(a, b) 7→ (VQ,W•, F
•),
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where

VQ := spanQ{s0, . . . , s3},

VC := C4 with standard basis e0, . . . , e3,

s0 :=




1
Li
(

1
b

)

Li1
(

1
a

)

Li1,1
(
b
a ,

1
b

)


 , s1 :=




0
2πi
0

2πiLi1
(
b
a

)


 , s2 :=




0
0

2πi

2πi log
(
a−b
1−b

)


 , s3 :=




0
0
0

(2πi)2


 ,

WpVQ =





0 for p ≤ −5

Qs3 for p = −4,−3

Qs1 ⊕Qs2 ⊕Qs3 for p = −2,−1

VQ for p ≥ 0, and

F pVC =





VC for p ≤ −2

Ce0 ⊕ Ce1 ⊕ Ce2 for p = −1

Ce0 for p = 0

0 for p ≥ 1

defines a good unipotent variation of Q-MHS on Ban. Note that the Hodge
filtration F • does not depend on (a, b) ∈ Ban.

One of the main characteristics of good unipotent variations of Q-MHS is that
they can be extended to a compactification of the base space (if the complement
is a divisor with normal crossings).

The algorithm for computing these extensions, so called limit mixed Q-Hodge
structures, can be found for example in [H, 7, p. 24f] and [Z2b, 4, p. 12].

In a first step, we extend the variation to the divisor {a = 1} minus the point
(1, 0) and then in a second step we extend it to the point (1, 0). In particular,
we assume that a branch has been picked for each entry Pij of P . We will follow
[Z2b, 4.1, p. 14f] very closely.

First step: Let σ be the loop winding counterclockwise around {a = 1} once,
but not around {a = 0}, {b = 0} or {b = 1}. If we analytically continue an
entry Pij of P along σ we possibly get a second branch of the same multivalued
function. In fact, the matrix resulting from analytic continuation of every entry
along σ will be of the form

P · T{a=1},

where

T{a=1} =




1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1



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is the monodromy matrix corresponding to σ. The local monodromy logarithm
is defined as

N{a=1} =
log T{a=1}

2πi
=

1

2πi

∞∑

n=1

−1

n

((
1

1
1

1

)
− T{a=1}

)n

=




0 0 0 0
0 0 0 0
−1
2πi 0 0 0
0 0 0 0


 .

We want to extend our Q-MHS along the tangent vector ∂
∂a , i.e. we introduce

a local coordinate t := a− 1 and compute the limit period matrix

P{a=1} := lim
t→0

P · e− log(t)·N{a=1}

= lim
t→0




1 0 0 0
Li1
(

1
b

)
2πi 0 0

Li1

(
1

1+t

)
0 2πi 0

Li1,1

(
b

1+t ,
1
b

)
2πiLi1

(
b

1+t

)
2πi log

(
1−b+t

1−b

)
(2πi)2



·




1 0 0 0
0 1 0 0

log(t)
2πi 0 1 0
0 0 0 1




= lim
t→0




1 0 0 0
Li1
(

1
b

)
2πi 0 0

Li1

(
1

1+t

)
+ log(t) 0 2πi 0

Li1,1

(
b

1+t ,
1
b

)
+ log

(
1−b+t

1−b

)
· log(t) 2πiLi1

(
b

1+t

)
2πi log

(
1−b+t

1−b

)
(2πi)2




(∗)
=




1 0 0 0
Li1
(

1
b

)
2πi 0 0

0 0 2πi 0

−Li2

(
1

1−b

)
2πiLi1(b) 0 (2πi)2


 .

Here we used at (∗)

• P{a=1}2,0 = limt→0 Li1

(
1

1+t

)
+ log(t)

= limt→0− log
(

1− 1
1+t

)
+ log(t)

= limt→0− log(t) + log(1 + t) + log(t)

= 0, and

• P{a=1}3,0 = limt→0 Li1,1

(
b

1+t ,
1
b

)
+ log

(
1−b+t

1−b

)
· log(t)

= Li1,1
(
b, 1
b

)
by L’Hospital

= −Li2

(
1

1− b

)
.
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The vectors s0, s1, s2, s3 spanning the Q-lattice of the limit Q-MHS on {a =
1} \ {(1, 0)} are now given by the columns of the limit period matrix

s0 =




1
Li1
(

1
b

)

0

−Li2

(
1

1−b

)


 , s1 =




0
2πi
0

2πiLi1(b)


 , s2 =




0
0

2πi
0


 , s3 =




0
0
0

(2πi)2


 .

The weight and Hodge filtration of the limit Q-MHS can be expressed in terms
of the sj and the standard basis vectors ei of C4. This gives us a variation of
Q-MHS on the divisor {a = 1}\{(1, 0)}. This variation is actually (up to signs)
an extension of Deligne’s famous dilogarithm variation considered for example
in [Kj, 4.2, p. 38f]. In loc. cit. the geometric origin of this variation is explained
in detail.

Second step: We now extend this variation along the tangent vector −∂∂b to the
point (1, 0), i.e. we write b = −t with a local coordinate t. Let σ be the loop in
{a = 1} \ {(1, 0)} winding counterclockwise around (1, 0) once, but not around
(1, 1). Then the monodromy matrix corresponding to σ is given by

T(1,0) =




1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1


 ,

hence the local monodromy logarithm is given by

N(1,0) =
log T(1,0)

2πi
=




0 0 0 0
1

2πi 0 0 0
0 0 0 0
0 0 0 0


 .

Thus we get for the limit period matrix

P(1,0) := lim
t→0

P{a=1} · e− log(t)·N(1,0)

= lim
t→0




1 0 0 0
Li1
(−1
t

)
2πi 0 0

0 0 2πi 0

−Li2

(
1

1+t

)
2πiLi1(−t) 0 (2πi)2


 ·




1 0 0 0
− log(t)

2πi 1 0 0
0 0 1 0
0 0 0 1




= lim
t→0




1 0 0 0
Li1
(−1
t

)
− log(t) 2πi 0 0

0 0 2πi 0

−Li2

(
1

1+t

)
− Li1(−t) · log(t) 0 0 (2πi)2




(∗)
=




1 0 0 0
0 2πi 0 0
0 0 2πi 0

−ζ(2) 0 0 (2πi)2


 .
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We remark that in the last matrix we see a decomposition into two (2×2)-blocks,
one consisting of a Tate motive, the other involving ζ(2).

Here we used at (∗)

• P(1,0)1,0
= limt→0 Li1

(−1
t

)
− log(t)

= limt→0− log
(
1 + 1

t

)
− log(t)

= limt→0− log(1 + t) + log(t)− log(t)

= 0, and

• P(1,0)3,0
= limt→0−Li2

(
1

1+t

)
− Li1(−t) · log(t)

= limt→0 Li2

(
1

1+t

)
+ log(1 + t) · log(t)

= −Li2(1) by L’Hospital

= −ζ(2).

As in the previous step, the vectors s0, s1, s2, s3 spanning the Q-lattice of the
limit Q-MHS are given by the columns of the limit period matrix P(1,0) and
weight and Hodge filtrations by the formulae in subsection 14.6.5.

So we obtained −ζ(2) as a “period” of a limiting Q-MHS.



Chapter 15

Miscellaneous periods: an
outlook

In this chapter, we collect several other important examples of periods in the
literature for the convenience of the reader.

15.1 Special values of L-functions

The Beilinson conjectures give a formula for the values (more precisely, the
leading coefficients) of L-functions of motives at integral points. We sketch the
formulation in order to explain that these numbers are periods.

In this section, fix the base field k = Q. Let Γ = Gal(Q̄/Q) be the absolute
Galois group. For any prime p, let Ip ⊂ Γ be the inertia group. Let Frp ∈ Γ/Ip
be the Frobenius.

Let M be a mixed motive, i.e., an object in the conjectural Q-linear abelian
category of mixed motives over Q. For any prime l, it has an l-adic realization
Ml which is a finite dimensional Ql-vector space with a continuous operation of
the absolute Galois group GQ = Gal(Q̄/Q).

Definition 15.1.1. Let M as above, p a prime and l a prime different from p.
We put

Pp(M, t)l = det(1− Frpt|M Ip
l ) ∈ Ql[t] .

It is conjectured that Pp(M, t)l is in Q[t], and independent of l. We denote this
polynomial by Pp(M, t).

Example 15.1.2. Let M = Hi(X) for smooth projective variety over Q with
good reduction at p. Then the conjecture holds by the Weil conjectures proved

283
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by Deligne. In the special case X = Spec(Q), we get

Pp(H(SpecQ), t) = 1− t .

In the special case X = P1, i = 1, we get

Pp(H
1(P1), t) = 1− pt .

Remark 15.1.3. There is a sign issue with the operation of Frp depending on
the normalization of Fr ∈ Gal(F̄p/Fp) and whether it operates via geometric or
arithmetic Frobenius. We refrain from working out all the details.

Definition 15.1.4. Let M be as above. We put

L(M, s) =
∏

p prime

1

Pp(M,p−s)

as function in the variable s ∈ C. For n ∈ Z, let

L(M,n)∗

be the leading coefficient of the Laurent expansion of L(M, s) around n.

We conjecture that the infinite product converges for Re(s) big enough and that
the function has a meromorphic continuation to all of C.

Example 15.1.5. Let M = Hi(X) for X a smooth projective variety over
Q. Then convergence follows from the Riemann hypothesis part of the Weil
conjectures. (Note that X has good reduction at almost all p. It suffices to
consider these. Then the zeros of Pp(M, t) are known to have absolute value

p−
i
2 .

Analytic continuation is a very deep conjecture. It holds for all 0-dimensional
X. Indeed, for any number field K, we have

L(H0(SpecK), s) = ζK(s)

where ζK(s) is the Dedekind ζ-function. For M = H1(E) with E an elliptic
curve over Q, we have

L(H1(E), s) = L(E, s) .

Analytic continuation holds, because E is modular.

Example 15.1.6. Let M be as above, Q(−1) = H2(P1) be the Lefschetz mo-
tive. We put M(−1) = M ⊗Q(−1). Then

L(M(−1), s) = L(M, s− 1)

by the formula for Pp(Q(−1), t) above.
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Hence, the Beilinson conjecture about L(M, s) at n ∈ Z can be reduced to the
Beilinson conjecture about L(M(−n), s) at 0.

Conjecture 15.1.7 (Beilinson [Be3]). Let M be as above. Then the vanishing
order of L(M, s) at s = 0 is given by

dimH1
M,f (SpecQ,M∗(1))− dimH0

M,f (SpecQ,M),

where HM,f is unramified motivic cohomology.

For a conceptional discussion of unramified motivic cohomology and a compar-
ison of the different possible definitions, see Scholbach’s discussion in [Sch2].

In particular, we assume that unramified motivic cohomology is finite dimen-
sional.

This conjecture is known for example when M = H0(SpecK)(n) with K a
number field, n ∈ Z or when M = H1(E) with E an elliptic curve with Mordell-
Weil rank at most 1.

Definition 15.1.8. We call M special if the motivic cohomology groups

H0
M,f (SpecQ,M), H1

M,f (SpecQ,M), H0
M,f (SpecQ,M∗(1)), H1

M,f (SpecQ,M∗(1))

all vanish.

We are only going to state the Beilinson conjecture for special motives. In this
case it is also known as Deligne conjecture. This suffices:

Proposition 15.1.9 (Scholl, [Scho]). Let M be a motive as above. Assume
all motivic cohomology groups over Q are finite-dimensional. Then there is a
special motive M ′ such that

L(M, 0)∗ = L(M ′, 0)

and the Beilinson conjecture for M is equivalent to the Beilinson conjecture for
M ′.

Conjecture 15.1.10 (Beilinson [Be3], Deligne [D1]). Let M be a special motive.
Let MB be its Betti-realization and MdR its de Rham realization.

1. L(M, 0) is defined and non-zero.

2. The composition

M+
B ⊗ C→MB ⊗ C per−−→MdR ⊗ C→MdR ⊗ C/F 0MdR ⊗ C

is an isomorphism. Here M+
B denotes the invariants under complex con-

jugation and F 0MdR denotes the 0-step of the Hodge filtration.

3. Up to a rational factor, the value L(M, 0) is given by the determinant of
the above isomorphism in any choice of rational basis of M+

B and MdR.
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Corollary 15.1.11. Assume the Beilinson conjecture holds. Let M be a motive.
Then L(M, 0)∗ is a period number.

Proof. By Scholl’s reduction, it suffices to consider the case M special. The
matrix of the morphism in the conjecture is a block in the matrix of

per : MB ⊗ C→MdR ⊗ C .

All its entries are periods. Hence, the same is true for the determinant.

15.2 Feynman periods

Standard procedures in quantum field theory (QFT) lead to loop amplitudes
associated to certain graphs [BEK, MWZ2]. Although the foundations of QFT
via path integrals are mathematically non-rigorous, Feynman and others have
set up the so-called Feynman rules as axioms, leading to a mathematically
precise definition of loop integrals (or, amplitudes).

These are defined as follows. Associated to a graph G one defines the integral
as

IG =

∏n
j=1 Γ(νj)

Γ(ν − `D/2)

∫

RD`

∏`
r=1 dkr
iπD/2

n∏

j=1

(−q2
j +m2

j )
−νj .

Here, D is the dimension of space-time (usually, but not always, D = 4), n is
the number of internal edges of G, ` = h1(G) is the loop number, νj are integers
associated to each edge, ν is the sum of all νj , the mj are masses, the qj are
combinations of external momenta and internal loop momenta kr, over which
one has to integrate [MWZ2, Sect. 2]. All occurring squares are scalar products
in D-dimensional Minkowski space. The integrals usually do not converge in
D-space, but standard renormalization procedures in physics, e.g. dimensional
regularization, lead to explicit numbers as coefficients of Laurent series. In
dimensional regularization, one views the integrals as analytic meromorphic
functions in the paramter ε ∈ C where D = 4 − 2ε. The coefficients of the
resulting Laurent expansion in the variable ε are then the relevant numbers. By
a theorem of Belkale-Brosnan [BB] and Bogner-Weinzierl [BW], such numbers
are periods, if all moments and masses in the formulas are rational numbers.

A process called Feynman-Schwinger trick [BEK] transforms the above integral
into a period integral

IG =

∫

σ

fω

with

f =

∏n
j=1 x

νj−1
j Uν−(`+1)D/2

Fν−`D/2 , ω =

n∑

j=1

(−1)jdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.
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Here, U and F are homogenous graph polynomials of Kirchhoff type [MWZ2,
Sect. 2], with only F depending on kinematical invariants, and σ is the standard
real simplex in Pn−1(C). Since σ is a compact subset of Pn−1(C), this is almost
a representation of IG as a naive period, and it is indeed one as a Kontsevich-
Zagier period, provided the external momenta pi are rational numbers. The
differential form fω has poles along σ, but there is a canonical blow-up process
to resolve this problem [BEK, MWZ2]. The period which emerges is the period
of the relative cohomology group

Hn(P \ Y,B \ (B ∩ Y )),

where P is a blow-up of projective space in linear coordinate subspaces, Y is
the strict transform of the singularity set of the integrand, and B is the strict
transform of the standard algebraic simplex ∆n−1 ⊂ Pn−1 [MWZ2, Sect. 2].
It is thus immediate that IG is a Kontsevich-Zagier period, if it is convergent,
and provided that all masses and momenta involved are rational. If IG is not
convergent, then, by a theorem of Belkale-Brosnan [BB] and Bogner-Weinzierl
[BW], the same holds under these assumptions for the coefficients of the Laurent
expansion in renormalization.

Example 15.2.1. A very popular graph with a divergent amplitude is the two-
loop sunset graph

p

&%
'$

The corresponding amplitude in D dimensions is

Γ(3−D)

∫

σ

(x1x2 + x2x3 + x3x1)3− 3
2D(x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2)

(−x1x2x3p2 + (x1m2
1 + x2m2

2 + x3m2
3)(x1x2 + x2x3 + x3x1))3−D ,

where σ is the real 2-simplex in P2.

In D = 4, this integral does not converge. One may, however, compute the
integral in D = 2 and study its dependence on the momentum p as an inho-
mogenous differential equation [MWZ1]. There is an obvious family of elliptic
curves involved in the equations of the denominator of the integral, which gives
rise to the homogenous Picard-Fuchs equation [MWZ1]. Then, a trick of Tarasov
allows to compute the D = 4 situation from that, see [MWZ1]. The extension
of mixed Hodge structures

0→ Z(−1)→ H2(P \ Y,B \B ∩ Y )→ H2(P \ Y )→ 0

arising from this graph is already quite complicated [MWZ1, BV], as there
are three different weights involved. The corresponding period functions when
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the momentum p varies are given by elliptic dilogarithm functions [BV, ABW].
There are generalizations to higher loop banana graphs [BKV].

In the literature, there are many more concrete examples of such periods, see
the work of Broadhurst-Kreimer [BK] and subsequent work. Besides multiple
zeta values, there are for examples graphs G where the integral is related to
periods of K3 surfaces [BS].

15.3 Algebraic cycles and periods

In this section, we want to show how algebraic cycles in (higher) Chow groups
give rise to Kontsevich-Zagier periods. Let us start with an example.

Example 15.3.1. Assume that k ⊂ C, and let X be a smooth, projective curve
of genus g, and Z =

∑k
i=1 aiZi ∈ CH1(X) be a non-trivial zero-cycle on X with

degree 0, i.e.,
∑
i ai = 0. Then we have a sequence of cohomology groups

0→ H1(Xan)→ H1(Xan\|Z|)→ H2
|Z|(X

an) ∼=
⊕

i

Z(−1)
Σ→H2(Xan,Z) ∼= Z(−1) .

The cycle Z defines a non-zero vector (a1, ..., ak) ∈⊕i Z(−1) mapping to zero
in H2(Xan,Z). Hence, by pulling back, we obtain an extension

0→ H1(Xan)→ E → Z(−1)→ 0 .

The extension class of this sequence in the category of mixed Hodge structures
is known to be the Abel-Jacobi class of Z [C]. One can compute it in several
ways. For example, one can choose a continuous chain γ with ∂γ =

∑
i aiZi

and a basis ω1, ..., ωg of holomorphic 1-forms on Xan. Then the vector

(∫

γ

ω1, . . . ,

∫

γ

ωg

)

defines the Abel-Jacobi class in the Jacobian

Jac(X) =
H1(Xan,C)

F 1H1(Xan,C) +H1(Xan,Z)
∼= H0(Xan,Ω1

Xan)∨

H1(Xan,Z)
.

If X and the cycle Z are both defined over k, then obviously the Abel-Jacobi
class is defined by g period integrals in Peff(k). In the case of smooth, projective
curves, the Abel-Jacobi map

AJ1 : CH1(X)hom → Jac(X)

gives an isomorphism when k = C.
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One can generalize this construction to Chow groups. Let X be a smooth,
projective variety over k ⊂ C, and Z ∈ CHq(X) a cycle which is homologous
to zero. Then the Abel-Jacobi map

AJq : CHq(X)hom −→
H2q−1(Xan,C)

F q +H2q−1(Xan,Z)
∼= Ext1

MHS(Z(−q), H2q−1(Xan,Z)) ,

As in the example above, the cycle Z defines an extension of mixed Hodge
structures

0→ H2q−1(Xan)→ E → Z(−q)→ 0 ,

where E is a subquotient of H2q−1(Xan \ |Z|). The Abel-Jacobi class is given
by period integrals (∫

γ

ω1, ...,

∫

γ

ωg

)

in Griffiths’ Intermediate Jacobian

Jq(X) =
H2q−1(Xan,C)

F qH2q−1(Xan,C) +H2q−1(Xan,Z)

∼= F qH2q−1(Xan,C)∨

H2q−1(Xan,Z)
.

Even more general, one may use Bloch’s higher Chow groups [Bl]. Higher Chow
groups are isomorphic to motivic cohomology in the smooth case by a result of
Voevodsky. In the general case, they only form a Borel-Moore homology theory
and not a cohomology theory [VSF]. Then the Abel-Jacobi map becomes

AJq,n : CHq(X,n)hom −→
H2q−n−1(Xan,C)

F q +H2q−n−1(Xan,Z)
∼= Ext1

MHS(Z(−q), H2q−n−1(Xan,Z)) ,

There are explicit formulas for AJq,n in [KLM, KLM2, Wei] on the level of
complexes. This shows that the higher Abel-Jacobi class is defined by period
integrals which define numbers in Peff(k).

In analogy with the classical Chow groups, Spencer Bloch has found an explicit
description of the extension of mixed Hodge structures associated to a cycle
Z ∈ CHq(X,n)hom. This is explained in [DS, Scho2]. The periods associated
to this mixed Hodge structures can then be viewed as the periods associated to
Z.

Let us describe this construction. We let �n := (P1 \ {1})n. For varying n, this
defines a cosimplicial object with face and degeneracy maps obtained by using
the natural coordinate t on P1. Faces are given by setting ti = 0 or ti = ∞.
By definition, a cycle Z in a higher Chow group CHq(X,n) is a subvariety of
X × �n meeting all faces F = X × �m ⊂ X × �n for m < n properly, i.e., in
codimension q. By looking at the normalized cycle complex, we may assume
that Z has zero intersection with all faces of X ×�n. Removing the support of
Z, let U := X×�n \ |Z|, and define ∂U to be the union of the intersection of U
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with the codimension 1 faces of X × �n. Then one obtains an exact sequence
[DS, Lemma A.2]

0→ H2q−n−1(Xan)→ H2q−1(Uan, ∂Uan)→ H2q−1(Uan)→ H2q−1(∂Uan) ,

which can be pulled back to an extension E if Z is homologous to zero:

0→ H2q−n−1(Xan)→ E → Z(−q)→ 0 .

Hence, E is a subquotient of the mixed Hodge structure H2q−1(Uan, ∂Uan).
This works for any cohomology satisfying certain axioms, see [DS]. In particular,
applying it to singular or de Rham cohomology, we obtain an extension inside
the category of Nori motives.

For the category of Nori motives, extension groups are not known in general,
and have only been computed in the situation of 1-motives [AB]. The extension
groups of any abelian category MM(k) of mixed motives over k are conjecturally
supposed to be Adams eigenspaces of algebraic K-groups, or, equivalently, mo-
tivic cohomology groups. For example, one expects that

Ext1
MM(k)(Q(−q), H2q−n−q(X)) = H2q−n

M (X,Q(−q)) = Kn(X)
(q)
Q

for a smooth, projective variety X.

15.4 Periods of homotopy groups

In this section, we want to explain the periods associated to fundamental groups
and higher homotopy groups.

The topological fundamental group πtop
1 (X(C), a) of an algebraic variety X

(defined over k ⊂ C) with base point a carries a MHS in the following sense.

First, look at the group algebra Qπtop
1 (X(C), a), and the augmentation ideal

I := Ker(Qπtop
1 (X, a)→ Q). Then the Malcev-type object

π̂1(X(C), a)Q := lim
n→∞

Q[πtop
1 (X(C), a)]/In+1

should carry an Ind-MHS, as we will explain now. Beilinson observed that each
finite step Qπtop

1 (X(C), a)/In+1 can be obtained as a MHS of a certain algebraic
variety defined over the same field k. This was known to experts for some time,
and later worked out in [DG].

Theorem 15.4.1. Let M be any connected complex manifold and a ∈ M a
point. Then there is an isomorphism

Hn(M × · · · ×M︸ ︷︷ ︸
n

, D;Q) ∼= Qπtop
1 (M,a)/In+1,

and Hk(M × · · · ×M︸ ︷︷ ︸
n

, D;Q) = 0 for k < n. Here D = ∪Di is a divisor,

where D0 = {a} × Mn−1, Dn+1 = Mn−1 × {a}, and, for 1 ≤ i ≤ n − 1,
Di = M i−1 ×∆×Mn−i−1 with ∆ ⊂M ×M the diagonal.
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Proof. The proof in loc. cit., which we will not give here, proceeds by induction
on n, using the first projection p1 : Mn →M and the Leray spectral sequence.

In the framework of Nori motives, one can thus see that π̂1(X, a)Q immediately
carries the structure of an Ind-Nori motive over k, since the Betti realization is
obvious. Deligne-Goncharov [DG] and F. Brown [B2, B1] work instead within
the framework of the abelian category of mixed Tate motives over Q of Levine
[L2]. From this it follows, that π̂1(P1\{0, 1,∞}, a)Q is an Ind-mixed Tate motive
over Q (in fact, over Z as explained in [B1]). There is also a description of the de
Rham realization in [DG, B2, B1]. In particular, Brown showed that each MZV
occurs as a period of this Ind-MHS [B2, B1, D3], as we explained in Section 14.5.

Theorem 15.4.2. Every multiple zeta value occurs as a period of π̂1(P1(C) \
{0, 1,∞}, a)Q. Furthermore, every multiple zeta value is a polynomial with Q-
coefficients in multiple zate values with only 2 and 3 as entries.

Proof. See [B1, B2].

The proof of this theorem also implies that every mixed Tate motive over Z
occurs as a finite subquotient of the Ind-motive π̂1(P1 \ {0, 1,∞}, a)Q.

Let us now look at higher homotopy groups πn(Xan) for n ≥ 2 of an algebraic
variety X over k ⊂ C. They carry a MHS rationally by a theorem of Morgan
[Mo] and Hain [H]:

Theorem 15.4.3. The homotopy groups πn(Xan) ⊗ Q of a simply connected
and smooth projective variety over C carry a functorial mixed Hodge structure
for n ≥ 2.

This theorem has a natural extension to the non-compact case using logarithmic
forms, and to the singular case using cubical hyperresolutions, see [PS] and [Na].

Example 15.4.4. Let X be a simply connected, smooth projective 3-fold over
C. Then the MHS on π3(Xan)∨ is given by an extension

0→ H3(Xan,Q)→ Hom(π3(Xan),Q)→ Ker
(
S2H2(Xan,Q)→ H4(Xan,Q)

)
→ 0

Carlson, Clemens, and Morgan [CCM] prove that this extension is given by the
Abel-Jacobi class of a certain codimension 2 cycle Z ∈ CH2

hom(X), and the
extension class of this MHS in the sense of [C] is given by the Abel-Jacobi class

AJ2(Z) ∈ J2(X) =
H3(Xan,C)

F 2 +H3(Xan,Z)
.

The proof of Morgan uses the theory of Sullivan [Su]. In the simply connected
case, there is a differential graded Lie algebra L(X,x) over Q, concentrated in
degrees 0, −1, ..., such that

H∗(L(X,x)) ∼= π∗+1(Xan)⊗Q.
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One can then use the cohomological description of L(X,x) and Deligne’s mixed
Hodge theory, to define the MHS on homotopy groups using a complex defined
over k. We would like to mention that one can try to make this construction
motivic in the Nori sense. At least for affine varieties, this was done in [Ga], see
also [CG, pg. 22]. In [G4], a description of periods of homotopy groups is given
in terms of Hodge correlators. This is not well understood yet.

From the approach in [Ga], one can see, at least in the affine case, that the
periods of the MHS on πn(Xan) are defined over k, i.e., are contained in Peff(k),
when X is defined over k, since all motives involved in the construction are
defined over k.

15.5 Non-periods

The question whether a given transcendental complex number is a period num-
ber in Peff(Q), i.e., is a Kontsevich-Zagier period, is very difficult to answer in
general, even though we know that there are only countably many of them. For
example, we expect (but do not know) that the Euler number e is not a period.
Also 1/π and Euler’s γ are presumably not effective periods, although no proof
is known.

When Kontsevich-Zagier wrote their paper, the situation was like at the begin-
ning of the 19th century for the study of algebraic and trancendental numbers.
It took a lot of effort to prove that Liouville numbers

∑
i 10−i!, e (Hermite) and

π (Lindemann) were transcendental.

In 2008, M. Yoshinaga [Y] first wrote down a non-period α = 0.77766444... in
3-adic expansion

α =

∞∑

i=1

εi3
−i .

We will now explain how to define this number, and why it is not a period.
First, we have to explain the notions of computable and elementary computable
numbers.

Computable numbers and equivalent notions of computable (i.e., equivalently,
partial recursive) functions f : Nn0 → N0 were introduced by Turing [T], Kleene
and Church around 1936 following the ideas from Gödel’s famous paper [G], see
the references in [Kl] . We refer to [Bri] for a modern treatment of such notions
which is intended for mathematicians.

The modern theory of computable functions starts with the notion of certain
classes E of functions f : N0 → N0. For each class E there is then a notion of
E-computable real numbers. In the following definition we follow [Y], but this
was defined much earlier, see for example [R, Spe].

Definition 15.5.1. A real number α > 0 is called E-computable, if there are
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sequences a(n), b(n), c(n) in E , such that
∣∣∣∣
a(n)

b(n) + 1
− α

∣∣∣∣ <
1

k
, for all n ≥ c(k) .

The set of E-computable numbers, including 0 and closed under α 7→ −α, is
denoted by RE .

Some authors use the bound 2−k instead of 1
k . This leads to an equivalent

notion only for classes E which contain exponentials n 7→ 2n.

If E = comp is the class of Turing computable [T], or equivalently Kleene’s
partial recursive functions [Kl], then Rcomp is the set of computable real numbers.
Computable complex numbers Ccomp are those complex numbers where the real-
and imaginary part are computable reals.

Theorem 15.5.2. Rcomp is a countable subfield of R, and Ccomp = Rcomp(i) is
algebraically closed.

One can think of computable numbers as the set of all numbers that can be
accessed with a computer.

There are some important levels of hierarchies inside the set of computable reals

Rlow−elem ( Relem ( Rcomp ,

induced by the elementary functions of Kalmár (1943) [Ka], and the lower ele-
mentary functions of Skolem (1962) [Sk]. There is also the related Grzegorczyk
hierarchy [Gr]. In order to define such hierarchies of real numbers, we will now
study functions f : Nn0 → N0 of several variables.

Definition 15.5.3. The class of lower-elementary functions is the smallest class
of functions f : Nn0 → N0

• containing the zero-function, the successor function x 7→ x + 1 and the
projection function Pi : (x1, ..., xn) 7→ xi,

• containing the addition x + y, the multiplication x · y, and the modified
subtraction max(x− y, 0),

• closed under composition, and

• closed under bounded summation.

The class of elementary functions is the smallest class which is also closed under
bounded products.

Here, bounded summation (resp. product) is defined as

g(x, x1, ..., xn) =
∑

a≤x
f(a, x1, ..., xn) resp.

∏

a≤x
f(a, x1, ..., xn) .



294 CHAPTER 15. MISCELLANEOUS PERIODS: AN OUTLOOK

Elementary functions contain exponentials 2n, whereas lower elementary func-
tion do not. The levels of the above hierarchy are strict [TZ].

The main result about periods proven in [Y, TZ] is:

Theorem 15.5.4. Real periods are lower elementary real numbers.

In fact, Yoshinaga proved that periods are elementary computable numbers,
and Tent-Ziegler made the refinement that periods are even lower-elementary
numbers. The proofs are based on Hironaka’s theorem on semi-algebraic sets
which we have used already in chapter 2. The main idea is to reduce periods to
volumes of bounded semi-algebraic sets, and then use Riemann sums to approx-
imate the volumes inside the class of lower elementary computable functions.

Corollary 15.5.5. One has inclusions:

Q̄ ( Peff(Q) ⊂ Clow−elem ( Celem ( Ccomp .

Hence, in order to construct a non-period, one needs to exhibit a computable
number which is not elementary computable. By Tent-Ziegler, it would also
be enough to write down an elementary computable number which is not lower
elementary.

Here is how Yoshinaga proceeds. First, using a result of Mazzanti [Maz], one can
show that elementary functions are generated by composition from the following
functions:

• The successor function x 7→ x+ 1,

• the modified subtraction max(x− y, 0),

• the floor quotient (x, y) 7→ b x
y+1c, and

• the exponential function (x, y) 7→ xy.

Using this, there is an explicit enumeration (fn)n∈N0
of all elementary functions

f : N0 → N0. Together with the standard enumeration of Q>0, we obtain an
explicit enumeration (gn)n∈N0 of all elementary maps g : N0 → Q>0. Using a
trick, see [Y, pg. 9], one can ”speed up” each function gn, so that gn(m) is a
Cauchy sequence (hence, convergent) in m for each n.

Following [Y], we therefore obtain

Relem = {β0, β1, ...}, where βn = lim
m→∞

gn(m) .

Finally, Yoshinaga defines

α := lim
n→∞

αn = lim
n→∞

n∑

i=1

εi3
−i ,
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where ε0 = 0, and recursively

εn+1 :=

{
0, if gn(n) > αn + 1

2·3n
1, if gn(n) ≤ αn + 1

2·3n
.

Now, it is quite easy to show that α does not occur in the list Relem = {β0, β1, ...},
see [Y, Prop. 17]. Note that the proof is essentially a version of Cantor’s diag-
onal argument.
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