
Transcendence and linear relations of

1-periods

Annette Huber

Gisbert Wüstholz
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Abstract. In this monograph we study four fundamental questions
about 1-periods and give complete answers. These complex numbers are
the values of integrals of rational algebraic 1-forms over not necessarily
closed paths, or equivalently periods in cohomological degree 1, or of
Deligne 1-motives over Q.

(1) We give a necessary and sufficient condition for a period integral
to be transcendental. We make this result explicit in the case of
the Weierstraß σ-function on an elliptic curve.

(2) We give a qualitative description of all Q-linear relations between
1-periods. This establishes Kontsevich’s version of the Period Con-
jecture for such periods.

(3) Periods may vanish and we determine all cases when this happens.1
(4) For a fixed 1-motive, we derive a general formula for the dimension

of the space of its periods in the spirit of Baker’s theorem, which
appears as a very special case.

These long-standing open questions lie in the heart of modern tran-
scendence theory. They look back to a long history starting with the
transcendence of π.
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Prologue

The study of transcendence properties of periods has a long history. It
began in 1882 with the famous theorem of Lindemann on the transcendence
of π which showed that squaring the circle is not possible. This settled a
problem more than 2000 years old from the time of the Greeks. At the
same time, he showed that α and eα cannot both be algebraic unless α = 0.
In particular, logα is transcendental for algebraic α ≠ 0,1. Lindemann
actually proved more: his method gives us that if α1, . . . αN are pairwise
distinct algebraic numbers then eα1 , . . . , eαN are linearly independent over
Q. This was carried out in full detail, and with the approval of Lindemann,
in 1885 by Weierstraß in [Wei85]1.

In his famous address at the ICM 1900, Hilbert went further. In the
seventh of his 23 problems, he asked when α,β and γ = αβ can all three be
algebraic numbers. There are some obvious cases where this is true, namely
when α = 0, α = 1 or β is rational. But Hilbert went further and asked
whether these were the only cases. He considered this problem as more
difficult to prove than the Riemann hypothesis.

To much surprise Gelfond [Gel34] and Schneider [Sch34b], applying
different methods, independently succeeded in 1934 in answering Hilbert’s
problem. An almost equivalent formulation is that for α ≠ 0 the three
numbers are algebraic if log(α) and log(αβ) are linearly dependent over Q.

Linear Forms of Logarithms. The work of Gelfond and Schneider
initiated extensive work on so-called linear forms in logarithms. It was
known that lower bounds for such linear forms would give solutions to several
outstanding problems. One of them is the famous class number 1 problem;
another is finding effectively the integral solutions of classes of diophantine
equations. The main open problem in this context was to deal with linear
forms in three logarithms of algebraic numbers with algebraic coefficients.

The methods that had been developed so far could not handle more
than two logarithms and it was considered a very difficult problem to make
progress on. This hurdle was overcome in the case of classical logarithms in
1966 by Baker. In his famous paper he was able to solve this problem in full
generality not only for three but even for any finite number logarithms. In

1see p. 1067, footnote 2
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particular he showed that if α1, . . . , αn are non-zero algebraic numbers, then
a linear form with algebraic coefficients in logα1, . . . , logαn vanishes if and
only if the logarithms are linearly dependent over Q. This result is exactly
in the spirit of Gelfond and Schneider’s solutions of the Hilbert Problem.

Elliptic and Abelian Integrals. The number 2πi is a period of the
integral ∫

dx
x of the rational differential form dx

x taken over a closed path
in C. Other period numbers appear in the theory of the Weierstraß elliptic
function as elliptic integrals of the first kind and, consequently, it was no
surprise that Siegel [Sie32] took up the topic. He proved that not all periods
of the Weierstraß elliptic functions with algebraic invariants g2 and g3 are
algebraic, in particular it follows that in the complex multiplication case all
non-zero periods are transcendental.

Schneider further developed the theory also to deal with elliptic integrals
of the first and second kind and complete or incomplete periods. In a series of
papers based on his solution of Hilbert’s seventh problem [Sch34b, Sch34a]
he went as far as the technical tools of the time allowed. He proved in
[Sch37] for example that if u is chosen such that the Weierstraß ℘-function
takes an algebraic value, then 1, u and ζ(u) are linearly independent over
Q. In particular if ω is in the period lattice then 1, ω and η(ω) are lin-
early independent over Q. This was the first paper in which he proved a
result about the Weiserstrass ℘-function and the exponential function. In
particular he showed that π

ω is transcendental.
In the subsequent years Schneider extended his work, studying the tran-

scendence properties of abelian functions and integrals and obtaining the
first, albeit partial, results. The most striking example was the transcen-
dence of the values of the B-function at rational arguments, see also [Sie49].
In his book [Sch57] he asked, as open problems, for proofs of similar re-
sults also for elliptic integrals of the third kind and for abelian integrals. As
he noted, it was clear that the methods were exhausted and new methods
would be necessary for solving the problems.

In a series of papers following his work on logarithms, Baker was also
able to extend in a very limited way Schneider’s results about transcendence
of values of elliptic functions in the case of the Weierstraß ℘− and ζ-functions
which contain also transcendence results on elliptic integrals of the second
kind, see for example [Bak69]. His results were extended to linear indepen-
dence results on periods of integrals of the second kind by himself, Coates,
Masser, Laurent and Bertrand. However, they were also strongly limited by
the lack of a general tool for handling the case of an arbitrary number of
elliptic or abelian logarithms. The problem was that Baker’s approach did
not work in general in the case of abelian varieties or more generally in the
case of commutative algebraic groups.
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This changed only when the Analytic Subgroup Theorem [Wüs89] be-
came available in 1982. It allowed one to deal with 1-periods in general and
linear relations between them. The case of complete periods in the general
case where ω is an algebraic 1-form on a curve of arbitrary genus and γ a
closed path on the corresponding Riemann surface, was settled in 1986 by
the second author in [Wüs87]: If a period is non-zero, it is transcenden-
tal. Both cases can arise. A simple example is a hyperelliptic curve whose
Jacobian is isogenous to a product of two elliptic curves. Then 8 of the 16
standard periods are 0. The others are transcendental.

The Analytic Subgroup Theorem opened a fruitful interplay between
transcendence theory and algebraic groups through the exponential map for
Lie groups. More recently it turned out that the right frame is the theory
of 1-motives introduced by Deligne in 1974, see [Del74]. It added to the
algebraic groups extra data in the shape of a homomorphism of a free abelian
group into the group, which lets one deal with so-called incomplete periods
in an elegant and natural way. We develop this point of view in full detail
in the present monograph.

Grothendieck’s Period Conjecture. The transcendence properties
of periods make it natural to ask questions about linear and algebraic re-
lations between them. A conceptual interpretation of possible relations is
provided by what came to be known as the Period Conjecture. Periods are
given a cohomological interpretation and all relations between them should
be induced by relations between motives.

This string of ideas was started by Grothendieck in [Gro66, p. 101].
He discussed the comparison of the de Rham cohomology of a smooth va-
riety X over a number field K with its singular cohomology. The entries
of the comparison matrix comparing H1

dR(X) and H1
sing(X

an,Q) of a com-
plete non-singular curve X are classical periods of the first and second kind.
Grothendieck asks for instance if Schneider’s theorem generalises in some
way to these periods.2 Subsequently, he came to a conceptual conjecture
and went further by predicting the transcendence degree of the field of peri-
ods of Hn(X) for a smooth projective variety X (or more generally of a pure
motive M) as the dimension of the motivic Galois group or alternatively the
dimension of the Mumford-Tate group of the Hodge structure on M .

However, he did not publish the conjecture himself. We refer to the
first hand account of André in [And19] on the history of the conjecture.
A complete formulation and discussion was finally given by André [And04,
Chapter 23]. This includes a straightforward extension of the conjecture to
the case of mixed motives. The formulation of the conjecture for 1-motives
is discussed by Bertolin in [Ber02] and more recently [Ber20]. The only

2In footnote 10 Grothendieck recalls the belief that the periods ω1, ω2 of a non-CM
elliptic curve should be algebraically independent. “This conjecture extends in an obvious
way to the set of periods (ω1, ω2, η1, η2) and can be rephrased also for curves of any genus,
or rather for abelian varieties of dimension g, involving 4g periods.”
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known result in this direction is a theorem of Chudnovsky, who showed in
[Chu80] that for any elliptic curve defined over Q at least two of the numbers
ω1, ω2, η(ω1) and η(ω2) are algebraically independent provided that ω1 and
ω2 generate the period lattice over Q. In the case of complex multiplication
this implies that ω and η(ω) are algebraically independent, which confirms
the prediction in the CM case. In general Grothendieck’s conjecture is out
of reach. We shall present an outlook on further developments below.

The Period Conjecture as Formulated by Kontsevich and Za-
gier. In a series of papers, Kontsevich and Zagier [KZ01], [Kon99] pro-
moted also the study of periods of non-smooth, non-projective varieties, or
more generally of mixed motives. In [Kon99] Kontsevich formulated for-
mulates an alternative version of the Period Conjecture. As André pointed
out, it has a very different flavour based on calculus rather than algebraic
geometry. Relations between periods are induced by the transformation rule
and Stokes’s Theorem. This approach puts relative cohomology front and
centre. Kontsevich views periods as the numbers in the image of the period
pairing given by period integrals for relative cohomology

H∗
dR(X,Y ) ×Hsing

∗ (X,Y ;Q)→ C

for algebraic varieties X over Q and subvarieties Y ⊂ X. By Kontsevich’s
Period Conjecture all Q-linear relations between such periods should be
induced by bilinearity and functoriality of mixed motives. More explicitly,
he introduces an algebra of formal periods P̃ (also called motivic periods by
some authors) with explicit generators and relations. His conjecture predicts

that the evaluation map P̃ → C (sending a formal period to the actual value
of the integral) is injective. In the present monograph, we give an answer in
the case of periods in degree 1, or equivalently, periods of curves.

Grothendieck’s Period Conjecture on algebraic relations between periods
is essentially equivalent to Kontsevich’s Period Conjecture on linear relations
between periods, see e.g. [Ayo14a], [And17], [HMS17, Section 13.2.1] or
[Hub20, Section 5.3] for the precise relation. It rests on a key insight of

Nori, who realised that Spec(P̃) of the algebra P̃ is a torsor under a motivic
Galois group, in fact the torsor of tensor isomorphisms between the de Rham
realisation and the singular realisation of the category of mixed Nori motives.

Dimensions of Period Spaces. For any given variety, the space of
periods is finite dimensional. This makes it natural to ask about their di-
mension. A qualitative prediction already follows from the Period Conjec-
ture. The precedent for the kind of formula that we have in mind is Baker’s
theorem, [Bak66] on logarithms. Such a formula can be made explicit: for

β1, . . . , βn ∈ Q
∗

let ⟨β1, . . . , βn⟩ be the multiplicative subgroup of Q∗
gener-

ated by these numbers. Then the dimension of the vector space generated by
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the principal determinations of logβ1, . . . , logβn over Q (but modulo multi-
ples of π) is equal to the rank of the group generated by β1, . . . , βn.

In addition to Baker’s Theorem, a number of cases have been consid-
ered in the past; for example, the case of elliptic logarithms, see [BW07,
Chapter 6.2] or the extension of an elliptic curve by a torus of dimension
n in [Wüs84b]. An interesting new case came up recently in connection
with curvature lines and geodesics for billiards on a triaxial ellipsoid, see
[Wüs21]. This leads to a period space generated by 1, 2πi and the periods
ω1, ω2, η(ω1), η(ω2), λ(u,ω1), λ(u,ω2) of the first, second and third kind. Its
dimension over Q is 8, 6 or 4 depending on the endomorphisms of the elliptic
curve involved and on the nature of the differential of the third kind. This
case serves as a model for a completely general result.

In the case of 1-motives this is the question about the dimension of the
vector space generated over Q by their periods. It turns out that to state
and prove such a general formula for the dimension of the period space of
a 1-motive is difficult. The difficulties arise from periods of the third kind
and the formulae we shall give are quite involved.

Outlook. As we have already stated, the Period Conjecture itself seems
currently far out of reach. Even the special case of values of the Riemann ζ
functions is widely open. The Period Conjecture implies that the ζ(2n + 1)
for n ∈ N are algebraically independent. On one side we have the theory
of motives and on the other hand transcendence theory. The interaction
between both is a wonderful topic. It has been exploited in order to deduce
upper bounds for the spaces of periods. However, on the transcendence
side only comparitively weak lower bounds are available. Only for the case
of 1-motives over Q we have a complete description of the transcendental
aspects. This is what our book explains.

It is appropriate to give a short overlook on other types of motives which
were studied with respect to transcendence. This concerns motives over Q,
motives over function fields, both over Q as well as over finite fields. The
more structure the base field has the more complete gets the transcendence
situation. In the following we go through some cases of motives for which
transcendence has been studied and we also mention some problems about
effectivity.

Mixed Tate Motives. The Riemann ζ-function has been, since the work
of Euler, one of the central objects in number theory. Euler showed that its
value at positive integers 2n is, up to a constant, of the form (2π)2n. This im-
plies that they are transcendental over the rationals. This is Lindemannn’s
theorem. The only other known fact about irrationality or transcendence
of integral values of the ζ-function is Ápery’s discovery of irrationality of
ζ(3); see [Apé79]. Only since about 2000 has there been more intensive
study about these values, starting with Rivoal, Zudilin and others; see, for
example, [Zud01], [BR01]. They considered the space over Q generated
by odd ζ-values up to a fixed integer n for small n and first showed that its
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dimension is at least 1. More recently they have been able to prove that the
dimension tends to infinity with n at a rate at least of order logn.

From the other side, upper bounds on spaces generated by ζ- and multi-
zeta values (the periods of mixed Tate motives over Z) were provided by
Deligne–Goncharov in [DG05]. The reason why these results could be
established is that the motivic picture is completely understood, see also
Brown’s work [Bro12] on the structure of the motivic Galois group in this
case. Closely related to the study of ζ-values is the study of multi-zeta
values, dilogarithms and multi-logarithms.

Motives over Function Fields over Q. Ayoub reformulated Kontsevich’s
Period Conjecture with fewer generators. Only polydisks are needed as
domains of integration. Based on this description, he was able to formulate
and prove a function field version of the conjecture in [Ayo15].

For a closed polydisc Dn he considered the subspace

O†
alg(D

n
) ⊂ O(Dn)[[T ]][T−1]

of Laurent series F = ∑i>−∞ fi(z1, . . . , zn)T
i with coefficients inO(Dn) which

are algebraic over C(T, z1, . . . , zn). The dimension n is allowed to vary and

O†
alg(D

∞
) = ⋃n∈NO

†
alg(D

n
). In analogy to Kontsevich’s space of formal pe-

riods P̃, he defined P† as a quotient of O†
alg(D

∞
) by certain relations and

showed that there is an evaluation map P† → C((T )). The main result
(and geometric analogue of the Period Conjecture) is the injectivity of this
evaluation map. There is also independent work of Nori (unpublished) in
the same direction.

Motives over Function Fields over Finite Fields. All that is known about
transcendence over Q is also known for function fields over finite fields: in-
deed often more is known. Let p be a prime, q = pn and Fq[x] the ring of
polynomials in one variable over the finite field Fq. In 1935 Carlitz intro-
duced the so-called Carlitz ψ-functions in [Car35], defined as

ψ(t) =
∞
∑
0

(−1)k

Fk
tq
k

where Fk = [k][k − 1] q⋯[1] q
k−1

and [k] = xq
k
− x. On the basis of these

functions Wade started studying transcendence theory over function fields
over finite fields [Wad46]. Their minimal algebraic closure is complete with
respect to the standard valuation so that the function ψ(x) exists and is a
replacement of the exponential function. Its inverse exists as a multi-valued
function and is the analogue of the logarithm. Wade proved among other
things the analogue of the theorem of Gelfond and Schneider.

In 1983 Jing Yu took up the topic and proved the analogue of Linde-
mann’s theorem in the realm of Drinfeld modules and started a very interest-
ing transcendence theory for Drinfeld modules and t-motives. As a highlight
of a sequence of papers including periods and quasi-periods of Drinfeld mod-
ules as well as special zeta values in characteristic p, he obtained an analogue
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of the Analytic Subgroup Theorem for Drinfeld modules and, more gener-
ally, Anderson’s t-motives. Once the theory and the techniques had been
established, a whole spectrum of applications followed, including linear inde-
pendence of zeta-values, by Yu, Chieh-Yu Chang, Papanikolas and Thakur;
see [Yu97], [CY07], [CPTY10]. They even were able to determine the
transcendence degree of fields generated by logarithms or zeta-values in this
setting. The survey paper of Chang [Cha17] gives a very nice and substan-
tial report about the newest achievements in this theory.

Hypergeometric Period Relations, Periods of Higher Weight. It is well-
known that values of hypergeometric functions can be expressed as quotient
of two abelian integrals, in general of the second kind. This leads to a
period relation between the two periods of the second kind with the hyper-
geometric function as coefficient. Algebraic values of the hypergeometric
function provide linear relations between the two periods with algebraic co-
efficients. This cannot be true in general and leads to special points on cer-
tain Shimura varieties as explained very carefully in Chapter 5 of Tretkoff’s
beautiful monograph [Tre17]. In particular new transcendence results are
given for the Appel-Lauricella (hypergeometric) functions in n ≥ 2 variables.
They exceed the known results on the values of the classical hypergeometric
function in one variable.

Hodge Level 1. An obvious problem is to extend the transcendence re-
sults to periods of higher weight. In general this seems to be a hopeless
undertaking. However, there are cases when periods of higher weight can be
related to 1-periods. Tretkoff gives some nice examples dealing with periods
of Fermat hypersurface. This is the case for certain algebraic K3-surfaces
and smooth complete intersections over C of Hodge level 1 as explained in
[Del72]; see also [Wüs87].

We are not going to expand our monograph in this direction but mention
some interesting research dealing with this kind of problems. The starting
point was given in [Wüs87] and then taken up by Tretkoff.

In Chapter 6 of her monograph [Tre17] P. Tretkoff discusses among
other things algebraic K3 surfaces X defined over a number field. She con-
siders a holomorphic 2-form ω on X and shows that if the vector space
generated by the periods ∫γ ω for γ ∈ H2(X,Z) has dimension 1, then X
has complex multiplication, i.e. its Mumford-Tate group is abelian. This
implies that if X has complex multiplication these periods are all transcen-
dental unless γ = 0.

In Chapter 7 she deals with arbitrary smooth projective varieties X de-
fined over Q. One of the questions she raises is whether the Hodge filtration
of Hk(X,C) for 0 ≤ k ≤ dimX has complex multiplication if it is defined
over Q. She gives some nice examples dealing with periods on Fermat hy-
persurfaces.

All this is restricted to holomorphic differential forms and complete pe-
riods. In our monograph we deal with meromorphic differential forms and
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incomplete periods. It would be interesting to try to get more general cases
involving incomplete periods.

Effectivity, Lower Bounds. The main applications of Baker’s work on
linear forms in logarithms were the lower bounds he derived. He showed
that if Λ is a linear form in logarithms of algebraic numbers with algebraic
coefficients a lower bound for the absolute value of Λ can be obained. For
a detailed account on this see [BW07]. A similar theory exists also for
the p-adic analogue, started by Coates and finally brought to the level of
the archimedean case by Kunrui Yu. Similar results were also obtained
for elliptic and abelian logarithms. One might ask whether this can be
extended to 1-motives in a modified way. First steps in this direction were
the work of Masser and Wüstholz [MW93] on isogeny estimates. It says
that, given an isogeny between two abelian varieties, there exists an isogeny
with degree bounded by the original data: height of the source isogeny,
degree of the number field, dimension of the abelian variety. The result is
completely effective and a crucial ingredient for the proof of the famous Tate
conjecture. It has also been used for the proof of the André–Oort conjecture
for the coarse moduli space of prinicipally polarised abelian varieties [Tsi18]
by Tsimerman. It would be interesting to formulate an isogeny estimate type
statement for 1-motives and to find applications in diophantine geometry.
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CHAPTER 1

Introduction

This introduction aims to present the principal actors of the book and
to explain the main results of our monograph. We begin with the ques-
tion about transcendence of periods of integrals of 1-forms over closed or
non-closed paths. Historically integrals over non-closed paths were not con-
sidered as periods. The change came from looking at them in the relative
cohomology. This leads us to distinguish between complete and incomplete
periods.

The presentation does not follow the order in the main text, but is, we
hope, designed to help those readers without a background in transcendence.

1.1. Transcendence

The vector space P1 over Q of one-dimensional periods, complete or
incomplete, has a number of different descriptions. In the most elementary
situation its elements are given by the period integrals

α = ∫
σ
ω

where

● X is a smooth projective curve over Q;
● ω is a rational differential form on X;
● σ = ∑ni=1 aiγi is a chain in the Riemann surface Xan defined by X

which avoids the singularities of ω and has boundary divisor ∂σ in
X(Q); in particular γi ∶ [0,1]→Xan is a path and ai ∈ Z.

This set includes many interesting numbers like 2πi, logα for algebraic α
and the periods of elliptic curves over Q. We study their transcendence
properties.

The case of complete periods in the general case, i.e. X and ω arbitrary,
γ closed, was settled in 1986 by the second author in [Wüs87]: if a period
is non-zero, it is transcendental. Both cases can arise. A simple example
is a hyperelliptic curve whose Jacobian is isogenous to a product of two
elliptic curves. Then 8 of the 16 standard periods are 0. The others are
transcendental.

When X is an elliptic curve we refer to [BW07, Chapter 6.2] for the
case of incomplete periods. The general case has been described as an open

problem in [Wüs84a]. Often the values are transcendental, e.g. ∫
2

1 dz/z =

log 2 but certainly not always, e.g., ∫
2

0 dz = 2. Again, it is not difficult to

1



2 1. INTRODUCTION

write down a list of simple cases in which the period is a non-zero algebraic
number. However, it was not at all clear whether the list was complete and
what the structure behind the examples was; see [Wüs12]. The answer that
we give now is surprisingly simple:

Theorem 1.1 (See Theorem 13.9). Let α = ∫σ ω be a one-dimensional
period on X. Then α is algebraic if and only if

ω = df + ω′

with f ∈ Q(X)∗ and ∫σ ω
′ = 0 with ω′ a form with no extra poles.

The condition is clearly sufficient because the integral evaluates to

∑
i

ai(f(γi(1)) − f(γi(0))) ∈ Q

in this case.
Theorem 13.9 gives a complete answer to two of the seven problems

listed in Schneider’s book [Sch57, p. 138], 1 2 open for more than 60 years.
Actually we even include periods of abelian integrals of the third kind.

1.2. Relations between Periods

Questions on transcendence can be viewed as a very special case of the
question on Q-linear relations between 1-periods: a complex number is tran-
scendental if it is Q-linearly independent of 1. The most general problem of
this kind is to determine the dimension of the period space generated over
Q by the periods of all rational 1-forms of an algebraic variety. It is easy to
give an upper bound for this dimension in terms of cohomological data. The
problem is then to decide whether the upper bound is the correct number
or whether there are linear relations between periods.

This fundamental question will be one of the central topics in this mono-
graph. We establish a complete description of the linear relations between
(not necessarily complete) periods for all rational differential forms of degree
1. It is crucial to use here the more conceptual descriptions of P1 either as
periods in cohomological degree 1 or as cohomological periods of curves, or
even better periods of 1-motives.

The following theorem gives a first answer. It establishes Kontsevich’s
version of the Period Conjecture for P1 and furnishes a qualitative descrip-
tion of the period relations.

Theorem 1.2 (Kontsevich’s Period Conjecture for P1, Theorem 13.3).

All Q-linear relations between elements of P1 are induced by bilinearity and

1Problem 3. Es ist zu versuchen, Transzendenzresultate über elliptische Integrale
dritter Gattung zu beweisen.

2Problem 4. Die Transzendenzsätze über elliptische Integrale erster und zweiter
Gattung sind in weitestmöglichem Umfang auf analoge Sätze über abelsche Integrale zu
verallgemeinern.
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functoriality of pairs (C,D) where C is a smooth affine curve over Q and
D ⊂ C a finite set of points over Q.

The conjecture has an alternative formulation in terms of motives. Ac-
tually, we deduce Theorem 1.2 from the motivic version below together with
the result of Ayoub and Barbieri-Viale in [ABV15] which says that the sub-

category of MMeff
Nori generated by H∗(C,D) with C of dimension at most

1 agrees with Deligne’s much older category of 1-motives; see [Del74].

Every 1-motive M has a singular realisation Vsing(M) and a de Rham
realisation VdR(M). They are linked via a period isomorphism

Vsing(M)⊗Q C ≅ VdR(M)⊗Q C.
There is a well-known relation between curves and 1-motives provided by
the theory of generalised Jacobians. From this fact we see that the set P1

has another alternative description as the union of the images of the period
pairings

Vsing(M) × V ∨
dR(M)→ C

for all 1-motives M over Q.

Theorem 1.3 (Period conjecture for 1-motives, Theorem 9.10). All Q-
linear relations between elements of P1 are induced by bilinearity and func-
toriality for morphisms of iso-1-motives over Q.

The theorem does not say anything about the actual dimension of the
period space. We need a quantitative answer. In other words the space of
relations has to be determined. It turns out that to find the answer is rather
difficult in some cases.

1.3. Dimensions of Period Spaces

The above qualitative theorems can be refined into an explicit computa-
tion of the dimension δ(M) of the Q-vector space generated by the periods of
a given 1-motive M . The result depends on the subtle and very unexpected
interplay between the constituents of M .

Not only for the proofs, but also for the very formulation of the dimension
formulas, we rely on the theory of 1-motives introduced by Deligne; see
[Del74]. They form an abelian category that captures all cohomological
properties of algebraic varieties in degree 1, including all one-dimensional
periods.

We review the basics: a 1-motive over Q is a complex M = [L → G]

where G is a semi-abelian variety over Q and L a free abelian group of finite
rank. The map is a group homomorphism. As mentioned before, every
1-motive has de Rham and singular realisations and a period isomorphism
between them after extension of scalars to C.

If C is a smooth curve over k, D ⊂ C a finite set of Q-points, then there

is a 1-motive M1(C) such that Hsing
1 (Can,D;Q) agrees with the singular



4 1. INTRODUCTION

realisation of M1(C), and H1
dR(C,D)∨ agrees with the de Rham realisation

of M1(C). Hence the periods of the pair (C,D) agree with the periods of
M1(C). Explicitly, M1(C) = [Z[D]0 → J(C)] where J(C) is the generalised
Jacobian of C and Z[D]0 means divisor of degree 0 supported on D.

We denote by P(M) the image of the period pairing for M and by P⟨M⟩

the abelian group (or, equivalently Q-vector space) generated by P(M) ⊂ C.

We fix a 1-motive M = [L→ G] with G an extension of an abelian variety
A by a torus T and L a free abelian group of finite rank. For the definition
of its singular realisation Vsing(M) and its de Rham realisation V ∨

dR(M), we
refer to Chapter 8.

The weight filtration on M , explicitly given by

[0→ T ] ⊂ [0→ G] ⊂ [L→ G]

induces
Vsing(T )↪ Vsing(G)↪ Vsing(M).

and dually
V ∨

dR(M)↩ V ∨
dR([L→ A])↩ V ∨

dR([L→ 0]).

Together, they introduce a bifiltration

P⟨T ⟩ �
� // P⟨G⟩ �

� // P⟨M⟩

P⟨A⟩ �
� //

?�

OO

P⟨[L→ A]⟩
?�

OO

P⟨[L→ 0]⟩
?�

OO

on P⟨M⟩.

We introduce the notation and terminology

PTa(M) = P⟨T ⟩ Tate periods,

P2(M) = P⟨A⟩ 2nd kind wrt closed paths,

Palg(M) = P⟨[L→ 0]⟩ algebraic periods,

P3(M) = P⟨G⟩/(PTa(M) +P2(M)) 3rd kind wrt closed paths,

Pinc2(M) = P⟨[L→ A]⟩/(P2(M) +Palg(M)) 2nd kind wrt non-cl. paths,

Pinc3(M) = P⟨M⟩/(P3(M) +Pinc2(M)) 3rd kind wrt non-cl. paths,

where wrt and non-cl. are abbreviatios for ’with respect to’ and’non-closed’.
After choosing bases, we can organise the periods into a period matrix of
the form

⎛
⎜
⎝

PTa(M) P3(M) Pinc3(M)
0 P2(M) Pinc2(M)
0 0 Palg(M)

⎞
⎟
⎠



1.3. DIMENSIONS OF PERIOD SPACES 5

The contribution of PTa(M) (multiples of 2πi) and Palg(M) (algebraic num-
bers) is readily understood. Note that the off-diagonal entries are only well-
defined up to periods on the diagonal. This can also be seen in the case of
Baker periods, which are contained in Pinc3(M) for special M . The value
of logα depends on the chosen path and is only-well-defined up to multiples
of 2πi. The total dimension is obtained by adding up these dimensions. In
particular, we have e.g.

P⟨[L→ A]⟩ ∩P⟨[0→ G]⟩ = P⟨[0→ A]⟩.

The complete result takes a rather complicated form. In order to state
it we write δ(M) = dimP⟨M⟩ and δ?(M) = dimP?(M) for the different
entries of the period matrix. If B is a simple abelian variety, g(B) will
be its genus and e(B) the Q-dimension of End(B)Q. We also need the
invariants rkB(L,M), rkB(T,M) as introduced in Notation 15.2.

Theorem 1.4 (Corollary 16.4, Proposition 16.5). We always have

δ(M) = δTa(M) + δ2(M) + δalg(M) + δ3(M) + δinc2(M) + δinc3(M).

(1) All Tate periods are Q-multiples of 2πi. All algebraic periods are

in Q. In particular δTa(M) and δalg(M) take the values 0 or 1,
depending on the (non)-vanishing of T and L.

(2) We have

δ2(M) =∑
B

4g(B)2

e(B)

where the sum is taken over all simple factors of A, without multi-
plicities.

(3) We have

δ3(M) =∑
B

2g(B)rkB(L,M)

δinc2(M) =∑
B

2g(B)rkB(T,M)

In the special case A = 0, we get back Baker’s theorem. The most
interesting and hardest contribution is Pinc3(M). The computation of this
contribution was not possible without the methods that we develop here.
Up to particular cases the formulae for the other contributions were not in
the literature either. For an overview seee for example[BW07, Chapter 6.2],
[Wüs84a] [Wüs12] and [Wüs21].

The formula for Pinc3(M) simplifies in the case of motives that we call
saturated, see Definition 15.1.

Theorem 1.5 (Theorem 15.3). If M =M0×M1 is the product of a Baker
motive M0 = [L0 → T0], i.e. with vanishing abelian part, and a saturated
motive M1 = [L1 → G1], then

δinc3(M) = rkgm(L,M1) +∑
B

e(B)rkB(G1,M1)rkB(L1,M1)
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Fortunately, by Theorem 15.3 (2) the periods of a general motive are
always included in the period space of M0 ×Msat with M0 of Baker type
(A0 = 0) and Msat saturated.

There is a precise recipe for δinc3(M) for any 1-motive M . It is spelled
out in Chapter 17, in particular Theorem 17.8. We also refer to Chapter 11
for the examples of elliptic curves without and with CM.

1.4. Method of Proof

As in the case of closed paths, the main ingredient of our proof (and the
only input from transcendence theory) is the Analytic Subgroup Theorem
of [Wüs89]. We give a reformulation as Theorem 6.2: given a smooth

connected commutative algebraic group over Q and u ∈ Lie(Gan) such that
expG(u) ∈ G(Q), there is a canonical short exact sequence

0→ G1 → G
π
Ð→ G2 → 0

of algebraic groups over Q such that Ann(u) = π∗(coLie(G2)) and u ∈
Lie(Gan

1 ). Here Ann(u) ⊂ coLie(G) is the largest subspace such that ⟨Ann(u), u⟩ =
0 under the canonical pairing.

Given a 1-motive M , Deligne constructed a vector extension M ♮ of G
such that VdR(M) = Lie(M ♮). This is the group we apply the Subgroup
Theorem to.

Theorem 1.6 (Subgroup Theorem for 1-motives, Theorem 9.7). Given

a 1-motive M over Q and u ∈ Vsing(M), there is a short exact sequence of
1-motives up to isogeny

0→M1
i
Ð→M

p
Ð→M2 → 0

such that Ann(u) = p∗V ∨
dR(M2) and u ∈ i∗Vsing(M1). Here Ann(u) ⊂ V ∨

dR(M)
is the left kernel under the period pairing. The sequence is uniquely deter-
mined by these properties.

Given a pair of non-zero u ∈ Vsing(M) and ω ∈ V ∨
dR(M) with vanishing

period, the theorem provides a proper submotive M1 of M such that u = i∗u1

for u1 ∈ Vsing(M1) and ω = p∗ω2 for ω2 ∈ V ∨
dR(M2). Any Q-linear relation

between periods can be translated into the vanishing of a period. Then the
Subgroup Theorem for 1-motives is applied.

As a byproduct, we also get a couple of new results on 1-motives over
Q: they are a full subcategory of the category of Q-Hodge structures over
Q (see Proposition 8.17) and of the category of (non-effective) Nori mo-

tives (see Theorem 13.5) and of the category (Q,Q)−Vect of pairs of vector
spaces together with a period matrix. The last statement was also obtained
independently by Andreatta, Barbieri-Viale and Bertapelle, see [ABVB20].
The case of Hodge structures has just recently been considered by André in
[And21]. He proves that the functor from 1-motives into Q-Hodge struc-
tures is fully faithful for all algebraically closed fields k ⊂ C.
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1.5. Why 1-Motives?

This seems the right moment to address the question if our emphasis on
1-motives is necessary. We think that the answer is yes.

Obviously, all proofs using 1-motives could be rewritten in terms of
commutative algebraic groups because this is how the Subgroup Theorem
for 1-motives itself is deduced. However, the dimension formulas depend on
the constituents of the 1-motive and do not admit a transparent formulation
in terms of the constituents of the algebraic group.

More generally, 1-motives are the link between the classical objects of
transcendence theory à la Lindemann, Schneider, or Baker and the structural
predictions linked with Grothendieck, André, or Kontsevich.

1.6. The Case of Elliptic Curves

The above results are very general and depend on a subtle interplay
between the data. It is a non-trivial task to make them explicit in particular
examples. We have carried this out to some extent in the case of an elliptic
curve E defined over Q.

Recall the Weierstraß ℘-, ζ- and σ-function for E. We obtain:

Theorem 1.7 (see Theorem 18.6). Let u ∈ C be such that ℘(u) ∈ Q and

expE(u) is non-torsion in E(Q). Then

uζ(u) − 2 logσ(u)

is transcendental.

This is an incomplete period integral of the third kind. The proof of the
above result actually is not a direct consequence of Theorem 1.1 but rather
uses the insights of our dimension computations.

We also carry out the dimension computation in this case: let M = [L→
G] with L ≅ Z, G an extension of E by Gm that is non-split up to isogeny,
LQ → EQ injective. Then by Proposition 11.1 and 11.3

dimP⟨M⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

11 E without CM,

9 E CM.

The incomplete periods of the third kind become more difficult already if
we consider M = [L → G] with L ≅ Z2, G an extension of E by G2

m, again
LQ → EQ injective and G completely non-split up to isogeny. If E does not
have CM, then

dimP⟨M⟩ = 18.

If E is CM, then

dimP⟨M⟩ = 16,14,12,10,

depending on the interplay of the complex multiplication and L and G.
The extreme case occurs when End(M) is the CM-field. Then the resulting
dimension is 10.
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1.7. Values of Hypergeometric Functions

Euler had already known that the hypergeometric function F (a, b, c; z)
can be written as a quotient of two integrals. If a, b, c are rational num-
bers, these integrals can be regarded as periods on certain explicit alge-
braic curves. Knowledge about Q-linear indepdendence of periods translates
then into transcendence statements for the values F (a, b, c;λ) for λ ∈ Q ∖
{0,1}. This insight is exploited by Wolfart’s in [Wol88] or by Chudnovski–
Chudnovsky in [CC88]. We explain the argument in detail for a = b = 1/2
and c = 1:

Proposition 1.8 (Proposition 19.3). The value F (1/2,1/2,1; z) of the

hypergeometric function is transcendental for z ∈ Q ∖ {0,1}.

The proposition follows from the Q-linear independence of π and the
complete periods of elliptic curves established first by Schneider in 1936, see
[Sch37, Satz IIIa].

In the case of general a, b, c ∈ Q with least common denominator N , the
Euler integrals can be seen as periods for the algebraic curve with affine
equation

yN = xr(1 − x)s(1 − λx)t

for suitable r, s, t. For the formula in the case of N = p a prime see Propo-
sition 19.19. These curves have been intensely studied. Using results of
Gross–Rohrlich [GR78], Archinard [Arc03b] and Asakura–Otsubo [AO18]
we work out another example.

Theorem 1.9 (Corollary 19.22). Let p be a prime such that p ≢ 1 mod 3,
1 ≤ n ≤ p − 1. Let 0 < r, s < p such that p does not divide r + s, put t = p − s
and

u = [
nr

p
] , v = [

ns

p
] , w = [

nt

p
] .

We further assume

⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

n(r + s)

p
⟩ ≠ 1.

Then for all λ ∈ Q ∖ {0,1}, the corresponding value F (a, b, c;λ) is zero or
transcendental and transcendental if λ ∈ (0,1).

An explicit example where the assumptions are satisfied is p = 11,
r = s = 2, n = 1,2,6,7,8. We deduce, for example, that the numbers
F (6/11,6/11,12/11;λ) are zero or transcendental, provided λ ∈ Q ∖ {0,1}.

We should stress that this application only relies on complete periods
on abelian varieties and not on the more general theory developed in our
monograph. It should be seen as a proof of concept: the same argument
can be applied to other geometric families of curves, allowing families of
differential forms of the third kind and non-closed paths. The hyergeometric
function would be replaced by the solutions of differential equation defined
by the Gauß–Manin connection.
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1.8. Structure of the Monograph

We have tried to make the monograph accessible to readers not familiar
with either motives or periods.

The first part provides foundational material that will be used through-
out, fore example terminology from category theory, a review of the theory
of the generalised Jacobian or the basics on singular homology and de Rham
cohomology. We provide precise references for the facts that we need later.
Along the way we also fix notation and normalisations. Depending on their
background, readers are invited to skip on some or all of these chapters and
only use them for reference.

Chapter 6 and Chapter 7 address less classical material. The first de-
duces a reformulation or our key tool, of the Analytic Subgroup Theorem.
We apply it to the comparison between analytic and algebraic homomor-
phisms between connected commutative algebraic groups.

Chapter 7 presents an abstract formulation of the theory of periods and
the Period Conjecture for abelian categories without a tensor structure.

Part 2 is the heart of the monograph and presents our main result. It
addresses periods of 1-motives. After settling some notation, Chapter 8
starts by reviewing Deligne’s category of 1-motives and its properties. We
then establish auxiliary results that are needed in the next chapter.

Chapter 9 discusses periods of 1-motives and proves the version of the
Period Conjecture purely in terms of 1-motives. We then consider examples:
in Chapter 10 we treat the classical cases like the transcendence of π and
values of log in our language. In Chapter 11 we apply the general results in
the case of a 1-motive whose constituents are as small as possible without
being trivial and compute the dimensions of their period spaces.

In Part 3 we turn to periods of algebraic varieties. Chapter 12 clarifies
the notion of a cohomological period. After defining P1 in a down to earth
way, the interpretation of cohomological periods as the periods of 1-motives
is explained. Finally, we explain the interpretation as periods of Nori or
Voevodsky motives.

In Chapter 13 we use the results on periods of 1-motives to deduce
the qualitative results on P1 and periods of curves: the criterion on tran-
scendence and the Period Conjecture. The results are made explicit in the
classical terms of differential forms of the first, second and third kind on an
algebraic curve in Chapter 14.

Part 4 aims at a dimension formula for the space of periods of a 1-motive
in terms of its data. Chapter 15 treats mainly the saturated case. This can
be applied to deduce complete structural results in Chapter 16. Finally,
Chapter 17 is devoted to an explicit dimension computation for the space of
incomplete periods of the third kind, which is very involved. In this rather
complicated case the results were unexpected.

In the next chapter 18 we deal with the case of elliptic curves and make
our results explicit in terms of the classical Weierstraß functions ℘, ζ, σ.
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We explain in Chapter 19 how transcendence results on special values
of the hypergeometric function can be deduced from Q-linear independence
of 1-periods.

There are three appendices: The first two sketch the theories of Nori
and Voevodsky motives to the extent used in the proof of Theorem 13.3.

The last appendix is of technical nature: we need to verify that the
singular and de Rham realisations of a 1-motive agree with the realisation
of the attached geometric motive.



Part 1

Foundations





CHAPTER 2

Basics on Categories

In this monograph some basic concepts of the theory of categories are
used frequently. For the convenience of the reader, we recall them here. At
some places however the requirements are higher than what can be found in
this chapter. In such a situation we give a precise reference to the literature
where the reader can find the full information needed.

2.1. Additive and Abelian Categories

Definition 2.1. A category C consists of a class of objects Ob(C) and for
every pair of objects X,Y ∈ Ob(C) a set of morphisms MorC(X,Y ) together
with a composition law

○ ∶ MorC(X,Y ) ×MorC(Y,Z)→MorC(X,Z)

(f, g) ↦ g ○ f

for every triple of objects X,Y,Z. These data are subject to the following
conditions:

(1) The composition law is associative.
(2) For every object X there is a morphism idX ∈ MorC(X,X) which is

a left and right identity for the composition law, i.e. f ○ idX = f for
all Y and all f ∶X → Y and idX ○ g = g for all Z and all g ∶ Z →X.

A category is Z-linear (or Q-linear) if the morphism sets are given the
structure of abelian groups (or Q-vector spaces) and the composition of
morphisms is bilinear. We usually write HomC instead of MorC in this case.
It is additive if it is Z-linear and, in addition, has finite direct sums. The
direct sum of two objects X and Y is denoted X ⊕ Y . As the particular
case of the empty direct sum, this also requires the existence of a 0-object
characterised uniquely by the property that

Hom(0,X) = Hom(X,0) = 0

for all objects X.
An additive category A is called abelian, if the following two properties

are satisfied:

(1) Every morphism f ∶X → Y in A has a kernel and cokernel.
(2) For every morphism f ∶ X → Y in A the natural map X/ker(f) →

im(f) is an isomorphism.

13
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In this abstract setting, the image of a morphism is defined as the kernel of
the cokernel.

Example 2.2. For every ring R, the category of R-modules is abelian.
The category of finitely generated modules is additive. It is abelian if R is
noetherian.

Many examples of additive and abelian categories are going to be used
throughout the book. In order of appearance:

Example 2.3. (1) Let k be a field. Then the category of connected
commutative algebraic groups schemes over k is additive, but not
abelian. We refer to Chapter 4 for details.

(2) Let K,L ⊂ C be subfields. Then the category (K,L)−Vect intro-
duced in Section 7.2 is Q-linear and abelian.

(3) Let k be a field. Then the category of filtered k-vector spaces is
additive, but not abelian. Every morphism has a kernel and a
cokernel, but the isomorphism between X/ker(f) and im(f) fails
in general.

(4) Let k be an algebraically closed field of characteristic 0. The cate-
gory 1−Motk of iso-1-motives is abelian. A thorough review is given
in Chapter 8.

Given a Z-linear category A, we obtain a Q-linear category A⊗Q with
the same objects as A and morphism

HomA⊗Q(X,Y ) = HomA(X,Y )⊗Z Q.

We refer to it as the isogeny category of A. If A is additive or abelian, then
so is A⊗Q.

Example 2.4. (1) Let k be a field. If A is the category of abelian
varieties over k, the A⊗Q is what is referred to as the category of
abelian varieties up to isogeny in the literature. It is abelian. The
same remark also applies to the category of connected commutative
group schemes.

(2) By Definition 8.1, 1−Motk is defined as the isogeny category of the
category of 1-motives over k.

For any category C, we define the additive hull Z[C] with the objects
formal direct sums ⊕n

i=1Xi for n ≥ 0 and X1, . . . ,Xn ∈ C. We interpret the
empty direct sum as an object 0. Morphisms are defined by the formula

HomZ[C]
⎛

⎝

n

⊕
i=1

Xi,
m

⊕
j=1

Yj
⎞

⎠
=⊕
i,j

Z[HomC(Xi, Yj)].

Here for a set S, we denote by Z[S] the free abelian group with basis S.



2.2. SUBCATEGORIES 15

2.2. Subcategories

Given a category C, a subcategory of C is a category C′ such that every
object and every morphism of C′ is an object and morphism in C, respec-
tively. The composition of morphisms in C′ is defined as their composition
in C and the identity morphisms in C′ agree with the identity morphisms in
C. A subcategory is called full if

MorC′(X,Y ) = MorC(X,Y )

for all objects X,Y of C′.

Remark 2.5. If C is additive or abelian, then a subcategory C′ is not
necessarily additive or abelian itself. If C and C′ are both abelian, this does
not imply that the kernels and cokernels are the same when computed in C
or C′. We are not going to consider such pathological situations, which only
appear if the subcategory is not full.

Example 2.6. The category of abelian varieties (up to isogeny) is a full
subcategory of the category of connected commutative algebraic groups (up
to isogeny).

Example 2.7. The category of Q-vector spaces is a full subcategory of
the category of abelian groups.

Let A be an abelian category. A subquotient of an object X in A is a
quotient of a subobject of X, or equivalently, a subobject of a quotient of
X.

Definition 2.8. Let A be an abelian category and X ∈ A an object.
We define ⟨X⟩ as the smallest full subcategory closed under subquotients
containing X.

More explicitly, this means that ⟨X⟩ contains X and all the quotients
and subobjects of every object Y ∈ ⟨X⟩.

Lemma 2.9. The category ⟨X⟩ is abelian. We have

A = ⋃
X∈C

⟨X⟩.

Proof. Let f ∶ Y → Z be a morphism in ⟨X⟩. Then ker(f) ⊂ Y exists
in A. As a subobject of an object in ⟨X⟩ it is itself an object of ⟨X⟩.
The universal property of a kernel holds because it holds in A. The same
argument gives the existence of cokernels. The natural map Y /ker(f) →
im(f) has an inverse in A because the category is abelian. This inverse is
in ⟨X⟩ because the subcategory is full.

Obviously all objects of A are contained in the union of all ⟨X⟩. We
have to check that the same is true for morphisms. Let f ∶ X → Y be a
morphism in A. Both X and Y are subobjects of X ⊕ Y , hence they are
both objects of ⟨X⊕Y ⟩. As ⟨X⊕Y ⟩ ⊂ A is a full subcategory, the morphism
f is a morphism in ⟨X ⊕ Y ⟩. �
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2.3. Functors

Definition 2.10. Let C and C′ be categories. A covariant functor F ∶
C → C′ is an assignment F ∶ Ob(C)→ Ob(C′) together with a map

MorC(X,Y )→MorC′(F (X), F (Y ))

for every pair of objects X,Y of C. It is subject to the following conditions.

(1) Compatibility with composition: F (g) ○ F (f) = F (g ○ f) for all
objects X,Y,Z in C and morphisms f ∶X → Y , g ∶ Y → Z;

(2) Compatibility with identities: F (idX) = idF (X) for all objects X of
C.

In the case of a contravariant functor, we are given maps

MorC(X,Y )→MorC′(F (Y ), F (X))

and the compatibility condition reads F (f) ○ F (g) = F (g ○ f) instead.

A functor is called F ∶ C → C′ faithful, full, or fully faithful, if for all
objects X,Y ∈ C the natural map

HomC(X,Y )→ HomC′(F (X), F (Y ))

is injective, surjective or bijective, respectively.

Example 2.11. If F is the inclusion of a subcategory of a category, then
it is faithful. If the subcategory is full, the inclusion is fully faithful.

A functor F ∶ C → C′ between Z-linear or Q-linear categories is called
additive or Q-linear if for all X,Y ∈ C the map

HomC(X,Y )→ HomC′(F (X), F (Y ))

is Z-linear or Q-linear, respectively. Such a functor automatically respects
direct sums, provided that they exist (e.g., because the categories are addi-
tive).

An additive functor F ∶ A → A′ between abelian categories is called
exact if it sends short exact sequences to short exact sequences.

Lemma 2.12. Let F ∶ A → A′ be an exact functor between abelian cat-
egories. Then F is faithful if and only if for all X in A the assumption
F (X) = 0 implies X ≅ 0.

Proof. Assume that F is faithful and that X is an object of A such
that F (X) = 0. Then this implies F (0) = F (idX). By faithfulness this gives
0 = idX and hence X ≅ 0.

Conversely assume the condition on objects. Let f be in the kernel of
the map HomA(X,Y ) → HomA′(F (X), F (Y )). The functor F maps the
exact sequence

0→ ker(f)→X
f
Ð→ Y → coker(f)→ 0
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to the exact sequence

0→ F (ker(f))→ F (X)
F (f)=0
ÐÐÐÐ→ F (Y )→ F (coker(f))→ 0.

This gives F (ker(f)) ≅ F (X) and F (Y ) ≅ F (coker(f)). Now consider the
short exact sequence

0→ ker(f)→X →X/ker(f)→ 0

and its image

0→ F (ker(f))→ F (X)→ F (X/ker(f))→ 0.

We had established that the first map is an isomorphism, so F (X/ker(f)) ≅
0. By assumption this implies that X/ker(f) ≅ 0 or ker(f) ≅ X. The same
type argument also shows that Y ≅ coker(f). Taken together this means
that f = 0. �

Faithful functors allow us to test for inclusions.

Lemma 2.13. Let F ∶ A→ A′ be a faithful exact functor between abelian
categories, X ∈ A an object and X1,X2 ⊂ X subobjects. If F (X2) ⊂ F (X1),
then X2 ⊂X1.

Proof. Let X3 = X1 ∩X2 (or more abstractly, let X3 be the pull-back
of X1 → X via X2 → X). We need to show that the natural inclusion
X3 → X2 is an isomorphism, whence X2 ⊂ X1. By the exactness of F , we
have F (X3) ≅ F (X1) ∩ F (X2). By assumption this is F (X2). We apply F
to the exact sequence

0→X3 →X2 → C → 0.

As F (X3) = F (X2), we get F (C) = 0. By the faithfulness of F , this implies
C ≅ 0. �

As a consequence of our results on transcendence and the Period Conjec-
ture, we are are also going to establish results on fullness of certain functors,
see Proposition 8.17, Theorem 9.14 and Theorem 13.5. The following crite-
rion will be useful.

Lemma 2.14. Let F ∶ A→ A′ be a faithful exact functor between abelian
categories. Assume that the image of F is closed under subquotients, i.e, if

0→ Y ′ → F (X)→ Y ′′ → 0

is an exact sequence in A′, then there is a short exact sequence

0→X ′ →X →X ′′ → 0

in A mapping to the given exact sequence in A′. Then F is full.

Proof. Let f ∶ F (Y1) → F (Y2) be a morphism in A′ and Γ ⊂ F (Y1) ×
F (Y2) its graph. We find it as the image of F (Y1) under the map

F (Y1)
∆
Ð→ F (Y1) × F (Y1)

(id,f)
ÐÐÐ→ F (Y1)⊕ F (Y2).
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It is a subobject. By assumption there is G ⊂ Y1 × Y2 in A such that
F (G) = Γ. The projection p ∶ G → Y1 × Y2 → Y1 is an isomorphism because
this is true for the image Γ → F (Y1) and F is faithful. Let i be its inverse.
The composition

Y1
i
Ð→ G ⊂ Y1 × Y2 → Y2

is the preimage of f we were looking for. �



CHAPTER 3

Homology and Cohomology

A key step in our approach to periods is the reinterpretation of paths
as homology classes and differential forms as classes in algebraic de Rham
cohomology. We survey the key definitions. For an in-depth review with
complete references we refer to [HMS17, Part I].

3.1. Singular Homology

All topological spaces in this section are locally compact, Hausdorff and
satisfy the second countable axiom. The analytification of an algebraic va-
riety over C is an example of such a space. We refer to standard text books
on algebraic topology like [Spa66] or [Hat02] for full details and proofs.

Definition 3.1. The topological n-simplex ∆n is defined by

∆n = {(x0, . . . , xn) ∈ Rn+1 ∣ x0 ≥ 0, . . . , xn ≥ 0,
n

∑
i=0

xi = 1} .

By setting one coordinate xi to 0, we get the inclusion of the codimen-
sion 1 faces Fi. They are homeomorphic to the (n−1)-simplex in an obvious
way.

Example 3.2. The 0 simplex is a single point. The 1-simplex is the
interval from F0 = (0,1) to F1 = (1,0). We often identify it with the unit
interval [0,1] ⊂ R.

Definition 3.3. Let X be a topological space. For an integer n ≥ 0
a singular n-chain is a formal Q-linear combinations of continuous maps
f ∶ ∆n → X. The space of singular chains Sn(X) is a Q-vector space.
Together with the natural differential

dn ∶ Sn(X)→ Sn−1(X)

which maps a basis element f in Sn(X) to

dn(f) =
n

∑
i=0

(−1)if ∣Fi

we obtain a chain complex (S∗(X), d∗), the singular chain complex of X.
Its homology

Hsing
n (X,Q) ∶=Hn((S∗(X), d∗)).

is called the singular homology of X with rational coefficients.

19
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Example 3.4. If X is a finite discrete set, then

Hsing
n (X,Q) =

⎧⎪⎪
⎨
⎪⎪⎩

Q∣X ∣ n = 0,

0 else.

Example 3.5. Take σ = ∑ni=1 aiγi ∈ S1(X), where ai ∈ Q and γi ∶ ∆1 →X
is continuous. We identify ∆1 with the unit interval and view the γi as paths.
Then σ is in the kernel of d1 if the formal linear combination

n

∑
i=1

aiγi(1) −
n

∑
i=1

aiγi(0))

vanishes. We say that σ is closed or a cycle. Cycles in the image of d2 are
called boundaries. They are the ones that can be filled in by discs.

In particular, every closed path gives rise to a homology class and ho-
motopic paths are homologous. We get a well-defined map

π1(X,x0)→Hsing
1 (X,Q),

the Hurewicz homomorphism. Its image generates Hsing
1 (X,Q) if X is path

connected. In fact, we have

Hsing
1 (X,Q) ≅ π1(X,x0)

ab ⊗Z Q

in this case.

Example 3.6. Let C be a smooth complete curve of genus g over C and
Can the compact Riemann surface defined by its analytification. Then

dimQH
sing
1 (Can,Q) = 2g.

For C○ = C ∖ S with S a non-empty finite set we have

dimQH
sing
1 (C○an,Q) = 2g − ∣S∣ + 1.

Example 3.7. The projective line satisfies

Hsing
1 (P1an

,Q) = 0.

For A1an
= C and Gan

m = C∗ we obtain

Hsing
1 (C,Q) = 0, Hsing

1 (C∗,Q) ≅ Q

with the last group generated by a loop around 0, e.g., the boundary of the
unit disc.

We also want to handle non-closed paths. They define classes in relative
homology.

Definition 3.8. Let X be a topological space, A ⊂ X a closed subset.
We call

S∗(X,A;Q) = S∗(X,Q)/S∗(A,Q)
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the singular chain complex for (X,A). Its homology is singular homology of
the pair (X,A) with rational coefficients or singular homology of X relative
to A, written as

Hsing
n (X,A;Q) =Hn(S∗(X,A;Q), d∗).

By definition relative singular homology is functorial for pairs.

Example 3.9. Let γ ∶ [0,1]→X be a path with end points in A. Then

it is a cycle relative to A and gives rise to a class in Hsing
1 (X,A;Q).

The short exact sequence

0→ S∗(A,Q)→ S∗(X,Q)→ S∗(X,A;Q)→ 0

gives rise to a long exact sequence in homology

⋅ ⋅ ⋅→Hsing
n (A,Q)→Hsing

n (X,Q)→Hsing
n (X,A;Q)→Hsing

n−1 (A,Q)→ ⋯.

Of particular interest for us is n = 1.

Example 3.10. If A is a finite set of points, then the sequence simplifies
to

0→Hsing
1 (X,Q)→Hsing

1 (X,A;Q)→ Q∣X ∣−1 → 0.

More generally, we get boundary maps for triples B ⊂ A ⊂X

∂ ∶Hsing
n (X,A;Q)→Hsing

n−1 (A,B;Q)

and natural long exact sequences

⋅ ⋅ ⋅→Hsing
n (A,B;Q)→Hsing

n (X,B;Q)→Hsing
n (X,A;Q)→Hsing

n−1 (A,B;Q)→ ⋯.

Remark 3.11. If X is a manifold, it suffices to work with smooth singu-
lar chains. Let S∞∗ (X) ⊂ S∗(X) be the subcomplex of linear combinations
of C∞-maps f ∶ ∆n →X, see [HMS17, Definition 2.2.2]. By [HMS17, The-
orem 2.2.5] the complex S∞∗ (X) can be used to compute singular homology
of X.

There is another tool that allows us to reduce questions on the homology
of algebraic varieties to the smooth case. We formulate it in cohomology
obtained by replacing all vector spaces by their duals.

Proposition 3.12 (Blow-up sequence). Let X be an algebraic variety

over C, π ∶ X̃ → X a proper map, Z ⊂ X a closed subvariety with preimage
E in X̃ such that π induces an isomorphism X̃ ∖E →X ∖Z. Then there is
a natural long exact sequence

⋅ ⋅ ⋅→Hn
sing(X

an,Q)→Hn
sing(X̃

an,Q)⊕Hn
sing(Z

an,Q)→Hn
sing(E

an,Q)

→Hn+1
sing(X

an,Q)→ ⋯.

Proof. In the case of analytic spaces attached to algebraic varieties,
we can identify singular cohomology with sheaf cohomology. The statement
then follows from proper base change (see [KS90, Proposition 2.6.7]) for
π. �
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Example 3.13. Let C be a curve with normalisation C̃. Let Y ⊂ C
be the set of singular points with preimage Ỹ ⊂ C̃. The assumptions of
the proposition are satisfied and the long exact sequence degenerates to the
short exact sequence

0→ QN →H1
sing(C

an,Q)→H1
sing(C̃

an,Q)→ 0.

with N = ∣Ỹ ∣ − ∣Y ∣.

3.2. Algebraic de Rham Cohomology

Algebraic de Rham cohomology was introduced by Grothendieck in
[Gro66] as a purely algebraic way to define the Betti numbers of algebraic
varieties. In this section k is a field of characteristic 0.

3.2.1. The Smooth Case. We start by presenting the much easier
smooth case.

Definition 3.14. Let X be a smooth variety over k. We define algebraic
de Rham cohomology of X as hypercohomology of the complex of sheaves
of differential forms on X,

Hn
dR(X) = Hn(X,Ω∗

X).

This is particularly easy if X is, in addition, affine. In this case

Hn
dR(X) =Hn(Ω∗(X), d).

There are different ways to compute hypercohomology. We make the ap-
proach via Čech-cohomology explicit for later use.

Let X be a smooth variety and U = (U1, . . . , Un) be an open cover of X
by affine subvarieties Ui. For every I ⊂ {1, . . . , n} we put UI = ⋂i∈I Ui and
for every p, q ∈ N0 we define

Cp(U,Ωq
X) = ∏

∣I ∣=p+1

Ωq(UI).

The Cp(U,Ωq
X) form a double complex. The differential d in q-direction is

induced by the differential of Ω∗
X . The differential δ in p-direction is the

differential of the Čech-complex given as follows: for α = (αI) ∈ C
p(U,Ωq

X)
we have

δp(α)i0≤i1≤i̇p =
p

∑
j=0

(−1)pαi0≤⋅⋅⋅≤îj≤...ip

where îj means that the index is omitted.

Definition 3.15. Let RΓ̃dR(X,U) be the total complex of the double
complex Cp(U,Ωq) consisting of

RΓ̃dR(X,U)n = ⊕
p+q=n

Cp(U,Ωq)

with differential ∑p+q=n(d
p + (−1)qδq).
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Remark 3.16. This complex is nice because it is explicit and bounded.
However, the boundary depends on the choice of an ordering of U1, . . . , Un.
In consequence, these complexes have bad functorial properties, unless f ∶
Y →X is affine.

Lemma 3.17. The complex RΓ̃dR(X,U) computes algebraic de Rham
cohomology of X.

Proof. We take the stupid filtration on the complex Ω∗
X , which induces

a filtration on the double complex Cp(U,Ωq). By the spectral sequence for
the filtration, it suffices to consider the individual Ωq. They are coherent,
so by [Har75, III Theorem 4.5] Čech-cohomology agrees with sheaf coho-
mology. �

We also need relative cohomology. Again the smooth case is easier.

Definition 3.18. Let X be a smooth variety, Y ⊂ X a smooth closed
subvariety, and U a finite open affine cover of X. We put

RΓ̃dR(X,Y,U) ∶= cone(RΓ̃dR(Y,U ∩ Y )→ RΓ̃dR(X,U))[−1]

and define algebraic de Rham cohomology of the pair (X,Y ) or algebraic de
Rham cohomology of X relative to Y as

Hn
dR(X,Y ) =Hn(RΓ̃dR(X,Y,U)).

These groups satisfy the same formal properties as singular cohomology.

Lemma 3.19. Relative algebraic de Rham cohomology is well-defined.
There is a natural long exact sequence

⋅ ⋅ ⋅→Hn
dR(X,Y )→Hn

dR(X)→Hn
dR(Y )→Hn+1

dR (X,Y )→ ⋯.

Proof. The exact sequence is the long exact sequence attached to the
distinguished triangle

RΓ̃dR(X,U)→ RΓdR(Y,U ∩ Y )→ RΓ̃dR(X,Y,U)[1]

or, in different language, the short exact sequence of complexes

0→ RΓ̃dR(Y,U ∩ Y )[−1]→ RΓ̃dR(X,Y,U)→ RΓ̃dR(X,U)→ 0.

To verify that algebraic de Rham cohomology is well-defined we need to
check independence of the choice of cover. We sketch the argument.

As a first step replace RΓ̃dR(X,U) by the quasi-isomorphic complex

RΓ̃dR(X,U)′ which has all tuples I = (i0, . . . , in) as indices rather than only
the ordered ones. Given two covers U1 and U2, there is a common refinement
U3. It suffices to compare U1 and U2 with U3. The choice of a refinement
map from U3 to U1 induces homomorphisms

RΓ̃dR(X,U1)
′ → RΓ̃dR(X,U3)

′

and also for Y and the pair (X,Y ). They are quasi-isomorphisms for X
and Y because the complexes compute algebraic de Rham cohomology. By
the above-mentioned long exact sequence the comparison map is a quasi-
isomorphism for (X,Y ) as well. �
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If dimX = 0, then Ω∗
X = OX[0] and X is affine, hence

RΓ̃dR(X) = OX(X).

We now spell out the curve case in degree 1. Let C be a smooth affine
curve over k, D ⊂ C a finite set of closed points viewed as a smooth subvariety
of dimension 0. We use the trivial cover U = (C) and get

(1) RΓ̃dR(C,U) = [O(C)
f↦(df,−f ∣D)
ÐÐÐÐÐÐÐ→ Ω1(C)⊕O(D)]

with O(C) in degree 0.
More generally, if C is not necessarily affine, let U1, . . . , Un be an open

affine cover. We write Di = Ui ∩D and more generally DI = D ∩ UI . By
definition RΓ̃(C,D,U) is the shifted cone of the homomorphism RΓ̃(C,U)→

RΓ̃(D,U ∩D) of complexes. If we write the complexes vertically this takes
the form

⋮ ⋮

∏
i<j

Ω1(Ui ∩Uj)⊕ ∏
∣I ∣=3

O(UI)

OO

// ∏
∣I ∣=3

O(DI)

OO

n

∏
i=1

Ω1(Ui)⊕∏
i<j
O(Ui ∩Uj)

OO

//∏
i<j
O(Di ∩Dj)

OO

n

∏
i=1

O(Ui)

OO

//
n

∏
i=1

O(Di)

OO

When taking the cone, we obtain the following description of cohomology
in degree 1.

Lemma 3.20. The group H1
dR(C,D) is given by the cohomology in de-

gree 1 of

n

∏
i=1

O(Ui)Ð→
n

∏
i=1

Ω1(Ui)⊕∏
i<j
O(Ui ∩Uj)⊕

n

∏
i=1

O(Di)

Ð→∏
i<j

Ω1(Ui ∩Uj)⊕ ∏
∣I ∣=3

O(UI)⊕∏
i<j
O(Di ∩Dj)Ð→ . . .

with differentials

d0((fi)i) = ((dfi)i, (fj − fi)ij , (−fi∣Di)i)

d1((ωi)i, (fij)ij , (gi)i) =

((−ωj + ωi + df ij)ij , (−fi1i2 + fi0i2 − fi0i1)i0i1i2 , (−fij ∣Dij − gj + gi)ij)
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.

Remark 3.21. The signs in the differentials depend on the sign con-
ventions used for total complexes, shifts and cones. We are using the nor-
malisations of [HMS17, Section 1.3]. However, any other choice of sign
conventions will lead to isomorphic cohomology groups. We only have to
ensure that d1 ○ d0 = 0.

3.2.2. The General Case. The definition of (relative) algebraic de
Rham cohomology can be generalised to the singular case by different meth-
ods, all yielding the same cohomology groups. The first was Hartshorne’s,
who embedded a singular variety X into a smooth variety P and worked
with the completion of the complex of sheaves of differential forms on P
with respect to the vanishing ideal of X. In the context of Hodge theory,
Deligne used smooth proper hypercovers: given X, he constructs a simpli-
cial variety X● over X with smooth components and such that the singular
cohomology of X agrees with the singular cohomology of X●. (Our Propo-
sition 3.12 is an instance of this fact.) He then defines algebraic de Rham
cohomology of X as the de Rham cohomology of X●. In [HMS17], we
use a variant of this approach. Algebraic de Rham cohomology is defined
as sheaf cohomology of the complex Ω∗

h of h-differentials in the h-topology
introduced by Voevodsky with the theory of triangulated motives in mind.

Instead of explaining the construction, we summarise the result:

Theorem 3.22 ([HMS17, Section 3.2]). There is a sequence of functors

Hn
dR ∶ (X,Y )↦Hn

dR(X,Y )

which attach a finite dimensional k-vector space to every pair (X,Y ) con-
sisting of an algebraic variety and a closed subvariety Y and which extends
the functors for smooth X and Y .

If Z ⊂ Y ⊂X are closed subvarieties, there are natural coboundary maps

∂ ∶Hn
dR(Y,Z)→Hn+1

dR (X,Y )

fitting into a long exact sequence

⋅ ⋅ ⋅→Hn
dR(X,Z)→Hn

dR(Y,Z)
∂
Ð→Hn+1

dR (X,Y )→ ⋯.

Example 3.23. Let C be a curve with normalisation C̃ → C, and Y ⊂ C
the set of singular points with preimage Ỹ ⊂ C̃. Then the shift by [−1] of
the cone of

RΓ̃dR(C̃)⊕RΓ̃dR(Y )→ RΓ̃dR(Ỹ )

computes algebraic de Rham cohomology of C. In particular, this leads to
a short exact sequence

0→ kN →H1
dR(C)→H1

dR(C̃)→ 0

with N = ∣Ỹ ∣ − ∣Y . This is the same result as in Example 3.13.
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3.3. The Period Pairing

We now fix an embedding of k into C, which allows us to define an
analytification functor from k-varieties to complex spaces. Again we start
under the simplifying assumption that X is smooth and affine. In this case
there is the natural pairing

S∞n (Xan) ×Ωn(X)→ C; (σ,ω)↦ ∫
σ
ω.

By Stokes’s theorem the pairing induces a well-defined map on homology

Hsing
n (X,Q) ×Hn

dR(X)→ C,
the period pairing.

Remark 3.24. For n = 1, which is the most important case for us,
the pairing is even defined on all of S1(X). We get its value by analytic
continuation.

For fixed n and (X,Y ), singular cohomology is a Q-vector space and
de Rham cohomology is a k-vector space. After extension of scalars to
C, the pairing becomes perfect. In the smooth and proper case, this is a
direct consequence of GAGA. In full generality, it was established by Deligne
as part of the development of Hodge theory for non-proper and singular
varieties. It even extends to pairs.

Theorem 3.25 ([HMS17, Chapter 5]). There is a natural period pair-
ing

Hsing
n (X,Y ;Q) ×Hn

dR(X,Y )→ C
inducing period isomorphisms

Hn
sing(X,Y ;Q)⊗Q C→Hn

dR(X,Y )⊗k C.
The period isomorphism is functorial for pairs of k-varieties and compatible
with coboundary maps for triples Z ⊂ Y ⊂X.

3.3.1. The Case of Smooth Affine Curves. For later use, we make
the period pairing explicit in the first interesting case. Let C be a smooth
affine curve, Y ⊂ C a finite set of k-points. By definition algebraic de Rham
cohomology of (C,Y ) is the cohomology of the complex

[Ω0(C)→ Ω1(C)⊕Ω0(Y )] .

Hence every class in H1
dR(C,Y ) is represented by a pair (ω,α) where ω is a

1-form and α ∶ Y (k)→ k is a set-theoretic map. Conversely, every such pair
defines a class in relative de Rham cohomology.

Singular homology of the pair is defined as homology of the complex

S∞∗ (C)/S∞∗ (Y ).

Its 1-cycles are represented by Z-linear combinations σ = ∑niγi of smooth
maps γi ∶ [0,1] → Can such that ∂(∑niγi) = ∑niγi(1) − ∑niγi(0) is in
S0(Y ). Up to homotopy such a cycle can be replaced by a formal Z-linear
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combination of closed paths and paths with end points in Y (k). The defini-
tion of the period pairing requires to replace the singular complex of (C,Y )
by the quasi-isomorphic

cone (S∞∗ (Y )→ S∞(C)∗) = [S∞0 (C)← S∞1 (C)⊕ S∞0 (Y )← ⋯]

The homology class of σ is represented by the pair (σ,−∂σ). In these explicit
terms, the period pairing is given by

((ω,α), (σ, ∂σ)) = ∫
σ
ω − α(∂σ).





CHAPTER 4

Commutative Algebraic Groups

4.1. The Building Blocks

We fix an algebraically closed field k of characteristic zero. The cases
of relevance for us are k = Q and k = C. We denote by G the category
of commutative connected algebraic groups over k. They are automatically
smooth. This category is not abelian because the kernel of a morphism is not
necessarily connected. However, the category of all commutative algebraic
groups over k is abelian and so is the isogeny category of G, where morphisms
are tensored by Q. For a careful review and analysis, see [Bri17].

Example 4.1. The additive group Ga = Spec(k[T ]) and the multiplica-
tive group Gm = Spec(k[T,T −1]) are objects of G.

A connected commutative algebraic group is called vector group if it is
isomorphic to a power of Ga and torus if it is isomorphic to a power of Gm.

Example 4.2. Every abelian variety over k is an object of G.

Note that there are no non-trivial morphisms between vector groups,
tori and abelian varieties.

Theorem 4.3 (Structure theory). Let G be a connected commutative
algebraic group. Then there is a canonical short exact sequence

0→ L→ G→ A→ 0

with an abelian variety A and a linear connected commutative algebraic group
L. Moreover, there is a canonical split short exact sequence

0→ V → L→ T → 0

with a torus T and a vector group V .

Proof. The first sequence is the commutative case of [Bar55]; see also
[Che60]. By [DG70, Ch. IV §3 Théoréme 1.1] or [Ser88, Ch. III Proposi-
tion 12] we have L ≅ V ×T with V unipotent and a torus T . By [Ser88, Ch.
VII §2.7], all unipotent groups are powers of Ga in characteristic 0, hence V
is a vector group. �

Corollary 4.4. An object of G is simple if and only if it is isomorphic
to Ga, Gm or a simple abelian variety.

29
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A connected commutative algebraic group is called a semi-abelian variety
if it is an extension of an abelian variety by a torus, or, equivalently, if its
vector part is trivial. The Structure Theorem then implies that for any
connected commutative algebraic group G there is also a canonical short
exact sequence

0→ V → G→ Gsa → 0

with a vector group V and a semi-abelian variety Gsa.
The aim of this chapter is on the one hand to give an alternative de-

scription of the category of semi-abelian varieties and, on the other hand,
explain the construction of the universal vector extension.

Definition 4.5. (1) Let V be a vector group. We define V ∨ =
Hom(V, k) and view it as a vector group.

(2) Let A be an abelian variety. We define A∨ = Pic0(A), the dual
abelian variety.

(3) Let T be a torus. We define X(T ) = Hom(T,Gm), the character
group of T .

(4) Let Ξ be a free abelian group of finite rank. We define Gm(Ξ) =
Hom(Ξ,Gm), the dual torus of Ξ.

Note that A∨ has a canonical structure of abelian variety by [Mum70,
§13 Theorem]; see also [Mil08, p. 40]. All these functors are contravariant.
Given a morphisms of abelian varieties α ∶ A → A′, by pull-back of line
bundles we get an induced morphism α∨ ∶ A′∨ → A∨. Given a morphism
of tori τ ∶ T → T ′, by composition we get an induced morphism of abelian
groups τ∗ ∶X(T ′)→X(T ). Given a morphism of finitely generated abelian
groups ξ ∶ Ξ → Ξ′, by composition we get an induced morphism of tori
ξ∗ ∶ Gm(Ξ′)→ Gm(Ξ).

Proposition 4.6. Let V be a vector group, A an abelian variety and T
a torus. Then there are canonical isomorphisms

V ∨,∨ ≅ V, A∨,∨ ≅ A, Gm(X(T )) ≅ T.

Proof. The case of V is linear algebra. In the case of T , we get by
adjunction a canonical map

T → Gm(X(T )).

By naturality, it suffices to check that it is an isomorphism in the case
T = Gm. This case is again trivial. For the double dual of an abelian variety,
see [Mum70, §Corollary, p. 132], see also [Mil08, Theorem 8.9]. �

4.2. Group Extensions

In this section we give a short introduction to the functor Ext1 in the
abelian category of commutative algebraic groups defined over k. Most of
the material can be found in Serre’s book [Ser88].
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Let A,B be objects of G. To give an extension of A by B is the same
as to give a triple (C, ι, π) with C a commutative algebraic group C and
(ι, π) ∈ Hom(B,C) ×Hom(B,A) such that

0 // B
ι // C

π // A // 0(2)

is exact. By abuse of notation we often call the group C an extension of A
by B. It is automatically connected.

A morphism of extensions is a triple α ∶ A → A′, β ∶ B → B′, γ ∶ C → C ′

making the diagram

0 // B
ι //

β
��

C
π //

γ
��

A //

α
��

0

0 // B′ ι′ // C ′ π′ // A′ // 0

(3)

commutative. Note that γ is an isomorphism if and only if α and β are.
In this case the extensions are isomorphic. We say that two extensions are
equivalent if there is a homomorphism of extensions with A = A′, B = B′

and α = idA, β = idB. The set of equivalence classes of extensions makes
up a commutative group Ext1(A,B), the group of Yoneda-1-extensions. By
abuse of notation we often write C for its equivalence class [C].

Remark 4.7. The morphisms α,β are uniquely determined by γ. If
Hom(B,A′) = 0 (for example because B is a linear algebraic group and A′

an abelian variety), then the existence of α and β is automatic.

We now review the group structure on Ext1 via the Baer sum. As for all
abelian categories, the bi-functor Ext1 which associates with a pair (A,B)
the set Ext1(A,B) is contravariant in the first and covariant in the second
variable. The functoriality in the first variable is given by pull-back. Given
a morphism α ∶ A′′ → A, introduce

C ′′ ∶= C ×A A
′′.

By construction,
0→ B → C ′′ → A′′ → 0

is exact and we define

α∗[C] = [C ′′] ∈ Ext1(A′′,B).

The functoriality in the second variable is given by push-out. Given a mor-
phism β ∶ B → B′, introduce

C ′ = C ×B′/B

where B acts both on B′ and on C. Let B′ → C ′ be given by b↦ (−b, β(b)).
By construction,

0→ B′ → C ′ → A→ 0

is exact and we define

β∗[C] = [C ′] ∈ Ext1(A,B′).
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The two transformations α∗ and β∗ commute in the sense that

Ext1(A,B)
α∗ //

β∗
��

Ext1(A′′,B)

β∗

��
Ext1(A,B′)

α∗ // Ext(A′′,B′)

(4)

commutes. This is a general property of Ext-groups in abelian categories.
If [C1] and [C2] are in Ext1(A,B), then their Baer sum is

[C1] + [C2] = ∆∗s∗([C1 ×C2]),

which makes Ext1(A,B) into a commutative group with neutral element

0 = [B ×A]; here ∆ is the diagonal map from A into A ×A and B ×B
s
Ð→ B

the addition on B. We deduce that multiplication by an integer n can be
defined inductively using addition. Equivalently take

n[B] = ∆∗s∗([B
n])

where ∆ = ∆n is the diagonal from C to Cn and s = sn is n-fold addition
An → A on A.

The bi-functor Ext1 is additive in both variables, which implies that

Ext1(A1 ×A2,B) = Ext1(A1,B) ×Ext1(A2,B)

and
Ext1(A,B1 ×B2) = Ext1(A,B1) ×Ext1(A,B2).

Hence it is of particular importance to understand Ext1 for the simple build-
ing blocks.

Proposition 4.8. Let A be an abelian variety, L,L′ linear connected
commutative algebraic groups. Then:

Ext1(A,Ga) =H
1(A,O),(1)

Ext1(A,Gm) = A∨(k) = Pic0(A)(k) ⊂ Pic(A)(k) =H1(A,O×),(2)

Ext1(L,L′) = 0.(3)

Proof. For the statements on abelian varieties see [Ser88, Ch VII §3
Theorem 7 and 6]. All linear connected commutative algebraic groups are
split by Theorem 4.3. In particular, there are no non-trivial extensions. �

Remark 4.9. The identification of Ext1(A,Gm) with A∨(k) is provided
by the Poincaré bundle P on A × A∨: see [Mum70, Chapter II 8. p. 78].
Given a point x ∈ A∨(k), the pull-back Px to A via (id, x) is a line bundle
of degree 0. After removing the zero-section, it is a Gm-bundle and, in fact,
a semi-abelian variety in Ext1(A,Gm).

Corollary 4.10. Let G be a semi-abelian variety with abelian part A
and V a vector group. Then the natural map

Ext1(A,V ) ≅ Ext1(G,V )
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is an isomorphism. In particular, Ext1(G,V ) is finite dimensional.

Proof. We start with the short exact sequence

0→ T → G→ A→ 0

with T the torus part ofG, and apply the long exact sequence for Hom(−, V );
see [Ser88, Ch. VII §1 2.]. This yields the exact sequence

⋅ ⋅ ⋅→ Hom(T,V )→ Ext1(A,V )→ Ext1(G,V )→ Ext1(T,V )→ . . .

The first and the last term vanish.
Finite dimensionality holds because

Ext1(A,V ) ≅ Ext1(A,Ga)
s ≅H1(A,O)s

where s = dim(V ). �

From this proposition, we get classifying maps: let A be an abelian
variety, T a torus. Then we have the bilinear map

X(T ) ×Ext1(A,T )→ Ext1(A,Gm)

(χ, [G])↦ χ∗[G].

Alternatively, let [G] ∈ Ext1(A,T ) and consider the exact sequence of The-
orem 4.3 with L = T . Applying the long exact Hom(−,Gm)-sequence of
[Ser88, VII, dir0o Proposition 2] we get a long exact sequence

⋯ // Hom(T,Gm)
dG // Ext1(A,Gm)

π∗ // Ext1(G,Gm) // ⋯,

where the connecting homomorphism is given by dG(λ) = λ∗([G]). The two
descriptions are equivalent.

Corollary 4.11. The induced map

Ext1(A,T )→ Hom(X(T ),A∨)

is an isomorphism.

Proof. As T ≅ Gr
m and both sides are natural in T , it suffices to treat

the case T = Gm. In this case we have X(Gm) = Z and Hom(X(Gm),A∨) =
A∨(k). The claim now follows from (2) in Proposition 4.8. �

We refer to the image of G in Hom(X(T ),A∨) as the classifying map of
G.

Now let V be a vector group. Again we have a bilinear map

V ∨ ×Ext1(A,V )→ Ext1(A,Ga)

(λ, [G])↦ λ∗[G].

As in the torus case, there is an alternative description as

(λ, [G])↦ dG(λ)

with respect to the long exact Hom(−,Ga)-sequence attached to (2) with
L = V .
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Corollary 4.12. The induced map

Ext1(A,V )→ Hom(V ∨,H1(A,O))

is an isomorphism.

Proof. As V ≅ Gs
a and both sides are natural in V , it suffices to treat

the case V = Ga. In this case G∨
a = Ga and Hom(Ga,H

1(A,O)) =H1(A,O).
The claim follows from (1) in Proposition 4.8. �

The same considerations also apply to extensions of semi-abelian vari-
eties by vector groups. We obtain:

Corollary 4.13. Let G be semi-abelian, V a vector group. Then the
natural map

Ext1(G,V )→ Hom(V ∨,Ext1(G,Ga))

is an isomorphism.

Proof. By Corollary 4.10 we can replace G by its abelian part A on
both sides. Then we are back in the situation of Corollary 4.12. �

4.3. Semi-abelian Varieties

As shown in Corollary 4.11, the datum of a semi-abelian variety G over
k is equivalent to the datum of a homomorphism X(T ) → A∨(k). This
construction is functorial. A morphism of semi-abelian varieties α ∶ G1 → G2

induces a commutative diagram

X(T1)

[G1]
��

X(T2)
α∨oo

[G2]
��

A∨
1(k) A∨

2(k)α∨
oo

.

In conclusion:

Proposition 4.14. The assignment G ↦ [X(T ) → A∨(k)] yields an
equivalence between the category of semi-abelian varieties over k and the
category with objects given by triples (X,A,φ) where X is a free abelian
group of finite rank, A an abelian variety and φ ∶ X → A∨(k) is a group
homomorphism.

Proof. We verify that the functor is faithful. Let f ∶ G→ G′ be a mor-
phism of semi-abelian variety mapping to 0 under the functor. In particular,
the induced morphisms on the torus part and the abelian part vanish. The
composition G→ G′ → A′ vanishes because it factors over 0 ∶ A→ A′. Hence
f maps into T ′. The restriction f ∣T vanishes, hence we get an induced map
f̄ ∶ A→ T ′. There are no such maps, hence f̄ = 0.

The functor is also full: given a commutative diagram as above, we get
back the morphism α as the composition

G1 → Gα∨○[G2] = G2 ×A2 A1 → G2.
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We are often going to make use of this equivalence without mentioning it
explicitly. To verify the equality Gα∨○[G2] = G2 ×A2 A1 we consider the
cartesian diagram

G2 ×A2 A1

��

// G2

��
A1

// A2

which corresponds to

X(T2)

[G2]
��

X(T2)

[G2×A2
A1]

��
A∨

2 α∨
// A1

∨

.

This shows that Gα∨○[G2] = G2 ×A2 A1 = α
∗G2.

It remains to check that the functor is full on objects. Given (X,A,φ),
we construct G as follows: let e1, . . . , en be a basis of X. The elements
φ(ei) ∈ A

∨(k) define elements of Ext1(A,Gm) and hence extensions

0→ Gm → Gi → A→ 0.

We put

G = G1 ×A × ⋅ ⋅ ⋅ ×A Gn.

By construction G maps to (X,A,φ) under our functor. �

Remark 4.15. The map X(T )→ A∨(k) is zero if and only if G ≅ A×T .
Given two maps s1 ∶X(T1)→ A∨(k) and s2 ∶X(T2)→ A∨(k) corresponding
to G1 and G2, their sum defines s ∶X(T1)⊕X(T2)→ A∨(k). It corresponds
to the semiabelian variety G obtained as the pull-back of G1 ×G2 → A ×A
via the diagonal A → A × A. Its torus part is T1 × T2. If s1 = 0, then
the composition G → G1 ≅ A × T1 → T1 together with G → G2 induce an
isomorphism G ≅ T1 ×G2.

Definition 4.16. The category of semi-abelian varieties up to isogeny
has the same objects as the category of semi-abelian varieties but with mor-
phisms tensored by Q.

Proposition 4.14 implies that the category of semi-abelian varieties up to
isogeny is equivalent to the category with objects given by triples (XQ,A,φ)
whereXQ is a finite dimensional Q-vector space, A denotes an abelian variety
up to isogeny and φ a Q-linear map XQ → A∨(k)Q. We often write objects
as X → A∨(k)Q, where X is a free abelian group of finite rank.

Corollary 4.17. Let G be a semi-abelian variety, T a torus and G→ T
a surjective morphism of algebraic groups with kernel G′. Then G ≅ T ×G′

up to isogeny.
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Proof. Since tori are semi-simple there is also an injective homomor-
phism T → G with image in the torus part of G. By the universal property
of the direct product, this leads to an isomorphism G ≅ T ×G′. �

4.4. Universal Vector Extensions

As shown in Corollary 4.13, the datum of a vector extension of a semi-
abelian variety G over k is equivalent to the datum of a linear map V ∨ →
Ext1(G,Ga) or dually Ext1(G,Ga)

∨ → V . As in the semi-abelian case, this
construction is functorial.

Proposition 4.18. The assignment G ↦ [Ext1(G,Ga)
∨ → V ] yields

an equivalence between the category of vector extensions of semi-abelian
varieties over k and the category with objects given by triples (V,A,φ)
where V is a finite dimensional k-vector space, A is an abelian variety and
φ ∶ Ext1(G,Ga)

∨ → V is a k-linear map.

Proof. The argument is the same as in the semi-abelian case. �

The vector space Ext1(G,Ga) is itself finite-dimensional by Corollary 4.10,
hence there is a distinguished object in the category of vector extensions of
A.

Definition 4.19. Let G be a semi-abelian variety. We call the vector
extension

0→ Ext1(G,Ga)
∨ → G♮ → G→ 0

corresponding to id ∶ Ext1(G,Ga)
∨ → Ext1(G,Ga)

∨ the universal vector
extension of G.

Proposition 4.20. The universal vector extension of a semi-abelian
variety G has the following universal property: given a vector extension

0→ V → G′ → G→ 0

there is a unique morphism G♮ → G′ compatible with the projection to G.

Proof. Under the equivalence of Proposition 4.18 the vector extension
G′ corresponds to the triple (V,G,φ ∶ Ext1(G,Ga)

∨ → V ) and G♮ corre-
sponds to (Ext1(G,Ga),A, id). A morphism G′ → G♮ corresponds to a
linear map Ext1(G,Ga)

∨ → V compatible with the structure maps. The
only such maps is φ. �

Remark 4.21. Let A be the abelian part of G. By the computation of
Ext1(A,Ga) in Proposition 4.8, we have

0→H1(A,O)∨ → A♮ → A→ 0.

Moreover, the isomorphism Ext1(A,Ga) ≅ Ext1(G,Ga) of Corollary 4.10
implies that G♮ is explicitly constructed as

G♮ = A♮ ×A G.
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If V is a vector group, G ∈ G, both Hom(G,V ) and Ext1(G,V ) are k-
vector spaces and do not change when we replace the category G with its
isogeny category GQ. This remark implies:

Corollary 4.22. The universal vector extension G♮ of a semi-abelian
variety G also satisfies the universal property of a vector extension in the
isogeny category GQ.

4.5. Generalised Jacobians

Let k be an algebraically closed field of characteristic zero. Let Y be a
smooth connected algebraic curve over k with a chosen base point y0.

The following theorem is a special case of the theory of generalised Ja-
cobians. They were introduced by Rosenlicht. We follow the presentation
of Serre, see [Ser88, Chapter V]. We recall briefly the deduction.

Theorem 4.23 (Rosenlicht: see Serre [Ser88, Chapter V]). There is a
semi-abelian variety J(Y ) over k and a morphism

Y → J(Y )

depending only on y0 such that Hsing
1 (Y,Z)→Hsing

1 (J(Y ),Z) is an isomor-
phism.

4.5.1. Construction of J(Y ). Let Ȳ be the smooth compactification
of Y and S = Ȳ ∖Y the set of points in the complement of Y . We define the
divisor m as ∑P ∈S P . In the terminology of [Ser88] this is a (special case of
a) modulus. The case m = 0 (i.e. S = ∅) is allowed.

A rational function ϕ on Y is congruent to 1 mod m if νP (1−ϕ) ≥ 1 for
all P ∈ S where νP denotes the valuation at P . We write

● Cm for the group of classes of divisors on Ȳ which are prime to
S modulo those which can be written as (ϕ) for some rational
function ϕ ≡ 1 mod m;

● Jm = C0
m for the subgroup of classes which have degree 0;

● J = C0 for the usual group of divisor classes of degree 0.

There is a surjective homomorphism

π ∶ Jm → J

with kernel Lm consisting of those classes in Jm which are invertible at each
P ∈ S. Moreover, let

θ ∶ Y → Jm

be the map assigning to a point y ∈ Y the class of the divisor y − y0.
Alternatively, the group Jm can be described as the group of isomorphism

classes of pairs (L, ι) where L is a line bundle of degree 0 on Ȳ and ι is a
trivialisation of L on S. The image of a divisor D of degree 0 on Ȳ is the line
bundle O(D) together with the canonical trivialisation, which exists because
O(D)∣U = O∣U outside the support of the divisor, in particular on S. In the
case S = ∅, this identification is the familiar isomorphism J ≅ Pic0(Ȳ ).
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By [Ser88, Chapter V Proposition 2], the group Jm is an algebraic group
and by Serre’s Proposition 4 the map θ is a morphism of algebraic varieties.
By [Ser88, Chapter V Theorem 2], the pair has a universal property for
morphisms into commutative algebraic groups mapping y0 to 0: given a
rational map f ∶ Ȳ → G to a commutative algebraic group G admitting m
for a modulus; see [Ser88, Chapter I, Theorem 1], there exists a unique
algebraic homomorphism F ∶ Jm → G such that

f = F ○ θ + f(y0).

The structure of Jm is explained in [Ser88, Chapter V Section 13]. In
the case m = 0, we get back the usual Jacobian of C̄. This is an abelian
variety. In our special case, the kernel Lm is isomorphic to Gr

m where

r =

⎧⎪⎪
⎨
⎪⎪⎩

0 for m = 0,

degm − 1 for m ≠ 0.

We put J(Y ) ∶= Jm and obtain up to isomorphism the short exact se-
quence

1→ Gr
m → J(Y )→ J(Ȳ )→ 0

of commutative algebraic groups, making J(Y ) semi-abelian.
The classifying map of J(Y ) maps a lattice of rank r to J(Ȳ )∨ ≅

Pic0(Ȳ ) ≅ J(Ȳ ).

Lemma 4.24 (Serre [Ser60, Section 1]). The classifying map of J(Y ) is
given by the map

Z[S]0 → J(Ȳ ) ≅ J(Ȳ )∨

induced by θ, where Z[S]0 is the group of divisors of degree 0 supported on
the S.

4.5.2. Generalised Jacobian over C. The structure of Jm over C is
explained in [Ser88, Chapter V, §19]. Serre shows

Jm(C) ≅H0(Ȳ ,Ω1(−m))∨/Hsing
1 (Y,Z).

This implies that the map induced by Y → J(Y ) induces an isomorphism

Hsing
1 (Y,Z)→Hsing

1 (J(Y )(C),Z).

Remark 4.25. Actually, this isomorphism is shown in [Ser88] on the
way to establishing the formula for Jm(C).
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Lie Groups

We review the construction and properties of the exponential map, fixing
notations and normalisations for later.

5.1. The Lie Algebra

Let Gan be a connected commutative complex Lie group. We denote
gC or Lie(Gan) the Lie algebra of invariant vector fields on Gan and by g∨C
or coLie(Gan) the dual space of invariant differential forms. Note that gC
is abelian, i.e. the Lie bracket is trivial and does not play a role in what
follows.

If V is a C-vector space, we can view it as a complex commutative Lie
group V an. In this case Lie(V an) = V .

Example 5.1. For Ga = Spec(Z[t]) we have Gan
a = C. It has a canonical

coordinate with the property t(1) = 1. Then its Lie algebra gan
a is generated

by d
dt and its dual by dt. The canonical identification of gan

a with Gan
a maps

d
dt to 1.

Morphisms in the category of connected commutative complex Lie groups
are called analytic homomorphisms. The assignments Lie and coLie are
functors. Given an analytic homomorphism ϕ ∶ Gan → Han of connected
commutative complex Lie groups, we get by push-forward of vector fields
and pull-back of differential forms C-linear maps

ϕ∗ = dϕ ∶ gC → hC, ϕ∗ = δφ ∶ h∨C → g∨C.

The linear maps are adjoint with respect to the natural pairings between
a space and its dual space and this means that (ϕ∗)∨ = ϕ∗. If ( , ) is the
pairing which defines duality, then

(ϕ∗(ω),X) = (ω,ϕ∗X)

for every invariant differential form ω on H and invariant vector field X on
G.

Of particular interest is the case of analytic homomorphisms ϕ ∶ C→ Gan

and X = d
dt .

39
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5.2. The Exponential Map

For any given vector field X ∈ gC there exists a unique analytic homo-
morphism ϕX ∶ Gan

a → Gan such that its tangent map dϕX satisfies

(dϕX) (
d

dt
) =X

as can be found in [War83]. It amounts to solving an ordinary linear dif-
ferential equation. This is used to construct the exponential map of the Lie
group Gan in the following way. We choose X ∈ gC and put

expG(X) ∶= ϕX(1).

This defines an analytic homomorphism expG ∶ gC → Gan. In other words,
expG is uniquely characterised by functoriality with respect to analytic group
homomorphisms and d expG = id. This leads to an exact sequence

0 // Λ // gC
expG // Gan // 0.(5)

Proposition 5.2. Let Gan be a connected commutative complex Lie
group. Then expG ∶ gC → Gan is the universal cover.

Proof. The map expG is unramified because d exp = id is an isomor-
phism. It is a cover by the sequence (5). This makes it the universal
cover. �

Remark 5.3. This also means that Λ is the fundamental group of Gan.
We will deduce an explicit identification from the point of view of paths
below.

An analytic homomorphism ϕ ∶ Gan → Han induces a commutative dia-
gram

0 // ΛG
ιG //

ν

��

gC
expG //

dϕ

��

Gan //

ϕ

��

0

0 // ΛH
ιH // hC

exp // Han // 0

(6)

The converse does not hold necessarily: A Lie algebra homomorphism θ ∶
gC → hC does not necessarily descend to an analytic homomorphism from
Gan to Han. However, this does hold if Gan is simply connected:

Lemma 5.4. Let Gan be simply connected, θ ∶ gC → hC a linear map.
Then there exists an analytic homomorphism Θ ∶ Gan →Han such that dΘ =
θ.

Proof. As Gan is simply connected, it agrees with its universal cover.
Hence expG is an isomorphism of connected commutative complex Lie groups.
We define

Θ = expH ○θ ○ exp−1
G .

�
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The group Gan is simply connected if and only if Gan is a vector group
V ≅ Gn

a .

5.3. Integration over Paths

Another pairing is obtained by integration. Let γ ∶ [0,1] → Gan be any
path in Gan. This path defines an element I(γ) in gC by putting

I(γ)(ω) ∶= ∫
γ
ω for all ω ∈ g∨C.

By Stokes’s Theorem we see that I(γ) depends only on the homotopy class
of γ. The pairing is non-degenerate so that I(γ) = 0 implies that γ is closed
and homotopically equivalent relative {0,1} to a constant path.

Example 5.5. In the case that G = Ga and ε ∶ [0,1] → Gan
a is the path

going from ε(0) = 0 straight to ε(1) = 1 we have

I(ε) = (−,
d

dt
) .

In fact every invariant differential form on Ga is a constant multiple of dt
and everything reduces to the calculation

∫
1

0
dt = 1 = (dt,

d

dt
) .

Let ϕ ∶ Gan →Han be an analytic homomorphism. Then we have for all
invariant differential forms ω ∈ hC and paths γ on Gan

I(ϕ∗γ)(ω) = I(γ)(ϕ
∗ω)

by the transformation rule.
Fix now an element X in gC and let ϕX be the analytic homomorphism

from Gan
a to Gan determined by X. Also let

γX ∶ [0,1]→ Gan

be the path obtained by restricting the analytic homomorphism ϕX to the
interval [0,1]. Note that by definition γX = ϕX ○ ε = ϕX,∗ε.

We thus have defined maps I and X ↦ γX assigning tangent vectors to
paths and conversely.

Lemma 5.6. We have I(γX) =X.

Proof. Let ω be in g∨C. Since γX is a restriction of the analytic ho-
momorphism ϕX we see that γ∗Xω is an invariant differential form in ga,C.
Then

I(γX)(ω) = I(ϕX,∗ε)(ω) = I(ε)(ϕ
∗
Xω) = (ϕ∗Xω,

d

dt
) = (ω,ϕ∗X

d

dt
) = (ω,X)

by the transformation formula for integrals together with I(ε) = (−, d/dt).
This means that I(γX) =X. �
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In particular we may start with the element X = I(γ). Then

I(γ) =X = I(γX)) = I(γI(γ))

whence γ is homotopic to γI(γ). This gives γ(1) = γI(γ)(1) = expG(I(γ))
and leads to the following

Corollary 5.7. Let P be a point in Gan and γ a path from 0 to P .
Then we have

expG(I(γ)) = P.

The lemma shows that integration is inverse to exponentiation as it
should be. But this is precisely the definition of a logarithm and we may
write

logG(P ) ∶= I(γ).

Note that logG is multivalued. The map γ ↦ I(γ) from the path space
LG(0) of G, with the unit element of the group as base point, taken modulo
homotopy into the Lie algebra gC identifies gC with the universal covering
space of Gan.

We now restrict to closed paths. The maps

(7) Λ
X↦γX --

π1(G
an,0)

I

kk

are inverse to each other; in particular Λ ≅ π1(G,0) and the fundamental
group is abelian.

Let σ = ∑ni=1 aiγi be a chain with ai ∈ Z, γi ∶ [0,1]→ Gan continuous. We
extend the definition of I and put

I(σ) =
n

∑
i=1

aiI(γi) ∈ gC.

If γ is closed, but γ(0) ≠ 0, then p(I(γ)) is still homologous to γ. Hence

(8) Λ
X↦γX ..

Hsing
1 (Gan,Z)

I

ll

are inverse to each other. The two identifications are compatible with the

Hurewitz map π1(G
an,0) → Hsing

1 (Gan,Z), which is an isomorphism in this
case.



CHAPTER 6

The Analytic Subgroup Theorem

In this chapter, we give a new formulation of the Analytic Subgroup
Theorem. We then explore its consequences for the comparison of analytic
and algebraic homomorphisms.

6.1. The Statement

Let G be a commutative and connected algebraic group defined over Q
and g its Lie algebra. The associated complex manifold Gan is a complex
Lie group and its Lie algebra is gC = g⊗Q C. The exponential map

expG ∶ gC → Gan

from the Lie algebra into Gan defines an analytic homomorphism. If b ⊆ g
is a subalgebra and bC = bQ ⊗ C we denote by B the analytic subgroup

expG(bC). An obvious question one can ask is whether B(Q) ∶= B ∩G(Q)
can contain an algebraic point different from 0, the neutral element. The
answer is given by the Analytic Subgroup Theorem.

Theorem 6.1 (Wüstholz [Wüs87], [Wüs89]). The group of algebraic

points B(Q) is non-trivial if and only if there is a connected algebraic sub-
group H ⊆ G with Lie algebra h such that {0} ≠ h ⊆ b.

We conclude that the only source for algebraic points is the obvious one.
Note that B(Q) ≠ {0} implies that b ≠ {0}.

There is a refined version of the theorem. To state it let G be a connected
commutative algebraic group over Q with Lie subalgebra g and let ⟨ , ⟩ be
the duality pairing between g∨ and g. For u in gC with expG(u) ∈ G(Q) we
denote by Ann(u) the largest subspace of g∨ (sic) such that ⟨Ann(u), u⟩ = 0.

Theorem 6.2. Assume that expG(u) ∈ G(Q). Then there exists an exact
sequence

0→H → G
π
Ð→ G/H → 0

of connected commutative algebraic groups defined over Q such that Ann(u) =
π∗(g/h)∨ and u ∈ hC, where h is the Lie algebra of H. The sequence is
uniquely determined by these properties.

Proof. We write P = expG(u). If u = 0, the theorem holds with H = 0.
If u ≠ 0, but P = expG(u) = 0, we may replace u by 1

nu for a big enough

n ∈ N. We then have expG(
1
nu) ≠ 0 because the kernel of expG is discrete.
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Moreover, the image point is a torsion point of G, hence in G(Q). Without
loss of generality, we may assume that P ≠ 0.

Let ⟨ , ⟩ ∶ g∨×g→ Q be the natural duality pairing and for any subalgebra
a ⊂ g denote the left kernel by

a⊥ = {λ ∈ g∨; ⟨λ,a⟩ = 0}.

The right kernel is defined similarly. We put b ∶= Ann(u)⊥ ⊆ g. Then bC
contains u and Theorem 6.1 gives an algebraic subgroup H ⊂ G with Lie
algebra h. We may assume that u ∈ bC, otherwise we apply our arguments to
G/H. It has smaller dimension, so the process must stop after finitely many
steps. Taking the left kernels gives b⊥ ⊂ h⊥ ⊂ Ann(u) and then b⊥ = Ann(u) =
h⊥ by the maximality property of Ann(u). We get an exact sequence of Lie
algebras

0→ h→ g
π∗
Ð→ g/h→ 0

which corresponds to an exact sequence

0→H → G
π
Ð→ G/H → 0

of algebraic groups and by duality to the exact sequence

0→ (g/h)∨
π∗
Ð→ g∨ → h∨ → 0.

We have h⊥ = π∗(g/h)∨ and (g/h)⊥ = h∨, which we prove as follows: we have
λ ∈ h⊥ if and only if the restriction of λ to h is zero. This implies that λ
descends to g/h and that there is an element µ ∈ (g/h)∨ with λ = π∗µ. This
leads to h⊥ ⊆ π∗(g/h)∨. Conversely

⟨π∗(g/h)∨,h⟩ = ⟨(g/h)∨, π∗h⟩ = 0

since π∗h = 0 and we conclude that Ann(u) = h⊥ = π∗(g/h)∨ as stated.
Suppose that there is another short exact sequence

0→H ′ → G
π′
Ð→ G/H ′ → 0

with the same properties. In particular π′∗(g/h)∨ = π∗(g/h′)∨ as subobjects
of g∨. This implies that h = h′ as subspaces of g. As H and H ′ are connected,
this also implies H =H ′ as subgroups of G. �

6.2. Analytic vs. Algebraic Homomorphisms

The Subgroup Theorem also has a consequence for the category of groups
itself. A connected commutative algebraic group over Q gives rise to a
complex Lie group. We recall that morphisms in the category of complex
Lie groups are called analytic homomorphisms.

Theorem 6.3. Let G,G′ be connected commutative algebraic groups de-
fined over Q with Lie algebras g and g′ and let φ ∶ Gan → G′an

be an analytic
group homomorphism such that gC → g′C maps g to g′.
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Then there exists a vector group Vtr, a connected commutative algebraic
group Galg and a decomposition

G ≅ Vtr ×Galg

such that φ∣Gan
alg

is algebraic over Q and φ∣V an
tr

is purely transcendental, i.e.

φ(Vtr(Q)) does not contain any non-zero algebraic values.

Remark 6.4. (1) An earlier version claimed the same corollary but
without the Vtr-factor. We thank the referee for pointing out the
mistake in the argument. Indeed, the statement would be false
as the example exp ∶ C → C∗ shows. The theorem says that all
counterexamples are of a similar nature, see Corollary 6.9 for a
complete classification.

(2) The assumption on the induced map on Lie algebras is necessary as
the following example shows: let G1 = Gm, and G2 = E an elliptic
curve over Q. Let

C
z↦exp(2πiz)
ÐÐÐÐÐÐÐ→ C∗ = Gan

m

be the standard uniformisation. For Ean we use the explicit uni-
formisation

expE ∶ C→ Ean

with kernel Λ = Zω1 + Zω2 of Section 18.1. In these coordinates
the Q-coLie algebras of Gm and E are generated by dz/z and dz
respectively.

We get a well-defined analytic homomorphism

φ ∶ Gan
m = C/2πiZ→ Ean = C/Λ

by mapping z ↦ (ω1/2πi)z. It is not algebraic. Note that this does
not contradict Theorem 6.3 because it does not map g1 to g2 since
ω1/2πi is not in Q as we shall see later.

The proof of this theorem will take the rest of this chapter.

Lemma 6.5. Suppose that the set of torsion points Gtor is dense in G.
Under the assumptions of Theorem 6.3, the morphism φ is algebraic.

Proof. Let B ⊂ Gan×G′an
be the graph of φ. It is connected because it

is isomorphic to Gan via the first projection. By assumption its Lie algebra
is defined over Q. Let g ∈ G(Q) be an N -torsion point. Then φ(g) ∈ G′(C)

is also an N -torsion point, hence in G′(Q). This implies that

T ∶= {(g, φ(g))∣g ∈ Gtor} ⊂ B(Q).

By the Analytic Subgroup Theorem there is an algebraic subgroup H ⊂
G × G′ defined over Q such that Han ⊂ B and containing all of T . The
projection B ↪ Gan × G′an

→ Gan is an isomorphism, hence its restriction
to H is a closed immersion. The image contains the set Gtor. It is Zariski
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dense, hence the inclusion is surjective. In other words, Han = B. The group
H ⊂ G ×G′ is the graph of the morphism we wanted to find. �

Lemma 6.6. The theorem holds if G = V is a vector group.

Proof. Let Σ = φ−1(G′(Q))∩V (Q). We denote by VΣ ⊂ V the smallest
algebraic subgroup containing Σ. We choose a direct complement Vtr of VΣ in
V . By construction, φ∣V an

tr
is purely transcendental. Indeed, any σ ∈ Vtr(Q)

with φ(σ) ∈ G′(Q) is already in Σ and hence in VΣ(Q).
It remains to show that φ∣V an

Σ
is algebraic. As in the last lemma we

consider its graph B in V an
Σ ×G′an

. Its Lie algebra is defined over Q and it
contains the set

T ∶= {(g, φ(g))∣g ∈ Σ} ⊂ B(Q).

By the Analytic Subgroup Theorem there is an algebraic subgroup H ⊂
VΣ × G′ defined over Q such that Han ⊂ B and containing all of T . The
projection B ↪ V an

Σ ×G′an
→ V an

Σ is an isomorphism, hence its restriction
to H is a closed immersion. The image is an algebraic subgroup containing
the set Σ, hence equal to VΣ. In other words, again Han = B. The group
H ⊂ G ×G′ is the graph of the morphism we wanted to find. �

Lemma 6.7. Let G1 → G2 be a vector extension. Then (G1)tor = (G2)tor.

Proof. It suffices to check the statement over the complex numbers
and in the analytification. We have

Gan
1 ≅ Cn1/Hsing

1 (Gan
1 ,Z)→ Gan

2 ≅ Cn2/Hsing
1 (Gan

2 ,Z).

By homotopy invariance, Hsing
1 (Gan

1 ,Z) ≅Hsing
1 (Gan

2 ,Z). The torsion is com-

puted as Gi,tor ≅ H
sing
1 (Gan

i ,Z) ⊗Q/Z, hence the torsions of of G1 and G2

are isomorphic. �

Let V be the vector part of G, i.e. we have a short exact sequence

0→ V → G→ Gsa → 0

with V a vector group and Gsa semi-abelian. We say that G is completely
non-trivial (as vector extension) if it does not have a direct factor Ga. In
other words: the classifying map

V ∨ → Ext1(Gsa,Ga)

is injective, see Corollary 4.13.

Lemma 6.8. Let G1 be the Zariski closure of Gtor in G. Then G1 is a
completely non-trivial vector extension of Gsa. Moreover, there is a decom-
position

G ≅ V1 ×G1

with a vector group V1, i.e. G1 is the maximal completely non-trivial subex-
tension of Gsa contained in G.
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Proof. We have Gtor ≅ G
sa
tor, hence the image of G1 → Gsa contains all

torsion points. They are dense in Gsa, hence G1 → Gsa is surjective. This
makes G1 a vector extension of Gsa. By construction, (G1)tor is dense in
G1. If it was not completely non-trivial, we would have a decomposition
G1 = G2 ×Ga and the torsion points would not be dense.

Finally, let V be the vector part of G, W = G1 ∩ V and choose a direct
complement V1 of W in V . The natural map

G1 × V1 → G

is an isomorphism. �

Proof of Theorem 6.3. By Lemma 6.8 we have

G ≅ G1 × V1

such Gtor is dense in G1 and V1 is a vector group. By Lemma 6.5, the
theorem holds for G1.

By Lemma 6.6, there is a decomposition V1 ≅ (V1)Σ × Vtr such that φ
is algebraic on (V1)Σ and purely transcendental on Vtr. This completes the
proof. �

The interplay between algebraic and transcendental morphisms is subtle.
In the situation of Theorem 6.3 let

G ≅ V1 ×G1, G′ ≅ V2 ×G2

be decompositions of the algebraic groups G and G′ into a vector group
and a completely non-trivial vector extension of its semi-abelian part, as in
Lemma 6.8. The analytic homomorphism φ decomposes as a (2× 2)-matrix

φ = (
φ11 φ12

φ21 φ22
)

with φ11 ∈ Hom(V an
1 , V an

2 ), φ12 ∈ Hom(V an
1 ,Gan

2 ) and with φ21 ∈ Hom(Gan
1 , V

an
2 )

and φ22 ∈ Hom(Gan
1 ,G

an
2 ).

Corollary 6.9. In this situation, we have:

(1) φ11 and φ22 are algebraic and defined over Q;
(2) φ21 = 0;
(3) There is a decomposition V1 ≅ V1,tr × V1,alg such that the maps

V an
1,tr → Gsa,an

2 , V an
1,tr → Gsa,an

2

induced by φ12 are purely transcendental and algebraic over Q, re-
spectively.

Proof. By the proof of Theorem 6.3, we have G1 ⊂ Galg and Vtr ⊂ V1. In

particular, φ21 and φ22 are algebraic and defined over Q. If φ21 ∶ G
an
1 → V an

2

was non-zero, we would be able to split off a factor Ga from G1. This is
impossible because G1 is completely non-trivial.
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All analytic homomorphisms φ11 ∶ V
an

1 → V an
2 are algebraic over C. It

agrees with the analytification of the C-linear map v1,C → v2,C. By assump-

tion it is induced by a Q-linear map v1 → v2, hence it is even algebraic over
Q.

We decompose V1 as in Theorem 6.3 in this special case. Then φ12 is
algebraic and defined over Q on V1,alg and purely transcendental on V1,tr. It
remains to show that the composition V1,tr → G2 → Gsa2 is purely transcen-
dental. In order to simplify notation, we write W for V1,tr and G′ for G2.
We apply Theorem 6.3 to W → G′sa. Accordingly there is a decomposition
W ≅Wtr ×Walg such that the map is algebraic on Walg and purely transcen-
dental on Wtr. The algebraic map Walg → G′sa vanishes because Walg is a
vector group and G′sa is semi-abelian. This implies that we get an induced
algebraic map Walg → V ′ where V ′ is the vector part of G′. This contradicts
that W an

alg → G′an
is purely transcendental. We conclude that Walg is in fact

0 and W an → G′sa,an
is purely transcendental. �



CHAPTER 7

The Formalism of the Period Conjecture

The Period Conjecture predicts relations between the periods of alge-
braic varieties or, more generally, periods of motives. We explain the ab-
stract set-up behind the explicit formulation. Our machinery will be applied
mostly to periods of 1-motives, but also in a couple of other cases.

7.1. Periods

We first introduce periods and formal periods, following [HMS17, Def-
inition 5.1.1] and [Hub20, Definition 3.6].

Throughout we fix subfields K,L ⊂ C. Their compositum KL is the
subfield generated by K and L. To simplify notation, we work under the
hypothesis K ∩L = Q.

Definition 7.1. (1) Let (K,L)−Vect be the category of tuples V =
(VK , VL, φ) where VK and VL are finite dimensional vector spaces
over K and L, respectively, and φ ∶ VK ⊗K C→ VL ⊗L C a C-linear
isomorphism. Morphisms are pairs of linear maps such that the
diagram

VK ⊗K C
fK⊗KC//

φV
��

WK ⊗K C

φW
��

VL ⊗L C
fL⊗LC

// WL ⊗L C

commutes.
(2) Given V ∈ (K,L)−Vect, we define the set of periods of V as

P(V ) = im(VK × V ∨
L → C), (σ,ω)↦ ωC(φ(σC))

and the space of periods P⟨V ⟩ as the additive group generated by
it. Here we write σC and ωC for the images of σ and ω in VK ⊗C
and V ∨

L ⊗C, respectively.
(3) If C is a category, V ∶ C → (K,L)−Vect a functor, we put

P(C) = ⋃
X∈C
P(V (X)).

Remark 7.2. (1) The category (K,L)−Vect is Q-linear and abelian.
We could even turn into a rigid tensor category and then V ↦ VK
becomes a so-called fibre functor if K ⊂ L. We are not going to use
this fact.

49
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(2) The abelian group P⟨V ⟩ is even a KL-vector space because of the
bilinearity of the map VK × V ∨

L → C. It has an alternative inter-
pretation as the KL-vector space generated by the entries of the
period matrix, the matrix of φ in a K-basis of VK and an L-basis
of VL.

(3) The set P(C) only depends on the objects in the image V (C).
(4) With L = Q this is the definition given in in [HMS17] and [Hub20].

In the present monograph, the case K = Q , L = Q will be of most
interest because 1-motives are a homological theory, whereas the
other references take the cohomological point of view. In both cases
we want to compare de Rham cohomology (the Q-component) with
singular homology (the Q-component).

(5) We may replace the category C and the functor V by a diagram
D (i.e. an oriented graph) and a representation V . Its periods
are simply defined as the periods of the path category of D and
the induced functor with values in (K,L)−Vect. This is the point
of view taken originally by Nori and also in [HMS17]. It will
only play a very minor role in our monograph, in the proof of
Theorem 13.3 on the Period Conjecture for curves.

Example 7.3. The main case of interest for us is the category of iso-1-
motives over Q, see Chapter 8 below. The functor V is given by the singular
realisation, the de Rham realisation and by the period isomorphism.

Example 7.4. Given a short exact sequence

0→ V1 → V → V2 → 0

in (K,L)−Vect, the period matrix for V (in adapted bases) is upper block
triangular, i.e. of the form

(
A B
0 C

)

such that A is the period matrix of V1 and C the period matrix of V2. In
particular,

P⟨V1⟩ +P⟨V2⟩ ⊂ P⟨V ⟩.

This is not an equality in general.

Lemma 7.5. Let C be an additive category and V ∶ C → (K,L)−Vect an
additive functor. Then P(C) is a KL-vector space. For M ∈ (K,L)−Vect
we have

P⟨M⟩ = P(⟨M⟩)

where ⟨M⟩ ⊂ (K,L)−Vect is the full abelian subcategory generated by M and
closed under subquotients, i.e. the morphisms in ⟨M⟩ are the same as in
(K,L)−Vect, and for X ∈ ⟨M⟩ and Y a subquotient of X in (K,L)−Vect,
the object Y is also in ⟨M⟩.
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Proof. It suffices to show that P(C) is closed under addition. If α1 is
a period of X1 and α2 is a period of X2, then α1+α2 is a period of X1⊕X2.

As a consequence, the periods of the category ⟨V ⟩ form an abelian group.
They contain the periods of V , hence

P⟨V ⟩ ⊂ P(⟨V ⟩).

For the converse inclusion, note that if V1 is a subquotient of V2, then
P(V1) ⊂ P(V2) by Example 7.4.

Moreover, P(Mn) ⊂ P⟨M⟩. As all objects of ⟨V ⟩ are subquotients of
Mn for some n, this shows that P(W ) ⊂ P⟨V ⟩ for all objects of ⟨V ⟩. �

There are obvious relations between the periods of a category C. They
are encoded in a space of formal periods.

Definition 7.6. Let C be an additive category, V ∶ C → (K,L)−Vect

be an additive functor. The space of formal periods P̃(C) is the KL-vector
space generated by symbols (σ,ω) for σ ∈ VK(X), ω ∈ VL(X)∨ for all objects
X of C with relations given by

● (Bilinearity) for all objects X and σ1, σ2 ∈ VK(X), ω1, ω2 ∈ VL(X)∨,
a1, a2 ∈K, b1, b2 ∈ L,

(a1σ1 + a2σ2, b1ω1 + b2ω2) = a1b1(σ1, ω2) +⋯ + a2b2(σ2, ω2).

● (Functoriality) for all morphisms f ∶ X → Y and ω ∈ VQ(Y )∨,

σ ∈ VQ(X),
(f∗ω,σ) = (ω, f∗σ).

Equivalently, the vector space P̃(C) can be characterised as the quotient
space

P̃(C) = (⊕
X∈C

VK(X)⊗Q VL(X)∨) / functoriality.

The bilinearity relation is incorporated into the tensor product.

Remark 7.7. We could also apply the same definition to formal periods
of a diagram D and a representation V ∶D → (K,L)−Vect. This is the point
of view taken in [HMS17]. The resulting space of formal periods agrees with
the space of formal periods of the additive hull of the path category of D.

It is often useful to break C into smaller pieces.

Definition 7.8. Let C be an abelian category, X an object of C. By
⟨X⟩ we denote the smallest full subcategory of C that contains X and is
closed under subquotients.

We have P⟨X⟩ = P(⟨X⟩) and this shows that this is the right category
if we try to understand linear relations between periods of X.

Lemma 7.9. For an additive functor C = ⟨X⟩ → (K,L)−Vect, the ele-

ments of VK(X)⊗Q VL(X)∨ generate P̃(C) as KL-vector space. In partic-
ular,

dimKL P̃(C) ≤ (dimK VK(X))2.



52 7. THE FORMALISM OF THE PERIOD CONJECTURE

Proof. We need to verify that all generators of P̃(C) can be expressed
in terms of elements of VK(X)⊗Q VL(X)∨.

If f ∶ Y → Y ′ is a surjective morphism in C, then all elementary tensors
in the tensor product VK(Y ′)⊗Q VL(Y

′)∨ can be identified with elementary
tensors of VK(Y ) ⊗Q VL(Y )∨ because VK(Y ) → VK(Y ′) is surjective, i.e.
every element in VK(Y ′) has the form f∗σ for some σ ∈ VK(Y ), and in
consequence

f∗σ ⊗ ω = σ ⊗ f∗ω ∈ P̃(C).

In the same way, if f ∶ Y → Y ′ is injective, then the elementary tensors on
Y can be identified with some elementary tensors on Y ′ because VL(Y

′) →
VL(Y ) is surjective.

By assumption, every object of ⟨X⟩ is a subquotient of some Xn for
n ≥ 1. Hence it suffices to consider elementary tensors on Xn. Note that
VK(Xn) ≅ VK(X)n and that we can write an elementary tensor σ ⊗ ω ∈
VK(Xn)⊗Q VL(X

n) as

σ ⊗ ω =
n

∑
k=1

(ik)∗σk ⊗ ω,

where σ1, . . . , σn are the components of σ. By the functoriality relation this
yields the identification

σ ⊗ ω =
n

∑
k=1

σk ⊗ i
∗
kω

with an element of VK(X)⊗Q VL(X)∨. �

Following Hörmann in [Hör21], there is an interesting alternative de-
scription of the space of relations in the abelian case. It is closer to the shape
in which they will appear in the context of 1-motives and was motivated by
it.

Given a short exact sequence

0→X1
i
Ð→Xn p

Ð→X2 → 0

in a Q-linear abelian category C and elements (σ1, . . . , σn) ∈ i∗(VK(X1)),
(ω1, . . . , ωn) ∈ p

∗(VL(X2)
∨), the functoriality relation implies that ∑ni=1 σi ⊗

ωi vanishes in P̃⟨X⟩. Actually, even the converse is true.

Proposition 7.10 (Hörmann [Hör21]). For an additive functor C =
⟨X⟩ → (K,L)−Vect, an element of the form ∑ni=1 σi ⊗ ωi is in the kernel of

the map VK(X)⊗Q VL(X)∨ → P̃⟨X⟩ if and only if there is a is short exact
sequence

0→X1
i
Ð→Xn p

Ð→X2 → 0

with (σ1, . . . , σn) ∈ i∗(VK(X1)), (ω1, . . . , ωn) ∈ p
∗(VL(X2)

∨).

We omit the proof as we are not going to need this fact.
By construction, the space of formal periods comes with an evaluation

map to C.
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Definition 7.11. Let C be an additive category, V ∶ C → (K,L)−Vect
an additive functor. We define the evaluation map

ev ∶ P̃(C)→ C
by sending a symbol (σ,ω) ∈ VK(X) × VL(X)∨ to

(σ,ω)↦ ωC(φ(σC)).

The map is obviously well-defined, KL-linear and has image P(C).

Definition 7.12. We define the external duality functor

⋅∨ ∶ (K,L)−Vect→ (L,K)−Vect

by assigning the triple (VK , VL, φ) to (V ∨
L , V

∨
K , φ

∨).

This functor should not be confused with the internal duality functor on
(K,L)−Vect which maps (VK , VL, φ) to (V ∨

K , V
∨
L , (φ

∨)−1).

Lemma 7.13. Let V ∶ C → (K,L)−Vect be an additive functor. Then

the period spaces P(C) and P̃(C) do not change when applying the external
duality functor.

Proof. LetX ∈ C. The definition of P̃(C) via V uses VK(X)⊗QVL(X)∨,
whereas the definition via ⋅∨ ○V uses V ∨

L ⊗Q (V ∨
K)∨. These spaces are identi-

fied by exchanging the factors. The compatibility with the evaluation map
is the very definition of the dual φ∨ of φ. �

Remark 7.14. In the case of the internal duality, we get the same state-
ment for P̃(C), but not longer for actual periods. External duality maps a
period matrix to its transpose, so the period space remains the same. In
contrast, internal duality maps the period matrix to the inverse of the trans-
pose, hence the period space is divided by the determinant, and its periods
are divided by the determinant.

7.2. The Period Conjecture

The Period Conjecture asserts that in certain cases the obvious relations
are the only ones. We follow [Hub20]. As in the previous section we fix
subfields K,L ⊂ C with K ∩ L = Q. The cases of interest for the Period
Conjecture are K = Q, L ⊂ Q or conversely.

Definition 7.15 (Huber [Hub20, Definition 3.7]). Let C be an additive
category, V ∶ C → (K,L)−Vect an additive functor. We say that the Period

Conjecture holds for C if the evaluation map P̃(C)→ P(C) is injective.

Remark 7.16. If C is the category of all Nori motives over Q (see Ap-
pendix A), then this is the Period Conjecture as formulated by Kontsevich in
[Kon99]. We refer to [HMS17, Part III] for a detailed discussion. In The-
orem 9.10, the conjecture is proved for the category of iso-1-motives. Note
that the above statement does not mention the tensor structure, which exists
on the category of all motives (but not on 1−MotQ). We refer to [Hub20]
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for the discussion of tensor products and the comparison of the above con-
jecture with Grothendieck’s version predicting the transcendence degree of
the algebra generated by the periods of a motive. The latter does not a play
a role in our monograph.

Note that the space of formal periods P̃(C) and hence the Period Con-
jecture only depends on the image of C under V . Hence we may assume
without loss of generality that V is faithful.

Proposition 7.17 (Huber [Hub20, Proposition 5.2]). Let F ∶ C′ → C
and V ∶ C → (K,L)−Vect be a faithful exact functor between Q-linear abelian
categories. Then

P̃(C′)→ P̃(C)

is injective if and only if F is full with image closed under taking subquo-
tients.

Remark 7.18. The proof of this general fact relies on Nori’s description
of such categories as categories of comodules for an explicit coalgebra. In
the cases of interest for us, we will give a direct proof in later chapters.

Corollary 7.19 (Fullness: Huber [Hub20, Corollary 5.3]). Let C be a
Q-linear abelian category and V ∶ C → (K,L)−Vect a faithful exact functor.
If the Period Conjecture holds for C, then V is full with image closed under
taking subquotients.

Proof. Let C̄ be the full subcategory of (K,L)−Vect closed under tak-
ing subquotients generated by C. Then the evaluation map factors as

P̃(C)→ P̃(C̄)→ C.
If the composition map is injective, so is the first map. By applying Propo-
sition 7.17 to F = V we deduce that V is full, and as a consequence C is
equivalent to C̄. �

The Period Conjecture for an abelian category C can be broken into
parts. Recall from Definition 7.8 the subcategory ⟨X⟩ generated by a single
object. We have P⟨X⟩ = P(⟨X⟩), so this is the right category if we want to
understand linear relations between periods of X.

Lemma 7.20 (Huber [Hub20, Proposition 5.6]). Let C be an abelian
category, V ∶ C → (K,L)−Vect a faithful exact functor. Then the following
statements are equivalent:

(1) The Period Conjecture holds for C.
(2) The Period Conjecture holds for ⟨X⟩ for all objects X of C.

Proof. By Proposition 7.17 applied to ⟨X⟩→ C, the natural map

P̃(⟨X⟩)→ P̃(C)

is injective. If P̃(C)→ C is injective, so is the composition

P̃(⟨X⟩)→ P̃(C)→ C



7.2. THE PERIOD CONJECTURE 55

for every object X. This shows that (1) implies (2). Conversely, we have

C = ⋃
X∈C

⟨X⟩

because a morphism f ∶ X → Y in our abelian category C is already a
morphism in the subcategory ⟨X ⊕ Y ⟩. As a consequence we have

P̃(C) = lim
Ð→
X∈C
P̃(⟨X⟩).

If the evaluation map is injective for every X, it is injective on the inductive
limit. �

Using Hörmann’s alternative description of the space of formal periods,
we can reformulate the conjecture.

Corollary 7.21. The Period Conjecture holds for the abelian category
C = ⟨X⟩ if and only if for element ∑ni=1 σi ⊗ ωi ∈ VK(X) ⊗Q VL(X)∨ in the
kernel of the evaluation map there is a short exact sequence

0→X1
i
Ð→Xn p

Ð→X2 → 0

with (σ1, . . . , σn) ∈ i∗(VK(X1)), (ω1, . . . , ωn) ∈ p
∗(VL(X2)

∨).

Proof. Apply Proposition 7.10. �

The advantage of taking the subcategory ⟨X⟩ for an individual X ∈ C is
that its period space is finite dimensional over KL; indeed its dimension is
bounded by dimK VK(X)2. Hence it makes sense to ask what the dimension
actually is.

Corollary 7.22. Let C be a Q-linear additive category, X an object of
C. Then the Period Conjecture holds for ⟨X⟩ if and only if

dimKL P̃(⟨X⟩) = dimKLP⟨X⟩.

Proof. The evaluation map P̃(⟨X⟩) → P⟨X⟩ for ⟨X⟩ is surjective.
Hence it is injective if and only if it is an isomorphism and if and only
the dimensions of the two finite dimensional vector spaces agree. �

It remains to understand the dimension of P̃(⟨X⟩). This question is
answered via Nori’s version of Tannaka theory without a tensor product.
We recall the main player.

We keep concentrating on the case of an abelian category generated by
a single object X, in the sense of C = ⟨X⟩.

Definition 7.23. Let T ∶ C = ⟨X⟩→ Q−Vect be a faithful exact functor.
We introduce the spaces

End(T ) = {(fY ) ∈ ∏
Y ∈C

EndQ(T (Y )) ∣ ∀g ∶ Y → Y ′ ∶ fY ′ ○ T (g) = T (g) ○ fY }

and
A(C, T ) = End(T )∨.
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Lemma 7.24. If C = ⟨X⟩, then elements (fY ) of End(T ) are uniquely
determined by fX . In other words, End(T ) ⊂ EndQ(T (X)) and in conse-
quence

dimQ End(T ) ≤ (dimQ T (X))2

In particular, the dimension is finite.

Proof. The argument is the same as in the proof of Lemma 7.9, phrased
in a slightly different language.

Let f = (fY ) be in End(T ). Assume that g ∶ Y → Y ′ is surjective in ⟨X⟩,
then so is T (g) ∶ T (Y )→ T (Y ′). From the commutative diagram

T (Y )
T (g)// //

fY
��

T (Y ′)

fY ′
��

T (Y )
T (g)// // T (Y ′)

we deduce that fY ′ is uniquely determined by fY . In the same way, if g ∶ Y →
Y ′ is injective, then fY is uniquely determined by fY ′ . By assumption, every
object of ⟨X⟩ is a subquotient of Mn for some n ≥ 1. Hence f is determined
by the components fXn . We write fXn ∈ End(T (X)n) as a matrix φij with
entries in End(T (X)). The entry φij is the composition

T (X)
T (ιi)
ÐÐÐ→ T (X)n

fXn
ÐÐ→ T (X)n

T (pj)
ÐÐÐ→ T (X)

with the injection ιi ∶ X → Xn and the projections pj ∶ X
n → X. We have

commutative diagrams

T (X)

fX
��

T (ιi) // T (X)n

fXn

��

T (pj) // T (X)

fX
��

T (X)
T (ιi) // T (X)n

T (pj) // T (X).

The map from the top left to the bottom right is φij . For i ≠ j, the com-
position pj ○ ιi vanishes, hence so does φij . For i = j the composition is the
identity, hence φii = fX . In particular, the map fXn is uniquely determined
by fX . This finishes the proof of the first claim. The others follows directly
from this fact. �

The set End(T ) is stable under composition, making it into a unital
Q-algebra. Dually, A(C, T ) is a counital coalgebra: it is equipped with a
comultiplication, i.e. a Q-linear map

A(C, T )→ A(C, T )⊗Q A(C, T )

satisfying axioms dual to the axioms of a unital algebra.
For every Y ∈ ⟨X⟩, the vector space T (Y ) has a natural action of End(T )

where an element f operates via its fY -component. This defines a functor

T̃ ∶ ⟨X⟩→ End(T )−Mod
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where End(T )−Mod denotes the category of finitely generated End(T )-
modules, or equivalently, End(T )-modules whose underlying Q-vector space
is finite dimensional. By adjunction, the structure map

End(T )⊗ V → V

of an End(T )-module V induces a Q-linear map

V → A(⟨X⟩, T )⊗Q V,

turning V into a comodule whose underlying Q-vector space is finite di-
mensional. For the axioms of a comodule, see for example [HMS17, Sec-
tion 7.5.2]. They are dual to the axioms of a module under an algebra.

The significance of End(T ) and A(C, T ) is the following strong property.

Proposition 7.25. Let T ∶ C = ⟨X⟩ → Q−Vect be a faithful and ex-
act functor. Then C is equivalent to the category of finite dimensional
End(T )-modules, or, equivalently to the category of finite dimensional Q-
vector spaces equipped with the structure of an A(C, T )-comodule.

Remark 7.26. We are not going to use this structural result in our
applications to the Period Conjecture. We defer the deduction from the
existing literature toward the end of the chapter.

For later use, we give a more explicit description of A(C, T ).

Lemma 7.27. In the situation of the Definition 7.23, we have

A(C, T ) = (⊕
Y ∈C

EndQ(T (Y ))∨) / functoriality.

The functoriality relations are generated by elements of the form σ⊗f∗(ω)−
f∗(σ) ⊗ ω for all f ∶ Y → Y ′ in C and σ ∈ T (Y ), ω ∈ T (Y ′)∨ under the
identification End(T (Y ))∨ ≅ T (Y )⊗ T (Y )∨.

Proof. LetA′(C, T ) be the object on the right hand side. By definition,
A′(C, T )∨ ≅ End(T ) (the direct sum turns into a product and the quotient
into a subobject). Taking duals again, we get

(A′(C, T )∨)∨ ≅ End(T )∨ = A(C, T ).

As the vector spaces are finite dimensional, they are isomorphic to their
double duals. Hence we have shown

A′(C, T ) ≅ A(C, T ).

�

The coalgebra point of view has the advantage of generalising to all C.

Definition 7.28. Let C be a Q-linear abelian category, T ∶ C → Q−Vect a
faithful exact functor into the category of finite dimensional Q-vector spaces.
We put

A(C, T ) = (⊕
Y ∈C

EndQ(T (Y ))∨) / functoriality
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with functoriality interpreted as in Lemma 7.27.

As in the case where C is generated by a single object, this vector space
has a natural Q-coalgebra structure and every T (Y ) inherits the structure
of a comodule.

Theorem 7.29 (Nori: see [HMS17, Chapter 7]). Let C be a Q-linear
abelian category, T ∶ C → Q−Vect a faithful exact functor into the category of
finite dimensional Q-vector spaces. Then C is equivalent to the category of
A(C, T )-comodules whose underlying Q-vector spaces are finite dimensional.

The proof of this theorem is non-trivial. Proposition 7.25 is a key step
in its proof. In our monograph we use the opposite approach and deduce
Proposition 7.25 from Theorem 7.29 instead.

Proof of Proposition 7.25. We apply the theorem to C = ⟨X⟩. By
Lemma 7.27, the coalgebra A(C, T ) is dual to the algebra End(T ). It is
finite dimensional by Lemma 7.24, hence the category of finitely generated
End(T )-modules is equivalent to the category of A(C, T )-comodules which
are finite dimensional over Q. �

Remark 7.30. We have decided to deduce Proposition 7.25 from The-
orem 7.29, but actually the converse is also true and implicitly this is the
way Theorem 7.29 is shown in [HMS17]. The argument in [HMS17] is
made more complicated by allowing other base rings than Q. At heart, the
result is even older. It appears as a step in the proof of Tannaka duality in
[DM82]. Let us explain how Theorem 7.29 relates to Tannaka duality, even
if these issues are not relevant for the rest of the monograph.

If C is not only abelian, but a so-called Tannaka category with fibre
functor T ∶ C → Q−Vect (i.e. equipped with with a unitary commutative
associative tensor product and T being a faithful tensor functor), then the
coalgebra A(C, T ) is endowed with a commutative multiplication, making it
into a Hopf algebra. It follows that G = Spec(A(C, T )) is a group scheme.
There is an equivalence of categories between A(C, T )-comodules and repre-
sentations of G, identifying C (as a Tannakian category) with finite dimen-
sional representations of G.

Having introduced End(T ) and A(C, T ) and explained their significance,
we can now establish the dimension formula for the space of abstract periods
that we are after. As before, let L be a subfield of C.

Proposition 7.31. Let C = ⟨X⟩ be a Q-linear additive category and
V ∶ C → (Q, L)−Vect a faithful and exact additive functor. Then

dimL P̃(C) = dimQA(C, VQ) = dimQ End(VQ).

Proof. The second equality holds because the vector spaces are Q-dual
to each other.
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The definitions of P̃(C) and A(C, VQ) are very similar. They become
isomorphic after base change to C, in particular they have the same dimen-
sions. In detail:

A(C, VQ)⊗Q C = (⊕
Y ∈C

EndC(VC(Y ))∨) / functoriality.

= (⊕
Y ∈C

VC(Y )⊗C VC(Y )∨) / functoriality.

where we write VC ∶= VQ ⊗Q C. On the other hand

P̃(C)⊗L C = (⊕
Y ∈C

VQ(Y )⊗Q VL(Y )∨ ⊗Q C) / functoriality

= (⊕
Y ∈C

VC(Y )⊗C (VL(Y )∨ ⊗L C)) / functoriality

= (⊕
Y ∈C

VC(X)⊗C (VC(Y )∨C)) / functoriality

because VL ⊗L C ≅ VC. �

In the language of [Hub20]: P̃(C) is a semi-torsor under A(C, VQ).

Corollary 7.32. Let C be a Q-linear abelian category, X an object of
C, and V ∶ C → (Q, L)−Vect a faithful and exact additive functor. Then the
Period Conjecture holds for ⟨X⟩ if and only if

dimLP⟨X⟩ = dimQ End(VQ∣⟨X⟩).
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Periods of Deligne 1-motives





CHAPTER 8

Deligne’s 1-Motives

In this chapter we give a review on Deligne’s category of of 1-motives
over an algebraically closed field k embedded into C. The cases of interest
for us are k = C and k = Q. In the latter case, Section 8.2 and in particular
Section 8.3 contain new results.

8.1. The Category and the Realisation Functors

Definition 8.1 (Deligne [Del74, Ch. 10]). A 1-motive M = [L → G]
over k is the datum given by a semi-abelian group G over k, a free abelian
group L of finite rank and a group homomorphism L → G(k). Morphisms
of 1-motives are morphisms of complexes L → G. The category 1−Motk of
iso-1-motives has the same objects, but morphism tensored by Q.

Remark 8.2. The category of iso-1-motives is abelian. In this mono-
graph, we are working in the category of iso-1-motives. The arguments often
involve replacing a 1-motive [L → G] by an isogenous 1-motive [L′ → G′].
This will sometimes happen tacitly.

We need to spell out the singular and de Rham realisation defined in
[Del74, Ch. 10] in detail.

8.1.1. The Singular Realisation. Let M = [L
u
Ð→ G] be a 1-motive.

We write Gan for the commutative Lie group over C attached to G. The
associated exponential sequence is

0→Hsing
1 (Gan,Z)→ Lie(Gan)

exp
ÐÐ→ Gan → 0,

where we have used the identification made in Section 5.3, Equation (8).

Definition 8.3. Let Tsing(M) be fibre product of L and Lie(Gan) over
Gan under the structure map u ∶ L→ Gan and the exponential map exp

Tsing(M) //

��

Lie(Gan)

exp

��
L

u // G.

The vector space Vsing(M) = Tsing(M)⊗Q is called the singular realisa-
tion of M .

63
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By construction, there is a short exact sequence

0→H1(G
an,Q)→ Vsing(M)→ L⊗Q→ 0.

In particular this gives Vsing(M) ≅ H1(G
an,Q) if L = 0 and Vsing(M) = LQ

if G is trivial. The vector space Vsing(M) carries a weight filtration with

WnVsing(M) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 n ≤ −3,

H1(T,Q) n = −2,

H1(G,Q) n = −1,

Vsing(M) n ≥ 0.

Here 0 → T → G → A → 0 is the decomposition of G into a torus and an
abelian variety.

Lemma 8.4. The functor Vsing ∶ 1−Motk → Q−Vect is faithful and exact.

Proof. Exactness holds because taking Lie algebras and pull-backs
are exact functors. In order to verify faithfulness it suffices to show that
Vsing(M) = 0 implies M = 0 in 1−Motk. Hence we consider some M with
Vsing(M) = 0. This implies H1(G,Q) = 0, and in consequence G is trivial
and Vsing(M) = LQ. In this case L also has to be trivial. �

8.1.2. The Universal Vector Extension. As in Chapter 4 let G be
the category of connected commutative algebraic groups. We denote by GQ
its isogeny category. We enlarge the category 1−Motk to a bigger abelian
category which we call 1−MOTk. Its objects are of the form [L→ G] with G
in the category G and its morphisms are given by morphisms of complexes
tensored by Q. The category GQ can be identified with a full subcategory
of 1−MOTk by G ↦ [0 → G]. It is closed under extensions. This means
that the bifunctor Ext1 in GQ is the same as the bifunctor Ext1 in 1−MOTk

restricted to GQ.
We briefly recall the universal vector extension of [Del74, Constr. 10.1.7].

In Section 4.4 we introduced the universal vector extension

0→ Ext1(G,Ga)
∨ → G♮ → G→ 0.

It depended on the computation of Ext1
G(G,Ga) = Ext1

GQ(G,Ga) for the

additive group Ga.

Lemma 8.5. For M = [L→ G] in 1−Motk there is a natural short exact
sequence of k-vector spaces

0→ Homab(L,Ga)→ Ext1
1−MOT(M,Ga)→ Ext1

G(G,Ga)→ 0.

In particular, they are finite dimensional vector spaces.

Proof. An application of the functor Hom(−, [0 → Ga]) to the short
exact sequence

0→ [0→ G]→M → [L→ 0]→ 0



8.1. THE CATEGORY AND THE REALISATION FUNCTORS 65

in 1−MOTk and identifying the 1-motives [0→ G] and [0→ Ga] with G and
Ga, respectively, by our convention above, induces a long exact sequence

(9) Hom(G,Ga) → Ext1([L → 0],Ga) → Ext1(M,Ga) → Ext1(G,Ga).

The first term vanishes because G is semi-abelian. Given an extension

0→ Ga → E → G→ 0

in Ext1(G,Ga) we can lift the structure map L→ G to L→ E because L is
free. We obtain a short exact sequence

0→ [0→ Ga]→ [L→ E]→ [L→ G]→ 0

which is in Ext1
1−MOTk

(M,Ga) because [L → G] =M . This makes the last
map of (9) surjective.

Elements of Ext1([L→ 0],Ga) are of the form

0→ [0→ Ga]→ [L→ Ga]→ [L→ 0]→ 0,

hence they can be identified with homomorphisms L→ Ga.
The group Ext1(G,Ga) is finite dimensional by Corollary 4.10. On the

other hand dim Hom(L,Ga) = rk(L) and the last statement follows. �

Our construction can be easily extended to the case when the group Ga

is replaced by a finite dimensional vector space V .

Definition 8.6. Let M = [L→ G] be in 1−Motk. A vector extension of
M is an extension of the form

0→ [0→ V ]→ [L→ G′]→ [L→ G]→ 0

for a vector group V .

By the same arguments as in the case of semi-abelian varieties in Sec-
tion 4.4, the datum of a vector extension of M is equivalent to the datum
of a classifying map

Ext1(M,Ga)
∨ → V.

The identity is a distinguished choice for V = Ext1(M,Ga)
∨.

Definition 8.7. For a 1-motive M = [L → G] in 1−Motk we call the
extension

0→ Ext1(M,Ga)→ [L→M ♮]→ [L→ G]→ 0

in 1−MOTk corresponding to the classifying map

id ∶ Ext1(M,Ga)
∨ → Ext1(M,Ga)

∨

the universal vector extension of M .

Remark 8.8. Our notation deviates from Deligne’s. Our M ♮ as defined
in Definition 8.7 corresponds to Deligne’s G♮ and our [L →M ♮] to his M ♮.
The reason is that we want to be able to distinguish between the universal
vector extension G♮ of G (in GQ) and M ♮ when discussing M = [L→ G].
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Lemma 8.9. The universal vector extension [L → M ♮] of [L → G] is
universal in the following sense: given a vector extension [L → G′] there is
a unique morphism

[L→M ♮]→ [L→ G′].

Moreover, L→M ♮ is injective.

Proof. The proof of the universal property here is the same as in the
case of abelian varieties, see Proposition 4.20.

Let l ∈ L be an element with image 0 in M ♮. A fortiori, its image in
G vanishes. Hence it suffices to show injectivity in the case G = 0. Then
Ext1(M,Ga) = Hom(L,Ga), hence

M ♮ = Hom(L,Ga)
∨.

The natural map L → M ♮ is the evaluation map l ↦ (χ ↦ χ(l)). It is
injective. �

The universal property of G♮ induces a canonical map G♮ →M ♮. Com-
paring their vector group components, we see that we have a short exact
sequence

0→ G♮ →M ♮ → Hom(L,Ga)
∨ → 0.

By the structure theory of commutative algebraic groups, this gives even a
(non-canonical) decomposition

M ♮ ≅ G♮ ×Hom(L,Ga)
∨.

Lemma 8.10. The universal vector extension defines faithful exact func-
tors

1−Motk → G, M ↦M ♮

and
1−Motk → 1−MOTk, M = [L→ G]↦ [L→M ♮].

Proof. The dimension of M ♮ is given by the formula rk(L)+dim(A♮)+
dim(T ) for M = [L → G] with 0 → T → G → A → 0 the decomposition
into the torus part and the abelian part. If M ♮ = 0, then M = 0. This is
faithfulness.

Let 0 →M1 →M2 →M3 → 0 be an exact sequence in 1−Motk. We have
the commutative diagram

0 // Ext1(M1,Ga)
∨ //

��

Ext1(M2,Ga)
∨ //

��

Ext1(M3,Ga)
∨

��

// 0

0 // M ♮

1
//

��

M ♮

2
//

��

M ♮

3
//

��

0

0 // G1
// G2

// G3
// 0

in which the sequence of semi-abelian varieties is the sequence of the semi-
abelian parts of the motives. In the Ext-sequence the composition of the two
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maps vanishes by functoriality. In order to deduce exactness, it suffices to
show that the dimensions add up in the right way. This is the case, because
the dimension of Ext1(M,Ga) is linear in the dimension of the constituents.
Together this implies exactness in the middle row. �

8.1.3. The de Rham Realisation.

Definition 8.11. Let M be a 1-motive over k. We define the de Rham
realisation of M as

VdR(M) ∶= Lie(M ♮)

with M ♮ as in Definition 8.7.

The de Rham realisation carries a weight filtration in the same way as
the singular realistion, and in addition a Hodge filtration

F pVdR(M) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 p > 0

ker(Lie(M ♮)→ Lie(G)) p = 0

VdR(M) p ≤ −1,

see [Del74, Constr. 10.1.8]. Note that F 0VdR(M) = Ext1
1−MOT(M,Ga)

∨.

Lemma 8.12. The functor VdR ∶ 1−Motk → k−Vect is faithful and exact.

Proof. Exactness follows from the exactness of the functors M ↦M ♮

and G ↦ Lie(G). Hence it suffices to check that VdR(M) = 0 implies M = 0
in 1−Motk. The assumption implies M ♮ = 0 and in consequence that G is
trivial. In this case M ♮ = Hom(L,Ga)

∨. Its vanishing implies also L = 0. �

8.1.4. The Period Isomorphism. In addition to the two realisations,
there is a filtered comparison isomorphism Vsing(M)C ≅ VdR(M)C, the period
isomorphism, which is constructed as follows: the structural map L→ G has
a canonical lift to the universal vector extension M ♮, see Definition 8.7. We
obtain the commutative diagram

Hsing
1 (M ♮,an,Z)

��

≅ // Hsing
1 (Gan,Z)

��
Lie(M ♮)C

exp

��

// Lie(G)C

exp

��
L // M ♮,an // Gan

The map at the top is an isomorphism by homotopy invariance because M ♮

is a vector bundle over G. Hence the pull-back Tsing(M) = L ×Gan Lie(G)C
of L → Gan to Lie(G)C agrees with the pull-back L ×M ♮,an Lie(M ♮)C of
L→M ♮,an to Lie(M ♮)C. Let

φM ∶ Vsing(M)C → Lie(M ♮)C

be the map obtained by this identification of pull-backs.
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Lemma 8.13 (Deligne [Del74, Constr. 10.1.8]). The morphism φM is a
filtered isomorphism.

Proof. It is sufficient to consider the three cases [L → 0], [0 → T ]
for a torus T and [0 → A] for an abelian variety A separately. If they are
isomorphisms, then φM is a filtered isomorphism in general.

For M = [L→ 0], we have Vsing(M) = L⊗Q, VdR(M) = Hom(L,Ga)
∨ and

the period map is the natural map, hence an isomorphism after extension
of scalars.

For M = [0 → T ], we have Tsing(M) = H1(T
an,Z), M ♮ = T and the

period map is induced from the inclusion H1(T
an,Z) → Lie(T )an. It is an

isomorphism after extension of scalars to C.
We now turn to the case M = [0 → A]. We have VdR(M) ⊗k C =

Lie(A♮)an. The complex Lie group (A♮)an is the universal vector extension
of Aan because H1(AC,O) =H1(Aan,O). To simplify notation we now write
A instead of Aan and also use the abbreviations T = Tsing(M) ≅ H1(A,Z)
and TC = T ⊗Z C. We want to show that

φ ∶ TC → Lie(A♮)

is an isomorphism. Both sides have the same dimension 2 dimA. The group

T ⊂ TC is in the kernel of the composition T → Lie(A♮)
exp

A♮

ÐÐÐ→ A. We get an
induced vector extension

TC/T → A.

It suffices to show that it is the universal one. Let

0→ V → G→ A→ 0

be a vector extension. By homotopy invariance, the map T → Lie(A) lifts
to T → Lie(G). (This is the same argument that we used to construct
φ ∶ T → Lie(A♮) in the first place.) It induces a C-linear map

TC → Lie(G)

and a holomorphic group homomorphism

TC/T → G.

In conclusion we have verified that TC/T satisfies the universal property. �

8.2. The Functor to Mixed Hodge Structures

Deligne introduced the category of 1-motives because of its close relation
to Hodge theory. We use a modification that also takes the k-structure into
account.
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8.2.1. The Category of Mixed Hodge Structures. All filtrations
on vector spaces are separated and exhaustive, i.e. they start with 0 and
end with the full space. If W●V is an ascending filtration, we write GrWn V =
WnV /Wn−1V . If F ●V is a descending filtration, we write GrpFV = F pV /F p+1V .

Definition 8.14 (Deligne [Del71]). Let k ⊂ C be a subfield. A mixed
Q-Hodge structure defined over k consists of

● a finite dimensional Q-vector space VQ equipped with an ascending
filtration W●VQ, the weight filtration,

● a finite dimensional k-vector space VdR equipped with an ascend-
ing filtration W●VdR and a descending filtration F ●VdR, the Hodge
filtration,

● a filtered isomorphism φ ∶ (VQ,W●)⊗Q C→ (VdR,W●)⊗k C
such that for every n ∈ Z the data (GrWn VQ,GrWn VC,GrWn φ) with VC = VdR⊗C
and the induced Hodge filtration is a pure Hodge structure of weight n. This
means that

⊕
p+q=n

(F p ∩ F̄ q)(GrWn VC) = GrWn VC.

Here F̄ q is the complex conjugate of F q with respect to the R-structure
induced by φ(VQ).

A morphism f ∶ V → V ′ of mixed Q-Hodge structures over k consists
of a filtered Q-linear map fQ ∶ VQ → V ′

Q and a bifiltered k-linear map fdR ∶

VdR → V ′
dR compatible with the period isomorphisms of V and V ′.

We denote the category of mixed Q-Hodge structures over k by MHSk.

The category is obviously additive and Q-linear. Less obviously it is
even abelian, see [Del71, Théorème 1.2.10].

Example 8.15. Let X be a smooth projective variety over C. By the
Hodge Decomposition Theorem, every cohomology class has a unique har-
monic representative. The decomposition of harmonic forms into pq-forms
gives

Hn
sing(X

an,C) ≅ ⊕
p+q=n

Hpq

satisfyingHpq =Hqp. With the Hodge filtration F pHn
sing(X

an,C) =⊕p′≥pH
p′q′

this turns Hn
sing(X

an,Q) into a pure Q-Hodge structure of weight n. Alter-
natively, the Hodge filtration is induced by the stupid filtration

F pΩ∗
X = [0→ ⋅ ⋅ ⋅→ 0→ Ωp

X → . . . ]

on the complex of holomorphic or algebraic differential forms on X. If X is
defined over a subfield of k, this point of view allows us to also define the
Hodge filtration over the subfield.

The main result of [Del71] and [Del74] is the construction of a natural
mixed Hodge structure on the cohomology of any algebraic variety over k.
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8.2.2. The Relation with 1-Motives. By Lemma 8.13, the assign-
ment M ↦ (Vsing(M), VdR(M), φM) defines a functor

V ∶ 1−Motk →MHSk

from the category of iso-1-motives to the category of mixed Hodge structures
over k.

Theorem 8.16 (Deligne [Del74, Construction 10.1.3, pp. 53–56]). For
k = C, the functor V ∶ 1−MotC →MHSC is fully faithful. Its image consists of
the full subcategory of the polarisable Hodge structures whose only non-zero
Hodge numbers are (−1,−1), (−1,0), (0,−1), (0,0).

Note that a mixed Hodge structure with Hodge numbers as above is
polarisable if and only if the graded piece in weight −1 is polarisable. Using
the Analytic Subgroup Theorem Deligne’s result can be sharpened:

Proposition 8.17. In the case k = Q, the functor V ∶ 1−MotQ →MHSQ
is fully faithful.

Proof. Let M = [L→ G],M ′ = [L′ → G′] be in 1−MotQ and

γ ∶ V (M)→ V (M ′)

a morphism of Hodge structures over Q. By extension of scalars we get a
morphism of Hodge structures

(VdR(M)C, Vsing(M), φ)
γC
Ð→ (VdR(M ′)C, Vsing(M

′), φ)

over C. By Deligne’s theorem γC is induced by a morphism γMot in 1−MotC
and after replacing L by a rational multiple it is represented by

γMot ∶ [L→ GC]→ [L′ → G′
C].

It remains to show that the induced morphism of algebraic groups GC → G′
C

is even defined over Q. Using that

Lie(G) = VdR(M)/F 0VdR(M)

the morphism of Hodge structures over Q also induces a compatible homo-
morphism

Lie(G)→ Lie(G′)

defined over Q. By the Analytic Subgroup Theorem (see Corollary 6.9) this

is enough to imply that the group homomorphism is defined over Q. �

By composition with the forgetful functor MHSQ → (Q, k)−Vect (see

Definition 7.1) we also get a functor

1−MotQ → (Q, k)−Vect.

We shall show in Theorem 9.14 that it is still fully faithful.

Remark 8.18. In the meantime André has shown in [And21] that
1−Motk →MHSC is fully faithful even for all algebraically closed fields k ⊂ C.
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8.2.3. The Weight Filtration. The weight filtration on the Hodge
structure is motivic, i.e. induced by a filtration on the motive.

Definition 8.19. Let M = [L → G] be a 1-motive, G an extension of
the abelian variety A by a torus T , and define the weight filtration of M as

WnM =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 n ≤ −3,

[0→ T ] n = −2,

[0→ G] n = −1,

M n ≥ 0.

The associated gradeds of this filtration are [0 → T ], [0 → A] and [L →
0]. The simple buidlings blocks are Gm, [0→ B] for simple abelian varieties
B and [Z → 0]. The functors Wn ∶ 1−Motk → 1−Motk are exact. This is
often used to deduce the existence of splittings. For example:

Lemma 8.20. Let [L → G] be a 1-motive, [L′ → 0] ↪M be an injective
morphism. Then

M ≅ [L′ → 0] × [L′′ → G]

where L′′ = L/L′ (modulo torsion).

Proof. We choose L ≅ L′ × L′′ (after replacing L by an isogenuous
lattice). The natural map [L′′ → G]→M together with the given [L′ → 0]→
M define [L′ → 0]× [L′′ → G]→M . This map is an isomorphism because it
is an isomorphism on all gradeds with respect to the weight filtration. �

8.3. The Key Comparison

We come back to the functor (⋅)♮ ∶M ↦M ♮ from 1-motives to commu-
tative algebraic groups. By Lemma 8.10 it is faithful and exact.

Proposition 8.21. Let H be an object of G of the form H = M ♮ for a
1-motive M . Given a short exact sequence

0→H1 →H →H2 → 0

in G, there is a short exact sequence

0→M1 →M →M2 → 0

in 1−Motk and a commutative diagram

0 // H1
// H // H2

// 0

0 // M ♮
1

//
?�

OO

M ♮ // M ♮
2

//

OOOO

0

such that

Vsing(M) ∩ Lie(H1)C = Vsing(M1).

The sequence is uniquely determined by these properties.
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Proof. Now let M = [L→ G] be a 1-motive and

0→H1 →M ♮ →H2 → 0

a short exact sequence of connected commutative algebraic groups. By
the structure theory of commutative algebraic groups, there are canonical
decompositions

0→ Vi →Hi → Gi → 0

with Gi semi-abelian and Vi a vector group. Moreover, the sequence

0→ G1 → G→ G2 → 0

is exact. The data organise as

0 // V1
//

_�

��

V //
_�

��

V2
//

_�

��

0

0 // H1
//

����

M ♮ //

����

H2
//

����

0

0 // G1
// G // G2

// 0

.

Let L→M ♮ be the canonical lift from G to M ♮, see Definition 8.7. Note
that it is injective, by Lemma 8.9. We define L1 as the intersection of L
with H1 and L2 as L/L1 (modulo torsion). By construction, L1 → L → G
factors via G1 and L → G → G2 via L2 → G2. We put Mi = [Li → Gi]. By
construction the sequence

0→M1 →M →M2 → 0

is exact and there are maps Li → Hi. By the universal property of M ♮
i this

induces morphisms M ♮
i → Hi, compatible with the morphisms to/from M ♮.

For i = 1, the composition M ♮
1 →H1 →M ♮ is injective, hence so is M ♮

1 →H1.
The dual argument gives surjectivity of M ♮

2 →H2.
We abbreviate Tsing(H1) = Tsing(M) ∩ Lie(H1)C. Since L1 → Han

1 is

the pull-back of L → M ♮,an and Lie(H1)C → Lie(M ♮)C is the pull-back of
H1 →M ♮ via the exponential map, we deduce that

Tsing(H1) = Tsing(M) ∩ Lie(H1)C = exp−1
H1
L1.

It follows that the sequence

0→ ker(expH1
)→ Tsing(H1)→ L1 → 0

is exact. We compare it with the same sequence for M ♮
1. In both cases,

the kernel computes Hsing
1 (G1,Z) because they are vector groups over G1.

Hence they are the same, which implies the claim Tsing(H1) ≅ Tsing(M1) and
hence Vsing(M1) ≅ Vsing(M) ∩ Lie(H1)C.

Given a second short exact sequence of motives

0→M ′
1 →M →M ′

2 → 0
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with the same properties, the assumptions imply Vsing(M1) = Vsing(M
′
1)

inside Lie(H1)C. Without loss of generality even Tsing(M1) = Tsing(M
′
1).

Let M ′
1 = [L′1 → G′

1]. We have G′
1 ⊂ G1 because this is the semi-abelian

part of H1. We also have L′1 ⊂ L1 = L ∩H1. This means M ′
1 ⊂M1. We get

equality of iso-1-motives from equality of the singular realisations. �

It is shown later (see Theorem 13.5) that the image of the functor
1−MotQ →MHSQ is closed under subquotients.

Remark 8.22. (1) The above result is the central input into our
proof of the main result of our monograph: a version of the Sub-
group Theorem for 1-motives in Theorem 9.7.

(2) The proof gives even an integral construction of M1 in a suitable
abelian enlargement of the category of 1-motives such that

Tsing(M) ∩ Lie(H1)C = Tsing(M1).

We do not need this for our applications to periods.





CHAPTER 9

Periods of 1-Motives

In this chapter we introduce the set of periods of a 1-motive as obtained
from the comparison isomorphism between the singular and the de Rham
realisation of the motive. Then in Section 9.1 an alternative description
of periods as explicit integrals will be derived. This turns out to be more
useful in transcendence theory. As a next step we determine in Section 9.2
the relations between periods. This is a classical open question which has
been answered in the past in very special cases only. As a first main result
of the Chapter we show that all relations are induced by trivial ones. This
gives an answer to Kontsevich’s Period Conjecture in the case of 1-motives.
For this we need an extension of the Subgroup Theorem to 1-motives. As a
first application, we given in Section 9.3 a necessary and sufficient condition
for periods of 1-motives to be algebraic.

9.1. Definition and First Properties

Let M = [L→ G] be a 1-motive over Q.

Definition 9.1. The set of periods of M is the union of the sets of
entries of the period matrices of the comparison isomorphism Vsing(M)C →

VdR(M)C with respect to all Q-bases of Vsing(M) and Q-bases of VdR(M).

We denote it P(M) and by P⟨M⟩ the Q-subvector space of C generated by
P(M).

For any subcategory C ⊆ 1−MotQ we write P(C) for the union of the

P(M) for all objects M ∈ C and P⟨C⟩ for the vector space over Q generated
by P(C). In particular we write P(1−MotQ) for the union of all P(M).

Equivalently, we can define P(M) as the image of the period pairing

Vsing(M) × V ∨
dR(M)→ C.

This description makes clear that it is not a vector space. We write ω(σ) or
more suggestively ∫σ ω for the value of the period pairing for σ ∈ Vsing(M)
and ω ∈ V ∨

dR(M). The notation will be justified later.
Note that this definition is an instance of the abstract definition of pe-

riods in Chapter 7.

Lemma 9.2. The vector space P⟨M⟩ agrees with the set of periods of
the additive subcategory generated by M and with the set of periods of the

75
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full abelian subcategory closed under subquotients generated by M . The set
P(1−MotQ) is a Q-subvector space of C.

Proof. Apply Lemma 7.5 to C = 1−MotQ and V ∶ 1−MotQ → (Q, k)−Vect.
�

We want to make the definition of ∫σ ω explicit. Let M = [L → G] be a

1-motive over Q. Recall that VdR(M) was defined as Lie(M ♮) for a certain
vector extension M ♮ of G. Hence V ∨

dR(M) = coLie(M ♮). Every cotangent

vector of M ♮ defines a unique M ♮-equivariant differential form on M ♮ and
any equivariant global differential arises in this way. Therefore we may make
the identification

V ∨
dR(M) ≅ Ω1(M ♮)M

♮

.

with the space of invariant differentials and we may from now on view ω as a
differential form on M ♮. Recall also that Tsing(M) is a lattice in Lie(M ♮,an).
The latter maps to M ♮,an via the exponential map for the Lie group M ♮,an,
see Section 5.2. Hence a vector field u ∈ Tsing(M) defines a point

exp(u) ∈M ♮,an

and by composition of a straight path from 0 to u with the exponential map
a path

γu ∶ [0,1]→M ♮,an

from 0 to exp(u). The period pairing is then computed as

∫
u
ω = ∫

γu
ω

where the right hand side is an honest integral on a manifold; see Section 5.3
for more details. In particular, for u ∈ ker(exp ∶ Lie(M ♮,an) → M ♮,an),
the path γu is closed and hence it defines an element of H1(M ♮,an,Z) ≅
H1(G

an,Z). Conversely, every element σ ∈H1(M ♮,an,Z) is represented by a
formal linear combination σ = ∑aiγi of closed loops γi. The cycle defines a
linear map

I(σ) ∶ coLie(M ♮,an)→ C

ω ↦∑ai∫
γi
ω.

In other words, I(σ) ∈ Lie(M ♮,an)∨∨ ≅ Lie(M ♮,an). As spelled out in Sec-
tion 5.3, the two operations are inverse to each other: I(γu) = u for u ∈
ker(exp) and γ(I(σ)) is homologous to σ ∈H1(M ♮,an,Z).

Lemma 9.3. We have exp(u) ∈M ♮(Q).

Proof. By definition, we have the commutative diagram

Tsing(M) //

��

Lie(M ♮,an)

exp

��
L // M ♮,an



9.2. RELATIONS BETWEEN PERIODS 77

which we evaluated at u ∈ Tsing(M). The value is in M ♮(Q) because L takes
values there. �

For the record, the above argument proves:

Proposition 9.4. Every period of a 1-motive is of the form

∫
γ
ω

where ω is an algebraic 1-form on a commutative algebraic group G over Q
and γ is a path from 0 to a point P ∈ G(Q).

Example 9.5. Let M be [Z → 0]. Then M ♮ = Ga, Vsing(M) = Q,

V ∨
dR(M) = coLie(Ga) = Qdt and the period map sends 1 to ∂

∂t . The image

of the period pairing Vsing(M) × V ∨
dR(M) → C is simply Q. In terms of

integration: an element u ∈ Tsing(M) ⊂ Lie(Ga)C gives rise to a path γu
from 0 to u in C. An element ω ∈ V ∨

dR(M) is identified with a differential
form αdt on Ga and the period is

∫
u

0
αdt = αu ∈ Q.

More generally, all periods of motives of the form [L→ 0] are algebraic.

We are going to see many more explicit examples in subsequents chap-
ters.

9.2. Relations between Periods

There are two types of obvious sources of relations between periods of
1-motives:

(1) (Bilinearity) Let M be a 1-motive over Q, σ1, σ2 ∈ Vsing(M) and

take ω1, ω2 ∈ V
∨

dR(M), µ1, µ2 ∈ Q, λ1, λ2 ∈ Q. Then

∫
µ1σ1+µ2σ2

(λ1ω1 + λ2ω2) = ∑
i,j=1,2

µiλj ∫
σi
ωj .

(2) (Functoriality) Let f ∶ M → M ′ be a morphism in 1−MotQ. Let

σ ∈ Vsing(M) and ω′ ∈ V ∨
dR(M). Then

∫
σ
f∗ω′ = ∫

f∗σ
ω′.

As a special case we get the relations coming from short exact sequences:
consider

0→M ′ i
Ð→M

p
Ð→M ′′ → 0

in 1−Motk. Then the period matrix for M will be block triangular, hence will
contain plenty of zeroes. Explicitly: for σ′ ∈ Vsing(M

′) and ω′′ ∈ V ∨
dR(M ′′),

we have

∫
i∗σ′

p∗ω′′ = ∫
σ′
i∗p∗ω′′ = ∫

p∗i∗σ′
ω′′ = 0

because i∗p∗ω′′ = 0 and p∗i∗σ′ = 0.
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This is actually the only source of relations between periods of 1-motives
as we show.

Definition 9.6. For u ∈ Vsing(M) we define Ann(u) ⊆ V ∨
dR(M) as the

left kernel of the period pairing.

Theorem 9.7 (Subgroup Theorem for 1-motives). Given a 1-motive M

over Q and u ∈ Vsing(M), there exists an exact sequence in 1−MotQ

0→M1
i
Ð→M

p
Ð→M2 → 0

such that Ann(u) = p∗V ∨
dR(M2) and u ∈ i∗Vsing(M1). It is uniquely deter-

mined by these properties.

Proof. We consider the connected commutative algebraic group M ♮.
Without loss of generality, u ∈ Tsing(M). By Lemma 9.3, u ∈ Lie(M ♮)C with

exp(u) ∈M ♮(Q). We apply the Analytic Subgroup Theorem in the version
Theorem 6.2. Hence there is a short exact sequence in G

0→H1 →M ♮ π
Ð→H2 → 0

such that u ∈ Lie(H1)C and Ann(u) = π∗coLie(H2). By Proposition 8.21,
we find an associated short sequence in 1−MotQ

0→M1 →M ♮ →M2 → 0

such that Tsing(M1) = Tsing(M)∩Lie(H1)C. In particular, u ∈ Tsing(M1). Be-

cause of the short exact sequence of motives, we have coLie(M ♮
2) = V

∨
dR(M2) ⊂

Ann(u). On the other hand, Proposition 8.21 also gives a surjection M ♮
2 →

H2, hence
Ann(u) = coLie(H2) ⊂ coLie(M ♮

2) ⊂ Ann(u).

This implies equality of co-Lie algebras and hence even M ♮
2 ≅H2.

Suppose that there is a second short exact sequence

0→M ′
1
i′
Ð→M

p′

Ð→M ′
2 → 0

with the same properties. In particular p′∗V ∨
dR(M ′

2) = p∗V ∨
dR(M2) inside

V ∨
dR(M). This means that M ♮

2 =M
′♮
2 as quotients of M ♮. As the functor ⋅♮

is faithful, this gives M2 =M
′
2 as quotients of M . �

Remark 9.8. The proof shows that the decompositions in terms of al-
gebraic groups (Theorem 6.2) and in terms of 1-motives agree.

Most of the time we apply the theorem through the following conse-
quence:

Corollary 9.9. Given a 1-motive M over Q, u ∈ Vsing(M), ω ∈ V ∨
dR(M)

such that ∫u ω = 0. Then there is a short exact sequence

0→M1
i
Ð→M

p
Ð→M2 → 0

of 1-motives and u1 ∈ Vsing(M1), ω2 ∈ V
∨

dR(M2) such that u = i∗u1, ω = p∗ω2.
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Proof. We apply the theorem. This already gives the existence of u1.
By assumption, we have ω ∈ Ann(u), hence ω is in the image of p∗. �

Our main aim is to prove the following, which was formulated as a
conjecture in [Wüs12]. We remind that ⟨M⟩ is the full subcategory of
1−MotQ generated by M and closed under subquotients.

Theorem 9.10 (Kontsevich’s Period Conjecture for 1-motives). All Q-
linear relations between elements of P(1−MotQ) are induced by bilinearity

and functoriality.
More precisely, for every 1-motive M the relations between elements of

P(M) are generated by bilinearity and functoriality for morphisms in ⟨M⟩,
or equivalently, morphisms of the induced mixed Hodge structures over Q.
In other words, the Period Conjecture in the sense of Definition 7.15 holds
for ⟨M⟩.

Proof. We consider a linear relation between periods. For i = 1, . . . , n
let αi = ∫σi ωi be periods for 1-motives Mi and let λi ∈ Q be such that

(10) λ1α1 + λ2α2 + ⋅ ⋅ ⋅ + λnαn = 0.

We have already argued in Lemma 7.5 that a linear combination of periods
can be represented as single period. We now have to go through the con-
struction carefully in order to check that no relations other than bilinearity
and functoriality are used.

We put M = M1 ⊕ ⋅ ⋅ ⋅ ⊕Mn. By pull-back via the projection, we can
view each ωi as an element of V ∨

dR(M). By push-forward via the inclusion
we may view each σi in Vsing(M). We then put σ = ∑σi and ω = ∑λjωj .
From the additivity relation we deduce

∫
σ
ω =∑

i,j

λj ∫
σi
ωj .

The functoriality relation leads to ∫σi ωj = 0 for i ≠ j and gives αi for i = j.

Hence the left hand side of (10) equals ∫σ ω.
We are now in the situation

∫
σ
ω = 0

on the 1-motive M . In other words, ω ∈ Ann(σ). By Theorem 9.7 there is
a short exact sequence

0→M ′ i
Ð→M

p
Ð→M ′′ → 0

in 1−MotQ such that σ = i∗σ′ for σ′ ∈ Vsing(M
′) and ω = p∗ω′′ for ω′′ ∈

V ∨
dR(M ′′) = Ann(σ). Hence the vanishing of

∫
σ
ω = ∫

i∗σ′
p∗ω′′ = ∫

σ′
0

is now implied by functoriality of 1-motives. �
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9.3. Transcendence of Periods of 1-Motives

All this implies a result on transcendence of periods.

Theorem 9.11 (Transcendence). Let M = [L → G] be a 1-motive, σ ∈
Vsing(M), and ω ∈ V ∨

dR(M). Then the integral

∫
σ
ω

is in Q if and only if there are φ,ψ ∈ V ∨
dR(M) with

ω = φ + ψ

such that ∫σ ψ = 0 and the image of φ in V ∨
dR(G) vanishes.

Proof. We write α = ∫σ ω and begin with the easy direction. The short
exact sequence

0→ [0→ G]→M → [L→ 0]→ 0

induces a short exact sequence

0→ V ∨
dR([L→ 0])→ V ∨

dR(M)→ V ∨
dR([0→ G])→ 0.

Suppose that the image of φ in V ∨
dR([0→ G]) vanishes or, equivalently, that

φ ∈ V ∨
dR([L→ 0]).

Let σ̄ be the image of σ in Vsing([L→ 0]). Then

α = ∫
σ
φ = ∫

σ̄
φ

is a period for [L → 0]. It is a general fact; see Example 9.5, and that
V ∨

dR([Zr → 0]) = coLie(Ar) and all its periods are algebraic.
Conversely, assume that α is algebraic. If α = 0, the theorem holds with

ω = ψ. Assume that it is non-zero from now on. The algebraicity of α
means that we can write α as ∫σ′ ω

′ with ω′ = αdt and σ′ ∈ Vsing([Z → 0])
the standard basis vector. Let Σ = (σ,−σ′) ∈ Vsing(M ⊕ [Z → 0]) and Ω =
(ω,ω′) ∈ V ∨

dR(M ⊕ [Z→ 0]). By assumption

∫
Σ

Ω = ∫
σ
ω − ∫

σ′
ω′ = 0.

By the Subgroup Theorem for 1-motives, Theorem 9.7, there is a short exact
sequence of iso-1-motives

(11) 0→M1
(ι,ιZ)
ÐÐÐ→M ⊕ [Z→ 0]

p+q
ÐÐ→M2 → 0

and σ1 ∈ Vsing(M1), ω2 ∈ V
∨

dR(M2) such that

(ι, ιZ)∗σ1 = (σ,−σ′), p∗ω2 = ω, q∗ω2 = ω
′.

The map q ∶ [Z → 0] → M2 does not vanish because the pullback of ω2

is ω′. The latter is non-zero because α is assumed to be non-zero. The
non-vanishing of the map already implies that [Z→ 0] is a direct summand
of M2. We explain the argument as follows. We write M2 in the form
[L2 → G2]. Then the composition

[Z→ 0]→ [L2 → G2]→ [L2 → 0]
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is non-trivial. The composition Z → L2 does not vanish, hence we can
decompose L2 up to isogeny into the image of Z and a direct complement.
This defines a section of our map.

We decompose M2 as [Z→ 0]⊕M ′
2. Hence ω2 = φ2 +ψ2 with φ2 coming

from [Z → 0] and ψ2 from the complement M ′
2. Let φ = p∗φ2 and ψ = p∗ψ2

be their images in V ∨
dR(M). Then ω = p∗ω2 = φ + ψ and hence

α = ∫
σ
ω = ∫

σ
φ + ∫

σ
ψ.

By splitting off the direct summand [Z → 0] from the sequence (11), we
obtain the short exact sequence

0→M1 →M →M ′
2 → 0.

The element σ = ι∗σ1 ∈ Vsing(M) is induced from M1 and ψ = p∗ψ2 from M ′
2.

Hence ∫σ ψ = 0.
The element φ = p∗φ2 is induced from [Z → 0], and we conclude that it

is in the image of

V ∨
dR([Z→ 0])→ V ∨

dR([L→ 0])→ V ∨
dR(M).

It follows that its image in V ∨
dR(G) vanishes. �

The general period formalism explained Chapter 7 also implies a dimen-
sion formula. We put (see Definition 7.23 with T = Vsing∣⟨M⟩)

E(M) =

⎧⎪⎪
⎨
⎪⎪⎩

(φN) ∈ ∏
N∈⟨M⟩

EndQ(Vsing(N))∣φN ′ ○ f = f ○ φN∀f ∶ N → N ′
⎫⎪⎪
⎬
⎪⎪⎭

.

This is a subalgebra of EndQ(Vsing(M)), hence finite dimensional over Q.
In fact it agrees with End(VQ∣⟨M⟩) in the notation of Section 7.2.

By Theorem 7.29, the category ⟨M⟩ is equivalent to the category of
finitely generated E(M)-modules.

Corollary 9.12. We have

dimQP⟨M⟩ = dimQE(M).

Proof. By Theorem 9.10 the Period Conjecture holds for ⟨M⟩. We
now apply the abstract dimension formula of Proposition 7.31. Note that
E(M) = End(VQ∣⟨M⟩). �

Remark 9.13. This is a clear qualitative characterisation. However, it
is by no means obvious to compute the explicit value for a given M . We
carry out this computation in Part 3.

9.4. Fullness

As pointed out in Corollary 7.19, the validity of the Period Conjecture
for a category C implies fullness of the functor F ∶ C → (K,L)−Vect under
consideration. In our case, we give a direct proof from the Analytic Subgroup
Theorem for 1-motives.
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Theorem 9.14 (Fullness). The functor V ∶ 1−MotQ → (Q,Q)−Vect is

fully faithful with image closed under subquotients.

Proof. Note that the functor V is faithful and exact because the func-
tors Vsing and VdR are.

We chooseM ∈ 1−MotQ and consider a short exact sequence in (Q,Q)−Vect

0→ V ′ ι
Ð→ V (M)

π
Ð→ V ′′ → 0.

It gives a 2-step filtration of V (M), which furnishes a period matrix for
V (M) in block-triangular form, i.e. the period matrix contains a square of
zeroes. We show that V ′ = V (M ′) and V ′′ = V (M ′′) for objects M ′,M ′′ of
1−Motk. To see this, consider Ann = Ann(ι∗V ′

Q) ⊂ V
∨

dR(M). We record for
later use that

(12) π∗(V ′′∨
Q) ⊂ Ann.

By Theorem 9.7 applied to the elements of V ′
Q, there is a short exact sequence

0→M ′ i
Ð→M

p
Ð→M ′′ → 0

in 1−MotQ such that p∗V ∨
dR(M ′′) = Ann and V ′

Q ⊂ Vsing(M
′). We have

ι∗V
′
Q ⊂ ker(Vsing(M)→ Vsing(M

′′)) = i∗Vsing(M
′).

Note that both V (M ′) and V ′ are subobjects of V (M). We apply Lemma 2.13
to the faithful exact functor V ↦ VQ. This gives even V ′ ⊂ V (M ′). This
implies also V (M ′′)↠ V ′′ and hence

Ann = p∗V ∨
dR(M ′′) ⊂ π∗(V ′′∨

Q).

Together with Equation (12) this gives p∗V ∨
dR(M ′′) = π∗(V ′′∨

Q) inside V ∨
dR(M).

Applying again Lemma 2.13, this time to the faithful exact functor V ↦ V ∨
Q ,

this leads to even V (M ′′) = V ′′ and in turn V (M ′) = V ′. We have now shown
that the image of f3 is closed under subobjects and quotients, implying the
same for subquotients.

Closedness of the image under subquotients implies fullness by Lemma 2.14
�

Remark 9.15. Theorem 9.14 is not equivalent to Theorem 9.10. Con-
sider for example the full abelian subcategoryA closed under subquotients of

(Q,Q)−Vect generated by the single object V = (Q2
,Q2, φ) with φ ∶ C2 → C2

given by multiplication by the matrix

Φ = (
1 π

log 2 1
) .

It is easy to check that V is simple and that its only endomorphisms are mul-
tiplication by rational numbers. Indeed, a subobject V ′ ⊊ V is determined
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by a vector v = (
s
t
) ∈ Q2

such that

φ(v) = (
1 π

log 2 1
)(
s
t
) = (

s + tπ
s log 2 + t

) ∈ Q2.

As π and log 2 are transcendental, this implies t = s = 0. An endomorphism

f ∶ V → V is represented by a pair of matrices AQ = (
α β
γ δ

) on VQ and

AQ = (
a b
c d

) on VQ such that ΦAQ = AQΦ.

Spelling out the matrix equation we get

(
α + πγ β + πδ

log 2α + γ log 2β + δ
) = (

a + b log 2 aπ + b
c + d log 2 cπ + d

)

By the Q-linear independence of 1, π and log 2 it implies that

γ = b = 0, α = a, δ = a, β = b, α = d, γ = c, β = c = 0, d = δ

and shows that that AQ = AQ is a diagonal matrix for a ∈ Q. In other words,

the full abelian category ⟨V ⟩ ⊂ (Q,Q)−Vect generated by V is semi-simple
with a single simple object V for which End(V ) = Q.

The space of periods P⟨V ⟩ of V has Q-dimension 3 with basis 1, π, log 2.

We compare it with the space P̃(⟨V ⟩), which was introduced in Defini-

tion 7.6. The relations listed above imply that P̃(⟨V ⟩) is generated by 4
elements corresponding to the 4 entries of the period matrix of V . There
are no additional relations coming from subobjects or endomorphisms. This
proves that dimQ P̃(⟨V ⟩) = 4, which is not the same as 3 = dimQP⟨V ⟩, hence

the Period Conjecture does not hold for ⟨V ⟩. As it does hold for 1−MotQ,

this implies that Φ does not occur as the period matrix of a 1-motive, even
though all entries are indeed in P1.

Remark 9.16. The fact that the Period Conjecture implies Theorem 9.14
is a special case of a general pattern, see Corollary 7.19. For a careful anal-
ysis of this property we refer to the the discussion in [HMS17, Proposi-
tion 13.2.8] and [Hub20]. The relation between the Period Conjecture and
the Hodge conjecture is also explained there. The fullness question is also
taken up by Andreatta, Barbieri-Viale and Bertapelle in their recent work,
[ABVB20]. They give an independent proof of Theorem 13.5. Their second
proof copies ours, but without the detour to periods.





CHAPTER 10

First Examples

Before turning to the case of period numbers of curves more generally,
we give some examples, all of them very classical. They do not rely on
the full strength of Theorem 9.7, but could be deduced directly from the
Analytic Subgroup Theorem as in Theorem 6.2. We still prefer to go via
Theorem 9.7 in order to demonstrate the method.

10.1. Squaring the Circle

To prove the transcendence of π, or rather more naturally in our setting
of 2πi, we take the 1-motive M1 = [0 → Gm]. Then M ♮

1 = Gm because
Ext1

G(Gm,Ga) = 0 and this means that by definition we have

V ∨
dR(M1) = coLie(Gm) = Ω1(Gm)Gm

for the de Rham realisation of the motive. On the singular side we get

Vsing(M1) = ker(Lie(Gm)an → Gan
m ) = ker(exp ∶ C→ C∗).

We take ω1 =
dz
z ∈ V ∨

dR(M1) and the positively oriented loop γ1 ∶ [0,1] → C∗

given by γ1(s) = e2πis around 0. In the notation of Section 5.3 we define
σ1 = I(γ1) ∈ Lie(Gm)an and obtain

∫
σ1

ω1 = ∫
γ1

dz

z
= 2πi.

Corollary 10.1 (Lindemann 1882). The period 2πi is transcendental.

First proof. Assume that 2πi is algebraic. Then, by Theorem 9.11,
we can express ω1 as

ω1 = φ + ψ ∈ V ∨
dR(M1)

such that the image of φ vanishes in V ∨
dR(Gm) and such that ∫σ1

ψ = 0. As

Gm = M ♮
1, the map V ∨

dR(M1) → V ∨
dR(Gm) is an isomorphism. Hence φ = 0.

This means that ω1 = ψ and hence 2πi = 0, which is false. �

We offer a second proof where the result is deduced from the Analytic
Subgroup Theorem for 1-motives. Let M2 = [Z→ 0]. Then M ♮

2 = Ga because
Ext1

1−MOT(M2,Ga) = Hom(Z,Ga) = Ga. This gives

V ∨
dR(M2) = coLie(Ga) = Ω1(Ga)

Ga .

85
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In this case exp ∶ Lie(M ♮
2)

an →M ♮,an
2 is the identity on Gan

a = C. The lattice

Z embeds naturally into M ♮,an
2 = C. In conclusion

Vsing(M2) = exp−1(Z) = Z.

Let γ2 be the straight path from 0 to 1 in Gan
a = C with image σ2 = I(γ2) ∈

gan
a . For ω2 we take dt ∈ V ∨

dR(M2) to get

∫
σ2

ω2 = ∫
γ2

dt = 1.

Second proof of Corollary 10.1. Assume that 2πi is algebraic. This
means that

2πi + α = 0

for some α ∈ Q. In the notation from above we consider

M =M1 ×M2 = [Z 0
Ð→ Gm]

and deduce

V ∨
dR(M) = V ∨

dR(M1) × V
∨

dR(M2), Vsing(M) = Vsing(M1) × Vsing(M2).

We choose

σ = (σ1, σ2) ∈ Vsing(M)

and

ω = (ω1, αω2) ∈ V
∨

dR(M).

Here it is used that α is algebraic. We find that

∫
σ
ω = ∫

σ1

ω1 + ∫
σ2

αω2 = 2πi + α ⋅ 1 = 0.

Now Theorem 9.7 is applied to the motive M and the classes ω and σ. Their
period vanishes, hence there is a short exact sequence

0→M ′ i
Ð→M

p
Ð→M ′′ → 0

such that σ is in the image of i∗ and ω is in the image of p∗.
Note that M is the product of two simple non-isomorphic 1-motives,

hence this leaves only four possible choices for M ′:

0,M1 × 0,0 ×M2,M.

We go through the cases. If M ′ = 0, then the image of i∗ is zero and hence
σ = 0, in contradiction to our hypothesis.

If M ′ =M1 ×0, then the second component σ2 of σ is zero. This is false.
The same argument also eliminates M ′ = 0 ×M2.

We conclude that we have M ′ =M and M ′′ = 0, and this shows that the
image of p∗ is zero and hence ω = 0. This is false.

We have deduced a contradiction and 2πi cannot be algebraic. �
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10.2. Transcendence of Logarithms

We now turn to logarithms of algebraic numbers. For α ∈ Q∗
, we have

∫
α

1

dz

z
= logα

(with the branch depending on the choice of the path from 1 to α). This is
obviously an (incomplete) period of an algebraic variety. In order to apply
our theorems directly, we identify it with the period of a 1-motive.

We put

M(α) = [Z 1↦α
ÐÐ→ Gm].

This is often called Kummer motive in the literature. If α is a root of unity,
this is the motive M =M1 ×M2 from above. Otherwise the extension

0→ [0→ Gm]→M(α)→ [Z→ 0]→ 0

is non-trivial. By definition, M(α)♮ is an extension of Gm by Ga = Hom(Z,Ga).
By Theorem 4.3 M(α)♮ is canonically isomorphic to Ga×Gm. Alternatively,
we can also get the splitting by applying the functor (⋅)♮ to the natural se-
quence of motives above. We put

ω = (0, dz/z) ∈ V ∨
dR(M(α)) = coLie(Ga ×Gm).

The singular realisation of M(α) is

exp−1
Gm(αZ) ⊂ Lie(Gm)an

which gives

Vsing(M(α)) = ⟨I(γ1), I(γ(α))⟩Q ⊂ Lie(Gm)an

with γ1 as before the positively oriented loop around 0 and γ(α) a path
from 1 to α in Gan

m = C∗. Note that the basis depends on the choice of path
γ(α), but the lattice does not. We introduce σ(α) = I(γ(α)) ∈ Vsing(M(α)).
Then

∫
σ(α)

dz

z
= ∫

γ(α)

dz

z
= logα

with again the choice of logarithm determined by the choice of path. The
calculation of the periods for M(α) uses the canonical embedding

Vsing(M(α)) ⊂ Lie(M(α)♮) = Lie(Ga)
an × Lie(Gm)an = C ×C

given by

σ1 → (0, σ1), σ(α)↦ σ(α)♮ = (1, σ(α)) = I(γ(α)♮)

with γ(α)♮(s) = (s, γ(α)(s)) ∈ M(α)♮,an = C × C∗. The period ω(σ(α)) is
defined by applying the cotangent vector ω to the tangent vector σ(α)♮.
Hence the period pairing gives

ω(σ(α)) = ∫
γ(α)♮

dz

z
= ∫

γ(α)

dz

z
= logα.



88 10. FIRST EXAMPLES

Corollary 10.2 (Transcendence of logarithms, Lindemann 1882). For
α ≠ 1 algebraic, logα is transcendental, independent of the choice of the
branch of the logarithm.

Proof. If α is a root of unity, then logα is a rational multiple of 2πi,
whose transcendence we have already established. From now on let α not
be a root of unity and as a consequence M(α) is non-split. Let ω and σ(α)
be as above and assume that ∫σ(α) ω is algebraic. By Theorem 9.11 there is

a decomposition
ω = ψ + φ

with ∫σ(α)ψ = 0 and such that the image of φ vanishes in V ∨
dR(Gm). We first

concentrate on ψ. An application of Theorem 9.7 to ψ gives a short exact
sequence

0→M ′ i
Ð→M(α)

p
Ð→M ′′ → 0

such that σ(α) is in the image of i∗ and ψ is in the image of p∗. There are
only three possibilities for M ′:

0, [0→ Gm], M(α).

We exclude M ′ = 0 because σ(α) ≠ 0 and M ′ = [0 → Gm] because σ(α) ∉
Vsing([0 → Gm]). This shows that M ′ = M(α) and implies that M ′′ =
0 and we conclude that ψ = 0. As a consequence ω = φ vanishes when
mapped to V ∨

dR([0→ Gm]). But actually this image is dz/z, so we have a
contradiction. �

10.3. Hilbert’s 7th Problem

In his 7th problem Hilbert asked whether

α,β,αβ

can all be algebraic unless α = 0,1 or β rational. In other words:

(GS) α,β,αβ ∈ Q⇒ α = 0,1 or β ∈ Q.

There is a logarithmic version of GS: let α, γ ∈ Q∗
, logα and log γ choices of

branches of logarithm.

(B) logα and log γ are Q-linearly dependent

⇒ logα and log γ are Q-linearly dependent

We think of (GS) as the Gelfond-Schneider version of the implication and
of (B) as the Baker version.

Note that the converse implication of (B) is obvious. However, the con-
verse implication of (GS) fails in the case α = 1 if we do not use the principal
branch of logarithm in the definition of αβ. The problem disappears when
restricting to real numbers.

Lemma 10.3. The implications (GS) for all α, β and γ and (B) for all
α and γ are equivalent.
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Proof. We assume (GS). Let α, γ be non-zero algebraic numbers such

that logα and log γ are Q-linearly dependent. By assumption there are

u, v ∈ Q∗
such that

u logα + v log γ = 0.

Without loss of generality we may assume that α ≠ 1. Indeed, if α = 1 and
logα = 2πn for n ∈ Z, we consider instead α = γ and different branches of
log γ.

We introduce β = u/v. As a consequence of the linear relation from

above we find that αβ = exp(β logα) = γ−1 ∈ Q∗
. By (GS) this implies β ∈ Q.

Conversely, we assume that (B). We take α,β, γ ∈ Q, α ≠ 0,1 such that
and γ = αβ and then

log γ = β logα + 2πin

for some choice of logarithms and an appropriate n ∈ Z. We replace the
choice of branch of of the logarithm for γ such that n = 0. Then log γ and
logα are Q-linearly dependent. By (B) this implies β ∈ Q. �

Theorem 10.4 (Gelfond–Schneider 1934). Implication (B) holds true.

Proof. We switch notation from (B) and write β instead of γ. Having

fixed α,β ∈ Q∗
and branches of logarithm logα, logβ such that the numbers

are Q-linearly dependent, we find a, b ∈ Q∗
such that

a logα + b logβ = 0.

In order to show that they are Q-linearly dependent, we consider the 1-
motive M = [Z → G2

m] with structure morphism 1 ↦ (α,β). The motive
is split, i.e. isogenous to [Z → 0] ⊕ [0 → G2

m] if both α and β are roots
of unity. In this case logα and logβ are rational multiples of 2πi, hence
linearly dependent. This case is excluded from now on.

Similar to the case of transcendence of logarithms we have M ♮ = G1
a ×

G2
m and hence V ∨

dR(M) = coLie(M ♮) has the basis (dt,0,0), (0, dz1/z1,0),
(0,0, dz2/z2). We put ω = (0, adz1/z1, bdz2/z2).

Our next step is to compute Tsing(M). As M is non-split, Tsing(M)

is a subset of Lie(G2
m)an. Recall that logα d

dz1
= I(γ(α)) where γ(α) is

a suitable path in Gan
m from 1 to α. The same relation holds for β. Let

γ ∶ [0,1] → Gan
m × Gan

m be given by γ(t) = (γ(α)(t), γ(β)(t)) and put σ =
I(γ) ∈ Tsing(M) ⊂ Lie(G2

m)an. By construction

ω(σ) = ∫
γ(α)

a
dz1

z1
+ ∫

γ(β)
b
dz2

z2
= a logα + b logβ = 0

and Theorem 9.7 furnishes a short exact sequence

0→M1 →M →M2 → 0

such that σ is induced from M1 and ω from M2 = [Zs → Gt
m] with s ≤ 1 and

t ≤ 2.
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If t = 2, then the surjection M → M2 is the identity on the torus part.
The push-forward of σ is given by (logα d

dz1
, logβ d

dz2
). Hence both vanish.

This implies that α = β = 1, a case we had excluded.
The case t = 0 does not occur because ω is not a pull-back from a motive

of the form [Zs → 0].
We are left with the case t = 1. The torus part of the map M → M2

is given by (x, y) → xnym for n,m ∈ Z. The induced map on Lie algebras
maps ( ddt , logα d

dz1
, logβ d

dz2
) to (n logα +m logβ) d

dz . This image vanishes

and gives the linear dependence we were looking for. �

What we have just seen is a motivic reformulation of Gelfond’s proof
based on Gm × Gm. In contrast, Schneider’s argument uses Ga × Gm but
does not have a translation to our language. One would need a modification
of the Analytic Subgroup Theorem, which would be desirable.

The same arguments also apply to more then two numbers, which leads
to:

Theorem 10.5 (Baker 1967). Take α1, . . . , αn ∈ Q
∗
. If logα1,. . . , logαn

are Q-linearly dependent, then they are Q-linearly dependent.
We even have

rk⟨α1, . . . , αn⟩Z = dimQ⟨logα1, . . . , logαn,2πi⟩Q/2πiQ

for any choice of branches of logarithms.

Remark 10.6. In the literature we often find formulations with α1, . . . , αn
multiplicatively independent. The above is the correct version that also al-
lows roots of unity or even repetitions with different choices of branch of
logarithm. We will discuss later (see Chapter 16) in more detail that the
space of periods of the third kind with respect to non-closed paths is only
well-defined up to other types of periods.

10.4. Abelian Periods for Closed Paths

Another important case involves periods of abelian varieties in the clas-
sical sense.

Corollary 10.7 (Wüstholz [Wüs87]). Let A be an abelian variety,
ω ∈ Ω1(A) and γ a closed path on Aan. Then

∫
γ
ω

is either 0 or transcendental.

Proof. ConsiderM = [0→ A]. Its de Rham realisation is coLie(A♮)A
♮

⊃
coLie(A)A. All global differential forms on A are A-invariant, hence ω de-
fines an element of V ∨

dR(M). It singular realisation is by definition the kernel
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of expA ∶ Lie(A)an → Aan. Let σ ∈ Vsing(A) be the element such that the
image of a path from 0 to σ under expA is equal to γ. Then

∫
σ
ω = ∫

γ
ω.

Assume that the period is algebraic. An application of Theorem 9.11
gives ω = φ + ψ with ∫σ ψ = 0 and φ in the kernel of the restriction to the
group part of M . But M is equal to its group part, implying that φ = 0. �





CHAPTER 11

On Non-closed Elliptic Periods

The computation of the dimension of the period space is a classical
problem and has been studied in various cases by many authors. In this
chapter, we concentrate on the case of a non-classical elliptic 1-motive. For
instance we deduce the first examples of periods which were not known to
be transcendental. At this point everything will be formulated in terms of
1-motives. For the translation to periods of the first, second and third kind
on curves, see Chapter 14 and Chapter 18.

The dimension formula is a special case of the generalised Baker Theory
in Part 4. We give a direct proof that should be understood as a warm-up
for the considerably more complicated general case. The special result will
not be needed later on.

11.1. The Setting

Let A = E be an elliptic curve, 0 → Gm → G → E → 0 a non-trivial
extension (which is even non-split up to isogeny) and P ∈ G(Q) a point

whose image in E(Q) is not torsion. We consider the 1-motive

M = [Z→ G]

with 1 mapping to P . We denote δ(M) the dimension of the Q-vector space
P⟨M⟩ generated by the periods of M in C.

We start by choosing bases in the singular and de Rham cohomology
respecting the weight filtration. The inclusions

[0→ Gm]↪ [0→ G]↪M

with cokernels [0→ E] and [Z→ 0], respectively, lead to a filtration

Vsing(Gm) ⊂ Vsing(G) ⊂ Vsing(M).

Extend a basis σ for Vsing(Gm) by γ1, γ2 to a basis of Vsing(G) and further
by λ to a basis of the whole space. Then their images γ̄1, γ̄2 in E form a
basis of Vsing(E) and λ̄ forms a basis of Vsing([Z→ 0]).

For the de Rham realisation consider the cofiltration

M ↠ [Z→ E]↠ [Z→ 0]

with kernels [0→ Gm] and [0→ E], respectively. They lead by pull-back of
forms to a filtration

V ∨
dR(M) ⊃ V ∨

dR([Z→ E]) ⊃ V ∨
dR([Z→ 0]).

93
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Extend a basis u of V ∨
dR([Z→ 0]) by ω, η to a basis of V ∨

dR([Z→ E]) and by
ξ to a basis of V ∨

dR(M). The images ω̄, η̄ of ω and η are a basis of V ∨
dR(E)

and the image ξ̄ of ξ is a basis of V ∨
dR(Gm). The period space P⟨M⟩ is

spanned by the numbers obtained by pairing our basis vectors.
The pairing of an element of Vsing(M) coming from a subobject with

an element of V ∨
dR(M) coming from the corresponding quotient is zero, as

we know. Applying this observation to the two filtrations from above give
u(σ) = ω(σ) = u(γ1) = u(γ2) = ω(σ) = 0. Further one sees that u(λ) = 1
and ξ(σ) = 2πi (at least after scaling). Taking this together gives a period
matrix of the shape

⎛
⎜
⎜
⎜
⎝

2πi ξ(γ1) ξ(γ2) ξ(λ)
0 ω(γ1) ω(γ2) ω(λ)
0 η(γ1) η(γ2) η(λ)
0 0 0 1

⎞
⎟
⎟
⎟
⎠

.

The calculation of the dimension of the associated space of periods needs to
distinguish between two cases, the CM-case and the non-CM-case. We deal
with each of the two cases separately.

11.2. Without CM

In the case when there is no complex multiplication, the non-CM-case,
the endomorphism algebra End(E) = Z is trivial.

Proposition 11.1. Let M be as just described. Then

δ(M) = 11.

This will be also a corollary of the general theory in Part 4. The deduc-
tion of the corollary is explained in Example 15.4 and its continuation in
Example 17.16.

Direct proof. We use the notation fixed above. It has to bw shown
that all entries of the period matrix are Q-linearly independent. If not, there
is a relation

a2πi +
2

∑
i=1

(bi ξ(γi) + ci ω(γi) + di η(γi)) + e ξ(λ) + f ω(λ) + g η(λ) + h = 0

with a, b1, b2, c1, c2, d1, d2, e, f, g, h ∈ Q. We consider the motive

M̃ = [0→ Gm] × [0→ G]2 ×M = [03 ×Z→ Gm ×G3]

together with

γ̃ = (σ, γ1, γ2, λ) ∈ Vsing(M̃),

ω̃ = (aξ, b1ξ + c1ω + d1η, b2ξ + c2ω + d2η, eξ + fω + gη + hu) ∈ V
∨

dR(M̃).

Then ω̃(γ̃) = 0. By the Analytic Subgroup Theorem for 1-motives, Theo-
rem 9.7, there is a short exact sequence

0→M1
i
Ð→ M̃

p
Ð→M2 → 0
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of 1-motives M1 = [L1 → G1] and M2 = [L2 → G2] with γ̃ = i∗γ1 for some
γ̃1 ∈ Vsing(M1) and ω̃ = p∗ω2 for some ω2 ∈ V

∨
dR(M2).

Let A2 be the abelian part of M2. We want to show that A2 = 0.
Assuming A2 ≠ 0 we choose a non-zero map surjective map κ̃ ∶ M̃ → [L→ E]
which factors as κ2 ○ p through p. As L is a quotient of Z, there are (up to
isogeny) only two possibilities, namely L = 0 or L = Z. The map κ̃ factors
via

κ ∶ [03 ×Z→ 0 ×E3]→ [L→ E].

On the abelian part it is given by a vector (0, n,m, k) with n,m,k ∈ End(E) =
Z. Note that there is no complex multiplication. We deduce that L = kZ
which is non-zero if and only if k ≠ 0. Since κ̃∗γ̃ = κ2∗ ○ p∗ ○ i∗γ̃1 = 0, we
deduce that

0 = κ∗γ̃ = nγ1 +mγ2 + kλ ∈ Vsing([Lκ → E]).

The elements γ1, γ2 (and if k ≠ 0 also λ) are linearly independent in the vector
space Vsing([L → E]), which implies that n = m = k = 0. This contradicts
the non-triviality of κ̃ and proves that A2 = 0.

In conclusion we have M2 = [L2 → Gr
m] for some 0 ≤ r ≤ 4. The group

part of the morphism of motives p ∶ M̃ →M2 has the form

θ ∶ Gm ×G3 ↠ Gr
m.

Its components G→ Gr
m have to vanish since G is non-split. The surjectivity

of θ implies that r ≤ 1 with θ = (?,0,0,0) either 0 or the projection to the
factor Gm.

This gives us a lot of information on ω̃. Recall that ω̃ = p∗ω2 for some
ω2 ∈ V

∨
dR(M2). We have the commutative diagram

[0→ Gm ×G3]
θ //

��

[0→ Gr
m]

��
M̃

p // M2.

Hence the pull-back of ω̃ to V ∨
dR(Gm ×G3) is concentrated in the first com-

ponent, which gives

b1ξ + c1ω + d1η = 0

b2ξ + c2ω + d2η = 0

eξ + fω + gη = 0 .

As the three classes ξ, ω, η are linearly independent, we get vanishing
coefficients

b1 = b2 = c1 = c2 = d1 = d2 = e = f = g = 0.

We are left with the case ω̃ = (aξ,0,0, hu). If a ≠ 0, then from the period
relation also h ≠ 0, and conversely. Assume we are in this case. As ω̃ = p∗ω2

it follows that the group part of M̃ →M2 is the projection to the first factor
and M2 = Gm × [Z → 0]. The kernel M1 is equal to 0 ×G3 in this situation.
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However, γ̃ is induced from M1 and therefore of the form (0, . . . ). This
contradicts σ ≠ 0. Hence we must have a = 0 and h = 0. �

11.3. The CM-Case

We turn to the CM-case when End(E)Q = Q(τ) is an imaginary qua-
dratic extension of Q.

The action of Q(τ) induces new relations between the entries of the
period matrix. This is well-known in the language of periods of curves. We
take the point of view of 1-motives instead.

The singular realisation Vsing(E) is of dimension 2 as a Q-vector space
because E has genus 1. As a Q(τ)-vector space it has dimension 1. For
any non-zero γ in Vsing(E), the pair (γ, τ∗γ) is a Q-basis of Vsing(E). After
extension of scalars to C, the operation is still semi-simple, meaning that
Vsing(E)C decomposes as a sum of two τ∗-eigenspaces with complex conju-
gate eigenvalues. The dual operation τ∗ induced on Vsing(E)∨ has the same
set of eigenvalues.

This can also be described on the de Rham realisation. We calculate
V ∨

dR(E) = coLie(E♮) = Ω1(E♮)E
♮

by looking at

0→H1(E,O)∨ → E♮ → E → 0.

By Theorem 8.16, V ∨(E) carries a Hodge structure. (This is the 1-motivic
incarnation of the Hodge decomposition of H1

dR(E)). It is explicitly given
by

F 1V ∨
dR(E) = Ω1(E).

This Q-sub vector space is invariant under τ∗, hence it is one of the eigenspaces.
After extension of scalars to C, we get even the decomposition by Hodge
theory

V ∨
dR(E)C = F 1V ∨

dR(E)C ⊕ F 1V ∨
dR(E)C.

Everything is stable under the τ∗-operation, so we have identified the eigenspace
description. By definition the complex number τ corresponds to the unique
endomorphism of E which operates as multiplication by τ on the Lie algebra
and on the dual Ω1(E), so the latter is the τ -eigenspace. The eigenvalues
are simply τ and τ̄ . Since τ∗ acts on the Q-vector space V ∨

dR(E) its eigen-
vectors are in V ∨

dR(E). Let ω′, ω′′ be a basis of τ∗-eigenvectors of V ∨
dR(E),

which has the property that

τ∗ω′ = τ ⋅ ω′, τ∗ω′′ = τ̄ ⋅ ω′′.

Corollary 11.2. In the basis (γ, τ∗γ) of Vsing(E) and ω′, ω′′ of V ∨
dR(E),

the period relations for E can be expressed as

ω′(τ∗γ) = (τ∗ω′)(γ) = τω′(γ),

ω′′(τ∗γ) = (τ∗η)(γ) = τ̄ω′′(γ).
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Proposition 11.3. Let M be the motive introduced in Section 11.1 with
EndQ(E) = Q(τ). Then

δ(M) = 9.

Direct proof.

M̃ = [0→ Gm] × [0→ G] ×M.

We go through the proof in the non-CM case and make the necessary
changes. Let σ, γ1, γ2, λ be as in Section 11.1. We choose a little more
carefully γ2 = τ∗γ1 and then

ω(τ∗γ1) = (τ∗ω)(γ1) = aω(γ1) + bη(γ1) + cu(γ1),

η(τ∗γ) = (τ∗η)(γ1) = dω(γ1) + eη(γ1) + fu(γ1)

with a, b, c, d, e, f ∈ Q. Indeed, the choice of basis used in the corollary leads
to a = τ , b = d = 0, e = τ̄ ; but we do not need the special shape. Note that the
argument does not apply to ξ(γ2) because τ∗ξ is not defined, or, in other
words, would relate not to M but a different 1−motive.

It remains to show that 2πi, ξ(γ1), ω(γ1), η(γ1), ξ(γ2), ξ(λ), ω(λ), η(λ),1
are linearly independent. If not, there is a linear relation as in the first case,
but omitting the summands for ω(γ2) and η(γ2), so c2 = d2 = 0. We consider
the motive

M̃ = [0→ Gm] × [0→ G] ×M

and γ̃, ω̃ analogously to before. Again this gives M1,M2. Assume that
A2 ≠ 0 and choose κ2, Lκ, κ as in the first case. The composition

Ã = 0 ×E2 → E

is now given by a vector (0, n, k) of elements of End(E) ⊂ Q(τ). The rest
of the argument is the same as in the non-CM case. �

11.4. Transcendence

As a simple corollary of the explicit dimension computation, we also
deduce the transcendence of periods of our M . We concentrate on the case
where transcendence is not a simple consequence of the Analytic Subgroup
Theorem. In the language of Chapter 16 this refers to a period of the third
kind with respect to a non-closed path.

Corollary 11.4. Let M = [Z → G], and σ, γ1, λ ∈ Vsing(M), ω, η, ξ ∈
V ∨

dR(M) be as in Section 11.1. Then the periods

ω(γ1), ω(λ), η(γ1), η(λ), ξ(σ) = 2πi, ξ(γ1), ξ(λ)

are transcendental.

Proof. These elements agree with the elements with the ones from the
proofs of Proposition 11.1 (non-CM case) and Proposition 11.3. In both
cases, 1 appears as a period and we proved explicitly linear independence of
the two periods. �
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Remark 11.5. The same transcendence result already appears in [Wüs21].
For ω(γ1), η(γ1) this means the transcendence of periods and quasi-periods
of elliptic curves. These are old results of Siegel [Sie32] and Schneider
[Sch34b, Sch34a]. The transcendence of ω(λ), η(λ) and ξ(γ1) can be
deduced from the Analytic Subgroup Theorem without the detour through
1-motives.

We may also deduce the same result more directly from the Analytic
Subgroup Theorem for motives. We do the most interesting case ξ(λ) as an
example. The other cases can be treated in the same way.

Second proof. Assume that ξ(λ) is algebraic. We apply the transcen-
dence criterion given in Theorem 9.11 and write accordingly ξ = φ + ψ such
that ψ(λ) = 0 and the image of φ in V ∨

dR(G) vanishes. A fortiori the image of
φ in V ∨

dR(Gm) vanishes. This implies that ψ is simply an alternative choice
for ξ. It suffices to consider the case

ξ(λ) = 0.

By the Analytic Subgroup Theorem for 1-motives, Theorem 9.7 there is
short exact sequence

0→M ′ i
Ð→M

p
Ð→M ′′ → 0

such that λ = i∗λ′, ξ = p∗ξ′′.
The simple constituents of our M are Gm,E, [Z → 0]. As the image of

λ in Vsing([Z→ 0]) and the image of ξ in V ∨
dR(Gm) are bases, we know that

[Z → 0] must be a constituent of M ′ and Gm a constituent of M ′′. Hence
there are only two possible shapes for M ′:

[Z→ 0], [Z→ E].

In the first case M ′ = [Z→ 0] and the inclusion i is a section of the natural
surjection M → [Z → 0] and even of [Z → E] → [Z → E]. This contradicts
the choice of P in the definition of M .

In the second case, M ′′ = Gm. The projection p is section of the natural
inclusion Gm → M and even of Gm → G. This contradicts the choice of G
in the definition of M .

The two contradictions lead to ξ(λ) ≠ 0. �
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Periods of algebraic varieties





CHAPTER 12

Periods of Algebraic Varieties

We give an alternative description of the set of periods of 1-motives
as periods of the first cohomology of algebraic varieties defined over the
algebraic closure Q of Q. This needs to fix an embedding Q→ C.

12.1. Spaces of Cohomological 1-Periods

The basic objects are triples (X,Y, i) where X is a Q-variety, Y a closed
subvariety and i ∈ N0. Let H i

dR(X,Y ) be its relative de Rham cohomology

(see Section 3.2) and H i
sing(X,Y ;Q) its relative singular cohomology (see

Section 3.1). The first is a Q-vector space, the second a Q-vector space.
After base change to the complex numbers they become naturally isomorphic
via the period isomorphism φ (see Section 3.3). In good cases, the period
isomorphism can be explicitly described as integration of closed differential
forms over singular cycles.

In Chapter 7 we had introduced the category (Q,Q)−Vect with objects
of the form V = (VQ, VQ, φ) where VQ is a finite dimensional Q-vector space,

VQ a finite dimensional Q-vector space and φ ∶ VQ ⊗Q C → VQ ⊗Q C an

isomorphism.

Definition 12.1. For algebraic varieties X ⊃ Y over Q and i ∈ N0, we de-
note by H i(X,Y ) ∈ (Q,Q)−Vect the triple (H i

dR(X,Y ),H i
sing(X,Y ;Q), φ).

The assignment (X,Y, i) → H i(X,Y ) is natural for morphisms of pairs
(X,Y ) → (X ′, Y ′). For every triple X ⊃ Y ⊃ Z there are connecting mor-
phisms

∂ ∶H i(Y,Z)→H i+1(X,Y )

which are morphisms in (Q,Q)−Vect.

Definition 12.2. For H i(X,Y ) as defined above the set of period num-
bers P(X,Y, i) is the image of the period pairing

H i
dR(X,Y ) ×Hsing

i (X,Y ;Q)→ C.

The set of i-periods P i is the union of the P(X,Y, i) for all X and Y .

In our book we are primarily interested in the case i = 1.

Example 12.3. We have P0 = Q because H0(X,Y ) only depends on the
connected components of X and Y .

101
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Lemma 12.4. For all i, the set P i is a Q-subvector space of C. We have
P i ⊂ P i+1.

Proof. A sum of two periods of H i(X,Y ) and H i(X ′, Y ′) can be re-
alised as a period of H i(X ∐X ′, Y ∐Y ′). The set is stable under multiplica-
tion by numbers in Q because H i

dR(X,Y ) is a Q-vector space. Integration

of the differential form dt over the path s ↦ e2πis on [0,1] gives 1 as a
period of H1(A1,{0,1}) whence the periods of H i(X,Y ) are contained (ac-
tually equal to) in the set of periods of H i+1(X ×A1, Y ×A1 ∪X × {0,1}) ≅
H i(X,Y )⊗H1(A1,{0,1}). �

12.2. Periods of Curve Type

Nori showed that every affine algebraic variety admits a filtration by sub-
varieties defined over Q such that their relative homology is concentrated in
a single degree. This “good filtration” should be seen as an analogue of the
skeletal filtration of a simplicial complex or a CW-complex. Indeed, affine
algebraic varieties have the homotopy type of a simplicial complex. The
surprising insight is the existence of such a filtration by algebraic subvari-
eties, even over the ground field. This filtration goes into the construction
of the category of Nori motives, but it also has immediate consequences for
periods. For the general result see [HMS17, Section 11]. We repeat the
argument in our case.

Proposition 12.5. In the definition of P1 it suffices to consider H1(C,D)
where C is a smooth affine curve and D a finite collection of points on C.

Proof. Consider the periods of H1(X,Y ) for arbitrary X and Y . We
first show that it suffices to deal with affine varieties X. By Jouanolou’s
trick there is an An-torsor X̃ →X with X̃ affine. Let Ỹ be the preimage of
Y in X̃. Since the map X̃ →X is a homotopy equivalence, we have

H1(X,Y ) ≅H1(X̃, Ỹ ).

Therefore we may without loss of generality assume that X (and conse-
quently also Y ) is affine.

Nori’s Basic Lemma, see [HMS17, Proposition 9.2.3, Corollary 9.2.5]
provides our affine varieties with very good filtrations by closed subvarieties

X0 ⊂X1 ⊂ ⋅ ⋅ ⋅ ⊂Xn =X, Y0 ⊂ Y1 ⊂ ⋅ ⋅ ⋅ ⊂ Yn = Y

with Yi ⊂Xi. By definition this means that

(1) Xi ∖Xi−1 is smooth,
(2) either dimXi = i and dimXi−1 = i−1 orXi =Xi−1 and the dimension

of dimXi is less than i,
(3) Hj(Xi,Xi−1) vanishes for j ≠ i.

and the same for Yi. The boundary maps in the long exact sequence for the
triple (Xi+1,Xi,Xi−1) introduced in Section 3.1 define a complex

C(X∗) = [H0(X0)→H1(X1,X0)→H2(X2,X1)→ . . . ].
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By [Hat02, Theorem 2.35] its cohomology in degree j agrees with Hj(X).
We introduce

C(X∗, Y∗) = cone (C(X∗)→ C(Y∗)) [−1],

explicitly given by

[H0(X0)→H1(X1,X0)⊕H
0(Y0)→H1(X2,X1)⊕H

1(Y1, Y0)→ ⋯].

Its cohomology in degree j agrees naturally with Hj(X,Y ). As a result,
H1(X,Y ) can be identified with a subquotient of

H1(X1,X0)⊕H
0(Y0).

This implies that the periods of H1(X,Y ) are contained in the space of
periods of H1(X1,X0)⊕H

0(Y0). As discussed in the proof of Lemma 12.4,
the periods of H0(Y0) can also be seen as periods of H1(Y0 × A1), so they
are periods of smooth affine curves.

In conclusion it remains to consider the case where X is an affine curve,
Y a finite set of points and, in addition, X ∖Y is smooth. By normalisation,
we resolve the singularities of X. We denote by X̃ the normalisation and
by Ỹ the preimage of Y in X̃. By excision we have

H1(X,Y ) ≅H1(X̃, Ỹ ).

The curve X̃ is smooth and affine. �

Definition 12.6. We say that a period is of of curve type if it is the
period of some H1(C,D) where C is a smooth affine curve and D a finite
collection of points on C.

Proposition 12.5 asserts that all elements of P1 are of curve type.

Corollary 12.7. All elements of P1 are Z-linear combinations of in-
tegrals of the form

∫
γ
ω

where ω is a regular algebraic 1-form on a smooth affine curve C over Q
and γ a differentiable path on C(C) which is either closed or has end points
defined over Q.

This is a special case of the identification of normal crossings periods
and periods of algebraic varieties, see [HMS17, Theorem 11.4.2]. The case
i = 1 is easier and we give the proof explicitly.

Proof. Given Proposition 12.5, this is a statement about the explicit
description of relative singular and de Rham cohomology. Let C be a smooth
affine curve, Y ⊂ C a finite set of Q-points. We have made the period
computation explicit in Section 3.3.1 All period numbers are of the form

((ω,α), σ) = ∫
σ
ω − α(∂σ).
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for an algebraic differential form ω on C, a set-theoretic map α ∶ Y (Q)→ Q,
and a formal linear combination σ = ∑niγi of smooth maps γi ∶ [0,1]→ Can

such that ∂(∑niγi) = ∑niγi(1) −∑niγi(0) is a divisor on Y (Q).
The second term only appears for non-closed paths. It is an alge-

braic number and can be expressed as a period integral of A1, namely

∫[0,1] α(∂σ)dt. We conclude that every element of P1 is a Z-linear com-

bination of explicit integrals as stated. �

Conversely, the following proposition shows that all periods of curves
are in P1.

Proposition 12.8. Let C be a curve over Q, Y ⊂ C a finite set of
Q-valued points. Then

P⟨H∗(C,Y )⟩ ⊂ P1.

Proof. Consider H i(C,Y ) for 0 ≤ i ≤ 2. The assertion holds for i = 1
by definition and was shown in Lemma 12.4 for i = 0. In the case i = 2
dimension reasons show that H2(C,Y ) ≅ H2(C). We replace C by its
normalisation. By the blow-up sequence formulated in Proposition 3.12
this does not change H2(C). Without loss of generality, C is connected. If
C is affine, then H2(C) = 0 and H2(C) ≅ H2(P1) if C is projective. From
the long exact Mayer-Vietoris sequence

H1(A1)⊕H1(P1 ∖ {0})→H1(Gm)→H2(P1)→H2(A1)⊕H2(P1 ∖ {0})

for the cover of P1 by A1 and P1 ∖ {∞} and the vanishing of cohomology
of affine spaces, we deduce an isomorphism H2(P1) ≅ H1(Gm). This shows
that its periods are also in P1. �

12.3. Comparison with Periods of 1-Motives

From a conceptual point of view, it is also important to describe 1-
periods in terms of Jacobians of curves.

Let C be a smooth curve over Q, and D ⊂ C a finite set of Q-points. Let
J(C) be its generalised Jacobian (see Section 4.5) and

Z[D]0 = {f ∶D → Z ∣ ∑
P ∈D

f(P ) = 0}

the set of divisors of degree 0 supported in D. We consider the 1-motive

M = [Z[D]0 → J(C)].

Lemma 12.9. In this situation, we have

P(H1(C,D)) = P(H1(J(C),D)) = P(M).
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Proof. We write D as D = {P0, . . . , Pr}. The easy case when D = ∅ is
left to the reader. The point P0 is used for the definition of the inclusion
C → J(C) which induces by functoriality a morphism in (Q,Q)−Vect

H1(J(C),D)→H1(C,D).

We apply the long exact cohomology sequence for relative cohomology

H0(J(C)) //

≅
��

H0(D) //// H1(J(C),D)

��

// H1(J(C))

��

// 0

H0(C) // H0(D) // H1(C,D) // H1(C) // 0

to both terms. By Theorem 4.23, the induced natural map H1(J(C)) →
H1(C) is an isomorphism. According to the Five Lemma the same is true
for H1(J(C),D)→H1(C,D) and so their periods agree.

In our second step we apply Proposition C.2 to the 1-motive M =
[Z[D]0 → J(C)]. Note that ei = Pi − P0 for i = 1, . . . , r is a basis of Z[D]0

and the natural map D → J(C) maps P0 to 0 and all other Pi to the corre-
sponding ei. By Proposition C.2 this induces an isomorphism

(13) V (M)∨ =H1(J(C),D)

and Lemma 7.13 implies

P(M) = P(H1(J(C),D)).

�

Having now identified periods of curves with periods of semi-abelian
varieties, we can make the step to 1-motives.

Proposition 12.10. A complex number is a period of some 1-motive if
and only if it is in P1. In other words

P1 = P(1−MotQ).

Proof. Let α be in P1. Proposition 12.5 tells us that it is of curve type
and by Lemma 12.9 it is the period of a 1-motive.

For the converse, let M = [L→ G] be a 1-motive. Up to isogeny we can

split L as L = L1 ⊕L2 with L1
0
Ð→ G and L2 ↪ G. This gives

M ≅ [L1 → 0]⊕ [L2 ↪ G],

and it therefore suffices to consider the two special cases G = 0 or when the
structure map L → G is injective. For M = [Z → 0], Proposition C.2 gives
V (M)∨ ≅H0(Spec(Q)).In fact, the space of periods is simply Q in this case.
For M = [Zr ↪ G] we have by Proposition C.2 that V (M)∨ ≅H1(G,Z) with
Z = {0, P1, . . . , Pr} where Pi is the image of the i-th standard basis vector
of Zr. Their periods are in P1. �

Summary 12.11. There are three different definitions of what a 1-period
might be:
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(1) the period of some H1(X,Y ) (cohomological degree 1),
(2) the period of a curve relative to some points (dimension 1),
(3) the period of a Deligne 1-motive.

Our discussion shows that these three notions agree.

12.4. The Motivic Point of View

We have only discussed periods of Deligne’s category of 1-motives so
far. There are two other categories of mixed motives, due to Voevodsky and
Nori, respectively. In both cases, periods can be defined. The purpose of
this section is to compare the sets of numbers that we obtain.

The theories are technically very demanding. It would go too far to
present this here in detail. In Appendices A and B the interested reader can
find a more complete survey.

The motivic picture gives a lot more structure to the situation. It also
shows that most results comparing cohomological 1-periods to other notions
of 1-periods can easily be deduced from the literature. The results will only
be used Chapter 13.

Let k be a field with a fixed embedding into C. We denote by DMeff
gm(k,Q)

Voevodsky’s triangulated category of effective geometric motives, see Appen-
dix B. The category comes with a functor which attaches to every smooth
k-variety X its motive M(X). Let d1DM

eff
gm(k,Q) be the full thick subcate-

gory generated by the motives of the form M(X) for X a smooth variety of
dimension at most 1. There is a natural equivalence triangulated categories

Db(1−Motk)→ d1DMgm(k,Q)

from the bounded derived category of the abelian category 1−Motk to the
traingulated category d1DMgm(k,Q). We refer to Theorem B.5 for more
details.

Next we turn to Nori’s abelian category MMeff
Nori(k,Q) of effective mo-

tives. It is universal for all cohomological functors compatible with rational
singular cohomology. In Appendix A a very brief introduction to Nori’s
theory is given.

Let d1MM
eff
Nori(k,Q) be the smallest full subcategory containingH i

Nori(X,Y )
for Y ⊂ X with i ≤ 1 and which is closed under subquotients. Again, by
the work of Ayoub and Barbieri-Viale, see Theorem A.7, there is an anti-
equivalence

1−Motk → d1MM
eff
Nori(k,Q).

Moreover, the abelian category d1MM
eff
Nori(k,Q) has an explicit description

as the diagram category in the sense of Nori of the category of pairs (C,Y )
where C is a smooth curve and Y ⊂ C(k) a finite subset.

By Theorem B.6 both categories are linked by a triangulated realisation
functor

DMeff
gm(k,Q)→Db(MMeff

Nori(k,Q))
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compatible with their singular realisations into the derived category of Q-
vector spaces. By Proposition B.7 it maps the subcategory d1DMgm(k,Q)

to Db(d1MMNori(k,Q)).
The universal property of Nori motives implies the existence of functors

MMeff
Nori(k,Q)↪MHSk ↪ (Q, k)−Vect;

see Theorem A.2. The first functor associates to a Nori motive a mixed
Hodge structure. By forgetting the filtrations we obtain an object of (Q, k)−Vect.
This allows us to define periods for the various categories of motives. All
this is summed up in one diagram:

Dg(1−Motk)
H0

//

≃
��

1−Motk

≃
��

d1DM
eff
gm(k,Q)

H0
//

_�

��

d1MM
eff
Nori(k,Q)
_�

��
DMeff

gm(k,Q)

XX

H0
//

))

""

MMeff
Nori(k,Q)

YY

��
MHSk

��
(k,Q)−Vect

By Proposition C.3 the composition in the right column is the functor V ∶
1−Motk → (Q, k)−Vect of Section 8.2 composed with the external duality
functor of Definition 7.12.

Corollary 12.12. The sets of periods of the categories 1−Motk, d1DM
eff
gm(k,Q)

and d1MM
eff
Nori(k,Q) agree and are equal to P1. In particular, both Propo-

sition 12.5 and Proposition 12.10 hold true.

Proof. Theorems B.5 and B.6 combined with Theorem A.7 provide the
equivalences of categories

Db(1−Motk)→ d1DM
eff
gm(k,Q)→Db(d1MM

eff
Nori(k,Q)).

Proposition C.3 asserts that Deligne’s construction of the realisation of a
1-motive agrees (up to duality) with the one obtained via the identification

with the category d1MM
eff
Nori(k,Q). As a consequence the three categories

have identical sets of periods. Finally, the periods of Db(1−Motk) coincide
with the periods of 1−Motk by definition.

Also by definition, P1 ⊂ P(d1MM
eff
Nori(k,Q)). The explicit description

of d1MM
eff
Nori(k,Q) in Theorem A.7 yields the converse inclusion and even

the more restrictive description of Proposition 12.5.
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As a byproduct, we get the equality P1 = P(1−Motk), reproving Propo-
sition 12.10. �



CHAPTER 13

Relations between Periods

In the last chapter, we established different descriptions for the space of
1-periods. We now turn to their relations.

13.1. Kontsevich’s Period Conjecture

There is a short list of obvious relations.

(A) Bilinearity: Let X be a variety over Q, Y ⊂ X a closed subvariety

and i ∈ N0. For all σ1, σ2 ∈ Hsing
i (X,Y ;Q), ω1, ω2 ∈ H i

dR(X,Y )∨,

µ1, µ2 ∈ Q, λ1, λ2 ∈ Q, we have

∫
µ1σ1+µ2σ2

(λ1ω1 + λ2ω2) = ∑
i,j=1,2

µiλj ∫
σi
ωj .

(B) Functoriality: Let f ∶ (X,Y ) → (X ′, Y ′) be a morphism of pairs

of Q-varieties and i ∈ N0. For all σ ∈ Hsing
i (X,Y ;Q) and ω′ ∈

H i
dR(X ′, Y ′), we have

∫
σ
f∗ω′ = ∫

f∗σ
ω′.

(C) Boundary maps: Let X ⊃ Y ⊃ Z be subvarieties and i ∈ N0. For all

σ ∈Hsing
i+1 (X,Y ;Q) and ω ∈H i

dR(Y,Z), we have

∫
∂σ
ω = ∫

σ
∂ω

where ∂ denotes the boundary maps H i
dR(Y,Z) → H i+1

dR (X,Y ) on

de Rham cohomology and Hsing
i+1 (X,Y ;Q) → H i

sing(Y,Z;Q) on sin-
gular homology, respectively.

To state the Period Conjecture we recall from Definition 12.2 the set of
i-periods P i ⊂ C. Let Peff = ⋃∞i=0P

i be the set of effective cohomological

periods and P = Peff[π−1] the period algebra.

Conjecture 13.1 (Period conjecture, Kontsevich [Kon99]). All Q-
linear relations between elements of P are induced by the above relations.

Remark 13.2. (1) In the abstract formalism of Chapter 7 this is

the Period Conjecture for the diagram Pairseff for k = Q, see Defi-
nition A.1.

109
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(2) A close look shows that Conjecture 13.1 is not identical to the
conjecture originally formulated by Kontsevich in [Kon99]. He
was only considering smooth varieties X and divisors with normal
crossings Y . We refer to the discussion in [HMS17, Remark 13.1.8]
for the precise connection. The version above implies that Spec(P)
is a torsor under the motivic Galois group of Q, a result due to Nori.
It was first formulated in [Kon99, Theorem 6]. A complete proof
can be found in [HMS17, Theorem 13.1.4].

(3) By the Künneth formula, products of periods are in fact periods of
products of varieties. Hence the above conjecture also says some-
thing about algebraic relations between periods and, indeed, it is
equivalent to a Grothendieck style version of the Period Conjecture.
For a complete discussion, see [HMS17, Section 13.2]. We do not
deal with the latter because we are interested in the set P1, which
is not closed under multiplication.

Theorem 13.3 (Period conjecture for P1). The Period Conjecture is
true for the subset P1. More explicitly, the following equivalent statements
hold true:

(1) All relations between periods of 1-motives are induced by bilinearity
and functoriality of 1-motives.

(2) All relations between periods of curve type are induced by bilinear-
ity and functoriality of pairs (C,D) → (C ′,D′) with C,C ′ smooth
affine curves and D,D′ finite sets of points of C and C ′, respec-
tively.

(3) All relations between periods in cohomological degree at most 1 are
induced by the relations (A), (B), (C).

Remark 13.4. This theorem does not mention Nori motives. In contrast
to Section 12, we have not been able to eliminate them from the proofs, at
least not without disproportionate effort.

Motivic Proof of Theorem 13.3. Assertion (1) is precisely the state-
ment of Theorem 9.10. Hence it remains to show the equivalence with the
others. Here we rely significantly on the results of Appendix A.

By Theorem A.7 the category 1−MotQ is equivalent to d1MM
eff
Nori(Q,Q).

This category has a description as the diagram category of the diagram of
pairs (C,D) with C a smooth affine curve and D a finite set of points on
D. By the general results of [HMS17, Theorem 8.4.22] this implies that all
relations are induced by bilinearity and functoriality for the edges of the di-
agram, i.e. functoriality for pairs. This is the implication from Assertion (1)
to Assertion (2).

The proof of Proposition 12.5 shows that all elements in P1 can be
related to periods of curve type using only the operations (A), (B), (C).
Hence Assertion (2) implies Assertion (3).
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In order to show the implication from Assertion (3) to Assertion (1), we

apply Theorem A.7 and replace 1−MotQ by the equivalent d1MM
eff
Nori(Q,Q).

Every object M in the latter category is a subquotient of an object of the
form H i(X,Y ) for i ≤ 1. Theorem A.7 even shows that it suffices to take
i = 1 and X a curve. The functoriality relation for periods of Nori mo-
tives identifies the periods of M with the periods of H i(X,Y ) for i ≤ 1.
The relations (B) and (C) are special cases of the functoriality relation for
Nori-1-motives. This finishes the proof. �

We come back to the category of Nori-1-motives and its realisations as
discussed in Section 12.4.

Theorem 13.5 (Fullness). The three natural functors f1, f2, f3 on 1−MotQ

1−MotQ
≃ // d1MM

eff
Nori(Q,Q) �

� f1 //
v�

f2

))

q�

f3

""

MMNori(Q,Q)

��
MHSQ

��
(Q,Q)−Vect

are fully faithful with image closed under subquotients.

Proof. It suffices to consider the total functor f3. Composition of f3

with the anti-equivalence with 1−MotQ is simply ⋅ ○ V . Therefore it suffices

to consider V ∶ 1−MotQ → (Q,Q)−Vect. This functor is fully faithful by

Theorem 9.14 �

Remark 13.6. We gave a direct proof for MHSQ earlier, see Proposi-

tion 8.17. Both arguments rely on the Analytic Subgroup Theorem applied
to the graph of a morphism, but applied in a different way.

13.2. The Case of Curves

We turn now to the case of curves, which is of particular interest. We
begin with some motivating discussion with historical background. Then we
turn to the Period Conjecture for curves. One of the highlights is a precise
criterium for a sum of periods of a single differential to be algebraic.

13.2.1. Motivating Examples. In his book on transcendental num-
bers [Sie49] Siegel mentioned several problems which were not accessible at
the time. He wrote (see loc. cit. p. 97)

All our transcendence proofs made essential use of the fact that the prob-
lem can be reduced to the proof of a property of entire functions. This is the
reason why the known methods do not work for elliptic integrals of the third
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kind and not even for integrals of the third kind in the still simpler fact of
curves of genus 0. For instance, it is not known whether the number

∫
1

0

dx

1 + x3
=

1

3
(log 2 +

π
√

3
)

is irrational.
Integrals of this form along not necessarily closed paths are what we

call incomplete periods of the third kind on P1. As it turned out such
integrals are not only irrational but even transcendental as follows from
Baker’s work on linear forms in logarithms. Indeed one deduces from the
inhomogeneous case of Baker’s theorem about linear forms in logarithms of
algebraic numbers that the numbers 1, log 2 and π = −i log(−1) are linearly
independent over Q. Strictly speaking this is not a transcendence result
but a result on linear independence of incomplete periods of the third kind
in the case of a curve of genus 0. However the transcendence of log 2 and
π = −i log(−1) is an immediate consequence.

A. van der Poorten, see [VdP71] considered a more general complete
and also incomplete period of the third kind on a curve of genus 0. In this
case a differential ξ of the third kind takes the form

ξ =
P (x)

Q(x)
dx

where P (x) and Q(x) are polynomials. He considers a path γ ∶ [0,1] → P1

along which the differential form is defined and which satisfies γ(0), γ(1) ∈
P1(Q). We write α1, . . . , αn for the zeroes of Q and for r1, . . . , rn the residues
at the poles of the differential form ξ. Then he deduces again from the
inhomogeneous version of Baker’s theorem on linear forms in logarithms
that ∫γ ξ is algebraic if and only

∫
γ
(
n

∑
k=1

rk
x − αk

) dx = 0.

This follows from taking the partial fraction decomposition

P (x)

Q(x)
dx = dF (x) +

n

∑
k=1

rk
x − αk

dx.

and integrating along γ.
In Theorem 13.9 below we will give a generalisation of van der Poorten’s

result to curves of any genus. In particular van der Poorten’s Theorem
is a special case of our result. Furthermore in the case of positive genus
this includes abelian integrals of the third kind and proves transcendence of
complete and incomplete periods.

An even older example was pointed out by Arnol’d in [Arn90]. He
gives a reference to a letter of Leibniz to Huygens, dated 10

20 April 1691.
In this letter Leibniz formulated the problem of transcendence of the areas
of segments cut off from an algebraic curve, defined by an equation with



13.2. THE CASE OF CURVES 113

rational coefficients, by straight lines with algebraic coefficients (see [Arn90,
p. 93, footnote]). In [Arn90, p. 105] Arnol’d reformulated this problem
turning it into modern language: an abelian integral along an algebraic
curve with rational (algebraic) coefficients taken between limits which are
rational (algebraic) numbers is generally a transcendental number. Again
Theorem 13.9 below gives the solution to Leibniz’ problem. We refer to
[Wüs12] for a more detailed discussion of the example.

As Arnol’d pointed out the problem is also very interesting from a his-
torical point of view, in so far as it was previously believed that transcen-
dence theory developed in the nineteenth century with Liouville, Hermite
and others. The document of Leibniz, however, shows that already in the
seventeenth century the concept of transcendence of numbers was present.

13.2.2. The Period Conjecture for Curves.

Theorem 13.7. Let C be a smooth curve over Q with generalised Jaco-
bian J(C), D ⊂ C a finite set of Q-points with group of divisors of degree
0 supported in D denoted L = Z[D]0. Then all relations between periods of
H1(C,D) are induced by bilinearity and morphisms between subquotients of
sums of the 1-motive [L→ J(C)].

Proof. By Lemma 12.9, the periods of H1(C,D) agree with the periods
of the 1-motive as described in the theorem. We then apply Theorem 9.10.

�

Remark 13.8. Note that this version of the Period Conjecture does not
rely on the higher theory of geometric or Nori motives — only 1-motives are
used. This version is actually a lot more useful in computations.

We now turn from relations between periods to the question of tran-
scendence of periods of differential forms. It suffices to consider the case
of a smooth projective curve C. With a rational function f ∈ Q(C)∗ we
associate a meromorphic differential form ω = df . We also choose a path γ
in Can which avoids the singularities of f and has endpoints with beginning
and end point in C(Q). Then

∫
γ
ω = f(γ(1)) − f(γ(0)) ∈ Q.

This is essentially the only way to produce algebraic periods from meromor-
phic differential forms as the following theorem shows.

Theorem 13.9 (Transcendence of periods). Let C be a smooth projective

curve over Q and ω a meromorphic differential form defined over Q. Let
σ = ∑ni=1 aiγi where γi ∶ [0,1] → C for i = 1, . . . , n are differentiable paths
avoiding the poles of ω and ai ∈ Z. We assume that ∂σ has support in
C(Q). In this situation the period

α = ∫
σ
ω.



114 13. RELATIONS BETWEEN PERIODS

is algebraic if and only if ω is the sum of an exact form with no extra poles
and a form with vanishing period.

Remark 13.10. The theorem includes famous cases like the transcen-
dence of π, logα (for α algebraic) and periods and quasi-periods of elliptic
curves. Forms of the first, second and third kind are allowed.

Proof. Let C○ ⊂ C be an affine curve such that ω is holomorphic on C○.
LetD ⊂ C○ be the set of starting and end points of the paths γ1, . . . , γn. Then
α can be considered as a period of H1(C○,D). We introduce the generalised
Jacobian G = J(C○) and fix an embedding C○ → G. This translates α into
a period of the 1-motive M = [Z[D]0 → G] by viewing [ω] ∈H1

dR(C○,D) as

an element of V ∨
dR(M) and [σ] ∈Hsing

1 (C○,D;Q) as an element of Vsing(M).
By Theorem 9.11 the algebraicity of the period implies that ω can be written
as φ+ψ such that ∫σ ψ = 0 and that the image of φ in VdR(G)∨ =H1

dR(G) ≅

H1
dR(C○) is zero. As C○ is affine, this means that the differential form

φ ∈ Ω1(C○) is exact with poles only in C ∖C○.
This finishes the proof except when ω ∈ Ω1(C). It remains to show that

φ is not only exact but has no poles. This requires an extra argument that
we give in Proposition 13.11 below. �

Proposition 13.11. Let C be a smooth projective curve over Q, ω ∈
Ω1(C), σ a linear combination of paths with endpoints in C(Q). If ∫σ ω is
algebraic, then it is zero.

Proof. Let M = [Z[D]0 → J(C)] be as in the proof of Theorem 13.9.
We consider σ ∈ Vsing(M) as an element of Lie(M ♮)C via the inclusion

Vsing(M) ⊂ Lie(M ♮)C. By construction M ♮ is a vector extension of J(C)

and by assumption ω is in the image of coLie(J(C)) → coLie(M ♮) . Hence
the period α only depends on the image σ̄ of σ in Lie(J(C))C. We now
consider the connected algebraic group G = J(C) ×Ga and apply the An-
alytic Subgroup Theorem 6.2 to the point u = (σ̄,1) ∈ Lie(G)an and to
(ω,αdt) ∈ coLie(G). The theorem gives a short exact sequence

0→H → G
π
Ð→ G/H → 0

such that u is in the image of Lie(H)an and (ω,αdt) in the image of
coLie(G/H) under π∗. As G is the product of an abelian variety and Ga,
there are only two possibilities for H: it is either an abelian subvariety of
J(C) or a product of an abelian subvariety B with Ga. In the first case,
the inclusion H → G factors via J(C). This contradict the shape of u. In
the second case G/H = J(C)/B is an abelian variety. The subgroup Ga is
contained in the kernel of π and so π∗coLie(G/H) ⊂ coLie(J(C)) × 0, i.e.
αdt = 0. This gives α = 0 as we wanted to prove. �

Remark 13.12. This proof goes back to the original formulation of the
Analytic Subgroup Theorem. It is not enough to apply the transcendence
criterion in Theorem 9.11. The additional input here is the Hodge filtration
on VdR(M).
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Corollary 13.13. Let C, ω and σ be as in Theorem 13.9. If in addition
ω ∈ Ω1(C) or if the divisor ∂σ = ∑ni=1 aiγi(1) −∑

n
i=1 aiγi(0) vanishes, then

the period α is either transcendental or zero.

Proof. Suppose that α = ∫σ ω is algebraic. By the theorem there is a
decomposition ω = df+φ such that ∫σ φ = 0. If the boundary divisor vanishes,
then

∫
σ
df = ∫

∂σ
f = 0

for all f . If ω ∈ Ω1(C), then f is in O(C), which gives df = 0. In both cases
α = ∫σ φ = 0. �

Masser pointed out to us that most of Theorem 13.9 has an elementary
reduction to the case of closed cycles announced in [Wüs87]. We explain a
variant of his argument.

Proof. Let σ be as in the theorem such that ∂σ ≠ 0. We write ∂σ =

∑mi=1 biPi with Pi ∈ C(Q) and non-vanishing bi. By assumption m ≥ 1. Let

Q be in the polar locus of ω. (If ω ∈ Ω1(C) pick any Q ∈ C(Q) not on any
of the γi([0,1]).)

We consider the divisors DN = NQ−P2−⋅ ⋅ ⋅−Pm and D′
N =DN −P1. For

big enough N , Riemann-Roch gives l(DN) = l(D′
N) − 1. Let f ∈ L(D′

N) ∖
L(DN). This is a rational function with a pole only in Q and a zero in
P2, . . . , Pm, but not in P1. As a consequence we obtain

∫
σ
df =

m

∑
i=1

bif(Pi) = b1f(P1) ≠ 0.

The function f can be normalised such that the value of the integral is 1. If
α = ∫σ ω is algebraic, then it is equal to ∫σ d(αf). Introduce φ = ω − d(αf).
By construction, ∫σ φ = 0, as we wanted to show.

As in the original proof of Theorem 13.9 the argument does not allow
to control the poles of df in the special case where ω is holomorphic. We
deduced this case directly from the Analytic Subgroup Theorem in Propo-
sition 13.11. �

Remark 13.14. Qualitatively, we are in a situation very similar to the
case of closed cycles: understanding algebraicity of periods requires under-
standing vanishing of periods.

We come back to the case where σ = γ is a single non-closed path later
in Corollary 14.22 under the simplifying assumption that J(C) is simple.





CHAPTER 14

Vanishing of Periods of Curves

In this chapter, we translate our results obtained so far to the classical
language and turn to the subtle question when periods integrals on curves
vanish. In this chapter let C be a smooth projective curve over Q and
ω ∈ Ω1

Q(C) a rational algebraic differential form on C.

14.1. Classical Periods

We come back to the classical terminology.

Definition 14.1. We say that ω is

(1) exact if it is of the form ω = df for some f ∈ Q(C)∗,
(2) of the first kind if it does not have poles, i.e. f ∈ Ω1(C);
(3) of the second kind if the residues of ω are zero;
(4) of the third kind if it has at most simple poles.

This terminology goes back to the early 19th century, when Legendre
studied elliptic integrals. We refer to [Wel17, Chapter 7] for historical
comments.

Following this definition, exact forms are of the second kind and differ-
ential forms of the first kind are also of the second and third kind.

Lemma 14.2. Every differential form can be written in the form

ω = ω2 + ω3

with ω2 of the second kind and ω3 of the third kind.

Proof. Let ω be an arbitrary meromorphic differential form. The sum
of its residues is 0. For example by [GH78, Lemma p. 233] there is a form
ω3 of the third kind with the same poles and residues as ω. Then ω2 = ω−ω3

has the desired property. �

Definition 14.3. A complex number is called classical period if it is of
the form

∫
σ
ω

where σ = ∑ni=1 aiγi is a formal Z-linear combination of C∞-paths avoiding

the singularities of ω and with endpoints in C(Q). We say that it is

(1) simple if n = 1 (integral over a single path),
(2) complete if all γi are closed;

117
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(3) of the first, second or third kind in the case that ω is of the first,
second or third kind, respectively.

Note that the classical periods are algebraic for exact forms. A cycle σ =

∑ni=1 aiγi with closed γi can be seen in the abelianisation of the fundamental
group. In consequence, we may replace σ by a homologous closed path
defining the same period number. Accordingly all complete periods are
simple. However, not all incomplete periods are simple.

We get back the same periods that we considered earlier.

Lemma 14.4. The set of all classical periods agrees with the set of coho-
mological periods P1.

Proof. By Corollary 12.7, all elements of P1 are classical periods. Con-
versely, let C○ be the complement of the set of poles of ω, D ⊂ C○(Q) the
finite set of end points of the γi. Then ω defines a class [ω] ∈ H1

dR(C○,D)

and σ defines a class [σ] ∈ Hsing
1 (C○,an,D;Z). The integral computes the

period pairing

∫
σ
ω = ⟨[ω], [σ]⟩

and makes our classical period a cohomological period. �

Our next step is to find necessary and sufficient conditions for a differ-
ential form ω and a cycle σ to satisfy

∫
σ
ω = 0.

Here are some examples:

Example 14.5. (1) Let γ be contractible in the complement of the
set of poles of ω. Then the period vanishes by the Monodromy
Theorem.

(2) Let ω be of the third kind with poles in Q1, . . . ,Qm. For every
i = 1, . . . ,m let γi be the positively oriented boundary of a small
disc in Can centered at Qi. Then

∫
∑γi

ω =
m

∑
i=1

resQiω = 0

by the Residue Theorem.
(3) To give an example for vanishing of periods we take the elliptic

curve E given by y2 = x3 + 1 and define a curve C by y2 = x6 + 1.
Sending (x, y) to (x2, y) defines a morphism π ∶ C → E of degree
2. The genus of E is 1 and the genus of C is 2. The morphism π
induces a homomorphism

π∗ ∶H1(C,Z)→H1(E,Z).

We take ω ∈H0(E,Ω1(E)) and γ ∈ kerπ∗ and obtain

∫
γ
π∗ω = ∫

π∗γ
ω = ∫

0
ω = 0.
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This shows that there are non-trivial examples for vanishing.

We may ask how complete this list is. This question will be addressed
by first passing from paths and differential forms to homology and de Rham
cohomology and then to 1-motives.

14.2. The Setting

The following data is fixed for the rest of the chapter:

Notation 14.6. ● C denotes a smooth projective curve over Q
with base point P0 ∈ C(Q).

● ω ∈ Ω1
Q(C) is a meromorphic differential form.

● S = {Q1, . . . ,Qm} stands for the set of poles of ω with non-trivial
residue and S′ = {R1, . . . ,Rk} the set of poles with vanishing residue;
without loss of generality P0 ∉ S ∪ S

′.
● C○ ⊂ C signifies the complement of the set of poles S = {Q1, . . . ,Qm}

of ω.
● J(C) and J(C○) are the (generalised) Jacobians of C and C○ (in

the sense of Chapter 4.5) with embeddings ν○ ∶ C○ → J(C○), ν ∶
C → J(C) via P ↦ P − P0.

● σ = ∑ni=1 aiγi is a formal Z-linear combination of C∞-paths γi ∶

[0,1]→ C○,an ∖ S′ with endpoints defined over Q.
● Let D ⊂ C○ ∖ S′ be a set of points such that the divisor ∂σ has

support on D. We define r = ∣D∣ − 1 if D ≠ ∅ and r = 0 if D = ∅.
● α = ∫σ ω is the period of σ and ω.

In Section 5.3 we introduced the map I which assigns to a path or more
generally a chain in a complex Lie group, an element of the complex Lie
algebra. Given a path γ ∶ [0,1]→ C○,an, we put

l○(γ) = I(ν○ ○ γ) ∈ Lie(J(C○))an.

The operator l○ has the property that

exp(l○(γ)) = γ(1) − γ(0) =∶ P (γ) ∈ J(C○)an,

hence should be seen as a choice of logarithm. We extend l○ linearly to

l○(σ) ∶=
n

∑
i=1

ail
○(γi).

Then

exp(l○(σ)) =
n

∑
i=1

aiP (γi) =∶ P (σ).

Let l(σ) be the image of l○(σ) in Lie(J(C)an).
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14.2.1. Homological Interpretation. Obviously the chain σ defines

an element [σ] ∈ Hsing
1 (C○,D;Z). Less obviously, the rational differential

form ω defines an element [ω] of H1
dR(C○,D), see Section C.1 (1). The

argument is well-known for D = ∅. We explain the construction in general.
If S ∪ S′ = ∅, then ω is in Ω1(C) ⊂ H1

dR(C,D) and there is nothing to
show. If S∪S′ ≠ ∅, the curve C○∖S′ is affine and ω∣C○∖S′ ∈ Ω1(C○∖S′) defines
an element of H1

dR(C○ ∖S′,D). By definition of S′, the cohomology class is
in the kernel of the residue map H1

dR(C○ ∖ S′,D) → H0(S′)(−1), making it
even an element of H1

dR(C○,D). We carry out the cocycle computation for
[ω] in the representation of Lemma 3.20.

Recall that S′ = {R1, . . . ,Rk} and choose fi ∈ Q(C)∗ such that the
principal part of dfi at Ri coincides with the principal part of ω in Ri. Such
a function exists because the residue of ω vanishes. We write ωi = ω − dfi
and Ui ⊂ C for the complement of the set of poles of ωi. By construction
Ri ∈ Ui. We introduce also U0 = C○ ∖ S′, ω0 = ω, f0 = 0. Then U =
{U0, . . . , Uk} is an open cover of C○. The differential form ω defines a cocycle
in H1

dR(C○ ∖S′,D;U) given by the tuple ω = (ω∣Ui∖S′ ,0,0) cohomologous to
the cocycle

ω − ∂f = ((ω − dfi)i, (−fj + fi)i,j , (fi∣D)i)

where i, j run through 0 to k. It defines a cocycle in H1
dR(C○,D;U) as

required.

Lemma 14.7. The class [ω] ∈ H1
dR(C○,D) is zero if and only if ω can

be represented as ω = df for a function f ∈ Q(C)∗ which is regular in D and
vanishes there. Moreover, every element of H1

dR(C○,D) is of the form [ω]
such that the set of poles of ω with non-trivial residue is contained in S.

Proof. If [ω] = 0, then by Lemma 3.20 the cocycle is of the form

ω − ∂f = ((dgi)i, (gj − gi)ij , (−gi∣Di)i)

for (gi)i ∈∏iO(Ui), in particular,

−fj + fi = gj − gi ∈ O(Ui ∩Uj)

for all i, j. This implies that the collection of functions fi + gi ∈ O(Ui) glues
to a global function F ∈ O(C○). Moreover,

ω − dfi = dgi ∈ Ω1(Ui)

for all i and hence dF = ω. We then have

ω − ∂f ∼ (dF ∣Ui ,0,0) ∼ (0,0, F ∣Di).

Note that the gi and hence also F are unique up to an additive constant.
The triviality of [ω] implies that F ∣D is constant. By adjusting the constant,
we get ω = dF with F ∣D = 0 as claimed.

It remains to prove that every class in H1
dR(C○,D) can be represented

by a differential form. It is well-known that every element of H1
dR(C) is
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represented by a differential form of the second kind, see [GH78, p. 459].
The sequence

H1
dR(C)→H1

dR(C○)
res
Ð→H0

dR(S)(−1)→H0
dR(C)(−1)

for relative cohomology is exact. For every element of H0
dR(S) ≅ Qm

sum-

ming up to 0 in H0
dR(C) ≅ Q, there is by [GH78, Lemma p. 233] a form ω3

of the third kind with these residues.
This shows that given a class c ∈ H1

dR(C○), there exists ω3 of the third
kind with the same residues. The difference c − [ω3] is in the image of
H1

dR(C) and represented by a differential form of the second kind.
The sequence

H0
dR(D)→H1

dR(C○,D)→H1
dR(C○)

for the relative cohomology is also exact. Elements of H0
dR(D) are functions

f ∶D → Q. Let U0 ⊂ C
○ be an open affine subset containing D and U0, . . . , Un

an affine cover of C○. The image of f in H1
dR(C○,D,U) is the cocycle

(0,0, f ∣Di).

As U0 is affine, the closed immersion D ⊂ U0 induces a surjection O(U0)↠

O(D). We choose a lift f̃ ∈ O(U0) of f . The class of df̃ agrees with the
class of (0,0, f ∣Di) from above.

Given a class c in H1
dR(C○,D) we have shown that there is a form ω with

correct residues such that the images of c and [ω] ∈H1
dR(C○,D) in H1

dR(C○)
agree. Their difference is in the image of H0

dR(D) and can be represented
by an exact differential form. �

Our integral computes the period pairing

⟨ , ⟩ ∶Hsing
1 (C○,D) ×H1

dR(C○,D)→ C

(σ,ω)↦ α = ⟨[σ], [ω]⟩ = ∫
σ
ω

It vanishes if [σ] = 0 or [ω] = 0. We are interested in the cases where this
condition is not satisfied.

Definition 14.8. We say that the period pairing has non-trivial van-
ishing for (ω,σ) if α = ⟨[ω], [σ]⟩ = 0 but [ω] ≠ 0, [σ] ≠ 0.

We denote by N ⊂Hsing
1 (C○,D)×H1

dR(C○,D) the set of pairs ([σ], [ω])

such that ⟨[σ], [ω]⟩ = 0. We further denote by N i ⊂ N for i = 1,2,3 the sub-
set where the differential form is of first, second and third kind, respectively.

Our aim is to determine under which conditions for σ and ω the pairing
has non-trivial vanishing.

Note that D ↪ D′ implies an inclusion Hsing
1 (C○,D) ↪ Hsing

1 (C○,D′)
as well as a surjection H1

dR(C○,D′)↠ H1
dR(C○,D). Hence vanishing of [σ]

does not depend on D′, but vanishing of [ω] does.
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14.2.2. Translation to Motives. Properties of the periods ofH1(C○,D)
depend on the 1-motive

M = [L→ J(C○)]

where L = Z[D]0 is the group of divisors of degree 0 supported on D. It has
rank r. By Lemma 12.9, more precisely equation (13) of its proof, we have

Vsing(M) ≅Hsing
1 (C○,D;Q), V ∨

dR(M) ≅H1
dR(C○,D)

and

α = ∫
σ
ω

can be viewed as a period of M .

Lemma 14.9. The class of σ is given by

[σ] = (∂σ, l○(σ)) ∈ Tsing(M) ⊂ L × Lie(J(C○))an.

Both components have image P (σ) in J(C○).

Proof. This is precisely the identification of classes in Hsing
1 (C○,D;Z)

with Tsing(M) in Lemma C.5. Classes in relative homology are represented
by pairs in S∞0 (D) ⊕ S∞1 (C○), in our case by (∂σ, σ). The first summand
maps to L, the second maps a path γ to I(γ) and hence σ to l○(σ). �

The key for determining the spaces N and N i is Theorem 9.7. It shows
that non-trivial vanishing of α is caused by a non-trivial exact sequence

(14) 0→M1
ι
Ð→M

p
Ð→M2 → 0

with Mi = [Li → Gi], with [σ] = ι∗σ1 induced from M1, σ1 ∈ Vsing(M1), and
[ω] = p∗ω2 induced from M2, ω2 ∈ V

∨
dR(M).

To analyse this explicitly we go through the various types of differential
forms. If J(C) is not simple, there are many such sequences and there is
a lot of non-trivial vanishing, see Example 14.5(3). The general case seems
to be very complicated, so that we restrict our discussion to the case where
J(C) is simple for the rest of this chapter.

Remark 14.10. By construction, [σ] is induced from the submotive

M ′ = [Zσ → J(C○)] ⊂M

where Zσ is the sublattice of L generated by the element ∂σ.

We go now through the different cases, that is forms of the first kind,
of the second and of the third kind, one after the other and analyse the
conditions for non-trivial vanishing. This analysis is carried out by going
through the different possible shapes of M1. We finally specialise to the
easier case where, in addition, σ is simple.
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14.3. Forms of the First Kind

A form of the first kind is a non-zero global differential form ω ∈H0(C,Ω1
C)

without pole. This implies that we use C○ = C. As already mentioned before
we assume for simplicity that J(C) is simple. The class of ω in H1

dR(C,D)

and even in H1
dR(C) is non-zero because differential forms of the first kind

cannot be exact.
In this situation the relevant motive is M = [Z[D]0 → J(C)] and for

applying Theorem 9.7 we have to determine the possible submotives M1.
Since J(C) is assumed to be simple they have either the shape [L1 → J(C)]
or [L1 → 0] for some L1 ⊂ Z[D]0 with quotient M2. We discuss the two
cases separately.

14.3.1. The Case M1 = [L1 → J(C)]. According to Theorem 9.7, the
form [ω] is a pull-back from M2, hence its pull-back to [L1 → J(C)] is zero,
as is its restriction to [0→ J(C)]. This is equivalent to [ω] = 0 in H1

dR(C).
Since it is a differential form of the first kind this implies ω = 0. This case
does not occur.

14.3.2. The Case M1 = [L1 → 0] ⊂ M . Since we are in the category
of iso-1-motives the structure map L1 → J(C) is isogenous to the zero map
and σ = ι∗(σ1). This means that

P (σ) = exp(l(σ)) =∑
i

aiP (γi) ∈ J(C)

is a torsion point, a necessary, but not sufficient condition for non-trivial
vanishing. This property has to be translated from a statement about J(C)
into a vanishing condition in the Lie algebra. The point is that the expo-
nential map is not injective. This requires a more careful analysis of the
situation.

Let n ≥ 1 be chosen such that the image of L in J(C) under the com-

position L→ J(C)
[n]∗
ÐÐ→ J(C) is torsion free. The kernel of the composition

has a complement L0 with the property that the structure map of the mod-
ified motive M0 = [L0 → J(C)] (with structure map the restriction from the
structure map of M) is injective. The map [n] ∶ M → M factors through
a morphism of 1-motives M → M0 with M1 contained in its kernel. It is
multiplication by n on the abelian part. The image of σ is zero in Tsing(M0)
and hence [n]∗l(σ) = 0 in Lie(J(C)an). The map [n]∗ is multiplication by
n on Lie(J(C))an, hence [n]∗l(σ) = 0 implies l(σ) = 0. We conclude that
non-trivial vanishing for (σ,ω) implies that l(σ) = 0, no condition on ω. In
this situation this means that N 1 ⊂ ker(l) ×H0(C,Ω1).

From l(σ) = 0 we conclude in particular that P (σ) = 0, not only a torsion
point. This implies that the points P (γi) are linearly dependent in J(C).

Conversely, suppose that σ satisfies l(σ) = 0. We introduce the submo-
tive M1 = [Zσ → 0] with Zσ the sublattice of L = Z[D]0 generated by ∂σ.
We map L1 = Z to L = Z[D]0 by mapping 1 to ∑ni=1 ai(γi(1)−γi(0)) ∈ Z[D]0
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and introduce the motive M1 = [L1 → 0] → [L → J(C)an]. It is well-defined
because P (σ) = 0 and by construction [σ] is induced from a class on M1.

Morphism of motives induce a morphism of Hodge structures, in par-
ticular it respects the Hodge filtration. By assumption ω is in H0(C,Ω1) =
F 1H1

dR(C,D) = F 1V ∨
dR(M). As a consequence the pull-back of ω to M1 is

in F 1V ∨
dR(M1) = 0 and this gives

∫
σ
ω = ∫

ι∗σ1

ω = ∫
σ1

ι∗ω = ∫
σ1

0 = 0.

We conclude that every pair (σ,ω) with l(σ) = 0 is contained in N 1. In
other words we have N 1 ⊃ ker(l) ×H0(C,Ω1) and we conclude that

N 1 = ker(l) ×H0(C,Ω1).

Summary 14.11. Let J(C) be simple and ω of the first kind. Then there
is non-trivial vanishing for (ω,σ) if and only if l(σ) = 0. We have

N 1 = ker(l) ×H0(C,Ω1).

This implies in particular that the I(γi) are Z-linearly dependent in Lie(J(C)an).
A fortiori the points P (γi) are linearly dependent in J(C).

Remark 14.12. The condition looks like trivial vanishing because the

class of σ vanishes inHsing
1 (C,Q)—but it is not. The class [σ] ∈Hsing

1 (C,D;Q)

is not in the image of Hsing
1 (C,Q) under the natural restriction. Rather there

is a projection Hsing
1 (C,D;Q)→Hsing

1 (C;Q) defined only via the Jacobian.
The image of [σ] under this projection vanishes.

14.4. Forms of the Second Kind

Assume that ω has a non-empty set of poles but no residues. We have
[ω] ∈ H1

dR(C,D) and again M = [Z[D]0 → J(C)]. Assume that J(C) is
simple and that we have non-trivial vanishing induced from a sub-object
M1 ⊂ [L → J(C)]. As before we assume that the period pairing has non-
trivial vanishing for (ω,σ). This implies that σ = ι∗σ1 and ω = p∗ω2.

14.4.1. The Case M1 = [L1 → J(C)]. With the same argument as
in Section 14.3.1 for ω of the first kind, the assumption on M1 leads to
ω = df with f not identically zero on D. In the cocycle computation in
Section 14.2.1 we can choose all fi as f and represent the class of [ω] in
H1

dR(C,D) by
ω − ∂f = (0,0, f ∣D).

The period integral is in this case

α = ⟨[ω], [σ]⟩ = ⟨f, ∂σ⟩

=
n

∑
i=1

ai(f(γi(1)) − f(γi(0))).

This is a Q-linear combination of algebraic numbers. It can vanish, and will
in examples.
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Example 14.13. (1) Let E ⊂ P2 be the elliptic curve given by

Y 2Z =X(X −Z)(X − λZ)

for λ ∈ Q ∖ {0,1} be an elliptic curve. Consider ω = dX. This is
an exact form. For every x ∈ Q there is a point Px in E(Q) with
X(Px) = x ∈ Q. We choose x1, . . . , xr ∈ Q. There are coefficients
ai ∈ Q such that ∑aixi = 0. Let γi be a path from P0 to Pxi and
define σ = ∑aiγi. Then ∫σ dX = 0.

(2) Let C be a smooth projective curve and f ∈ Q(C) not constant.

We view f as a non-constant morphism f ∶ C → P1. For x ∈ P1(Q),
we choose y0, y1 ∈ f−1(x), a path γ from y0 to y1 in Can. Then

∫γ df = f(y1) − f(y0) = x − x = 0.

Summary 14.14. If ω = df and J(C) is simple, then there is non-trivial
vanishing if and only if

(15) ⟨f, ∂σ⟩ = 0.

If σ = γ is simple, this is equivalent to f(γ(1)) = f(γ(0)).

14.4.2. The Case M1 = [L1 → 0]. The same arguments as for periods
of the first kind imply l(σ) = 0. We show that this is no longer sufficient,
but there is also a condition on ω. Let Zσ = Z ∂σ ⊂ Z[D]0 be generated
by the divisor ∂σ. It is contained in L1 because l(σ) = 0. Without loss of
generality, we take L1 = Zσ.

The condition on ω to be of the form p∗ω2 is equivalent to

(16) ι∗([ω]) = [ω]∣[Zσ→0] = 0.

Remark 14.15. For any ω of the second kind, the restriction [ω]∣[Zσ→0]
is the restriction of an element of V ∨

dR([L→ 0]). Translated back to cohomol-
ogy of curves this means that it is in the image of H0

dR(D) in H1
dR(C○,D).

In Lemma 14.7 the classes in the image are represented by exact differential
forms df . In consequence, we find for every every ω of the second kind an
exact form df such that ω − df satisfies the vanishing condition. The same
is true for the converse: there is always an exact form df such that the
vanishing condition is not satisfied.

Summary 14.16. Let J(C) be simple. Assume that ω is of the second
kind, but neither of the first kind nor exact. Then there is non-trivial van-
ishing if and only if l(σ) = 0 as well as equation (16) holds.

14.5. Forms of the Third Kind

Assume that ω is of the third kind but not of the first kind. This means
that it has a non-empty set of poles, all of them simple. In the language
of Hodge theory this makes it a differential form with log poles. Here we
take M = [L → J(C○)] as our motive. The form ω defines a class [ω]
in H1

dR(C○,D). It is always non-zero. Hence the period integral vanishes
trivially if [σ] = 0. For simplicity, we assume that J(C) is simple.
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14.5.1. The Case M1 = [L1 → 0]. As in the other cases, non-trivial
vanishing implies l○(σ) = 0 in Lie(J(C○)an). We have ω ∈H0(C,Ω1(log(S))) =
F 1H1

dR(C○,D), so the discussion is identical to the case of differentials of
the first kind. The condition is also sufficient. This means that l○(σ) = 0
implies non-trivial vanishing.

14.5.2. The Case M1 = [L1 → T1] ⊂ [L → J(C○)]. Here the quotient
is M2 = [L2 → J(C○)/T1]. As σ is in the image of Vsing(M1), it takes the
form σ = ι∗(σ1) for some σ1 ∈ Vsing(M1). We deduce that p∗σ = p∗ι∗σ1 = 0
and the same is true for its image in Vsing([L2 → J(C)]), a quotient of M2.
As in the case of differentials of the first kind this implies that the image
l(σ) = I(νσ) of l○(σ) = I(ν○σ) in Lie(J(C))an vanishes. This means that
σ is closed and l○(σ) is in Lie(T )an where T is the torus part of J(C○)
with character group Z[S]0. In other words, σ defines a homology class of
T an. We choose small enough simple loops εj in Lie(J(C○,an)) around the
singularities Qj ∈ S with l○(εi) in Lie(T )an and introduce ε = ∑nσ(Qi)εi,
with nσ(Qi) the winding number of σ around Qi. The homology classes of
ε and σ agree. As a consequence l○(σ) − l○(ε) vanishes in Lie(J(C○,an)).
It follows that there is non-trivial vanishing for σ − ε by the case treated
in Section 14.5.1. This shows that non-trivial vanishing for σ is equivalent
to non-trivial vanishing for ε. The period integral is up to the factor 2πi a
linear combination of the residues:

(17) ∫
σ
ω =

m

∑
i=1

2πi nσ(Qi)ResQi(ω).

There are cases where this vanishes, but there are also cases where it does
not vanish.

Example 14.17. Choose a small disc ∆i around eachQi and let γi = ∂∆i.
Then ∫∑γi ω = 0 by Cauchy’s Residue Theorem.

14.5.3. The Remaining Case. Finally we have to consider M1 =
[L1 → G1] where the abelian part of G1 is J(C). This implies that G2 = T2

is a torus. Let L2 be a direct complement of L1 in L. Then M2 = [L2 → T2]
By the exact sequence (14) the pull-back of [ω] = p∗ω2 to M1 and further

to V ∨
dR(G1) vanishes. If G1 = J(C○), then ω would be exact, but ω is of

the third kind and cannot be exact. This case does not occur. Therefore
G1 ⊊ J(C○) and the quotient J(C○)/G1 ≅ T2 is a non-trivial torus. The
torus of J(C○) decomposes up to isogeny as T1 × T2 where T1 is the torus
part of G1. From the discussion above we get homomorphisms J(C○) → T2

and J(C○) → G1 and as a consequence an isogeny J(C○) ≅ G1 × T2. The
classifying map X(G1×T2)→ J(C○) is the product of the classifying maps of
X(T1) → J(C○) and X(T2) → 0. In particular, X(T )Q ≅ X(T1)Q ×X(T2)Q
and the classifying map X(T )→ J(C)∨ vanishes on X(T2)Q.

By Lemma 4.24, the classifying map for the semi-abelian variety J(C○)
is

X(T ) = Z[S]0 → J(C) ≅ J(C)∨.
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The vanishing of the classifying map on X(T2) means that there is a linear
dependence between the Qi in J(C)Q ≅ J(C)∨Q.

The exact sequence (14) gives that the image of [σ] ∈Hsing
1 (C○,D;Z) in

Hsing
1 (T2,D2;Z) is zero, where D2 is the image of D under the composition

of the maps C○ → J(C○) → T2. Moreover, [ω] has to be a pull-back from
V ∨

dR([L2 → T2]). In the identification

V ∨
dR(T ) =X(T )Q ≅ Q[S]0

the restriction of ω to V ∨
dR(T ) is mapped to the divisor res(ω) given by

∑ resQi(ω)Qi ∈ Q[S]0.

This gives the necessary condition, namely that res(ω) is in X(T2)Q, or in

other words that ∑ resQi(ω)Qi = 0 in J(C)Q.

Remark 14.18. The residue condition is necessary, but not sufficient.
It is preserved by adding a form ω1 of the first kind, but the restriction
to V ∨

dR(G1) changes. The restriction is in F 1V ∨
dR(G1) = F 1V ∨

dR(M1) and
vanishes in V ∨

dR(T1). Hence it is induced by a form of the first kind. There
is always a choice of ω1 of the first kind such that ω−ω1 satisfies the condition
for non-trivial vanishing. Conversely, there is also ω1 such that it does not.

Summary 14.19. Let J(C) be simple, and ω a differential form of the
third kind. Then there is non-trivial vanishing for (ω,σ) if and only if one
of the following conditions is satisfied:

(1) l○(σ) = 0 in Lie(J(C○))an;
(2) l(σ) in Lie(J(C))an vanishes and the linear combination in (17)

vanishes;
(3) res(ω) sums up to 0 in J(C)Q, and there is a quotient-motive [L′ →

T ′] of [L → J(C○)] with T ′ ⊂ T and X(T ′) ⊂ ker(X(T ) → J(C))
such that
● res(ω) is in X(T ′)Q,

● [σ] vanishes in Hsing
1 (T ′,D′;Z) where D′ denotes the image

of D under the maps C○ → J(C○)→ T ′,
● [ω] is a pull-back of some ω′ ∈ V ∨

dR([L′ → T ′]).

14.6. Arbitrary Differential Forms

So far we have worked out necessary and sufficient conditions for non-
trivial vanishing for differential forms of the first, second or third kind. We
now turn to the general case and write ω = ω2 + ω3 with ω2 of the second
and ω3 of the third kind. Such a decomposition exists by Lemma 14.2.

Theorem 14.20. Assume that J(C) is simple and that we have non-
trivial vanishing of ∫σ ω. Then one of the following conditions is satisfied:

(1) l○(σ) = 0 and the vanishing condition of (16) holds for ω2;
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(2) l(σ) = 0 and for ε as in Section 14.5.2 we have

∫
ε
ω3 =

m

∑
i=1

2πinε(Qi)resQi(ω2) = 0

as well as the vanishing condition of (16) for ω2 and σ − ε;
(3) ω = df is exact and the vanishing condition of (15) holds;
(4) the divisor res(ω) ∶ Qi ↦ resQiω on S sums up to 0 in J(C)Q, and

there is a quotient-motive [L′ → T ′] of [L → J(C○)] with T ′ ⊂ T
and X(T ′) ⊂ ker(X(T )→ J(C)) such that
● res(ω) is in X(T ′)Q,

● [σ] vanishes in Hsing
1 (T ′,D′;Z) where D′ denotes the image

of D under the maps C○ → J(C○)→ T ′,
● [ω] is a pull-back of some ω′ ∈ V ∨

dR([L′ → T ′]).
In this case, ω3 and ω2 can be chosen such that both period integrals
vanish.

The proof is not fully self-contained, but partially relies on the structural
insights of Part 4.

Proof. As discussed in Section 14.2.2, non-trivial vanishing is caused
by a short exact sequence

0→M1
ι
Ð→ [Z[D]0 → J(C○)]

p
Ð→M2 → 0.

We go through the possible cases for M1.
Case M1 = [L1 → 0] In this case l○(σ) = 0. By the case of differential

forms of the third kind the condition implies ∫σ ω3 = 0 by Summary 14.19 (1)
and the period integral for ω depends only on ω2. We get the vanishing
condition formulated for periods of the second kind.

Case M1 = [L1 → T1] The discussion starts as for forms of the third
kind. We get l(σ) = 0. We find ε consisting of closed loops around the
poles such that l○(σ) = l○(ε). The vanishing of period gives an equality for
the periods of σ − ε (which only depends on ω2 by the previous case) and
the period l○(ε) (which only depends on ω3 and is a linear combination of
residues as in the case of periods of the third kind). A sufficient condition
of vanishing is the vanishing of both summands.

For the converse, consider ∫ε ω3 = − ∫σ−ε ω2. The left hand side is a

Q-multiple of 2πi whereas the right hand side is an incomplete period of
the second kind. By the structural results of Chapter 16 this makes them
linearly independent. Both have to vanish. To see this, we view the left
hand side as a Tate period in the terminology of Chapter 16. The right
hand side is an incomplete period of the second kind. By the second part
of the linear independence result of Theorem 16.2 both are periods of the
first kind with respect to closed paths. By the first linear independence
statement of the same theorem, they are in turn linearly independent from
Tate periods. This settles the claim.
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Case M1 = [L1 → G1] with abelian part of G1 equal to J(C) We
have G1 ⊂ J(C○) with quotient a torus T2. The pull-back of ω to G1 is
trivial. If G1 = J(C

○), then this makes T2 = 0 and ω exact, a case we have
treated in Summary 14.14. It gives item (3).

If T2 ≠ 0, then the argument and the conclusion are the same as for forms
of the third kind in Section 14.5.3. By Remark 14.18, we can choose a form
ω1 such that there ∫σ(ω3 − ω1) vanishes. Hence there is also vanishing for
ω2 + ω1. �

14.7. Vanishing of Simple Periods

The discussion simplifies for simple periods. If σ = γ, then P (γ) = 0
means that the path is closed. The conditions l(γ) = 0 and l○(γ) = 0 mean
that γ is closed and contractible in J(Can) and even J(C○)an. In many
cases this amounts to trivial vanishing: the homology class of [γ] vanishes.
We specialise Theorem 14.20 to the case of simple periods.

Corollary 14.21. Let J(C) be simple, assume that σ = γ is simple
and choose an arbitrary rational differential form ω. There is non-trivial
vanishing of the period ∫γ ω if and only if one of the following condition
holds:

(1) ω = df is exact and γ links different points in a fibre of f ∶ C○ → A1;
(2) γ is a closed path, homologous to 0 in Can and winding around the

poles of ω in such a way that the linear combination of the residues
in (17) vanishes.

(3) Condition (4) of Theorem 14.20 is satisfied.

Using our algebraicity criterion, this immediately translates into a strong
transcendence result for simple periods. For closed γ, we have already seen
in Corollary 13.13 that a period is algebraic if and only if it is vanishes.
Together with the above corollary, we now have a complete picture. We are
also ready to treat the case of a non-closed path.

Corollary 14.22. Let C be a smooth proper curve over Q with simple
Jacobian and ω ∈ Ω1

Q(C) a non-zero rational differential form on C. Let γ

be a non-closed path on Can avoiding the poles of ω and with endpoints in
C(Q). Then

∫
γ
ω

is transcendental, unless one of the following conditions is satisfied:

(1) ω = df is exact;
(2) ω = df + φ with φ of the third kind such that Condition (4) of

Theorem 14.20 is satisfied for φ or, equivalently, for ω.

Proof. Assume that the period is algebraic. By Theorem 13.9 the form
ω can be written as ω = df + φ with

∫
γ
φ = 0.
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We apply what we have learned about the vanishing of simple periods to φ.
As γ is not closed, its homology class does not vanish. If [φ] = 0, then φ is
exact. This makes ω exact.

It remains to go through the cases of non-trivial vanishing in Theo-
rem 14.20. The cases (1) and (2) are excluded because γ is not closed. The
case (3) gives back exact φ.

If condition ((4) of Theorem 14.20 is satisfied for φ, then φ = φ2 + φ3

with φ2, φ3 or the second and third kind, respectively, and

∫
γ
φ2 = ∫

γ
φ3 = 0.

By Summary 14.14 and Summary 14.16 this can only happen if either φ2 is
exact or l(γ) = 0. The latter is excluded because γ is not closed. The van-
ishing for φ3 is characterised in Summary 14.19. This is the same condition
as in Theorem 14.20. �
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Dimensions of period spaces





CHAPTER 15

Dimension Computations: an Estimate

The aim of this chapter is to establish a formula for the dimension of
of P⟨M⟩ for any 1-motive M . We have already given a qualitative char-
acterisation in Corollary 9.12. This characterisation is now turned into an
explicit quantitative version. Explicit formulas are deduced in terms of the
constituents of the motive M . This will first happen under certain simpli-
fying assumptions. The general case will be considered in the subsequent
chapters.

15.1. Set-up and Terminology

Throughout this chapter let M = [L → G] be in 1−MotQ and let 0 →

T → G → A → 0 be its decomposition into torus and abelian part. In the
arguments below we reserve the letter B for simple abelian varieties and
define E(B) = End(B)Q. This is a division algebra of dimension e(B) =
dimQE(B). Let

A ≅ Bn1
1 × . . . ⋅ ⋅ ⋅ ×Bnm

m

be the isotypical decomposition of A in the category of abelian varieties up
to isogeny. As usual, we write X(T ) for the character lattice of T . If X
is a lattice, we denote by T (X) the corresponding torus. In Section 4.3 we
have shown that the datum of a semi-abelian variety G is equivalent to the
datum of a homomorphism X(T )→ A∨(Q)Q.

To establish a formulation of a dimension formula for the period space
becomes rather complicated because there is a non-trivial interplay between
the action of Hom(A,B) on L and the action of Hom(A∨,B∨) on the char-
acter group of T . The problems disappear in special cases listed below.

Definition 15.1. We say that the motive M is

(1) of Baker type if A = 0;
(2) of semi-abelian type if L = 0;
(3) of second kind if T = 0;

(4) reduced if L→ A(Q)Q and X(T )→ A∨(Q)Q are injective;
(5) saturated if it is reduced, and End(M)Q = End(A)Q.

To state our dimension formulas we need some notation.

Notation 15.2. (1) Put δ(M) = dimQP⟨M⟩.

133
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(2) We define the L-rank rkB(L,M) of M with respect to B as the
E(B)-dimension of the vector space

Hom(A,B) ⋅L ∶=∑p(L) ⊂ B(Q)Q

for p ∈ Hom(A,B)Q, where p(L) denotes the image of L under the

composition of the maps L→ A(Q) and p.
(3) The endomorphism algebra E(B) acts on B∨ from the right as

(b∨, e) ↦ e∨(b∨) where e∨ signifies the isogeny dual to e. The T -
rank rkB(T,M) of M with respect to B is the E(B)-dimension of
the right-E(B)-vector space

Hom(A∨,B∨)Q ⋅X(T ) ∶=∑p(X(T )) ⊂ B∨(Q)Q

for p ∈ Hom(A∨,B∨)Q, where p(X(T )) denotes the image of X(T )

under the composition of X(T )→ A∨(Q)Q with p.
(4) If [L → T ] is a 1-motive of Baker type, we define the L-rank

rkGm(L,M) of M in Gm as the rank of

Hom(T,Gm) ⋅L ∶= ∑
χ∈X(T )

χ(L)

where χ(L) denotes the image of L under the composition of L→ T
and χ ∈X(T ).

The main theorem of the present chapter is an estimate from above of
the dimension δ(M). In many important cases the inequality is even an
equality.

Theorem 15.3 (Dimension estimate). Let M be a 1-motive with con-
stituents as above.

(1) If M is the product of a motive of Baker type M0 and a saturated
motive M1, then

δ(M) = δ(T ) +∑
B

4g(B)2

e(B)
+ δ(L)

+∑
B

(2g(B)rkB(T,M) + 2g(B)rkB(L,M))

+ rkGm(L0,M0) +∑
B

e(B)g(B)rkB(L,M)rkB(L,M),

where all sums are taken over all simple factors of A, without mul-
tiplicities and g(B) = dimB, e(B) = dimQ End(B)Q.

(2) For every 1-motive M , there is a product M̃ of a motive of Baker

type and a saturated motive such that P⟨M⟩ ⊂ P⟨M̃⟩. In particular,

δ(M) ≤ δ(M̃).

The construction is effective (see Lemma 15.22 and Lemma 15.24)

in a way that the abelian parts of M and M̃ agree and that rkB(L,M) =

rkB(L̃, M̃), rkB(T,M) = rkB(T̃ , M̃).
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(3) We have δ(L) = 1 if L ≠ 0 and δ(L) = 0 if L = 0, and δ(T ) = 1 if
T ≠ 0 and δ(T ) = 0 if T = 0.

The proof will be given at the end of the chapter. The following ex-
ample illustrates the discrepancy between the upper bound and the actual
dimension.

Example 15.4. We take for A an elliptic curve E, a non-trivial extension
0→ Gm → G→ E → 0 which is non-split up to isogeny and P ∈ G(Q) a point
whose image in E(Q) is not torsion. We consider the 1-motive

M = [Z→ G]

with 1 mapping to P . This is the same motive already considered in Chap-
ter 11.

Case 1.: Assume that E does not have complex multiplication, i.e.
End(E) = Z. In this case B = E, g = 1, e = e(E) = 1, δ(T ) = 1,
δ(L) = 1. Moreover, rkE(T,M) = 1 and rkE(L,M) = 1. The motive
is saturated and the theorem predicts

δ(M) = 11.

This has already been verified directly in Proposition 11.1.
Case 2.: In the case that E has CM by an imaginary quadratic ex-

tension Q(τ) of Q, i.e. End(E)Q = Q(τ), there is again a single
B = E. In this situation, we have m = 1, g = 1, e = e(E) = 2,
δ(T ) = 1, δ(L) = 1, rkE(L,M) = 1 and rkE(T,M) = 1. Going

through the construction of M̃ before Lemma 15.24, we see that
we choose the Baker part M0 as 0 and M̃ =M1 as saturated. The
theorem gives

δ(M) ≤ 10.

By Proposition 11.3, we actually have

δ(M) = 9.

Remark 15.5. The example shows that we do not have equality in gen-
eral. We will refine the formula in Theorem 17.8 and completely explicitly
in Theorem 17.15.

15.1.1. Outline of the Proof. In a first and key step in Section 15.2,
we shall prove the dimension formula in the saturated case. In order to
simplify notation, we shall first handle in Section 15.2.1 the case where the
abelian part of M is simple, then upgrade to general A.

Section 15.3 is an interlude: we go through the easier cases of Baker
motives, motives of semi-abelian type, motives of the second kind and es-
tablish the dimension formulas. None of these need to be saturated, but the
formulas can be reduced to the saturated case by constructing a saturation
with the same periods and ranks.

Finally, in Section 15.4, we wrap up and establish the dimension es-
timate announced in Theorem 15.3. The case when M is a product of a
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Baker motive and a saturated motive follows easily with the same type of
arguments as in Section 15.2 in the saturated and in Section 15.3 in the
Baker case. Starting with a general motive M , we construct a product of a
Baker motive M0 and a saturated motive M1 such that the space of periods
of M are contained in the space of periods of M0 ×M1. Here we use the
ingredients that we identified already in the special case.

15.2. The Saturated Case

We start under restrictive assumptions. The saturated case is easier,
but enough to deduce all structural properties of the period space.

15.2.1. Saturated and Simple. Assume that M is reduced and sat-
urated (see Definition 15.1) with A = B simple of dimension g. We denote
by e the Q-dimension of E = End(B)Q. Then Vsing(M) is an E-module and
we choose an E-basis. To be precise, the inclusions

[0→ T ] ⊂ [0→ G]→ [L→ G]

induce injections
Vsing(T )↪ Vsing(G)↪ Vsing(M),

read as inclusions from now on. Let σ = (σ1, . . . , σr) be an E-basis of
Vsing(T ). We write r = ∣σ∣ and use the same conventions for all other pieces.
Extend σ by γ to an E-basis of Vsing(G) and by λ to an E-basis of Vsing(M).

In the dual setting, we choose Q-bases (sic!) of V ∨
dR(M) along the inclu-

sions
V ∨

dR(L)↪ V ∨
dR([L→ B])↪ V ∨

dR(M).

To be precise let u be a basis of V ∨
dR([L→ 0]). We extend u by ω to a basis

of V ∨
dR([L→ A]) and the resulting basis by ξ to a basis of V ∨

dR(M). Note
that V ∨

dR(M) is also a right E-module, but we are not using this structure
at this point.

Our discussion shows that the full period matrix of M with respect to
these bases has the shape

(18)
⎛
⎜
⎝

ξ(σ) ξ(γ) ξ(λ))
ω(σ) ω(γ) ω(λ)
u(σ) u(γ) u(λ)

⎞
⎟
⎠
=
⎛
⎜
⎝

ξ(σ) ξ(γ) ξ(λ)
0 ω(γ) ω(λ)
0 0 u(λ)

⎞
⎟
⎠
.

Lemma 15.6. The entries of the matrix above generate P⟨M⟩ over Q.
The elements of ξ(σ) are Q-multiples of 2πi. The elements of u(λ) are
Q-multiples of 1. These are the only Q-linear relations between the entries.

Proof. Let α1, . . . , αe be a Q-basis of E. Then the tuples

(αjσ,αjγ,αjλ∣j = 1, . . . , e)

are a Q-basis of Vsing(M), hence the period space is generated by the com-

plex numbers ξi(αj∗σk), . . . over Q. The transformation formula for integrals
gives

ξi(αj∗σk) = (α∗j ξi)(σk).
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The class α∗j ξi is a Q-linear combination of the basis vectors:

α∗j ξi =∑ bsξs +∑ ctωt + drur

which implies in accordance with the shape of the period matrix that

ξi(αj∗σk) =∑ bsξs(σk).

Similar computations also apply to rest of the basis and we see that the
period space has Q-generators as claimed.

Now assume that there is a Q-linear relation between the periods. It has
the shape

(19) ∑a ξ(σ) +∑ b ξ(γ) +∑ c ξ(λ) +∑dω(γ) +∑ f ω(λ) +∑ gu(λ) = 0.

Here a is a matrix and the first term stands for the sum ∑i,j aijξi(σj). The
same convention is used in all other places.

We define Tσ = G∣σ∣
m , Mσ = [0→ Tσ], Gγ = G

∣γ∣, Mγ = [0→ Gγ],Mλ =M
∣λ∣

and consider the product

M̃ =Mσ ×Mγ ×Mλ.

It can be written in the form M̃ = [L̃→ G̃] with group part

0→ T̃ → G̃→ Ã→ 0

for a torus T̃ and an abelian variety Ã. We fix elements

γ̃ = (σ, γ, λ) ∈ Vsing(M̃),

ω̃ = (φ,ψ,ϑ) ∈ V ∨
dR(M̃)

where

φ = (∑aijξj ∣i = 1, . . . , ∣σ∣) ,

ψ = (∑ bijξj +∑dijωj ∣i = 1, . . . , ∣γ∣) ,

ϑ = (∑ cijξj +∑ fijωj +∑ gijuj ∣i = 1, . . . , ∣l∣)

using the coefficients of the relation (19). Then the Q-linear relation (19)
between the periods implies

ω̃(γ̃) = 0.

By the Subgroup Theorem for 1-motives, there is a short exact sequence

0→M1
ν
Ð→ M̃

p
Ð→M2 → 0

with M1 = [L1 → G1], M2 = [L2 → G2] and γ̃ = ν∗γ1, ω̃ = p∗ω2.
We analyse M2. In a first step we show that A2 = 0. Otherwise assume

A2 ≠ 0. Then there is a non-zero homomorphism A2 → B. The composition
Ã = B∣γ∣ ×B∣λ∣ → A2 → B is given by a tuple (n,m) of elements of E. We

determine the image L̄2 of L2 in B. We have L̄2 = ∑
∣λ∣
i=1mi(L) because

the lattice part of Mγ is 0. The image is contained in L because L is E-
stable by saturatedness and L → G → B injective. Here we use that M ,
being saturated, is reduced. We have L̄2 ≠ 0 if there is some mi ≠ 0. In
this case mi is a unit in a division algebra, making the map mi ∶ L → L
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bijective. This implies mi(L) = L and then also L̄2 = L. The image of γ̃

under p̄ ∶ M̃ →M2 → [L→ B] is equal to

∑njγj +∑miλi ∈ Vsing([L→ B]).

It vanishes because p∗γ̃ = 0. The image of (γ, λ) is an E-basis of Vsing([L→
B]). Therefore mi = 0 for all i and nj = 0 for all j. This contradicts the

non-triviality of Ã→ A2 → B. Hence A2 = 0.
Consider the composition of the inclusion of one of the factors [0 → G]

of Mγ into M̃ with p. It has the shape

[0→ G]→ [L2 → T2].

If this map was non-zero, its group component would induce a splitting of
G. This is not possible because we have assumed that M is reduced. The
map has to vanish. As a consequence the pull-back of ω̃ = p∗ω2 to G is equal
to

ω̃∣G = (p∗ω2)∣G = 0∗ω2 = 0.

This means ω̃∣Mγ = 0. In other words, ψ = 0. By linear independence of the
ξj and ωj this implies b = 0, d = 0.

We repeat the argument with the inclusion of one of the factors M of
Mλ into M̃ . It has the shape

[L→ G]→ [L2 → T2]

As M is reduced, there is no non-trivial map from G to a torus, so the
group component of this map vanishes. The image of L in T2 has to be 0
and therefore its image in L2 is in K2 = ker(L2 → T2). This is true for all

factors M of Mλ, hence the surjection L∣λ∣ → L2 factors via K2 ⊆ L2. This
implies that L2 = K2 and the structure map L2 → T2 of M2 vanishes. The
composition

Mλ → M̃
p
Ð→M2 ≅ [L2 → 0] × [0→ T2]

has image in [L2 → 0], hence the restriction ϑ of ω̃ = p∗ω2 to V ∨
dR(Mλ) takes

values in V ∨
dR([L∣λ∣ → 0]). By linear independence this implies c = 0, f = 0.

This shows that our linear relation has been reduced to

∑aξ(σ) +∑ gu(λ) = 0.

The terms in the first sum are periods of Tate type, hence multiples of 2πi.
The terms in the second sum are periods of algebraic type, hence multiples
of 1. This reduces the proof to the transcendence of π. This was shown in
Corollary 10.1. �

Corollary 15.7. Let M be saturated with A = B simple. Then

δ(M) = δ(T ) +
4g2

e
+ δ(L)

+ 2g rkB(G,M) + 2g rkB(L,M) + e rkB(G,M)rkB(L,M).

In particular, the formula in Theorem 15.3 holds.
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Proof. We read off the numbers from the basis constructed in the proof
of the previous lemma. Accordingly we have

∣σ∣ = rkB(G,M), ∣γ∣ = 2g/e, ∣λ∣ = rkB(L,M),

∣ξ∣ = e rkB(G,M), ∣ω∣ = 2g, ∣u∣ = e rkB(L,M).

�

15.2.2. General Saturated Motives. Assume M is saturated, but
A not necessarily simple. We have (up to isogeny)

A ≅ Bn1
1 × ⋅ ⋅ ⋅ ×Bnm

m

with simple, non-isogenous Bi. Hence

End(A)Q ≅Mn1(E1) × ⋅ ⋅ ⋅ ×Mnm(Em)

with non-isomorphic division algebras Ei.

Lemma 15.8. There is a natural decomposition

M ≅Mn1
1 × ⋅ ⋅ ⋅ ×Mnm

m

with each Mi saturated with abelian part given by Bi.

Proof. Let pi ∈ End(A) be the projector onto Bni
i . This gives a de-

composition of the identity 1 = ∑pi into idempotents.
Since M is saturated, we have End(A)Q = End(M), which implies that

pi can also be viewed as a projector on M . We obtain a decomposition

(20) M ≅
m

⊕
i=1

pi(M).

into isotypical components.
We now replace M by one of the factors pi(M) and drop the index i. The

abelian part is now Bn. We write E = End(B)Q. Let q1, . . . , qn ∈ Mn(E)
be the projections to the components. This gives a decomposition of the
identity 1 = q1 + ⋯ + qn into idempotents qi. As End(M) = Mn(E) this
induces a decomposition

M ≅
n

⊕
i=1

qi(M).

The permutation matrices in Mn(E) induce isomorphisms between the fac-
tors qi(M), hence we even have

M ≅ (M ′)n

with abelian part of M ′ given by B. �

Proposition 15.9. Consider a saturated 1-motive M . Then the formula
in Theorem 15.3 holds.
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Proof. By Lemma 15.8 we are dealing with the motive

Mn1
1 × ⋅ ⋅ ⋅ ×Mnm

m

with Mi as there. We have

P(Mni
i ) = P(Mi)

hence we may without loss of generality assume ni = 1 for i ≥ 1. We now
repeat the proof of Lemma 15.6 and Corollary 15.7 with an extra index
i. �

15.3. Special Cases

The formulas which we have derived so far simplify if one of the con-
stituents of M vanishes. Indeed, what we have shown so far is enough to
give not only estimates but complete formulas. It is worth spelling this out
explicitly in the different cases.

15.3.1. Motives of Baker Type. The simplest case is the Baker Mo-
tive M = [L→ T ]. Here we get back Baker’s famous theorem on linear forms
in logarithms in its qualitative version.

Proposition 15.10 (Baker’s Theorem). Let M = [L → T ] be of Baker
type. Then

δ(M) = δ(T ) + δ(L) + rkGm(L,M).

Proof. Let K be the kernel of L→ T and L̄ the image (up to torsion).
Consider the motivic decomposition [L → T ] = [K → 0] ⊕ [L̄ → T ] with
L̄→ T injective. The periods of [L̄→ T ] agree with the periods of

M ′ = [∑
χ

χ(L)/Torsion→ Gm]

with χ running through Hom(T,Gm) as in the definition of rkGm(L,M).
The structure map of M ′ is injective. The torus part has rank rkGm(L,T ).
We now choose bases and proceed as in the proof of Lemma 15.6 and Corol-
lary 15.7, only simpler. �

Remark 15.11. This is precisely Baker’s theorem, see [Bak66], see also
[BW07, Theorem 2.3]. It can also be deduced directly from the Analytic
Subgroup Theorem in its original form applied to a group of the form V ×T
for a vector group of dimension equal to the rank of L. We can even take
Ga × T . This the line of proof used in [BW07].

15.3.2. The Semi-abelian Case. In this section, let M = [0 → G]
be of semi-abelian type. The dimension computation will be achieved by
reduction to the saturated case. For later use, we record the construction of
this saturation. As always, G is an extension of an abelian variety A by a
torus T . It is determined by

X(T )→ A∨(Q)Q = Ext1(A,Gm)Q,

see Corollary 4.11.
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Definition 15.12. Let G be a semi-abelian variety, X = X(T ) the
character group and E = End(A)Q. We denote by Xred the image of X in

A∨(Q)Q and by Gred the semi-abelian variety defined by Xred → A∨(Q)Q.
Define

Xsat =XredE ⊂ A∨(Q)Q

and Gsat as the semi-abelian variety given by Xsat ⊂ A∨(Q)Q.

The projection X →Xred induces a natural injection

Gred → G

and the inclusion Xred ⊂XredE corresponds to a projection

Gsat → Gred.

By construction End(Gsat) = E. Our first Lemma relates the spaces P(G)
and P(Gsat).

Lemma 15.13. Let G be semi-abelian. Then

P⟨G⟩ = P⟨Gsat⟩ +P⟨T ⟩.

Proof. Let X ′ = ker(X → A∨(Q)Q) and T ′ the torus corresponding to
X ′. Up to isogeny this gives a decomposition

G ≅ T ′ ×Gred

and deduce that
P⟨G⟩ = P⟨T ′⟩ +P⟨Gred⟩.

The first space P⟨T ′⟩ is included in P⟨Gred⟩ unless Xred = 0. In this excep-
tional case, Gred = Gsat = A and the statement is true. In consequence it
suffices to work in the case G = Gred and we claim that

P⟨G⟩ = P⟨Gsat⟩.

The surjection Gsat → G induces an inclusion P⟨G⟩ ⊂ P⟨Gsat⟩ of the period
spaces. We now establish the converse inclusion.

Let e be a Q-basis of E = End(A). (As in Section 15.2.1 we write e for
the array e1, . . . , ed etc.)

Let σ be a Q-basis of Vsing(T ) and extend the basis by γ to a Q-basis of
Vsing(G). We write e∗σ for the set ei∗σj for ei ∈ e, lj ∈ l. The tuple (e∗σ, γ)
is a system of generators of Vsing(Gsat).

Let ω be Q-basis of V ∨
dR(A) and extend the basis by ξ to a Q-basis of

V ∨
dR(G). We denote by e∗ξ the array e∗i ξj for ei ∈ e, uj ∈ u. Then the array

(ω, e∗ξ) is a system of generators of V ∨
dR(Gsat).

All periods of the form e∗ξ(e∗σ) are multiples of 2πi, hence contained
in ξ(σ). The same holds trivially for the periods of the form ω(γ). Consider
a period

e∗i ξj(γk) = ξj(ei∗γk)

The element ei∗γk ∈ Vsing(Msat) is a Q-linear combination of the generators
(e∗σ, γ), hence the period ξj(ei∗γk) is a linear combination of periods of the
form ξ(e∗σ) and ξ(γ), both contained in P⟨G⟩. �
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We are now ready for our dimension computation.

Proposition 15.14. Let G be semi-abelian, an extension of the abelian
variety A by a torus T . Then

δ(M) = δ(T ) +∑
B

1

e(B)
4g(B)2 +∑

B

2g(B) rkB(T,M),

where the sum is taken over over the simple factors of A, without multiplic-
ities.

Proof. First we consider the exceptional case G ≅ T ×A, up to isogeny.
We have

δ(A) =∑
B

1

e(B)
4g(B)2

as a very special case of Proposition 15.9. In the product case the claim is
the linear independence of the spaces P⟨T ⟩ and P⟨A⟩. This follows from
the dimension formula in the case of a non-trivial extension (or its proof),
so we may ignore the exception.

In the non-split case, P⟨T ⟩ ⊂ P⟨Gsat⟩ and Lemma 15.13 gives

δ(G) = δ(Gsat).

In the saturated case, the formula is as special instance of Proposition 15.9.
�

Remark 15.15. The statement does not mention 1-motives, and indeed,
the formula can be deduced directly from the Analytic Subgroup Theorem
in its original form.

15.3.3. Motives of the Second Kind. Assume that M = [L→ A] is
of second kind. We argue as in the semi-abelian case.

Definition 15.16. Let M = [L → A] be of second kind, and E =

End(A)Q. We denote by Lred be the image of L in A(Q)Q and put Mred =
[Lred → A]. Define

Lsat = ELred ⊂ A(Q)Q
and write Msat for the motive [Lsat → A].

The projection L→ Lred induces a natural projection

M →Mred

and the inclusion Xred ⊂XredE corresponds to an inclusion

Msat →Mred.

By construction End(Msat) is E.

Lemma 15.17. Let M = [L→ A] be of the second kind. Then

P⟨M⟩ = P⟨Msat⟩ +P⟨L⟩.

Proof. Mutis mutandis, the argument is the same as in in the proof of
the semi-abelian case, for Lemma 15.13. �
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Proposition 15.18. Let [L→ A] be a 1-motive of the second kind.Then

δ(M) = δ(L) +∑
B

1

e(B)
4g(B)2 +∑

B

2g(B) rkB(L,M)

where the sum is taken over the simple factors of A, without multiplicities.

Proof. Mutis mutandis, the argument is the same as in the semi-
abelian case, Proposition 15.14 �

Remark 15.19. In contrast to the semi-abelian case, the argument here
uses the language of 1-motives. This can be avoided by considering the
vector group M ♮ directly. This is not surprising: after all the Analytic
Subgroup Theorem for 1-motives is a consequence of the Analytic Subgroup
Theorem in its original form.

There is an alternative argument for the proof: the Cartier dual of M =
[L → A] has the shape [0 → G∨] where G∨ is the semi-abelian variety
with abelian part A∨ and defined by the classifying homomorphism L →
(A∨)∨(Q)Q. The period spaces of M and G∨ have the same dimension.
Moreover, rkB(L,M) = rkB∨(T∨,G∨) so that the formulas for M and G∨

match.

15.4. Proof of the Dimension Estimate

Theorem 15.3 states a formula for δ(M) in the case of a product of a
motive of Baker type and a saturated motive. We have already handled each
factor separately. Looking a little more carefully at the proof will also give
the full result.

Proposition 15.20. Let M be a product of a Baker motive and a satu-
rated 1-motive. Then the dimension formula of Theorem 15.3 holds.

Proof. We have already established the case of saturated motives in
Proposition 15.9 and of motives of Baker type, see Proposition 15.10. With
the same argument as in the proof of Proposition 15.9, we may assume that
the saturated motive is of the form

M1 × ⋅ ⋅ ⋅ ×Mm

where the Mi have simple abelian part Bi and the Bi are pairwise non-
isogenous. The periods remain unchanged. As in the proof of Baker’s
theorem, we further may assume that the motive of Baker type is of the
form

M0 = [L→ Gm]

The periods and the ranks in the formula remain unchanged by this process.
Going through the argument in the proof of Proposition 15.9, but with

i = 0,1, . . . ,m instead of i = 1, . . . ,m proves the Proposition. �

Since the reduction of the proof of Theorem 15.3 to the case of Propo-
sition 15.20 is lengthy, we offer a short outline of the proof.
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Given a 1-motive M we want to find a 1-motive M̃ with the same abelian
part A such that E = End(A) operates on all of M̃ . The idea is to enlarge
both T and L by adding their E-translates. In the simplest case the motive
is u ∶ Z → A, which is made E-equivariant by replacing Z by End(A)u.
We already used this device in Definition 15.16. However, this needs first
to make M reduced before the procedure can be applied. If this has been
achieved, so that we are in the reduced case, we enlarge G to Gsat such
that E operates on Gsat. To this end, we have to choose a lift L → G to
L → Gsat, then enlarge L such that E operates. In some of the steps the
periods remain the same, in other steps, the space of periods is enlarged. In
each step the periods can be controlled.

To begin with, the first step is to construct in a canonical way a 1-motive
MBk of Baker type and non-canonically a reduced Mred such that

(21) P⟨M⟩ = P⟨Mred⟩ +P⟨MBk⟩.

This is done as follows: The composition L → G(Q)Q → A(Q)Q has
a kernel L′ and an image L′′. We have [L′′ → A] = [L → A]red with the
notation of Definition 15.16. As L′ → G factors via T , this defines a motive
of Baker type [L′ → T ].

Similarly X(T )→ A∨(Q) has a kernel X(T ′′) ⊂X(T ) (for some quotient
T → T ′′) and an image X(T ′) (for some subtorus T ′ ⊂ T ). As in Remark 4.15
it induces a canonical short exact sequence

0→ G′ → G→ T ′′ → 0

of semi-abelian groups. The group G′ coincides with Gred in accordance
with the notation of Definition 15.12.

With these data we define a Baker type motive by

MBk = [L′ → T ]⊕ [L→ T ′′].

We now choose splittings L ≅ L′ ×L′′ and X(T ) ≅X(T ′)×X(T ′′), inducing
G ≅ G′ × T ′′, all up to isogeny; see Remark 4.15. The composition of L′′ →
G with the projection G → G′ defines (uncanonically, depending on the
complement) a reduced motive

Mred = [L′′ → G′]

with the the L-rank and the T -rank of M only depending on Mred.

Remark 15.21. For later use, we point out the following: If a semi-
simple algebra E operates on M , then it will automatically act on MBk.
Moreover, Mred can be constructed such that E still operates. We only have
to choose the splittings of L and X(T ) equivariantly.

Lemma 15.22. There exists a decomposition of P(M) as

P⟨M⟩ = P⟨MBk⟩ +P⟨Mred⟩.

Proof. Both MBk and Mred are subquotients of M , hence their periods
are contained in P(M). It remains to check the opposite inclusion.
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From Remark 4.15 we know that G ≅ G′ × T ′′ with G′ reduced as a
1-motive. By composition with the projections, the map L → G induces
L→ G′ and L→ T ′′. The induced morphism

[L→ G]→ [L→ G′] × [L→ T ′′]

is injective, hence

P⟨M⟩ ⊂ P⟨[L→ G′]⟩ +P⟨[L→ T ′′]⟩.

In the second step, by definition of MBk, we have L ≅ L′ ×L′′ with L′′ → A
injective and L′ → G factoring via T . The map

[L′ → G′] × [L′′ → G′]→ [L→ G′]

is surjective, hence

P⟨[L→ G′]⟩ ⊂ P⟨[L′ → G′]⟩ +P⟨[L′′ → G′]⟩.

This is close to the shape we need, but not quite the same. We need to work
on the first summand. By assumption the map L′ → G factors via T and
hence L′ → G′ factors via T ′. This gives a well-defined morphism

[L′ → T ′] × [0→ G′]→ [L′ → G′]

which is surjective. Hence

P⟨[L′ → G′]⟩ ⊂ P⟨[L′ → T ′]⟩ +P⟨G′⟩.

Putting these inclusions of period spaces together we get

P⟨M⟩ ⊂ P⟨[L′ → T ]⟩ +P⟨[L′′ → G′⟩ +P⟨[L→ T ′′]⟩.

By definition the first and the last summand add up to P⟨MBk⟩ whereas the
middle term summand equals P⟨Mred⟩. �

Having finished the reduction step, we now consider the case where M
is reduced. We keep E = End(A)Q. Next we shall construct a motive
Msat = M0 ×M1 such that P⟨M⟩ ⊂ P⟨Msat⟩, M0 is of Baker type and M1

is saturated with End(M1) = E. To this end, we use Tsat, Gsat, Lsat and
Lsat → A such that the E-operation extends to Gsat and [Lsat → A], see
Definitions 15.12 and 15.16.

It remains to lift Lsat → A to a map Lsat → Gsat. We choose a lift of
L → G to a morphism L → Gsat. The image of L′ ∶= EL ⊂ Gsat(Q) in A(Q)
agrees with Lsat. By construction E operates on

M ′ = [L′ → Gsat].

However, M ′ is not necessarily reduced (and then saturated) because L′ →
Lsat is not necessarily injective. We put

M0 = (M ′)Bk, M1 = (M ′)red, Msat =M0 ×M1.

As pointed out in Remark 15.21, we can choose M ′
red such that E still

operates. This makes M1 saturated.
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Remark 15.23. The construction of Msat depends on the choice of a lift
of L→ G to L→ Gsat. We do not know how to do this in a canonical way.

Lemma 15.24. Let M be reduced, Msat =M0 ×M1 as constructed above.
Then M0 is of Baker type, M1 is saturated and

P⟨Msat⟩ ⊃ P⟨M⟩.

Proof. By definition, M0 is of Baker type and M1 reduced with E =
End(A) ⊂ End(M1) ⊂ End(A)Q, hence M1 is saturated.

By construction there is an injection [L → Gsat] → M ′ (with M ′ as in
the construction of Msat) and a surjection [L → Gsat] → M . Together this
gives the inclusion of period spaces

P⟨M⟩ ⊂ P⟨M ′⟩.

By Lemma 15.22 we also have

P⟨M ′⟩ ⊂ P⟨M ′
Bk ×M

′
red⟩ = P⟨Msat⟩.

�

Proof of Theorem 15.3. Part (1) is Proposition 15.20. Part (3) is
clear because all periods of [L → 0] are algebraic and all periods of T are
multiples of 2πi. It remains to prove (2). By the Lemmas 15.22 and 15.24
we have

P⟨M⟩ ⊂ P⟨MBk ×M0 ×M1⟩

with MBk and M0 of Baker type and M1 saturated with the same abelian
part as M . �



CHAPTER 16

Structure of the Period Space

It is not too difficult to determine the structure of the space of periods
in the general case by going back to its constituents. The inclusions

[0→ T ] ⊂ [0→ G] ⊂ [L→ G] =M

induce a filtration

Vsing(T )↪ Vsing(G)↪ Vsing(M).

and, from the dual point of view, a cofiltration

M = [L→ G]↠ [L→ A]↠ [L→ 0]

inducing a filtration

V ∨
dR(M)↩ V ∨

dR([L→ A])↩ V ∨
dR([L→ 0]).

Together, they introduce a bifiltration

P⟨T ⟩ �
� // P⟨G⟩ �

� // P⟨M⟩

P⟨A⟩ �
� //

?�

OO

P⟨[L→ A]⟩
?�

OO

P⟨[L→ 0]⟩
?�

OO

.

on P⟨M⟩. We introduce the notation (and terminology):

PTa(M) = P⟨T ⟩ (Tate periods)

P2(M) = P⟨A⟩ (2nd kind wrt closed paths)

Palg(M) = P⟨[L→ 0]⟩ (algebraic periods)

P3(M) = P⟨G⟩/(PTa(M) +P2(M)) (3rd kind wrt closed paths)

Pinc2(M) = P⟨[L→ A]⟩/(P2(M) +Palg(M)) (2nd kind wrt non-cl. paths)

Pinc3(M) = P⟨M⟩/(P3(M) +Pinc2(M)) (3rd kind wrt non-cl. paths)

If M is of Baker type (i.e. A = 0) we also use PBk(M) = Pinc3(M).
From the bifiltration scheme we see that for example that periods of the

third kind with respect to closed paths are only well-defined up to periods
of Tate type and periods of the second kind with respect to closed paths.

147
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Definition 16.1. In each of the cases ? = Ta,2,alg,3, inc2, inc3 we put

δ?(M) = dimQP?(M).

The dimensions of the various blocks will be determined one by one. By
adding up the δ?(M) we then get δ(M). This works because of the following
property:

Theorem 16.2. The spaces PTa(M), Palg(M) and P2(M) have mutu-
ally trivial intersection. Moreover,

P⟨G⟩ ∩P⟨[L→ A]⟩ = P⟨A⟩.

Proof. These are statements about linear independence. We actually
determined bases in the case of a product of a motive of Baker type and
a saturated motive in order to determine the dimensions. Also by Theo-
rem 15.3 we find the periods of M in the space of periods of a certain M̃ of
this special shape. The linear independence claims are simply a byproduct.

Alternatively, we can read off the claim from the dimension formulas
themselves (rather than their proof). We explain this in detail.

Consider the semi-simple motive

M ′ = [L→ 0] × [0→ T ] × [0→ A].

It is the product of a motive of Baker type and a saturated motive. Theo-
rem 15.3 gives

δ(M ′) = δ(T ) + δ(L) +∑
B

1

e(B)
4g(B)2 = δalg(M) + δTa(M) + δ2(M).

This means that the period spaces PTa(M), Palg(M), and P2(M) have
mutually trivial intersections.

To prove the second claim, we consider the motive

M ′′ = [L→ A] × [0→ G].

The first factor is of second kind, the second factor is of semi-abelian type
and we have computed the dimension of their period spaces in Proposi-
tion 15.14 and Proposition 15.18 as:

δ(G) = δ(T ) + δ(A) +∑
B

2g(B) rkB(T,M),

δ([L→ A] = δ(L) + δ(A) +∑
B

2g(B) rkB(L,M);

here we have used that rkB(L,M) = rkB(L,M ′′) and rkB(T,M) = rkB(T,M ′′).
On the other hand, combining Lemma 15.13 and Lemma 15.17 on the sat-
urations of motives of semi-abelian type or of the second kind, respectively,
we get

P⟨M ′′⟩ = P⟨M̃ ′′⟩

where

M̃ ′′ = T × [L→ 0] × [0→ Gsat] × [Lsat → A]
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with Gsat and Lsat as in Definition 15.12 and 15.16. This is a product of a
motive of Baker type and a saturated motive, hence we find the dimension
of its period space by Theorem 15.3 as

δ(M ′′) = δ(M̃ ′′)

= δ(T ) + δ(L) + δ(A) +∑
B

2g(B) rkB(T,M) +∑
B

2g(B) rkB(L,M)

Moreover, we know that the intersection of P⟨G⟩ and P⟨[L → A]⟩ contains
at least P⟨A⟩. For the numbers to match up, the intersection has to be
equal to P⟨A⟩ �

Remark 16.3. The language of 1-motives has proved useful in the proofs,
but it is compulsory for the structural results in the present chapter. The
structure of the period space is readily described in terms of the constituents
of the 1-motives, but not in terms of finitely generated subgroups of con-
nected commutative algebraic groups and their constituents.

Corollary 16.4. We always have

δ(M) = δTa(M) + δ2(M) + δalg(M) + δ3(M) + δinc2(M) + δinc3(M).

This can be compared with our results for motives of semi-abelian type,
of second kind or of Baker type. This is what we know so far:

Proposition 16.5. (1) All Tate periods are Q-multiples of 2πi, all

algebraic periods are in Q. In particular δTa(M) and δalg(M) take
the values 0 or 1, depending on whether T or L are trivial.

(2) We have

δ2(M) =∑
B

1

e(B)
4g(B)2

where the sum is taken over all simple factors of A, without multi-
plicities.

(3) We have

δ3(M) =∑
B

2g(B) rkB(T,M)

δinc2(M) =∑
B

2g(B) rkB(L,M)

(4) If M is of the Baker type, then

δinc3(M) = δBk(M) = rkGm(L,M).

(5) If M is saturated, then

δinc3(M) =∑
B

e(B) rkB(G,M) rkB(L,M).

(6) If M is the product of a motive of Baker type and a saturated mo-
tive, then the contributions add up.
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Remark 16.6. It remains to determine the precise value of δinc3(M) in
the general case. This will happen in the next chapter. In contrast to the
other entries, there does not seem to be an easy and clean answer. The
classical cases are misleading in this respect. The problem is the subtle
interplay between the lattice and the torus part as well as with non-trivial
endomorphisms of the abelian part.

Translated to algebraic varieties, these are the periods of the third kind
with respect to non-closed paths on algebraic curves of genus bigger than
0. Next to nothing was known about them before our monograph. Indeed,
as already mentioned before it is here were the point of view of 1-motives
really is needed.



CHAPTER 17

Incomplete Periods of the Third Kind

In this chapter we develop a precise formula for the dimension δinc3(M)
of the space of periods of the third kind with respect to non-closed paths
given by

Pinc3(M) = P⟨M⟩/(P⟨G⟩ +P⟨[L→ A]⟩)

where M = [L → G] and G is an extension of the abelian variety A by the
torus T . It is the most complex part of the picture.

17.1. Relation Spaces

The assignmentM ↦ Pinc3(M) only has a weak functoriality. IfM ′ ↪M
is injective or M ↠ M ′′ surjective, the inclusions P(M ′),P(M ′′) ⊂ P(M)
also induce maps

Pinc3(M
′)→ Pinc3(M), Pinc3(M

′′)→ Pinc3(M).

In terms of the filtration on P⟨M⟩ we are now interested in the periods
of the associated gradeds

Vsing(M)/Vsing([0→ G]) ≅ Vsing([L→ 0]),

V ∨
dR(M)/V ∨

dR([L→ A]) ≅ V ∨
dR(T )

of the filtrations in Chapter16 of highest degree. We make the identifications

V ∨
dR(T ) =X(T )⊗ V ∨

dR(Gm) ≅X(T )Q,

Vsing([L→ 0]) = L⊗ Vsing([Z→ 0]) ≅ LQ.

Given an elementary tensor l ⊗ x ∈ L ⊗X(T ) we choose ξ ∈ V ∨
dR(M) and

λ ∈ Vsing(M) with image x in V ∨
dR(T ) and l in Vsing([L → 0]). Then we

define a map

Φ ∶ LQ ⊗X(T )Q → Pinc3(M)

l ⊗ x ↦ ξ(λ).

Lemma 17.1. The map Φ is well-defined and surjective after extension
of scalars to Q.

Proof. Two choices of λ differ by an element δ of Vsing(G). The period
ξ(δ) only depends on the image of ξ in V ∨

dR(G). Hence it is an element of
P⟨G⟩. The same reasoning works for ξ. Every element of P⟨M⟩ is a linear
combination of elements of the form ξ(λ). By definition we have

ξ(λ) = Φ(x⊗ l)

151
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where x is the image of ξ in Vsing([L→ 0]) and l the image of λ in V ∨
dR(T ).

This makes φ surjective. �

The surjectivity of Φ gives some first information for δinc3(M). Indeed
we have:

Corollary 17.2.

δinc3(M) ≤ (rkL)(dimT ).

Also we note that the map Φ is compatible with the weak functoriality
of Pinc3. This can be expressed by the commutative diagram

L′ ⊗X(T ′)
φM ′ // Pinc3(M

′)

��

L′ ⊗X(T )

77

''
L⊗X(T )

φM // Pinc3(M)

for M ′ ↪M and the same for M ↠M ′′. In order to determine δinc3(M) we
need to describe the kernel of Φ.

17.1.1. Structure of Relation Spaces. In a first step we describe
the obvious relations and in a second step we verify that they are sufficient.

A morphism of iso-1-motives α ∶M1 →M induces morphisms

α∗ ∶ A1 → A, α∗ ∶ L1,Q → LQ and α∗ ∶ T1 → T.

By duality we also get a morphism α∗ ∶X(T )Q →X(T1)Q.
Consider an exact sequence

M1
α
Ð→M

β
Ð→M2,

For l1 ∈ L1, x2 ∈ X(T2) the period class φM(α∗(l1) ⊗ β∗(x2)) agrees with
the image of

φM ′(α(l1)⊗ β
∗x2∣M ′) = φM ′(α(l1)⊗ 0) = 0 ∈ Pinc3(M

′)

by the functiorility relation for M ′ = α(M1) ⊂ M . This shows that the
elements of α∗(L1)Q ⊗ β∗(X(T2))Q have image 0 in in Pinc3(M), which
gives us some first relations. They depend on the exact sequence which
determines α and β. This suggests to go further and take the sum over all
short exact sequences as first approximation of the relation space.

Definition 17.3. We define the space

R1(M) ∶=∑
α,β

α∗(L1Q)⊗ β
∗(X(T2)Q) ⊂ LQ ⊗X(T )Q

where the sum is with respect to all exact sequences

M1
α
Ð→M

β
Ð→M2.
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Such relations are called primitive.

For n ≥ 1 we extend the definition and introduce the summation maps

sn =∑pi ⊗ qi ∶ L
n
Q ⊗X(Tn)Q → LQ ⊗X(T )Q

where pi ∶ Vsing(M
n) → Vsing(M) and qi ∶ V

∨
dR(Mn) → V ∨

dR(M) are the
projections to the ith components, respectively, induced by the projection
πi ∶M

n →M to the ith component and the inclusion ιj ∶M →Mn into the
j-component. For i ≠ j they satisfy πi ○ ιj = 0.

Definition 17.4. For n ≥ 1, we put

Rn(M) = sn(R1(M
n)).

This is justified by the following lemma.

Lemma 17.5. The space Rn(M) is contained in the kernel of Φ.

Proof. We explained that R1(M) is contained in the kernel of Φ before
we introduced R1(M). Applying this to the motive Mn we see that

∑
i,j

(pi ⊗ qj)(R1(M
n))

is in the kernel of Φ. For i ≠ j, the orthogonality relation implies that all
elements in the image of pi ⊗ qj are in ker(Φ) themselves. Dropping them
from the sum we are still in the kernel. �

Remark 17.6. The space of primitive relations remains unchanged if we
restrict to injective α and surjective β. However, we find the extra flexibility
useful. Observe that

β∗(X(T2)Q) = ker(α∗ ∶X(T )Q →X(T1)Q),

α∗(L1,Q) = ker(β∗ ∶ LQ → L2,Q),

where M1 = [L1 → G1] with torus part T1 and M2 = [L2 → G2] with torus
part T2. This gives a less redundant, but also less symmetric description

R1(M) = ∑
α∶M1→M

im(α∗)⊗ ker(α∗)

= ∑
β∶M→M2

ker(β∗)⊗ im(β∗)

There are trivial inclusions Rn(M) ⊂ Rn+1(M). This suggests that we
make the following definition.

Definition 17.7. We put

Rinc3(M) =
∞
⋃
n=1

Rn(M).

The hope is that this makes up all relations. This is the statement of
the following theorem.
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Theorem 17.8. The map

(LQ ⊗X(T )Q/Rinc3(M))Q → Pinc3(M)

induced by Φ is an isomorphism. In particular, we have

δinc3(M) = (rkL)(dimT ) − dim(Rinc3(M)).

As LQ⊗X(T )Q is finite dimensional, the system Rn(M) has to stabilise.
Actually, the proof below will show that taking rk(L) or rk(X(T )) for n
suffices. The argument has two steps: first we deal in Section 17.1.2 with the
special case L = Z, then in Section 17.1.3 we give the reduction argument.

17.1.2. The Case L = Z. In this section we make the hypothesis that
L = Z. In this case L⊗X(T ) is identified with X(T ) and with this identifi-
cation the map Φ simplifies to

Φ ∶X(T )Q → Pinc3(M).

Lemma 17.9. Under this assumption

R1(M) =∑
α

α∗X(T ′)

where the sum is with respect to all M ′ = [L′ → G′] with torus part T ′ and
all α ∶M →M ′ such that α∗(l) = 0 for l the image of 1 in G(Q)Q.

Proof. We use the description

R1(M) =∑
α

ker(α∗)⊗ im(α∗)

with respect to all α ∶M →M ′. Clearly we have ker(α∗) ≠ 0 if and only if
l ∈ ker(α∗) and in this case we have identified Z⊗α∗X(T ′) with im(α∗). �

Proposition 17.10. Let M = [Z→ G] be a 1-motive. Then the map

X(T )Q/R1(M)Q → Pinc3(M)

is an isomorphism. In particular,

Rinc3(M) = R1(M).

Proof. We have already discussed surjectivity, so it remains to show

ker(Φ) ⊂ R1(M).

We choose bases along the same pattern and with the same notation as
for the proof of Lemma 15.6, but without taking the End(A)-action into
account. This means that (σ, γ, λ) is a Q-basis of Vsing(M) and (u,ω, ξ)

is a Q-basis of V ∨
dR(M), and moreover, we choose λ such that its image in

Vsing([Z → 0]) is the basis 1. Also we choose ξ such that its image ξ̄ in
V ∨

dR(T ) is a Q-basis of X(T )Q.
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Suppose we have an element ψ in the kernel of ΦM . It is of the form
ψ = ∑ cjξj such that its period is contained in P⟨[L→ A]⟩+P⟨G⟩ by the def-

inition of Pinc3(M). Unwinding this we see that there is a Q-linear relation
of the form

∑a ξ(σ) +∑ b ξ(γ) +∑ c ξ(λ) +∑dω(γ) +∑ f ω(λ) +∑ gu(λ) = 0.

This gives a non-trivial period relation and the Subgroup Theorem for 1-
motives can be applied. We introduce the motives, which can be read off
the relation above. They are

Mσ = [0→ Tσ], Tσ = G∣σ∣
m ,

Mγ = [0→ Gγ], Gγ = G
∣γ∣,

Mλ =M.

We apply the Subgroup Theorem to the motive

M̃ =Mσ ×Mγ ×Mλ = [L̃→ G̃].

In order to write the above relation as a period relation on M̃ we introduce

γ̃ = (σ, γ, λ) ∈ Vsing(M̃),

ω̃ = (∑aijξj ∣i = 1, . . . , ∣σ∣) × (∑ bijξj +∑dijωj ∣i = 1, . . . , ∣γ∣)

× (∑ cjξj +∑ fjωj +∑ gjuj) .

Then the dependence relation above says that

ω̃(γ̃) = 0.

The Subgroup Theorem for 1-motives gives a short exact sequence

0→M1
ν
Ð→ M̃

p
Ð→M2 → 0

such that γ̃ = ν∗γ1 and ω̃ = p∗ω2. In the next step we unwind what we have
obtained so far.

By assumption the push-forward p∗γ̃ of γ̃ in Vsing(M2) = Vsing([L2 →
G2]) vanishes. Further its image in Vsing([L2 → 0]) ≅ L2,Q coincides with

the image of the generator of L̃ ≅ Z, which vanishes. This implies that
L2 = 0, and M2 = [0→ G2].

We now construct the 1-motive M ′ and α ∶ M → M ′ as needed in the
description of R1(M) in Lemma 17.9. Let G′ be the image of Gλ ⊂ G̃ in G2

under p ∶ G̃ → G2. We write pλ for the restriction of p to Mλ. The motive
M ′ = [0→ G′] and α = pλ ∶M =Mλ →M ′ satisfy the conditions for R1(M).
It remains to relate ψ to an element in α∗X(T ′).

The restriction of ω̃ to Mλ only depends on the map α ∶Mλ → [0→ G′]
and can be expressed as α∗ω′ for the restriction ω′ of ω2 to V ∨

dR(G′). A
further restriction to Gλ gives

ω̃∣Gλ =∑ cjξj +∑ fjωj = p
∗
λω

′ ∈ V ∨
dR(Gλ).
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Restricting to Tλ = T gives

ω̃∣Tλ =∑ cjξj = α
∗(ω′∣T ′) ∈ V

∨
dR(Tλ) =X(T )Q.

In conclusion, we get

ψ =∑
j

cj ξ̄j ∈ α
∗X(T ′)Q ⊂ R1(M)⊗Q Q.

and this proves our claim. �

17.1.3. The Reduction Argument. Given a 1-motive M = [L
u
Ð→ G],

there is a 1-motive G̃ with the same periods as M , but a lattice of rank 1:
let l1, . . . , lr be a basis of L and put

M̃ = [Z→ Gr]

with structure map 1 ↦ (u(l1), . . . , u(lr)). The same choice of basis also
induces an identification

L⊗X(T ) ≅X(T )r

compatible with the period map Φ.

Lemma 17.11. In this situation,

R1(M̃) ⊂ R1(M
r).

Proof. Let α ∶ M̃ → M̃ ′ be as in the definition of R1(M̃) with M

replaced by M̃ , accordingly the image of the basis element 1 ∈ Z in the
lattice part of M̃ ′ vanishes. In other words, the map on the group part

α ∶ Gr → G′

extends to a morphism of motives

α ∶ [Z→ Gr]→ [0→ G′].

Let L′ be the image of Lr in G′ and M ′ = [L′ → G′]. Then the induced

M r = [Lr → Gr]
α′
Ð→M ′

is as in the definition of R1(M
r). Moreover, the element (l1, . . . , lr) is in the

kernel of α′ because α(u(l1), . . . , u(lr)) = 0. Let (t1, . . . , tr) be an arbitrary

element of α∗(X(T ′)) ⊂ R1(M̃). Then (l1, . . . , lr) ⊗ (t1, . . . , tr)) fulfills the
requirements for being in R1(M

r). �

Proof of Theorem 17.8. The periods of M , M̃ and M r agree. From
Proposition 17.10 and the last lemma we know that

ker(ΦM̃) = R1(M̃) ⊂ R1(M
r) ⊂ ker(ΦMr).

In consequence, equality holds everywhere. The map ΦMr factors through
the summation map sr and, by definition, Rr(M) = s(R1(M

r)). This im-
plies

ker(ΦM) = Rr(M).
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As the Rn(M) are nested, this means

Rinc3(M) = Rr(M) = ker(ΦM).

�

Corollary 17.12. We have

Rinc3(M) = Rn(M)

where n is the minimum of rkL and dimT .

Proof. The proof of the theorem gave equality for n = r. The dual
arguments allows to reduce to the case where the torus is of dimension 1
and hence n = dimT is also enough. �

17.2. Alternative Description of δinc3(M)

In the last section, we used a trick to reduce the computation of δinc3(M)
to the case of motives with lattice part of rank 1. The trick has a canonical
interpretation that will lead to an alternative description of Rinc3(M).

Lemma 17.13. Let A be an additive category, Z−Proj the category of
finitely generated free abelian groups of finite rank. There is an additive
bifunctor, the external tensor product

⊗ ∶ Z−Proj ×A→ A,

uniquely determined by (Z,X)↦X.

Proof. Let Λ be a free Z-module of rank r and choose a basis λ1, . . . , λr.
For X ∈ A we put

Λ⊗X ∶=Xr.

Let f ∶ Λ→ Λ′ be a Z-linear map. In our chosen bases it is given by a matrix
(aij)i,j with entries in Z. We define

f∗ ∶ Λ⊗X → Λ′ ⊗X

as the map Xr →Xr′ defined by the matrix. �

The construction is applied to the categories of abelian or semi-abelian

varieties. Given a 1-motive M = [L
u
Ð→ G] we can consider Λ = L∨ and the

semi-abelian variety L∨⊗G ≅ Gr. The structure map u ∶ L→ G of M induces
a canonical homomorphism Z → L∨ ⊗G as follows: if l1, . . . , lr is a basis of
L, then

1↦ c ∶=∑
i

l∨i ⊗ u(li)

is the image of 1. We refer to c as the tautological element. This map is
independent of the choice of a basis and has the properties of an adjoint of
u.

Remark 17.14. The 1-motive [Z → L∨ ⊗G] agrees with the 1- motive

M̃ considered in Section 17.1.3.
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The abelian part of [Z → L∨ ⊗G] is L∨ ⊗ A, the torus part is L∨ ⊗ T
with character group X(L∨ ⊗ T ) = L⊗X(T ).

As pointed out before, the periods of M agree with the periods of our
adjoint. Moreover, the map Φ for [Z→ L∨ ⊗G] given by

Φ ∶ Z⊗X(L∨ ⊗ T ) = L⊗X(T )→ Pinc3(M)

agrees with the map ΦM . We have shown in Proposition 17.10 that

ker(Φ) = R1([Z→ L∨ ⊗G]).

Our objective is to give an explicit description of this space.
The algebra E = End(L∨ ⊗A)Q operates (up to isogeny) from the right

on (L∨⊗A)∨ ≅ L⊗A∨. On the other hand, the semi-abelian variety L∨⊗G is
characterised by a homomorphism [L∨ ⊗G] ∶X(L∨ ⊗ T )→ (L∨ ⊗A)∨(Q)Q.

A choice of elements α ∈ E, y ∈ L ⊗ X(T ), x ∈ L ⊗ A∨(Q)Q determines

extensions Gx, Gα∨(x) ≅ α
∗Gx and G[L∨⊗G](y) in Ext1(L∨ ⊗A,Gm).

We require that the following compatibility conditions are satisfied:

(A) α∨(x) = [L∨ ⊗G](y); in other words, the diagram

X(L∨ ⊗ T )

[L∨⊗G]
��

Z =X(Gm)
y↤1oo

[Gx]
��

L⊗A∨(Q) L⊗A∨(Q)
α∨
oo

is commutative, which means that α extends to a morphism

αy ∶ L
∨ ⊗G→ Gx.

(B) αy(c) = 0 in Gx and again as a consequence αy defines a morphism

[Z→ L∨ ⊗G]→ [0→ Gx].

Theorem 17.15. Let M = [L
u
Ð→ G] be a 1-motive. Then

Rinc3(M) = ⟨y ∈ LQ ⊗X(T )Q ∣

∃α ∈ End(L∨ ⊗A)Q,∃x ∈ (L⊗A∨)(Q)Q, (A), (B)⟩

Proof. We have to check that the set on the right coincides with
R1([Z → L∨ ⊗ G]). Given α ∈ E and x with (A), the morphism α ex-
tends to The element y ∈ X(L∨ ⊗ T ) is in the image of α̃∗ by (A), hence a
primitive relation.

Conversely, take y ∈ R1([Z → L∨ ⊗ G]). By Lemma 17.9 there are
α ∶ [Z → L∨ ⊗G] →M ′ and x ∈ X(T ′) such that y = α∗(x) (this equality is
property (A)) and and the tautological element c is in ker(α∗). A fortiori,
the image of c vanishes in X(Gx) (the vanishing is property (B)).

The abelian part A′ of M ′ is a quotient of L∨⊗A. By semi-simplicity, we
can choose a direct complement A′′. By abuse of notation, we also denote
the projector L∨ ⊗A → A′ → L∨ ⊗A obtained this way by α. We may now
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replace M ′ by M ′ × [0→ A′′]. The new data defines an element of the right
hand side. �

Example 17.16. We go back to Example 15.4 and take for A an elliptic
curve E, 0 → Gm → G → E → 0 a non-trivial extension (non-split, even up

to isogeny) and P ∈ G(Q) a point whose image in E(Q) is not torsion. We
consider

M = [Z u
Ð→ G]

with u(1) = P . The surjection

Φ ∶ Z⊗X(Gm) = Z→ Pinc3(M)

gives an upper bound of δinc3(M) ≤ 1. It remains to compute the relations.
Assume that 0 ≠ y ∈ Rinc3(M). By Theorem 17.15 this means there are
α ∈ EndQ(E)Q and x ∈ E∨(Q)Q such that α∨(x) = [G](y) and αy(c) = 0 in

Gx. The first condition implies that α and x are different from zero. This
makes α invertible and we get an isomorphism G → Gx. The tautological
class c ∈ G(Q)Q is equal to P in our case. It was assumed to be non-torsion

in G(Q), and the same remains true after applying the isomorphism α. We
get a contradiction to (B), and this shows that Rinc3(M) = 0 and,

δinc3(M) = 1.

This fits with our explicit computation in Chapter 11, both without CM
and with CM.

Remark 17.17. We had the suspicion that there might be a better
description of Rinc3(M) in the language of biextensions. We now tend to
think that this is not the case. The period pairing is not related to the
pairing between a 1-motive and its Cartier-dual.





CHAPTER 18

Elliptic Curves

In some sense, Baker’s theory of linear forms in logarithms can be seen as
an intermezzo, although one of the most influential, in establishing a modern
theory of periods. We shall now describe a second very important aspect of
the theory, namely elliptic periods, which has been developed in the last one
hundred years by many authors starting with Siegel and Schneider. We shall
describe it first in a classical way as has been understood by these authors
and then give the translation into our modern language of 1-motives. For
more details about the history see the introduction, in particular Section
1.3.

18.1. Classical Theory of Periods

We review the classical theory of elliptic curves from an algebraic and
analytic point of view. This will be used for an application of our abstract
results about 1-motives to explicit transcendence results in the elliptic case.
For basics on elliptic curves and functions we refer to [Ahl53, Chapter 7]
or [Cha85, Chapters III, IV].

Let E be an elliptic curve given in the projective plane P 2 by an equation
of the form as

y2w = 4x3 − g2 xw
2 − g3w

3(22)

with complex parameters g2 and g3 such that the discriminant ∆ = g3
2−27g2

3 ≠
0.

On E addition can be defined and one obtains a projective commutative
algebraic curve with unit element e∞ = [0 ∶ 0 ∶ 1], one of the four zeroes
e∞, e1, e2, e3 of the right hand side of 22. These are the four Weierstraß
points, the 2-torsion points on the curve.

The associated complex manifold Ean becomes a complex Lie group with
Lie algebra Lie(E) and exponential map

expE ∶ Lie(E)→ Ean

with kernel a lattice Λ, which leads to an exact sequence

0→ Λ→ C
expE
ÐÐÐ→ Ean Ð→ 0

and which shows that Ean ≃ C/Λ.
In terms of complex analysis this can be described as follows. For a pair

of complex numbers ω1, ω2 with τ = ω2

ω1
in the upper half plane Iτ > 0 we

161
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write Λ = Zω1 +Zω2 and consider the Weierstraß elliptic function

℘(z; Λ) =
1

z2
+ ∑

0≠ω∈Λ
[

1

(z − ω)2
−

1

ω2
] .

The Weierstraß elliptic function is meromorphic with poles of order two
on the lattice Λ and periodic with period lattice Λ. For z ∈ C the triple
(w,x, y) = (1,℘(z; Λ),℘′(z; Λ)) satisfies the equation 22 with

g2 = g2(Λ) = 60 ∑
ω≠0

1

ω2
and g3 = g3(Λ) = 140 ∑

ω≠0

1

ω3
.

For z ∉ Λ in C, the exponential map expE can be written as

expE(z) = [1 ∶ ℘(z) ∶ ℘′(z)]

in terms of the Weierstraß ℘-function. It parametrises the plane algebraic
curve

y2 = 4x3 − g2 x − g3.

In terms of the uniformisation by the exponential map, the Weierstraß points
are e∞ = expE(0)), e1 = expE(ω1/2), e2 = expE(ω2/2) and e3 = expE((ω1 +
ω2)/2) for a basis ω1, ω2 of Λ.

There are two more classical Weierstraß functions which are derived from
the Weierstraß ℘-function. The first is the Weierstraß ζ- function

ζ(z; Λ) =
1

z
+ ∑

0≠ω∈Λ
[

1

(z − ω)
+

1

ω
+
z

ω2
]

and the second the Weierstraß σ-function

σ(z; Λ) = z ∏
0≠ω∈Λ

(1 −
z

ω
) e

z
ω
+ 1

2
( z
ω
)

2

.

The latter can be seen as a variant of the Jacobi Theta-function, which makes
up Jacobi’s theory of elliptic functions. The three functions are related by
the differential equations

d

dz
log(σ(z; Λ)) = ζ(z; Λ) and

d

dz
ζ(z,Λ) = −℘(z; Λ).

For u ∈ C fixed, we put

F (z;u) =
σ(z − u)

σ(z)σ(u)
eζ(u)z

and compute that

d logF (z;u)

dz
= ζ(z − u) − ζ(z) + ζ(u).

The classical differential forms of the first, second and third kind are

(23) ω =
dx

y
, η =

xdx

y
and ξP =

y + y(P )

x − x(P )

dx

y

where P = expE(u) is fixed.



18.2. ELLIPTIC PERIODS 163

The functions x and y have polar divisor 2(e∞) and 3 (e∞) respectively,
so that the differential form ω is regular, η has a pole of order 2 at e∞. The
function x − x(P ) has a zero at P and −P because it is even, and y + y(P )
is zero at (−P ) together with two other points P1, P2. This shows that the
divisor of ξP is

(ξP ) = ((P1) + (P2)) − ((e∞) + (P )) .

We conclude that the polar divisor of ξP is (e∞) + (P ) with residue −2 at
(e∞) and 2 at (P ).

Using [Cha85, Chapter IV, §3, equation (3.6)], one verifies that

d logF (z;u) = (ζ(z − u) − ζ(z) + ζ(u))dz

=
1

2

℘′(z) + ℘′(u)

℘(z) − ℘(u)
dz = exp∗E ξP .

.

This gives

exp∗E ω = dz, exp∗E η = −dζ(z) and exp∗E ξP = d logF (z, u).

The Weierstraß ζ-function is quasi-periodic with quasi-periods ηi = 2ζ(ωi/2)
as is readily seen. Note that this agrees with the normalisation of [Ahl53,
Section 3.2] and [Fri11] but differs from [Cha85, Chapter IV.1 Theorem 1,
Theorem 3]. The Weierstraß functions transform as

℘(z + ωi) = ℘(z),

ζ(z + ωi) = ζ(z) + ηi,

σ(z + ωi) = −σ(z) e
ηi(z+ωi2 ),

F (z + ωi, u) = F (z, u) e−ηiu+ζ(u)ωi = F (z, u) eλ(u,ωi)

where λ(u,ωi) = ζ(u)ωi − ηiu for u ∉ Λ. One reads off again that that the
function ℘ is periodic, as already mentioned, and that the functions ζ, σ and

F are quasi-periodic with periods ηi, e
ηi(z+ωi2 ) and eλ(u,ωi). The function λ

can be extended additively to a function on C × Λ. Note that we have
λ(ω1/2, ω2) = πi by the Legendre relation.

18.2. Elliptic Periods

For Q = expE(v) ∈ E
an, and γ a path from e∞ to Q the integral

ω(γ) = ∫
Q

e∞
ω = ∫

v

0
exp∗E ω = ∫

v

0
dz = v(γ)

defines a multivalued map from Ean to C. For different paths from e∞ to Q
the integrals differ by a period ω ∈ Λ. We get back the generators of Λ as
the periods

ω1 = ω(ε1) = ∫
ε1
ω and ω2 = ω(ε2) = ∫

ε2
ω
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taken along the basis ε1, ε2 of Hsing
1 (Ean,Z) defined as the image of the

straight paths [0, ωi] in C. The integral ω(γ) is called incomplete period of
the first kind and becomes a period (i.e. an element of Λ) if γ(1) = e∞.

In the case of periods of the second kind, the path γ must not contain
the pole of η, i.e. the Weierstraß point 0 = e∞. For the closed paths ε1 and
ε2 we get back the quasiperiods ηi = η(εi) from above.

For the differentials of the third kind ξP as above, with polar divisor
(e∞)+(P ), we have to consider in addition a closed path ε0 going once coun-
terclockwise around 0 with no other singularities inside and then λ(u,ωi)
and 2πi become complete periods of the third kind.

In the case of incomplete periods of the second kind, we take a path γ
with γ(0) = expE(v) and γ(1) = expE(v + w) which does not pass through
e∞ and obtain by [Fri11, (2) on p. 202]

η(γ) = ∫
γ
η = ∫

v+w

v
exp∗E(ω) = ∫

v+w

v
℘(z)dz = −ζ(w + v) + ζ(v)

= −ζ(w) −
1

2

℘′(w) − ℘′(v)

℘(w) − ℘(v)

= −ζ(w) + α(γ).

When E is defined over Q, then α(γ) is algebraic.
Let γ ∶ [0,1]→ Ean be a path of the form expE ○δ with δ ∶ [0,1]→ LieEan

from v to w continuously differentiable and not containing any of the two
poles of the differential of the third kind ξP . Then its period along γ is

ξP (γ) = ∫
γ
ξP = ∫

exp ○δ
ξP = ∫

δ
exp∗ ξP = ∫

δ

F ′(z, u)

F (z, u)
dz

= ∫
δ

1

F (z, u)
dF (z, u) = ∫

F○δ

dt

t

= logF○δ(F ○ δ(1)) − log(F ○ δ(0))

where logF○δ is the branch of the logarithm defined by analytically contin-
uing the function log from the starting point F ○ δ(0) = F (v, u) along F ○ δ.
Any two branches of the logarithm differ by an integral multiple of 2πi. Up
to such multiples log satisfies the usual functional equation, hence

ξP (γ) = log
F (w,u)

F (v, u)
+ 2πiν

for some ν ∈ Z.
In both cases, we see sees that if γ is closed with period ω, we get

complete periods η(γ) and ξP (γ) = λ(u,ω) + 2πiν.

Summary 18.1. Let γ ∶ [0,1] → Ean be a path. We write it as expE ○δ
with δ a path in C ≅ Lie(E)an with δ(0) = v, δ(1) = v +w. For ω, η, ξP as in
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(23) and P = expE(u) we get

ω(γ) = w

η(γ) = −ζ(w) −
1

2

℘′(w) − ℘′(v)

℘(w) − ℘(v)

ξP (γ) = log
F (v +w,u)

F (v, u)
+ 2πiν(γ).

Let ε1, ε2 be the generators of H1(E
an,Z). Then ω(εi) = ωi are the genera-

tors of the period lattice of Ean, η(εi) = ηi are the quasi-periods of Ean and
ξP (εi) = λ(u,ωi)+2πiν, for some ν(γ) ∈ Z, are the periods of the third kind.

The period computation for these special differential forms extends to
all differential forms.

Lemma 18.2. Every meromorphic differential form ϑ on E can be written
as

ϑ = aω + bη +∑
i

ciξPi + df

with complex coefficients, Pi ∈ E and elliptic f .

Proof. Let P1, . . . , Pk be the points different from e∞ where ϑ has a
non-vanishing residue ci. Then ϑ′ = ϑ−∑i ciξPi has vanishing residues in all
points different from e∞. As the sum of all residues vanishes, it is even of the
second kind. As spelled out in Section 14.2.1 it defines a class in H1

dR(C).
On the other hand the classes of ω,ϑ are a basis of the same cohomology
group. This gives rise to the identity

[ϑ′] = a[ω] + b[η]

for suitable a, b ∈ C and makes ϑ′ − aω − bη exact. �

Clearly if E and ϑ are defined over Q, then everything can also be
chosen over Q. By the lemma, the above formulae can be put together to a
computation of ϑ(σ) for any ϑ and chain σ.

18.3. A Calculation

In this section we are concerned with periods of the form 2 logσ(u) −
ζ(u)u. This is an incomplete period of the third kind. Such a period appears
the first time in transcendence theory and it is natural to ask whether it is
transcendental. However there is no way to answer this directly, it has to
be isolated from a linear form in incomplete elliptic periods. To achieve this
we definitely need our results about linear independence of periods given in
Chapter 11 .

Proposition 18.3. Let P = expE(u) and Q = expE(w) be distinct and
non-zero points on E and let δ ∶ [0,1]→ C be a path from −w to w such that
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γ = expE ○δ does not pass through P . Then

∫
Q

−Q
ξP ∶= ∫

γ
ξP = 2 log

σ(u)σ(w)

σ(w + u)
+ 2ζ(u)w + log (−℘(w) + ℘(u)) + 2πiν

for some ν ∈ Z. In the case w = −u/2 we write P /2 = expE(u/2) and then

∫
−P /2

P /2
ξP ∶= ∫

γ
ξP = 2 logσ(u) − ζ(u)u + log (−℘(

u

2
) + ℘(u)) + 2πiν.

Proof. Incomplete periods of elliptic integrals are up to integer multi-

ples of 2πi of the form log
F (w,u)
F (v,u) . We specialise to v = −w. Going back to

the definition of F (w,u) we calculate

F (w,u)

F (−w,u)
=
σ(w − u)

σ(−w − u)

σ(−w)

σ(w)
e2ζ(u)w

=
σ(w − u)

σ(w + u)
e2ζ(u)w

=
σ(w − u)σ(w + u)

σ(w + u)2
e2ζ(u)w

=
σ(u)2σ(w)2

σ(w + u)2
(−℘(w) + ℘(u)) e2ζ(u)w

using the identity

σ(v + u)σ(v − u)

σ(v)2σ(u)2
= −℘(v) + ℘(u)

which we take from (14) in [Fri11, p. 217]. This proves our first formula.
We continue with the choice w = −−u2 to get

F (−u2 , u)

F (u2 , u)
= σ(u)2e−ζ(u)u (−℘(u2 )) + ℘(u)) .

proving the second formula. �

In the case of interest for us, E is defined over Q and the points P and Q

are chosen in E(Q). Then ℘(u) and ℘(u/2) are algebraic and hence ∫
P /2
−P /2 ξP

is equal to 2 logσ(u) − ζ(u)u modulo Baker periods and multiples of 2πi.

18.4. Transcendence of Incomplete Periods

We now come back to Schneider’s Problem 3 mentioned in the introduc-
tion, see [Sch57, p. 138].

Theorem 18.4. Let E be an elliptic curve over Q, P a point in E(Q),
ω, η, ξP the differential forms of the first, second and third kind from above.
Assume that P is non-torsion in E(Q). Let κ = ∑ni=1 aiγi be a chain in

Ean with boundary in E(Q) avoiding the points e∞ and P and such that
P (κ) = ∑ni=1 ai(γi(1) − γi(0)) ∈ E(Q) is not a torsion point. Then

1,2πi,ω(κ), η(κ), ξP (κ)
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are Q-linearly independent, in particular 2πi, ω(κ), η(κ), ξP (κ) are tran-
scendental.

Proof. We define E○ = E ∖ {e∞, P}. Let D ⊂ E be the support of the

boundary ∂κ. The chain κ defines a homology class [κ] ∈Hsing
1 (E○,an,D;Q),

and the forms ω, η, ξP define classes in H1
dR(E○,D). This shows that we we

may view our periods as cohomological periods for H1(E○,D) in the sense
of Definition 12.2.

We choose an embedding ν○ ∶ E○ → J(E○) into the generalised Jacobian
J(E○) introduced in Section 4.5 via a base point P0 ≠ e∞, P . This is an
extension of E by Gm. Our assumption on P ensures that it is non-split up
to isogeny. The induced map ν ∶ E → J(E) ≅ E is Q↦ Q + P0.

By Lemma 12.9, the periods of H1(E○,D) agree with the periods of
the 1-motive [Z[D]0 → J(E○)]. Actually, the submotive M = [Z → J(E○)]
with 1 ↦ P ○(κ) ∶= ∑i aiν

○(γi(1) − γi(0))) suffices. Note that the image
of P ○(κ) in E(Q) is P (κ), which is independent of the choice of P0. By
assumption it is non-torsion. Hence M is reduced as a 1-motive (see Defi-
nition 15.1) and of the form as considered in Chapter 11. The class [κ] is
can be identified with an element λ ∈ Vsing(M) as in the proof of Proposi-
tion 11.1, the non-CM case, or Proposition 11.3, the CM case. Accordingly
the periods of λ agree with the period integral of κ. As a consequence the
elements 1,2πi,ω(κ), η(κ), ξP (κ) are a subset of the basis considered there,
in particular they are linearly independent. �

Remark 18.5. (1) The assumption is satisfied for if κ is a single
non-closed path γ with γ(1) − γ(0) non-torsion. In this case the
period numbers were computed explicitly in Summary 18.1 in terms
of the Weierstraß functions. The cases of integrals of the first and
second kind are actually already due to Schneider; see [Sch57, Satz
15, p. 60]. The result is new for integrals of the third kind.

(2) It is possible to extend the considerations to the case when P (κ)
is torsion. We do not go into details here.

By specialising further we obtain the following explicit transcendence
result.

Theorem 18.6. Let u ∈ C be such that ℘(u) ∈ Q and expE(u) is non-
torsion in E(Q). Then

uζ(u) − 2 logσ(u)

is transcendental.

Proof. For expE(u) we simply write P . We choose a path δ from
u/2 to −u/2 which avoids the singularities of ξP and put γ = expE ○δ. By
Proposition 18.3 the period has the form

ξP (γ) = 2 logσ(u) − ζ(u)u + log(α) + 2πiν
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for some algebraic α. By Theorem 18.4 it is transcendental, but this is not
enough. If

2 logσ(u) − ζ(u)u = ξP (u) − logα − 2πiν

was algebraic, then we would have a linear dependence relation between the
numbers 1, ξP (γ), logα,2πi. To obtain a contradiction, it suffices to show
that they are Q-linearly independent. (Except when α is a root of unity and
logα a rational multiple of 2πi. Then the element logα can be dropped from
the list and the linear independence is already shown in Theorem 18.4.)

Note that the term logα is the period of a Kummer motive M0 = [Z →
Gm] with 1 ↦ α and ξP (γ) is an incomplete period of the third kind of
M1 = [Z→ J(E○)] as in the proof of Theorem 18.4.

Linear independence could be addressed by applying the techniques of
Chapter 15 directly to M0 ×M1. Instead we explain the deduction from the
general results proved earlier. In fact, as shown in Example 17.16, we have
δinc3(M1) = 1. This means that ξP (γ) is a non-zero element of Pinc3(M1)
(see Chapter 16). By Lemma 15.24 we have Pinc3(M1) ⊂ Pinc3(M

sat
1 ) for

M sat
1 a saturation of M1 as constructed there. Proposition 16.5, item (5)

shows that logα and ξP (γ) are linearly independent in

Pinc3(M0 ×M
sat
1 ) = P(M0 ×M

sat
1 )/ (P⟨Gm × J(E○)⟩ +P⟨[Z→ E]⟩) .

The terms 1,2πi are in P⟨Gm ×J(E
○)⟩⟩+P⟨[Z→ E]⟩ and linearly indepen-

dent by Lindemann’s result;see Corollary 10.1 or Theorem 15.3. We deduce
that all four are linearly independent and uζ(u)− 2 logσ(u) is transcenden-
tal. �

18.5. Elliptic Period Space

In [Wüs21] period spaces for elliptic curves and abelian varieties of di-
mension 2 were considered and their dimension was determined, see [Wüs21,
Theorem 2 and Theorem 3], respectively. The motivation was billiards on
the ellipsoids where irrationality of elliptic and abelian periods give an an-
swer to the question whether curvature lines or geodesics are closed or not.
The proofs rely on the Analytic Subgroup Theorem in its original version.

In this section we come back to this problem in a more general setting
using the language of 1-motives. We confine ourselves to the elliptic case
but we go further and determine the dimension of an extended period space:
a period space: a period space where instead of considering a single differ-
ential of the third kind we consider a finite number. In addition we do not
restrict to closed paths as in loc.cit. but allow that the paths need not to
be closed. This was mentioned as a problem in [Wüs21]. It turns out that
the presence of several differentials of the third kind and the additonal gen-
erality of allowing non-closed paths makes the problem much more difficult
and givers a rather unexpected answer for specialists.

Suppose now that E is an elliptic curve defined over Q and ω, η are
the differentials of the first and the second kind, and ξk = ξPk ,1 ≤ k ≤ n
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differentials of the third kind on E with Pk = expE(uk) ∈ E(Q) for uk ∈
Lie(E)C; see Section 18.1 equation (23). We denote by ω1, ω2, η1 and η2

the periods and quasi-periods of E in the classical sense, i.e. the integrals
of ω and η with respect to a pair of basis vectors of H1(E

an,Z). We choose
non-closed paths γi ∶ [0,1]→ Ean, 1 ≤ i ≤m with γi(0), γi(1) ∈ E(Q).

Definition 18.7. The period space W =W (E,Pk, γi) is generated over
Q by

1,2πi,ω1, ω2, η1, η2, λ(uk, ω1), λ(uk, ω2), ω(γi), η(γi), ξPk(γi)

for 1 ≤ i ≤m and 1 ≤ k ≤ n.

We shall show that W can be identified with the period space of a 1-
motive. Let S be the set S = {0, P1, . . . , Pn} ⊂ E and D the union of the
supports of ∂γi for i = 1, . . . ,m. Put E○ = E ∖ S. Consider the object
H1(E○,D) in the category (Q,Q)−Vect. By Lemma 12.9, its periods agree
with the periods of the 1-motive

M ′ = [Z[D]0 → J(E○)].

Let L ⊂ Z[D]0 be generated by ∂γi for i = 1, . . . ,m and put

M = [L→ J(E○)].

The lattice L has rank at most m. We write G = J(E○) for short. It has
abelian part E and a torus part T of rank at most n.

Proposition 18.8. The period space W coincides with P⟨M⟩.

Proof. We choose generators for

Vsing(M) ⊂ Vsing(M
′) ≅Hsing

1 (E○,an,D;Q)

in the following way. Take small loops σ0, σ1, . . . , σn around the points in
S. They generate Vsing([0 → T ]). Choose next loops ε1, ε2 in E○,an whose

images in Ean generate Hsing
1 (Ean,Z). Finally, view γ1, . . . , γm as paths in

E○,an. By definition,

σ0, . . . , σn, ε1, ε2, γ1, . . . , γm

generate Vsing(M).
We turn to V ∨

dR(M), a quotient of H1
dR(E○,D). We take exact differ-

ential form u1, . . . , ur which generate the kernel of H1
dR(E○,D)→H1

dR(E○).
The differential forms ω, η, ξP1 , . . . , ξPn can be seen as elements ofH1

dR(E○,D).
As we shall prove the set u1, . . . , um, ω, η, ξP1 , . . . ξPn generates the whole co-
homology. Obviously u1, . . . , um, ω, η generate the subspace H1

dR(E,D), and
hence it remains to show that the ξPi generate

H1
dR(E○,D)/H1

dR(E,D) ≅H1
dR(E○)/H1

dR(E) ≅ ker(H0
dR(S)→H0

dR(E)).

The composition of the two isomorphisms maps a logarithmic form ϑ with
polar divisor included in S to its residue vector (res0ϑ, resP1ϑ, . . . , resPnϑ).
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The image of ξPi is (−2,0, . . . ,2,0 . . . ) with 2 in place i. Together they
generate the kernel as claimed.

As a consequence the period matrix of M has the shape

⎛
⎜
⎜
⎜
⎝

ξPi(σj) ξPi(εj) ξPi(γi)
0 ω(εi) ω(γj)
0 η(εi) η(γj)
0 0 ui(γj)

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

2πiαij λ(ui, ωj) + 2πνj ξPi(γi)
0 ωi ω(γj)
0 ηi η(γj)
0 0 βij

⎞
⎟
⎟
⎟
⎠

.

with αij , βij ∈ Q, νj ∈ Z. Its entries generate the vector space W . �

Corollary 16.4 together with Proposition 16.5 give a formula for the
dimension of W . With the notation introduced earlier, we state the following
result.

Theorem 18.9. Let E/Q elliptic with e = dimQ End(E)Q. The dimen-

sion of W over Q is given by

dimQW = 2 +
4

e
+ 2rkE(T,M) + 2rkE(L,M) + δinc3(M)

If M is saturated, then δinc3(M) = e ⋅ rkE(T,M) ⋅ rkE(L,M).

Note that M is not reduced in general. If L→ E(Q)Q or X(T )→ E(Q)Q
have a kernel, this implies that suitable Baker periods (i.e. values of log in
algebraic numbers) are contained in W . This happens for example if the end

point of a path or one of the Pk are torsion points in E(Q). The situation
simplifies if we exclude this case.

Corollary 18.10. Assume that E does not have CM, that n = rk⟨P1, . . . , Pn⟩,
and that m = rk⟨γi(1) − γi(0)∣i = 1, . . . ,m⟩ as subgroups of E(Q). Then

dimW = 6 + 2(n +m) + nm.

Proof. The assumptions imply that e(E) = 1, that M is saturated and
that n = rkE(T,M), m = rkE(L,M). �

18.5.1. With CM. The CM case is a lot more complicated, even if
M is reduced. We consider an example with small rank n = m = 2, hence
M = [L → G] reduced, with L ≅ Z2, G an extension of an elliptic curve E
by the torus T = G2

m characterised by its classifying map X(T )→ E∨.
Assume that K = EndQ(E) is an imaginary quadratic field, which gives

e = 2. In this situation rkE(L,M) and rkE(T,M) can take the values 1 and
2 and then and then we can state the following computation.

Lemma 18.11.

δinc3(M) =

⎧⎪⎪
⎨
⎪⎪⎩

2 M saturated,

4 otherwise.

Proof. We show that if there is a non-zero element in Rinc3(M) then
M is saturated. We go back to the characterisation of Theorem 17.15 and
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choose a Z-basis l1, l2 of L ⊂ E(Q) which is used to to make the identifica-
tion L∨ ⊗E ≅ E2 as before. This gives c = (l1, l2). Let (α, y, x) be a triple
satisfying the conditions in Theorem 17.15 with y ≠ 0. First consider the
morphism α ∶ E2 → E2. We may view it as an element of M2(K). Con-
dition (B) implies that α(c) = α(l1, l2) = 0. There are three possible cases,
depending on the rank of α.

If α is invertible, then the non-zero vector (l1, l2) cannot be mapped to
0. This case does not occur.

If α has rank 1, it suffices to consider α′ ∶ E2 → α(E) ≅ E. We replace α
by α′ in the arguments and x, y by their images in E and X(T ) . The new
α has shape (m,n) for m,n ∈K. By assumption the image of c in E is

α′(c) =mα′(l1) + nα
′(l2) =ml

′
1 + nl

′
2 = 0.

Without loss of generality, m ≠ 0, hence it is invertible. We replace α by
m−1 ○ α and then have m = 1, l′1 + nl

′
2 = 0 with n replaced by m−1n. As

l′1 and l′2 are Z-linearly independent, this implies n ∈ K ∖Q. The image of

L in E(Q) contains l′2 and −nl′1. As 1,−n are a Q-basis of K, this implies
that Kl′2 ⊂ L, and since L has Q-rank 2, this even implies L ≅Kl′2. In other

words: the lattice L is K-stable in E(Q)Q and we have rkE(L,M) = 1.
We continue with the diagram (A). As M is reduced, the classifying map

X(T )→ E∨(Q) is injective and we use it to identify elements of X(T ) with

elements of E∨(Q). The adjoint of α is of the form (1, n∨) ∶ E∨ → E∨2. This
gives y = α∨(x) = (x,n∨(x)) ∈X(T )2. In particular, x is a non-zero element
of X(T ) and its image under n∨ ∈K is again in X(T ). Hence X(T ) is also
K-stable in E∨(Q) and rkE(T,M) = 1. This implies that the classifying
map of G is K-equivariant and that the operation of K on E extends to an
action on G. The map in (A) is G2 → G, given by (1, n). Condition (B) is

l1 + nl2 = 0, and if this is satisfied, then L ⊂ G(Q) is K-stable, which means
that M is saturated. In this case

δinc3(M) = erkE(L,M)rkE(T,M) = 2.

It remains to consider the case α = 0, in which the condition [L∨ ⊗
G]∗(y) = α∗(x) = 0 implies y = 0 and then δinc3(M) = 4. �

Corollary 18.12. The possible values for δ(M) in the CM-case are 16
when neither neither L nor X(T ) are K-stable, 14 if one of L and X(T )
is K-stable, 12 if both are K-stable, but M is not saturated, and 10 if M is
saturated.





CHAPTER 19

Values of Hypergeometric Functions

We review how our knowledge on periods of curves and 1-motives can
also be used to deduce transcendence results for certain values of hypergeo-
metric functions. The result in the elliptic case can be found as a special case
of Wolfart’s publication [Wol88] or in [CC88] by Chudnovsky–Chudnovsky.

More generally it is well-known that values of hypergeometric functions
can be expressed as quotient of two abelian integrals, in general of the second
kind. This leads to a period relation between the two periods of the second
kind with the hypergeometric function as coefficient. Algebraic values of the
hypergeometric function provide linear relations between the two periods
periods with algebraic coefficients. This cannot be true in general and leads
to special points on certain Shimura varietiea as explained very carefully in
Chapter 5 of Tretkoff’s beautiful monograph [Tre17].

We explain the method because we think that it should generalise to
many other interesting cases.

19.1. Elliptic Integrals

We fix a parameter λ ∈ C ∖ {0,1}. The famous differential form

ξ(λ) =
du

√
u(1 − u)(1 − uλ)

on the compactification Ĉ of the complex plane is multivalued with branch
points 0,1,∞, λ−1, the so-called Weierstraß points. Locally, the branches
differ by a sign.

Integration of differential forms of the type ξ(λ) over paths leads to
so-called Euler integrals which were introduced and studied by Euler in
connection with his work on hypergeometric functions.

In our special case of the differential form ξ(λ), we take the integrals
over arcs γp,q with loose end at two of the four branch points p and q,
respectively, but not passing through branch points. They are given by the
improper integrals

Ip,q(λ) = ∫
γp,q

1
√
u(1 − u)(1 − λu)

du

and there are 6 choices of pairs. Each choice of such a path determines the
value up to sign. The convergence of these integrals can be seen as follows:
We take the path γ0,1 and have to show that the integral converges locally

173
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at 0 and 1. The change of variables t2 = u gives convergence close to 0 and
the change of variables t2 = 1−u gives convergence close to 1. The remaining
integrals can be transformed by applying the Moebius transformations

u↦
1

u
,u − 1,

1

u − 1
,
(u − 1)

u
,
u

1 − u
.

Example 19.1. If λ ∉ [1,∞), we choose γ0,1 as the straight path from
0 to 1 in C. By definition the function ua for complex a ∈ C is given by
exp(a(log ∣u∣+ iargu)). We take the branch of the integrand determined by
the following assignment of the arguments:

arg u = 0, arg (1 − u) = 0, ∣arg(1 − λu)∣ < π/2

and then, as we have indicated above, the integral is convergent.

The Euler integral can be viewed as a period in our sense. To see this,
let Cλ be the curve of genus 1 in Legendre form with affine equation

y2 = u(1 − u)(1 − λu).

Since the point ∞ is rational the curve has a group structure and becomes
an elliptic curve.

The projection π ∶ Cλ → P1 with (u, y) ↦ u is a 2-fold cover ramified in
the 2-torsion points u = 0,1, λ−1,∞. The multivalued differential form ξ(λ)

lifts from Ĉ to the single valued form and we have

ω(λ) =
du

y

on Cλ. The closure of our arcs γp,q in P1 lift to paths γ̃p,q on Can
λ and then

Ip,q(λ) = ∫
γ̃p,q

ω(λ).

There are two choices for the lift and the choice of the branch over γp,q
in the original definition is replaced by the choice of the lift γ̃p,q. Let γ̃−p,q
be the other lift. Then [γ̃−p,q] = −[γ̃p,q]. For algebraic λ, this description
makes Ip,q(λ) an incomplete elliptic period of the first kind corresponding
to a motive of the form [Z→ Cλ]. This insight is enough for the application
to values of the hypergeometric function, but we can be more precise. As the
end points are 2-torsion points, the image of γ̃p,q is a closed path in Cλ/Cλ[2].
The elliptic integral Ip,q(λ) agrees with a complete elliptic period of the first
kind there. Expressed in terms of 1-motives: [Z → Cλ] is isomorphic to
[Z→ 0]⊕ [0→ Cλ] in the isogeny category 1−MotQ and the integral Ip,q(λ)

is a period of the second factor.
Another way to see this is by complex analysis. The standard way in

complex analysis is to replace the loose ends by small circles with radius ε.
We get a closed path cp,q around p and q by going forth and back along the
arc from p to q and around the circles.
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Since the differential form is multivalued one has to be careful: going once
around the circle counterclockwise changes the value of ξ(λ) by −1 along
the arc. Going once around the second circle again counterclockwise does
the same and we get back the original determination of the value of the
differential form along the arc but we are passing in the opposite direction.
The value of the integral is independent of ε. After letting ε tend to zero we
obtain ∫cp,q ξ(λ) = 2 Ip,q(λ). Our paths cp,q lift to closed paths c̃p,q on Can

λ

such that

[c̃p,q] = [γ̃p,q] − [γ̃−p,q] = 2[γ̃p,q] ∈H1(C
an
λ ,Q),

and

2 Ip,q(λ) = ∫
c̃p,q

ω(λ).

For algebraic λ, this description makes Ip,q(λ) a complete elliptic period of
the first kind corresponding.

In toto:

Lemma 19.2. Let p, q, r be distinct in {0,1,∞, λ−1}. Then c̃p,q and c̃p,r
form a basis of Hsing

1 (Can
λ ,Q).

Proof. As a topological space we may identify Can
λ with (R/2Z)2. Our

exceptional points are the classes of (0,0), (1,0), (0,1), (1,1). We lift the
paths γp,q to the universal cover R2 where they start in a lift p̃ of p and end
in lifts q̃ and r̃ of q and r, respectively. The alternative lift γ̃−p,q connects
−p̃ to −q̃. Up to homotopy the lift of the closed loop cp,q connects p̃ to

p̃ + 2(q̃ − p̃). Its homology class is 2(q̃ − p̃) ∈ (2Z)2 = Hsing
1 ((R/2Z)2,Z).

The vectors q̃ − p̃, r̃ − p̃ are non-zero and distinct in (Z/2Z)2, hence linear
independent. This makes 2(q̃ − p̃),2(r̃ − p̃) linear independent in (2Z)2. �

19.1.1. A Hypergeometric Function. For ∣λ∣ < 1 the hypergeomet-
ric function with parameters (1/2,1/2,1) is defined by the power series

F (
1

2
,
1

2
,1;λ) =

∞
∑
n=0

(1
2)n(

1
2)n

n!

λn

n!
,

which is convergent for ∣λ∣ < 1. Here (a)n = a(a+1)+⋯+ (a+n−1) for n > 0
and 1 for n = 0 are the Pochhammer symbols. The hypergeometric function
is a solution of the hypergeometric differential equation

(24) λ(λ − 1)φ′′ + (2λ − 1)φ′ +
1

4
φ = 0.

As such it extends to a meromorphic function on C∖{0,1}. The differential
equation is a second order equation of Fuchsian type with regular singular
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points at 0,1,∞. Its solution space W has dimension 2. A basis for W is
given by the pair

z0(λ) ∶= F (
1

2
,
1

2
,1;λ)

z1(λ) ∶= −iF (
1

2
,
1

2
,1; 1 − λ) .

Each solution extends to a meromorphic function on C ∖ {0,1}.
A classic computation due to Euler (see [Kle81, p.7]; see also [IKSY91,

Chapter 2.3.2]) shows that for ∣λ∣ < 1

(25) I0,1(λ) = B(
1

2
,
1

2
)F (

1

2
,
1

2
,1;λ)

where B(p, q) is Euler’s beta function. From

B(
1

2
,
1

2
)) = ∫

1

0
u−1/2(1 − u)−1/2du =

Γ(1
2)Γ(1

2)

Γ(1)
= π.

we conclude that for all λ ∈ C ∖ {0,1}.

(26) I0,1(λ) = πF (
1

2
,
1

2
,1;λ) .

We know that π and 2 I0,1(λ) are periods. For π this is clear and for
I0,1(λ) we discussed it at length in Section 19.1. Summary 14.11 implies
that I0,1(λ) is non-zero if λ is algebraic. Equation (26) is a C-linear relation
between the elliptic period I0,1(λ) and π, which by Theorem 16.2 are linearly

independent over Q. These considerations prove the following result.

Proposition 19.3 (Wolfart, Chudnovsky-Chudnovsky). For z ∈ Q ∖
{0,1}, the value F (1/2,1/2,1; z) of the hypergeometric function is transcen-
dental.

Remark 19.4. The above fact is pointed out by Wolfart [Wol88, § 3, Fall
3] as a consequence of [WW85, Satz 2]. Chudnovsky-Chudnovsky mention
it in [CC88, p. 426] as a corollary of Chudnovsky’s Theorem on the algebraic
independence of elliptic periods. Both references study more generally val-
ues of hypergeometric functions from different angles. André [And96] has
an alternative approach. But actually, the necessary transcendence result is
much older: Schneider [Sch37, Satz IIIa] proved in 1936 the transcendence

of π/ω where ω is a period of an elliptic curve defined over Q. As the relation
to values of the hypergeometric function that we described is classical, we do
not know who was the first to make the connection to their transcendence.

An alternative ’modular’ proof is suggested by the explicit computation
of F (1/2/,1/2,1; z) given in [Arc03a, Remark 6], corrected by Bostan, see
[Bos21]. We have

(27) F (
1

2
,
1

2
,1;λ(τ)) = E4(τ)

1
4 (λ2(τ) − λ(τ) + 1)−

1
4 .
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where λ(τ) is the Legendre modular function and E4(τ) = 3
4π4 g2(τ) the

Eisenstein modular form of weight 4. The difference to Archinard’s formula
is the inverse on the left hand side. Assume λ(τ) and F (1/2,1/2,1;λ(τ))
to be algebraic. This makes j(τ) and E4(τ) algebraic. The identity

j(τ) = 1728
E4(τ)

3

E4(τ)3 −E6(τ)2

implies that E6(τ) is algebraic as well. This is a contradiction to what
Bertrand [Ber76, § 1.1] showed. As a consequence, F (1/2,1/2,1;λ(τ))
is transcendental for algebraic λ(τ). We thank Bostan for pointing out
this argument. Looking more closely, this is actually the same as before:
Bertrand’s proof relies on the Q-linear dependence between π and elliptic
periods.

19.1.2. The Legendre Family. We return to the integrals Ip,q(λ) as

functions in the variable λ ∈ San ∶= Ĉ ∖ {0,1,∞}. The functions are holo-
morphic and multivalued. We concentrate on I0,1(λ). Different branches
correspond to different choices of homotopy classes of paths γ0,1.

Example 19.5. On Ĉ∖ [1,∞), we use the principal branch of the func-
tion normalised as in Example 19.1. It does not extend to λ ∈ [1,∞) because
the straight path [0,1] would pass through the branch point λ−1 and we
would get two possible values for the integral depending on the choice of the
branch. Instead, choose λ0 ∈ [1,∞) and replace the straight path via one of
the two semi-circles sufficiently small radius around λ−1

0 .

some fixed λ−1
0 . The choice of the semi-circle replaces the choice of branch

and we take the one on which I(z) > 0. This point of view gives a description
of the analytic continuation of I0,1(λ). Let γ be the new path. The integral

∫γ ω(λ) is well-defined for λ ∈ C ∖ {γ(t)−1∣t ∈ [0,1]}, as can be verified, and
defines a holomorphic function. In particular, it is well-defined at λ0. By
the Monodromy Theorem, the modified function agrees with I0,1(λ) for λ−1

in the lower half plane because ω(λ) remains regular between the two paths.
It furnishes an analytic continuation of I0,1(λ), depending on our choice of
γ. If instead we take the second semi-circle, we obtain a second analytic
continuation. Going through all possible paths from 0 to 1 gives the full
analytic continuation of I0,1(λ) as a multi-valued function on C ∖ {0,1}. In
particular, all values of the analytic continuation are periods for different
choices of path from 0 to 1.

The Euler integrals are solutions of the hypergeometric equation

(28) λ(λ − 1)φ′′ + (2λ − 1)φ′ +
1

4
φ = 0

We refer to [Kle81, §16] or [IKSY91] for the explicit computation. This is
a second order differential equation of Fuchsian type with regular singular
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points at 0,1,∞. The fundamental group of San = P1 ∖ {0,1,∞} is a free
group Γ with generators γ0, γ1 and γ∞, which are loops with base point
b = 1/2 ∈ San around the points 0,1,∞ with γ−1

0 = γ1γ0. The solution space
W of the differential equation is a local system of rank 2. The group Γ has
a representation ρ, the monodromy representation, in the solution space W .
Accordingly the solutions are multi-valued functions on San and holomorphic
on the universal cover.

A more conceptual interpretation of the situation is to consider the Le-
gendre family

p ∶ C → P1

with fibre Cλ at λ. The family has degenerate fibers at 0, 1, ∞. Over
S = P1 ∖ {0,1,∞} there is a global basis of H1

dR(Cλ) given by the two
differential forms

ω(λ) =
du

y
, η(λ) =

udu

y

The form ω(λ) is holomorphic and thus of the first kind whereas η(λ) has
a pole of order 2 at u =∞ and this means that it is of the second kind.

The homology groups Hsing
1 (Can

λ ,Z) organise as a local system of rank
2 on San. Abstractly, it is the dual of pS∗Z where pS is the Legendre family
over S. For an explicit description let s ∈ San be fixed and let γs be a cycle in
Cs. By parallel transport we obtain a horizontal lifting γ(λ) of the cycle γs.
It depends on the choice of an Ehresmann connection. But the homology
class of the cycle γ(λ) is independent of the choice. This gives a horizontal
family of homology classes of cycles. The periods

z(λ) ∶= ∫
γ(λ)

ω(λ).

along horizontal cycles give multi-valued analytic functions on S. They are
solutions of the Gauß–Manin connection on H1

dR(Cλ/S), which leads to a
differential equation with regular singularities in {0,1,∞}. The differential
equation so obtained coincides with the differential equation (28).

19.2. Abelian Integrals

In the previous section we introduced the special hypergeometric func-
tion F (1/2,1/2,1;λ) and showed that for λ ≠ 0 it takes transcendental val-
ues. Our proof bases on the comparison of the periods of the Legendre curve
and the period of the curve y2 = x(1 − x) obtained from the Legendre curve
when λ = 0. This will now be studied for superelliptic generalisations of the
Legendre curve.

19.2.1. Euler Integral. The hypergeometric function F (1/2,1/2,1;λ)
is only a very particular case of the hypergeometric function F (a, b, c;λ) with
expansion

F (a, b, c;λ) =
∞
∑
n=0

(a)n(b)n
(c)n

λn

n!
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and convergent for ∣λ∣ < 1. As before, (a)n = a(a + 1) . . . (a + n − 1) are the
Pochhammer symbols. In the most general case the arguments a, b and c
are complex numbers with c neither zero nor a negative integer. It satisfies
the differential equation

λ(1 − λ)F ′′ + (c − (a + b + 1)λ)F ′ − abF = 0.

One sees that the differential equation specialises to the differential equa-
tion (28) from above when taking a = b = 1/2. Also for this more general
hypergeometric function an integral representation can be derived. We con-
sider the differential forms

(29) ω(a, b, c;λ) = ub−1(1 − u)c−b−1(1 − λu)−adu

and

ω(b, c − b) = ub−1(1 − u)c−b−1du.

The Euler integral

Ω(a, b, c;λ) = ∫
1

0
ub−1(1 − u)c−b−1(1 − λu)−adu

can be expressed in terms of F (a, b, c;λ) and the Euler Beta-function. The
latter is usually written as

B(b, c − b) = ∫
1

0
ub−1(1 − u)c−b−1du.

It is obtained from the degeneration of ω(a, b, c;λ) at λ = 0.

Proposition 19.6 ( [Kle81, S. 7], [IKSY91, Chapter 2.3.2])). The
Euler integral and the hypergeometric function F (a, b, c;λ) are related by
the equation

Ω(a, b, c;λ) = B(b, c − b)F (a, b, c;λ).

If a, b and c are rational numbers with smallest common denominator
N , then Ω(a, b, c;λ) can be interpreted as a period on the algebraic curve
CN(λ) of the form

yN = xr(1 − x)s(1 − λx)t

for suitable r, s, t. The degeneration CN(0) with affine equation

yN = xr(1 − x)s,

has the same property with respect to B(b, c − b). As in the elliptic case,
knowledge about linear independence of periods leads to transcendence re-
sults for F (a, b, c;λ). This connection was already exploited by Wolfart in
[Wol88]. We explain an approach from a different angle. In order to sim-
plify the exposition, we restrict to the case where N = p is an odd prime,
0 < r, s, t < p and require that p does not divide r + s + t or r + s.
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19.2.2. Geometry of Cp(λ). Let λ ≠ 0,1 and p, r, s, t as specified
above. The curve Cp(λ) was studied first by Wolfart, then very detailed
by Archinard [Arc03b], who corrected some errors by Wolfart. Quite re-
cently Archinard’s paper was extended and corrected by Asakura and Ot-
subo [AO18]. We briefly sketch the results which are relevant for us.

The curves Cp(λ) and Cp = Cp(0) are singular in general. Let Xp(λ)
and Xp be their normalisations, Jp(λ) and Jp the Jacobians of Xp(λ) and
Xp, respectively. The desingularisation is computed in detail by Archinard.
As r, s and t are prime to p, the branch points have exactly one preimage
in the desingularisation by [Arc03b, Remark 3]. This makes the maps
X(λ)an → Cp(λ)

an and Xan
p → Can

p homeomorphisms.

Remark 19.7. By replacing y by ±λ−t/py we get the equation for Cp(λ)
in the form

yp = xr(x − 1)s(x − λ−1)t

considered in [Arc03b].

Lemma 19.8. The genus of Xp(λ) and Xp is p− 1 and (p− 1)/2, respec-
tively.

Proof. Apply [Arc03b, Theorem 4.1] to our case. �

The group µp of roots of unity operates on Cp(λ) and Cp via σ(x, y) =
(x, ζ−1y) for ζ ∈ µp. This operation induces an operation of µp on Xp(λ)
and defines an embedding Q(µp)→ EndQ(Jp(λ)).

Lemma 19.9. The abelian variety Jp(λ) has at most two isotypical com-
ponents. If it has two components, both have complex multiplication by
Q(µp). The abelian variety Jp has complex multiplication.

Proof. For Jp, we have 2 dim(Jp) = [Q(µp) ∶ Q], making it CM.
For JP (λ), the CM-field Q(µp) operates on each isotypical component.

The dimension of such a component is at least (p − 1)/2. This implies that
there is either a single isotypical component or there are two. If there are
two, both factors have dimension (p − 1)/2, making them CM. �

Remark 19.10. The curve Cp has a cover by the Fermat curve with
affine equation

xp1 + x
p
2 = 1

via (x1, x2)↦ (xp1, x
r
1x
s
2), see Gross [Gro20]. This makes Jp (up to isogeny)

a direct factor of the Jacobian of the Fermat curve. The latter has been
studied intensely by Gross and Rohrlich in [Gro79].

19.2.3. Differentials on Cp(λ). As the genus is p − 1, the space V =
Ω(Xp(λ)) of global differential forms has dimension p − 1 and H1

dR(Xp(λ))
has dimension 2(p − 1). Recall that the latter has a description in terms of
differentials of the second kind, see Lemma 14.7. For Xp, the numbers have
to be divided by 2.
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Lemma 19.11. (1) Suppose that (p, r + s + t) = 1. For 1 ≤ n ≤ p − 1
and 0 ≤ u, v,w the differential forms on Xp(λ),

ωu,v,wn =
xu(1 − x)v(1 − λx)w

yn
dx

are of the second kind. They are holomorphic if and only if

u ≥ [
rn

p
] , v ≥ [

sn

p
] , w ≥ [

tn

p
] ,

u + v +w ≤
n(r + s + t) − 1

p
− 1

(2) Assume that (p, r + s) = 1. For 1 ≤ n ≤ p − 1 and u, v ≥ 0 the
differential forms on Xp,

ωu,vn =
xu(1 − x)v

yn
dx

are of the second kind. They are holomorphic if and only if

u ≥ [
rn

p
] , v ≥ [

sn

p
] ,

u + v ≤
n(r + s) − 1

p
− 1

Proof. This is Remark 12 in [Arc03b] see also Lemma 2.2 in [AO18].
In these references the lower bound is given in the form rn+1

p − 1 etc. As u

is an integer, we can replace the bound by ⌈ rn+1
p ⌉ − 1. Let rn = kp + e with

0 ≤ e < p. This gives

⌈
rn + 1

p
⌉ − 1 = k + ⌈

e + 1

p
⌉ − 1

As 1 ≤ e + 1 ≤ p, we have ⌈ e+1
p ⌉ = 1. We may write the bound in the shape

that we used. �

The forms ωu,v,wn and ωu,vn are ζn-eigenvalues for the operation of σ.

Corollary 19.12 ([AO18, Proposition 2.3]). If s+t = p, then on Xp(λ),

ωn ∶= ω
u,v,w
n

with

u = [
nr

p
] , v = [

ns

p
] , w = [

nt

p
] .

is of the first kind and

ηn ∶= ω
u,v+1,w
n

is of the second kind, but not of first kind. Moreover, the tuple (ωn∣n =
1, . . . , p − 1) is a basis of Ω(Xp(λ)) and (ωn, ηn ∣ n = 1, . . . , p − 1) is a basis
for H1

dR(Xp(λ)).



182 19. VALUES OF HYPERGEOMETRIC FUNCTIONS

Proof. We show that these choices are the only ones giving a holo-
morphic form. Division with remainder gives nr = kp + e, ns = lp + f and
nt =mp + g. It is required that u ≥m, v ≥ l, w ≥m. In conclusion,

u + v +w ≥ k + l +m.

Furthermore it is also required that

u + v +w ≤
n(r + s + t) − 1

p
− 1.

The condition that r+s = p forces that p divides f +g and leads to f +g = p.
This implies that

u + v +w ≤ k + l +m + 1 +
e − 1

p
− 1

and since u + v +w is an integer we conclude that

u + v +w ≤ k + l +m.

It follows that u + v +w = k + l +m, u = k, v = l, w =m and this is what was
stated. �

As the forms are eigenforms for the µp-operation, this is even an eigen-
basis. The forms ωn, ηn are a basis for the ζn-eigenspace.

Corollary 19.13. For 1 ≤ n ≤ p − 1, the differentials

ωn ∶=
xu(1 − x)v

yn
dx

with

u = [
nr

p
] , v = [

ns + 1

p
] ,

are a basis for H1
dR(Xp). The expression

(30) ⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

n(r + s)

p
⟩ ,

where ⟨x⟩ denotes the fractional part of a rational number x, takes the value
1 if ωn is holomorphic and the value 0 if it is not.

Precisely one of the forms ωn and ωp−n is holomorphic.

Proof. They are linearly independent because they have different eigen-
values for the µp-operation. They span a subspace of H1

dR(Xp) of dimension
p − 1, hence they even generate it.

The criterion for being holomorphic is the computation of the dimension
of ζn-eigenspace of Ω(Xp) in [Arc03b, Theorem 6.7]. We check it by hand.

Euclidean division gives nr = kp + e, ns = lp + f , and then n(r + s) =

(k + l)p+ e+ f . We have 0 < e+ f < 2p and excluded p ∣ e+ f , hence ⟨
n(r+s)
p ⟩
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takes the value e+f
p if e + f < p and the value e+f−p

p if e + f > p. This gives

⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

n(r + s)

p
⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

0 e + f < p

1 e + f > p

On the other hand, the condition in Lemma 19.11 contains the upper bound

n(r + s) − 1

p
− 1 = [

rn

p
] + [

rs

p
] +

e + f − p − 1

p

We have e+f −p−1 ≥ 0 if and only if e+f > p. This makes ωu,vn holomorphic
if and only if (30) takes the value 1.

The last statement is [Arc03b, Theorem 6.8]; see also [Arc03b, Re-
mark 13]. It is also obvious from the above computation: the remainder of
(p − n)r is p − e and the remainder of (p − n)s is p − f . �

A CM-pair (J, ι) consisting of an abelian variety J and an embedding
ι ∶ F → EndQ(J) of a CM-field is uniquely determined up to isogeny by the
pair (J,Φ), where Φ is the set of eigenvalues for the operation of F on Ω(J),
the CM-type. As a byproduct, the corollary describes the CM-type Φp of
Jp. In detail: We introduce

H = {n ∈ (Z/pZ)∗ ∣ ⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

n(r + s)

p
⟩ = 1}

and

W = {a ∈ (Z/pZ)∗ ∣ aH =H} .

For a given n ∈ H, the condition in the corollary is satisfied. This means
that ωn is holomorphic and that ζn appears as an eigenvalue in the operation
of µp on Ω(Jp). We can identify H and Φp. The group W is its stabiliser
under the identification of the Galois group Gal(Q(µp)/Q) with (Z/pZ)∗.

Remark 19.14. Following Gross and Rohrlich in [GR78], we may in-
troduce a fake variable t with r + s + t = p (unrelated to the t appearing
Cp(λ)). Then

H = {n ∈ (Z/pZ)∗ ∣ ⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

−nt

p
⟩ = 1}

= {n ∈ (Z/pZ)∗ ∣ ⟨
nr

p
⟩ + ⟨

ns

p
⟩ + ⟨

nt

p
⟩ = 2}

because ⟨−x⟩ = 1 − ⟨x⟩. This is the complement in (Z/pZ)∗ of the set of

Hr,s,t = {n ∈ (Z/pZ)∗ ∣ ⟨
nr

p
⟩ + ⟨

ns

p
⟩ + ⟨

nt

p
⟩ = 1}

appearing in [GR78] because the expression takes the values 1 and 2. The
normalisation of the operation of µp on Cp in [GR78] is complex conjugate to
ours, hence they describe the CM type by Hr,s,t rather than by our H. Note
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that an a ∈ (Z/pZ)∗ which stabilises H also stabilises Hr,s,t = (Z/pZ)∗ ∖H
and conversely. So we actually have

W =Wr,s,t

as defined in [GR78, Lemma 1.6].

Lemma 19.15 (Gross and Rohrlich [GR78, Lemma 1.6]). The group W
is trivial unless r3 ≡ s3 ≡ (−r − s)3 mod p, in which case it is the group of
cube roots of unity (modulo p).

Corollary 19.16. The CM-abelian variety Jp is simple if and only if
the group W is trivial. In particular, this is the case if p ≢ 1 mod 3.

Proof. We identity H with the CM-type, where n ∈ (Z/pZ)∗ stands for
the ζn-eigenspace of the operation of ζ ∈ µp on Ω(Jp). The operation of the
Galois group Gal(Q(µp)/Q) = (Z/pZ)∗ on the eigenvalues is identified with
the left multiplication of (Z/pZ)∗ on itself. The condition in the corollary
means that the stabiliser of H is trivial, i.e. the CM-type is primitive. Being
primitive is equivalent to the abelian variety being simple.

If Jp is not simple, then Lemma 19.15 implies that 3 divides p − 1. �

Example 19.17. Let p = 11, r = s = 2. Then H = {3,4,5,9,10} and Jp
is simple. For p = 7, r = 2, s = 4, we have H = {3,5,6} and Jp is not simple
because W = {1,2,4}. For p = 7, r = s = 2, we have H = {2,3,6} and Jp is
again simple. These examples are compatible the criterion of Lemma 19.15.

Remark 19.18. It can happen that ωu,v,wn is of the first kind, but ωu,vn
(for the same parameters r, s, t, u, v) is not. Indeed, it must happen because
the dimension of the space of differential forms of the first kind goes down.

19.2.4. Transcendence. We can now connect the periods of Xp(λ) to
our Euler integrals. Recall the differential forms ω(a, b, c;λ) in the complex
plane, see (29)

Proposition 19.19. Let p be an odd prime, 0 < r, s, t < p and p ∤ r+s+t.
Choose 1 ≤ n ≤ p − 1, u, v,w ≥ 0 and introduce

a = −w +
nt

p
, b = u + 1 −

nr

p
, c = b + 1 + v −

ns

p
= u + v + 2 −

n(r + s)

p
.

(1) The form ωu,v,wn is the pull-back of ω(a, b, c;λ) to Xp(λ) under the
projection (x, y) ↦ x. The Euler integral Ω(a, b, c;λ) is a complete
period of the second kind for Jp(λ).

(2) The form ωu,vn is the pull-back of ω(b, c− b) to Xp under the projec-
tion (x, y) ↦ x. The Beta integral B(b, c − b) is a complete period
of the second kind for Jp.

Proof. The first claim is straightforward by replacing y in ωu,v,wn by

y = xr/p(1 − x)s/p(1 − λx)t/p.
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We write ω for our meromorphic differential form. A chosen generator
ζ ∈ µp operates via σ on Cp(λ) and (by functoriality) on Xp(λ). Let γ be
the lift of [0,1] to Xp(λ) corresponding to the choice of branch in the Euler
integral. Then (σ∗γ)−1γ is a closed loop in Xp(λ)

an. In computing the
integral over the closed path we get

∫
γ
ω − ∫

σ∗γ
ω = ∫

γ
(ω − σ∗ω) = (1 − ζn)∫

γ
ω

This makes the Euler integral a closed period of the second kind. The
argument for the Beta integral is analogous. The period is of the second
kind because the differential form ωu,vn is of the second kind in general. �

By Proposition 19.19, the formula

Ω(a, b, c;λ) = F (a, b, c;λ)B(b, c − b)

of Proposition 19.6 can be regarded as a linear relation between periods of
algebraic curves. The dimension computations in Chapter 15 tell us about
Q-linear independence of period numbers.

Recall that Φp is the CM-type of Jp with the operation of Q(µp) induced
from the operation of µp on Cp. For α ∈ Gal(Q(µp)/Q) we write Jαp =

(Jp, αΦp) and Jαp = (Jp, αΦp) (the complementary CM-type).

Theorem 19.20. Let p be an odd prime, 0 < r, s < p such that p does
not divide r + s and put t = p − s. We assume that Jp is simple and take
0 ≤ u, v and a, b, c as in Proposition 19.19, λ ≠ 0,1 algebraic. If F (a, b, c;λ)
is algebraic and not zero then (up to isogeny)

Jp(λ) ≅ J
α
p × J

α
p

in the category of abelian varieties with µp-action.

Proof. The assumption t + s = p ensures that p ∤ r + s + t is satisfied.
The period B(b, c − d) does not vanish, by the criterion of Summary 14.11,
because the lift γ of [0,1] to Xan

p is not closed. As F (a, b, c;λ) is assumed
non-zero, this also makes Ω(a, b, c;λ) non-zero.

We consider A = Jp × Jp(λ). The dimension formula in Theorem 15.3

implies that there are no Q-linear relations between non-trivial periods of
different isotypical components. This implies that Jp and Jp(λ) share a
simple factor. As Jp is simple, this means that

Jp(λ) ≅ J1 × J2

with
Jp ≅ J1

up to isogeny. Note that we do not know if the isomorphism is compatible
with the µp-operation.

By Lemma 19.9 both factors have CM by Q(µp) (because either Jp(λ) =
J2
p or it has two isotypical components) and the eigenbasis computation in

Corollary 19.12 shows that J1 and J2 have complex conjugate CM-types Φ
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and Φ̄. As J1 is simple, the simplicity criterion of Corollary 19.16 applies
to Φ and then also to Φ̄. Primitive CM-types classify pairs (B, ι) for B a
simple abelian variety and ι ∶ Q(µp) → EndQ(B). The CM-type of J2 is
realised by (J1, ῑ), hence J2 and J1 are isogenous after all. Here ῑ means
complex conjugation on Q(µp) followed by ι.

We now have Jp(λ) ≅ J2
p . Let ζ be a generator of µp and σ the cor-

responding automorphism of Jp(λ). It operates on J2
p by a (2 × 2)-matrix

with entries in Q(µp) = EndQ(Jp). As σp = id, it is diagonalisable and its
eigenvalues are pth roots of unity. Without loss of generality, it has the
shape

(
ζα 0

0 ζα
′) .

The induced operation on Ω(Jp(λ)) is diagonalisable with p − 1 distinct
eigenvalues. This implies that α = −α′ mod p. In other words, the isomor-
phism Jp(λ) ≅ J2

p can be chosen such that σ operates via ζα on the first
factor and via ζ−α on the second. This determines the CM-types of the two
factors. They are complex conjugate to each other. �

Remark 19.21. As a consequence of the theorem, the argument λ has
to be special in the sense of Shimura varieties. This could certainly be
investigated in more detail. However, the subtelties of Shimura varieties
and the André-Oort conjecture are beyond the scope of our book.

Corollary 19.22. Let p, r, s, t be as in the theorem. Let 1 ≤ n ≥ p − 1
and u, v,w as in Corollary 19.12 and a, b, c as in Proposition 19.19. If

⟨
nr

p
⟩ + ⟨

ns

p
⟩ − ⟨

n(r + s)

p
⟩ ≠ 1

then F (a, b, c;λ) is zero or transcendental for all algebraic λ ≠ 0,1.

Proof. In this case, the form ωu,v,wn on Xp(λ) is of the first kind,
whereas ωu,vn on Xp is not.

Assume F = F (a, b, c;λ) is not zero and algebraic for algebraic λ ≠ 0,1.
As the CM-types of the two factors of Jp(λ) are distinct, the form ωu,v,wn

restricts to 0 on one of them, say the second. We may view it as a differential
form of the first kind on Jp. As an element of H1

dR(Jp) it is Q-linearly
independent of the form ωu,wn , which is not of the first kind by our choice of
n. By Lemma 15.6 this makes their periods Q-linearly independent.

�

Recall that we have an easy numerical criterion to check whether Jp is
simple, see Lemma 19.15.

Example 19.23. We choose p = 11, r = s = 2, r + s = 4, t = 9. As
pointed out in Example 19.17 this makes Jp simple with CM-type given by
H = {3,4,5,9,10}. Conversely, ωn is not holomorphic for n = 1,2,6,7,8. We
have a = ⟨9n

11 ⟩, b = 1 − ⟨2n
11 ⟩, c = 2b
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n u v w a b c
1 0 0 0 9/11 9/11 18/11
2 0 0 1 7/11 7/11 14/11
6 1 1 4 10/11 10/11 20/11
7 1 1 5 8/11 8/11 16/11
8 1 1 6 6/11 6/11 12/11

The corresponding values of the hypergeometric function are zero or tran-
scendental for all algebraic λ ≠ 0,1. For λ ∈ (0,1), the Euler integral is
non-zero and F (10/11,10/11,20/11;λ) is a transcendental number.
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APPENDIX A

Nori Motives

In this section a bare minimum of Nori’s theory of motives is reviewed,
to the extent needed in the main text. For a more complete picture, see
[HMS17, Chapter 9.1].

Our base field will be k ⊂ C and we shall work with Q-coefficients
throughout. We denote by Q−Vect the category of finite dimensional Q-
vector spaces and more generally by E−Mod the category of finitely gener-
ated E-left modules for a finite dimensional Q-algebra E.

A.1. Effective Motives and Realisations

A diagram D is an oriented graph. A representation of D is a map
of oriented graphs T ∶ D → A into an abelian category A. It assigns an
object to every vertex and a morphism to every edge. There is an abstract
construction due to Nori that attaches to every representation T ∶ D →
Q−Vect a Q-linear abelian category. It should be thought of as the abelian
category generated by D inside the category Q−Vect. For a particular choice
of the diagram and the representation we obtain the category of motives.

Definition A.1 ([HMS17, Definition 9.1.1]). Let Pairseff be the dia-
gram for which

(1) the vertices are triples (X,D, i) where X is an algebraic variety
over k, D ⊂X is a closed subvariety and i ∈ N0;

(2) two types of edges:
● (functoriality) for every morphism of varieties X → X ′ map-

ping a subvariety D ⊂X to D′ ⊂X ′ an edge

f∗ ∶ (X ′,D′, i)→ (X,D, i);

● (coboundary) for every triple X ⊃ Y ⊃ Z an edge

∂ ∶ (X,Y, i)→ (Y,Z, i + 1).

We define the singular realisation

Hsing ∶ Pairseff → Q−Vect

by mapping a vertex to the singular cohomology

(X,D, i)↦H i
sing(X

an,Dan;Q)

191
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of the datum and edges of type f∗ to pull-back on cohomology and edges
of type coboundary to the coboundary map in the long exact sequence in
cohomology.

Theorem/Definition A.2 (Nori, [HMS17, Definition 9.1.3, Theo-

rem 9.1.10]). There is are an abelian Q-linear category MMeff
Nori(k,Q), the

category of effective Nori motives over k, a faithful exact functor

Hsing ∶MM
eff
Nori(k,Q)→ Q−Vect

and a representation

HNori ∶ Pairseff →MMeff
Nori(k,Q)

such that
Hsing ○HNori =Hsing,

is an isomorphism of functors, in particular

Hsing ○HNori(X,D, i) =Hsing(X,D, i) =H
i
sing(X,Y ;Q).

This triple (MMeff
Nori(k,Q), Hsing, HNori) is uniquely determined by the

following universal property:
For any abelian Q-linear category A, together with a Q-linear faithful

exact functor f ∶ A → Q−Vect and a representation T ∶ Pairseff → A such
that

f ○ T ≅Hsing

there is there is a Q-linear exact functor

T̃ ∶MMeff
Nori(k,Q)→ A

and an isomorphism of functors f ○ T̃ →H∗ which extends the isomorphism
on Pairseff .

The universal property can be summed up in a diagram:

MMeff
Nori(k,Q)

Hsing

''
T̃

��

D

Hsing
88

T
&&

Q−Vect

A
f

66

In this very precise sense, MMeff
Nori(k,Q) is the abelian category generated

by Pairseff .
We also use the notation

H i
Nori(X,D) =HNori(X,D, i)

and call it the ith Nori motive of (X,D).
For our purposes, the most important choices for A are the category

MHSk of mixed Q-Hodge structures over k, see Definition 8.14, and the
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category (k,Q)−Vect, see Definition 7.1. Deligne constructed in [Del74] a
functor H∗

Hdg = (H∗
dR,H

∗
sing, φ) from the category of k-varieties to MHSk.

This has been extended to the diagram Pairseff (e.g. in [Hub95] or as a
by-product of [Hub00, Hub04]). The situation can be summed up by the
commutative diagram

MMeff
Nori(k,Q)

Hsing

''
HHdg

��

D

Hsing
88

HHdg &&

Q−Vect

MHSk

f

77

where f is the forgetful functor (VdR, Vsing, φ)↦ Vsing.
By the universal property of Nori motives, the representation HHdg ex-

tends to a functor

HHdg ∶MM
eff
Nori(k,Q)→MHSk

on Nori motives. We sum up:

Definition A.3. (1) The Hodge realisation

HHdg ∶MM
eff
Nori(k,Q)→MHSk

is the canonical extension of the representation of Pairseff in MHSk
compatible with the singular realisation.

(2) The period realisation

H ∶MMeff
Nori(k,Q)→ (k,Q)−Vect

is defined by forgetting the filtrations (i.e. composing with the
faithful exact functor MHSk → (k,Q)−Vect).

(3) The de Rham realisation

HdR ∶MMeff
Nori(k,Q)→ k−Vect

is defined by projecting to the k-component (i.e. composing with
the faithful exact functor (k,Q)−Vect→ k−Vect).

Remark A.4. (1) Every effective Nori motive M over Q has a well-
defined set of periods given by the periods of H(M) ∈ (k,Q)−Vect,
i.e. the image of the period pairing

HdR(M) ×Hsing(M)∨ → C,
see [HMS17, Section 11.2].

(2) By the universal property of MMeff
Nori(k,Q), every object in the

category is a subquotient of a motive of the form H i
Nori(X,D).

This will allow us to reduce questions on periods of motives to
motives of the special shape.
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(3) In our monograph the theory of motives has been set up to be con-
travariant on the category of varieties. This follows the convention
of [HMS17], but differs from Nori’s original approach.

A.2. Filtration by Degree

Following Ayoub and Barbieri-Viale in [ABV15] we concentrate on the
subcategories generated by motives of bounded cohomological degree or di-
mension.

Definition A.5. For n ≥ 0 let dnMMNori(k,Q) ⊂ MMeff
Nori(k,Q) be

the thick abelian subcategory (i.e. full and closed under extensions and
subquotients) generated by the objects H i

Nori(X,D), with X a k-variety,
D ⊂X a closed subvariety and i ≤ n.

Remark A.6. Our definition is the contravariant analogue of [ABV15,
Definition 3.1]. By [ABV15, Proposition 3.2] it suffices to deal with the
case when X has dimension at most n. The period version of the argument
for n = 1, which is the case of our interest is given in Proposition 12.5.

For n = 0, the category d0MMNori(k,Q) is the category of Artin mo-
tives; see [ABV15, Theorem 4.3]. The following theorem discusses the case
n = 1, which is of direct relevance for us.

Theorem A.7 (Ayoub and Barbieri-Viale [ABV15, Sections 5, 6]). The
following hold.

(1) The inclusion

d1MM
eff
Nori(k,Q)→MMeff

Nori(k,Q)

has a left-adjoint.
(2) There is an anti-equivalence of categories

1−Motk → d1MM
eff
Nori(k,Q).

(3) The abelian category d1MM
eff
Nori(k,Q) can be described as the dia-

gram category in the sense of Nori (see [HMS17, Theorem 7.1.13]),
defined by the diagram with vertices (C,D), where C is a smooth
affine curve and D a collection of points on C, and edges given by
morphisms of pairs together with singular cohomology as a repre-
sentation.

A.3. Non-effective Motives

The full category of motives is constructed from the category of effective
motives by inverting the Lefschetz motive

Q(−1) =H2
Nori(P

1) =H∗
Nori(Gm,{1}).

We explain the construction.
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Remark A.8. Nori constructs a tensor structure on the categoryMMeff
Nori(k,Q).

However, the resulting tensor category is not rigid. This defect can resolved
by passing to MMNori(k,Q), which turns out to be rigid. We do not need
the tensor structure, so we do not go into details; instead see [HMS17,
Section 9.3].

The map of diagrams

Pairseff → Pairseff

given by

(X,D, i)↦ (X ×Gm,X × {1} ∐D ×Gm, i + 1)

is compatible with the singular realisation because

H i+1
sing(X ×Gm,X × {1} ∐D ×Gm;Q)

≅H i
sing(X,D;Q)⊗H1(Gm,{1};Q) ≅H i

sing(X,D;Q).

Note that this stupid version of the Künneth formula actually holds true
because the whole cohomology of (Gm,{1}) is concentrated in degree 1.
The datum (Gm,{1,},1) is what Nori calls a good pair.

By the universal property of the category of effective Nori motives, this
induces a faithful exact functor

(−1) ∶MMeff
Nori(k,Q)→MMeff

Nori(k,Q),

the Tate twist.

Definition A.9. The category of Nori motives MMNori(k,Q) over k

with coefficients in Q is defined as the localisation of MMeff
Nori(k,Q) with

respect to the twist functor (−1): objects inMMNori(k,Q) are of the form

M(i) for M ∈MMeff
Nori(k,Q) and i ∈ Z and

HomMMNori(k,Q)(M(i),N(j)) = lim
n→∞

HomMMeff
Nori(k,Q)(M(i + n),N(j + n))

and (−1) induces an equivalence of categories

(−1) ∶MMNori(k,Q)→MMNori(k,Q).

See [HMS17, Section 8.2] for a construction of the same localisation in
terms of diagrams. The natural functor

MMeff
Nori(k,Q)→MMNori(k,Q)

is faithful because both categories are equipped with forgetful functors into
the category of Q-vector spaces.. However, we do not know if it is full.

Remark A.10. It is also an open question whether the inclusion

d1MM
eff
Nori(k,Q)↪MMNori(k,Q)

into the category of all motives is full. We give a positive answer for k = Q
in Theorem 13.5.
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A.4. The Period Conjecture

In this section we restrict to k = Q.
The formalism of Chapter 7 can be applied to the diagram Pairseff of

Definition A.1 or the additive category MMeff
Nori(Q,Q) and the representa-

tion/functor H with values in (Q,Q)−Vect. We make this explicit.

The periods of Pairseff are the period numbers

P(Pairseff) =
∞
⋃
i=0

P i =∶ Peff

of Definition 12.2 On the other hand, we have

P(Pairseff) = P(MMeff
Nori(Q,Q))

because any object of MMeff
Nori(Q,Q) is a subquotient of an object of the

form H i
Nori(X,D) see Remark A.4 (2). In Definition 7.6, we also intro-

duced the notion of a vector space of formal periods attached to an additive
category or a diagram. The notion aims at a description of actual period
spaces in terms of generators and relations. A priori, passing from the dia-
gram Pairseff to the abelian category MMeff

Nori(Q,Q) might introduce new
generators and more relations. However, this is not the case. We also have

P̃(Pairseff) = P̃(MMeff
Nori(Q,Q));

this holds true for any representation of a diagram and its diagram cate-
gory. The fact is implicit in [HMS17]; see [Hub20, Theorem 3.7] for full

details. Conjecture 13.1 is the Period Conjecture for Pairseff in the sense of
Definition 7.15, i.e. the question about injectivity of the map

P̃(Pairseff)→ Peff .

Up to a minor changes the conjecture was formulated by Kontsevich in
[Kon99]. We refer the reader to in [HMS17, Remark 13.1.8] for a detailed
discussion. Injectivity is equivalent to the Period Conjecture for effective
Nori motives over Q, i.e. the injectivity of

P̃(MMeff
Nori(Q,Q))→ Peff .

By Corollary 7.19, the Period Conjecture implies fullness ofMMeff
Nori(Q,Q).

By Lemma 7.20, the Period Conjecture for MMeff
Nori(Q,Q) is equivalent to

the Period Conjecture for ⟨M⟩ for all M ∈ MMeff
Nori(Q,Q). Here, as in

Definition 7.8, we denote by ⟨M⟩ ⊂ MMeff
Nori(Q,Q) the smallest full sub-

category containing X which is closed under subquotients. Moreover, the
Period Conjecture for M can be reformulated as asking for

dimQP⟨M⟩ = dimQE(M)

with
E(M) ∶= End(Hsing∣⟨M⟩),

as in Definition 7.23. Unconditionally, we get the estimate

dimQP⟨M⟩ ≤ dimQE(M).
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In Section A.2 we have introduced the filtration of MMeff
Nori(Q,Q) by

degree.

Corollary A.11. The Period Conjecture for all motives is equivalent
to the Period Conjecture for dnMM

eff
Nori(Q,Q) for all n ≥ 0.

Proof. If M ∈ dnMM
eff
Nori(Q,Q), then even ⟨M⟩ ⊂ MMeff

Nori(Q,Q).

Moreover, every object ofMMeff
Nori(Q,Q) is contained in some dnMM

eff
Nori(Q,Q).

If the Period Conjecture holds forMMeff
Nori(Q,Q), then it holds for all ⟨M⟩

and hence for all dnMM
eff
Nori(Q,Q), and conversely. �

One of the main results of the present monograph is the validity of the
Period Conjecture for d1MM

eff
Nori(Q,Q); see Theorem 13.3. This implies

the dimension formula for all 1-motives; see Corollary 9.12.
The Period Conjecture can also be formulated for non-effective Nori

motives, see Section A.3. We have

P(MMNori(Q,Q)) = Peff[1/2πi]

because 2πi is the period of Q(−1). As we do not know ifMMeff
Nori(Q,Q)→

MMNori(Q,Q) is full, it is also an open question whether P̃(MMeff
Nori(Q,Q))→

P̃(MMNori(Q,Q)) is injective. By Proposition 7.17 this injectivity is a con-
sequence of the Period Conjecture forMMNori(Q,Q). We deduce it for the
category d1MMNori(Q,Q) in Theorem 13.5.
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Voevodsky Motives

An alternative approach to the theory of motives starts out with a trian-
gulated category of motives, thought of as the bounded derived category of
motives. We use Voevodksy’s approach. His category and the results known
about its relation to 1-motives are only used in the proof of Theorem 13.3
(2). We refer to Voevodsky’s survey in [Voe00] for explicit constructions
and proofs.

B.1. Geometric Motives and the Singular Realisation

Let k be a field of characteristic 0. We work with Q-coefficients through-
out. This assumption makes most of subtleties of [Voe00], like finite corre-
spondences and the distinction between the Nisnevich and the étale topology
unnecessary. There are alternative constructions by different authors which
yield the same result. For example, Ayoub’s category DAeff

c (k,Q) built with
the etale topology and without transfers (see [Ayo14b]) is equivalent to

Voevodksy’s DMeff
gm(k,Q) built with the Nisnevich topology and correspon-

dences.

Definition B.1 ([Voe00, Definition 2.1.1]). We denote by DMeff
gm(k,Q)

the triangulated category of effective geometric motives and by

M ∶ Vark → DMeff
gm(k,Q)

the covariant functor which attaches to an algebraic k-variety its (Voevodsky)
motive.

Singular cohomology extends to a contravariant functor

Hsing ∶ DM
eff
gm(k,Q)→ Q−Vect

such that
Hsing(M(X)[i]) =H i

sing(X,Q).

This is a consequence and easy special case of [Hub00, Hub04].

Remark B.2. From the point of view of Voevodsky motives as well as
from the point of view of 1-motives, it can be argued that it would be more
natural to work with singular homology instead. Indeed, this is the point
of view taken by Ayoub in his construction of the Betti realisation not only
of motives over a field, but over general base; see [Ayo10]. On the other
hand, de Rham cohomology is a lot more natural than de Rham homology.
We stick to the conventions set up in [HMS17].

199
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Let Pairseff be the diagram considered in Definition A.1 in order to define
Nori motives.

Lemma B.3. The functor M extends to a representation

M ∶ Pairseff → DMgm(k,Q)

such that Hsing ○M agrees with the singular realisation of Section A.1.

Proof. Let (X,Y, i) be a vertex of Pairseff , i.e. X an algebraic variety,
Y a closed subvariety and i ≥ 0. We define

M(X,Y, i) =M(Y →X)[i]

whereM(Y →X) is the object of DMeff
gm(k,Q) corresponding to the bounded

complex [Y →X] in the additive category SmCor of finite correspondences;
see [Voe00, Section 2.1]. Its singular realisation is H i

sing(X,Y ;Q).

A morphism f ∶ X → X ′ mapping Y to Y ′ induces a natural morphism
f∗ ∶M(X ′, Y ′, i)→M(X,Y, i). A triple Z ⊂ Y ⊂X induces

∂ ∶M(X,Y, i)→M(Y,Z, i + 1).

Both are mapped to the correct map on singular cohomology. �

B.2. Filtration by Dimension

Definition B.4 ([Voe00, Section 3.4]). For n ≥ 0 let dnDM
eff
gm(k,Q) be

the full thick subcategory generated by the motives of the form M(X) for
a smooth variety X of dimension at most n.

The case n = 0 is easy. Voevodsky showed that d0DM
eff
gm(k,Q) is equiv-

alent to the bounded derived category of finite dimensional continuous rep-
resentations of Gal(k̄/k). If k is algebraically closed, this is simply the
bounded derived category of Q−Vect.

Theorem B.5 (Orgogozo [Org04], Barbieri-Viale–Kahn [BVK16]).
There is a natural equivalence of triangulated categories

Db(1−Motk)→ d1DMgm(k,Q)

from the derived category Db(1−Motk) of the abelian category of iso-1-motives

to d1DMgm(k,Q). The inclusion d1DMgm(k,Q) → DMeff
gm(k,Q) has a left

adjoint which is a section.

For n ≥ 2, the subcategories dnDM
eff
gm(k,Q) remain mysterious.

B.3. Relation to Nori Motives

We have now seen two approaches to a theory of motives. They are
related.
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Theorem B.6 (Nori, Harrer [Har16]). There is a triangulated functor

DMeff
gm(k,Q)→Db(MMeff

Nori(k,Q))

between triangulated categories compatible with the singular realisation into
the derived category of Q-vector spaces.

Proof. The existence of the functor is due to Harrer, based on a con-
struction of Nori. �

Proposition B.7. The functor of Theorem B.6 maps dnDM
eff
gm(k,Q) to

the full subcategory of Db(MMeff
Nori(k,Q)) consisting of objects with coho-

mology in dnMM
eff
Nori(k,Q).

Proof. As dnMM
eff
Nori(k,Q) is closed under subquotients and exten-

sions, it suffices to check the claim for a system of generators for dnDM
eff
gm(k,Q)

as a triangulated category. We first do the case n = 1, which is of most sig-
nificance for us.

Let C be a connected smooth variety of dimension 0 or 1 and M(C) be
the corresponding object in DMgm(k,Q). Its image in Db(MMNori(k,Q))
has cohomology in degrees at most 2. Cohomology in degree 2 only occurs
if C is a smooth proper curve. In this case

H2
Nori(C) ≅H2

Nori(P
1) ≅H1

Nori(Gm),

hence it is also in d1MMNori(k,Q).
In the general case, we need to consider M(X) with X a smooth va-

riety of dimension at most n. It remains to show that H i
Nori(X) is in

dnMM
eff
Nori(k,Q). By the Mayer-Vietoris property we may assume that

X is affine. We then follow the construction of H i
Nori(X) in [HMS17]. We

choose a good filtration

X0 ⊂X1 ⊂ ⋅ ⋅ ⋅ ⊂Xn =X

by closed subvarieties such that H i
sing(Xj ,Xj−1;Q) is concentrated in degree

j. (The existence of such a filtration is guaranteed by Nori’s Basic Lemma;
see [HMS17, Proposition 9.2.3].) This yields the complex

H0
Nori(X0)→H1

Nori(X1,X0)→ ⋅ ⋅ ⋅→Hn
Nori(Xn,Xn−1),

whose cohomology is equal toH∗
Nori(X). As the complex is in dnMM

eff
Nori(k,Q),

so is its cohomology. �





APPENDIX C

Comparison of Realisations

In this appendix, we identify Deligne’s explicit realisations of 1-motives
with realisations of motives of algebraic varieties.

We work over an algebraically closed field k with a fixed embedding into
C. Recall the functor

V ∶ 1−Motk →MHSk → (Q, k)−Vect.

It maps the iso-1-motive M = [L→ G] to the triple consisting of its sin-
gular realisation Vsing(M), its de Rham realisation VdR(M) and the period
isomorphism. We refer to Chapter 8 for their construction.

On the other hand, there is a functor

(X,Y )↦H1(X,Y ) ∈ (k,Q)−Vect

for pairs of a variety X and a closed subvariety. A complete reference for
its construction is [HMS17] and this is what we are going to rely on. We
have already discussed it in Appendix A in the context of Nori motives.
Alternatively, we can also construct it from the theory of Voevodsky motives,
see Appendix B: every morphism Y →X of smooth k-varieties gives rise to
an object M(Y → X) ∈ DMgm(k). Let H0 ∶ DMgm(k) → (k,Q)−Vect be the
standard cohomological functor of [Hub00, Hub04] and H1 =H0 ○ [1]. By
composition we define

H1(Y →X) ∈ (k,Q)−Vect.

Its de Rham component is defined explicitly as H1 of

RΓdR(X,Y ) ∶= cone(RΓdR(Y )→ RΓdR(X))[−1]

and its singular component as H1 of

RΓsing(X,Y ) ∶= cone(RΓsing(Y )→ RΓsing(X))[−1],

where RΓdR and RΓsing are functorial complexes computing de Rham and
singular cohomology respectively; see [HMS17, Section 3.3.3, Section 5.5].
They are connected by a period isomorphism, see [HMS17, Corollary 5.52].
In the special case Y ⊂X, we get back relative cohomology.

C.1. The de Rham Realisation Revisited

In Chapter 3 we gave an explicit definition of relative algebraic de Rham
cohomology in the smooth case. We need to relate it to the one in our main
reference [HMS17]

203
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Lemma C.1. Let X be a smooth variety and U a finite open affine cover
of X. Then there is a natural isomorphism of complexes in the derived
category

RΓ̃dR(X,U)→ RΓdR(X),

functorial for affine maps. If Y ⊂X is a smooth closed subvariety, then

RΓ̃dR(X,Y,U) ∶= cone(RΓdR(Y,U ∩ Y )→ RΓdR(X,U))[−1]

is naturally isomorphic to RΓdR(X,Y ).

Proof. The definition of RΓdR for complexes of smooth varieties is
given in [HMS17, Definition 3.3.1]. For a single smooth variety, by [HMS17,
Definition 3.3.14], it is given as global sections of the Godement resolution
([HMS17, Section 1.4.2])

RΓdR(X) = GdXΩ∗
X(X).

The Čech-complex

tot(C∗(U,GdXΩ∗
X))

receives natural quasi-isomorphisms both from RΓ̃(X,U) (because the nat-
ural map Ω∗

X → GdXΩ∗
X is quasi-isomorphism of complexes of sheaves) and

from RΓdR(X) (because the cover U refines X). Together they define an
isomorphism in the derived category.

The construction extends to complexes Y →X. �

C.2. The Comparison Result

In Definition 7.12, we introduced the external duality functor

⋅∨ ∶ (Q, k)−Vect→ (k,Q)−Vect

mapping the triple (Vk, VQ, φ) to (V ∨
Q , V

∨
k , φ

∨).

Proposition C.2. Let M = [L
f
Ð→ G] be a 1-motive and e1, . . . , er be

a basis of L and put e0 = 0. We put Z = ∐r
i=0 Spec(k) = {P0, . . . , Pr} and

f̃ ∶ Z → G given by f̃(Pi) = f(ei). Then

V (M)∨ ≅H1(Z
f̃
Ð→ G).

The proof will take the rest of the appendix. Before going into it, we
want to record a consequence. Let M = [L → G] be a 1-motive. The
assignment

S ↦ [L⊗Q→ G(S)⊗Z Q]

defines a complex of homotopy invariant Nisnevich sheaves with transfers
on the category Sm/k of smooth k-varieties; see [AEWH15, Lemma 2.1.2]
building on work of Spieß-Szamuely and Orgogozo. Hence it defines an
object L→ G in Voevodsky’s category of motivic complexes with L in degree
0. In fact, it is even an object of the full subcategory DMgm(k,Q); see
[AEWH15, Proposition 5.2.1]. We denote it Mgm(L→ G).
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Corollary C.3. Let M = [L→ G] be a 1-motive over k. Then

V (M)∨ ≅H∗(Mgm(L→ G)) =H0(Mgm(L→ G)).

Proof. The equality on the right is [AEWH15, Proposition 7.2.3]. In
order to compare V (M)∨ and H0(Mgm(L→ G)) it suffices to give a natural
isomorphism

H0(Mgm(L→ G))→H1(G,Z)

with Z as in Proposition C.2. The main result of [AEWH15] is to describe
G as a direct summand of Mgm(G). Its cohomology in any contravariant
Weil cohomology theory (e.g. de Rham or singular cohomology) agrees with
H1(G). In particular,

H∗(Mgm(G)) =H1(G).

The projection map M(G)→ G is given by the summation map

M(G)(S) = Cor(S,G)→ G(S).

On the other hand, L = M(Z ′) with Z ′ = {P1, . . . , Pr}. There is a natural
projection M(Z)→M(Z ′).

Our comparison isomorphism is induced by the morphism of motivic
complexes

[M(Z)→M(G)]→ [M(Z ′)→ G].

We apply the long exact cohomology sequence for the stupid filtration:

H0(G) // H0(Z) // H1(G,Z) // H1(G) // 0

0 // H0(Z ′)

OO

// H0(Mgm(L→ G))

OO

// H1(G)

id

OO

// 0

The vertical map on the left induces an isomorphism

Qr ≅H0(Z ′)→H0(Z)/H0(G) = Qr+1/∆(Q).

Together with the identity on the right this induces an isomorphism in the
middle. �

We now start on the proof of Proposition C.2.

Lemma C.4. Let M = [L → G] ∈ 1−Motk and Z → G as in Proposi-
tion C.2. Then

VdR(M)∨ ≅H1
dR(Z → G).

Proof. We refer the reader to Chapter 8 for the construction of the al-
gebraic groupM ♮ → G and the realisations. Note thatRΓdR(Z) =H0(Z,OZ) ≅
kr+1 because Z is of dimension zero. Hence

RΓdR(G,Z)i =

⎧⎪⎪
⎨
⎪⎪⎩

RΓdR(G)i i ≠ 1

RΓdR(G)1 ⊕H0(Z,OZ) i = 1
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We claim that there is a natural map in the derived category

VdR(M)∨[−1] = coLie(M ♮)[−1]→ RΓdR(G,Z).

It is induced by the composition

coLie(M ♮)→ Ω1(M ♮)→ RΓdR(M ♮)1 ← RΓdR(G)1,

where the maps are

● extension of an element of the cotangent space to a unique equi-
variant differential form (it is closed because the co-Lie bracket is
trivial);

● association of a section of the de Rham complex to a section of its
Godement resolution;

● functoriality of RΓdR (a quasi-isomorphism by homotopy invari-
ance)

together with the map

coLie(M ♮)
0
Ð→H0(Z,OZ).

We compare the long exact sequence of the cone with the exact sequence for
VdR(M):

0 // H0
dR(G) // H0

dR(Z) // H1
dR(G,Z) // H1

dR(G) // 0

0 // Hom(L,Ga) //

OO

coLie(M ♮) //

OO

coLie(G♮) //

OO

0

The square on the right commutes by naturality. The dotted arrow does
not exist as a natural map, but we get an induced map

Hom(L,Ga)→H0
dR(Z)/H0

dR(G).

We make it explicit. Pick α ∶ L → Ga. It defines a differential form ω(α)
on the algebraic group V = Ga(Hom(L,Ga)

∨). In coordinates: let ti be the
coordinate on V corresponding to the basis vector ei of L. Then

ω(α) =
r

∑
i=1

α(ei)dti.

We have an exact sequence

0→ G♮ →M ♮ → V → 0,

hence we can pull ω(α) back to M ♮. This defines a class in H1
dR(G,Z). Its

image in H1
dR(G) vanishes by construction. This implies that the class is

exact. Indeed,

ω(α) = d(
r

∑
i=1

α(ei)ti + c)
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for any c ∈ k. We lift Z → G to Z →M ♮ by mapping Pi to the image of ei
in M ♮. We get a class in H0

dR(Z) = H0(Z,OZ) by restricting our function

∑i α(ei)ti + c to Z:
Pi ↦ α(ei) + c.

(Note that α(e0) = α(0) = 0.) The equivalence class in H0
dR(Z)/H0

dR(G) is
independent of c and hence well-defined.

Now that we have an explicit formula, it is obvious that the map is bijec-
tive. Hence it remains to show that coLie(G♮)→H1

dR(G) is an isomorphism.
Both coLie and H1

dR are exact functors on the category of semi-abelian va-
rieties, hence it suffices to consider the cases G = Gm and G = A abelian.
In the first case, G♮

m = Gm and the invariant differential dt/t is known to
generate H1

dR(Gm).

Let G = A be an abelian variety. In this case Ω1(A) = Ω1(A)A ≅
coLie(A). By Hodge theory, we have the short exact sequence

0→ Ω1(A)→H1
dR(A)→H1(A,OA)→ 0.

The last group also identifies with Ext1(A,Ga). The exact sequence is com-
patible with the sequence

0→ coLie(A)→ coLie(A♮)→ Ext1(A,Ga)→ 0.

Hence coLie(A♮)→H1
dR(A) is an isomorphism as well. �

Lemma C.5. Let M = [L → G] ∈ 1−Motk and Z → G as in Proposi-
tion C.2. Then

Vsing(M)∨ ≅H1
sing(Z → G).

Proof. It is more natural to give the argument in terms of homology.
We use the description via C∞-chains; see Remark 3.11 or [HMS17, Defi-
nition 2.2.2]. We work with integral coefficients throughout and omit them
from the notation

Recall that, by construction, f ∶ L→ G has an injective lift f ♮ ∶ L→M ♮.
By abuse of notation, the map Pi ↦ f ♮(ei) is also denoted f̃ ∶ Z →M ♮. By

homotopy invariance, Hsing
1 (Z → G) ≅ Hsing

1 (Z → M ♮). From now on we
work with the latter.

Given an algebraic variety X/k let S∞∗ (X) be the chain complex of C∞-
chains on Xan with integral coefficients. For a morphism f ∶ Y → X, we

then define Hsing
i (X,Y ) as Hi of the complex

S∞∗ (X,Y ) ∶= cone(S∞∗ (Y )→ S∞∗ (X)).

As Z is a disjoint union of points, S∞n (Z) = Z[Z] (linear combinations of
points) for all n ≥ 0 and the map of complexes

S∞∗ (Z)→ Z[Z][0]

is a quasi-isomorphism, where as usual Z[Z][0] denotes the complex con-
centrated in degree 0. We define a map of complexes

S∞∗ (M ♮)→ [Lie(M ♮,an)→M ♮,an]
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as follows:

● in degree 1 a path γ ∶ [0,1]→M ♮,an is mapped to I(γ) ∈ Lie(M ♮,an)
(see Section 5.3);

● in degree 0 a formal sum in Z[M ♮,an] is mapped to its sum in M ♮,an.

This is compatible with the differential because exp(I(γ)) = γ(1) − γ(0). It
is easy to see that the diagram of complexes

S∞∗ (Z) //

��

S∞∗ (M ♮)

��
L[0] // [Lie(M ♮,an)→M ♮,an]

commutes. Hence we get morphisms of complexes

S∞∗ (M ♮, Z)→ cone (L[0]→ [Lie(M ♮,an)→M ♮,an])

= [L⊕ Lie(M ♮,an)→M ♮,an]

→ [Lie(M ♮,an)→M ♮,an/f ♮(L)].

By definition

Tsing(M) = ker(Lie(M ♮,an)→M ♮,an/f ♮(L))

hence we have defined a natural morphism in the derived category

S∞∗ (M ♮, Z)→ Tsing(M)[−1].

We compare the long exact sequence of the cone with the exact sequence
for Vsing(M):

0 // Hsing
1 (M ♮) //

��

Hsing
1 (Z →M ♮) //

��

Hsing
0 (Z) // //

��

Hsing
0 (M ♮)

0 // Tsing(G) // Tsing(M) // L // 0

We make the dotted maps explicit. The elements of Hsing
1 (M ♮) are rep-

resented by closed loops in M ♮,an. Let γ be such a closed loop. Then
the end points of γ̃ have the same image in M ♮,an, hence γ̃(1) − γ̃(0) ∈
ker(Lie(M ♮,an) → M ♮,an) = Tsing(G). The dotted map on the left is an
isomorphism.

The kernel of Hsing
0 (Z) → Hsing

0 (G) is generated by formal differences

Pi − P0. Choose a path γi from f̃(P0) = 0 to f̃(Pi) in M ♮,an. Then

(−γi, Pi − P0) ∈ S
∞
1 (M ♮, Z)

is in the kernel of boundary map. Hence its cohomology class is the preimage
of Pi −P0. Its image in Lie(M ♮,an) is given by γ̃i(0)− γ̃i(1) for a lift γ̃i of γi.

We may choose γ̃i(0) = 0, then −γ̃i(1) is in the preimage of f̃(Pi). (Which
preimage depends on the choice of γi. It is only unique up to 2-chains.) Its
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equivalence class modulo Tsing(G) is nothing but the image in M ♮,an, hence

f̃(Pi) = f
♮(ei). The map ker(H0(Z)→H0(M

♮))→ L is also bijective.
This finishes the proof. �

Lemma C.6. The comparison maps for de Rham and singular cohomol-
ogy are compatible with the period isomorphism.

Proof. In keeping with the proof of the last lemma, we prefer to check
compatibility with the period pairing:

H1
dR(G,Z) ×Hsing

1 (G,Z) // C

VdR(M)∨ × Tsing(M)

OO
66

A priori, the pairing on the 1-motive level is simply evaluation of an ele-
ment of coLie(M ♮) on σ ∈ Lie(M)C. However, we have already made the
translation to the integration of equivariant differential forms on M ♮,an along
paths.

We now view the same differential form as a class in de Rham cohomol-
ogy and the path as a class in singular homology. The cohomological version
of the period pairing is also given by integration in these special cases. �

Proof of Proposition C.2. Combine Lemmas C.4, C.5 and C.6 �





List of Notations

General.

k algebraically closed field with a fixed embedding k → C
V ∨ dual vector space
⟨⋅, ⋅⟩ natural pairing between a vector space and its dual
Xan analytic space attached to an algebraic variety over k
Gan complex Lie group attached to an algebraic group over k
Vark varieties over k, i.e. reduced k-schemes of finite type
Smk smooth varieties over k
Db(A) bounded derived category of an abelian category

Chapter 2.

A⊗Q isogeny category of an additive category A
Z[C] additive hull of a category

Chapter 3.

∆n standard n-dimensional simplex
Sn(X) space of singular n-chains

Hsing
n (X,Q) singular homology

Hsing
n (X,Y ;Q) relative singular homology

Hn
dR(X) algebraic de Rham cohomology

Hn
dR(X,Y ) relative algebraic de Rham cohomology

RΓ̃dR(X,U) explicit complex computing de Rham cohomology

Chapter 4.

G category of commutative connected algebraic groups over k
Ga additive group
Gm multiplicative group
A∨ dual abelian variety
X(T ) character group of a torus
Gm(Ξ) dual torus
Ext1(A,B) Yoneda-extension group
G♮ universal vector extension of a semi-abelian variety
J(Y ) generalised Jacobian of a smooth curve
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Chapter 5.

Lie(G), g Lie algebra of an algebraic group or a complex Lie group
expG exponential map of commutative complex Lie group
I(γ) path integral as inverse of the exponential map
logG multi-valued inverse of expG

Chapter 6.

Ann(u) annhilator of an element

Chapter 7.

(K,L)−Vect category of pairs of vector spaces with a period isomorphism
P(V ) set of periods of an object V ∈ (K,L)−Vect
P⟨V ⟩ space of periods of an object V ∈ (K,L)−Vect
P(C) set of periods of a catgory

P̃(C) space of formal periods of an additive category
ev evaluation map for formal periods
V ∨ external dual of V ∈ (K,L)−Vect
End(T ) endormorphism algebra of a functor T on C
A(C, T ) coalgebra of a functor T on C

Chapter 8.

[L→ G] 1-motive with lattice part L and semi-abelian part G
1−Motk the category of iso-1-motives over k
Tsing(M) integral singular realisation of a 1-motive
Vsing(M) rational singular realisation of a 1-motives
M ♮ universal vector extension of a 1-motives
1−MOTk category of generalised 1-motives
VdR(M) de Rham realisation of a 1-motive
φM period isomorphism for a 1-motive
MHSk the category of mixed Q-Hodge structures over k

Chapter 9.

P(M) set of periods of a 1-motive
P⟨M⟩ space of periods of a 1-motive

∫σ ω period pairing for a 1-motive
coLie(G) dual of the Lie algebra
V ∨

dR(M) dual of the de Rham realisation of M
E(M) endomorphism algebra for the period realisation of a 1-motive

V functor 1−MotQ → (Q,Q)−Vect
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Chapter 10.

(GS) Gelfond-Schneider formulation of Hilbert’s 7th problem
(B) Baker formulation of Hilbert’s 7th problem

Chapter 11.

δ(M) dimension of the space of periods of M

Chapter 12.

H i(X,Y ) object in (K,L)−Vect attached to Y ⊂X
∂ (co)boundary map for relative (co)homology
P(X,Y, i) set of periods for H i(X,Y )
P i set of i-periods for all X,Y
Z[D]0 divisors of degree 0 supported on D
J(C) generalised Jacobian of a smooth curve
d1DMgm(k,Q) geometric motives of dimension at most 1

d1MM
eff
Nori(k,Q) Nori motives of degree at most 1

Chapter 13.

Ω1(C) regular algebraic differential forms on a smooth projective curve C

Chapter 14.

l(σ) element of Lie(J(C)an) attached to the chain σ
l○(σ) element of Lie(J(C○)an) attached to the chain σ
[ω] class of a differential form in de Rham cohomology
[σ] class of a chain in singular homology
Zσ subgroup of Z[D]0 generated by ∂σ

Chapter 15.

δ(M) dimension of the period space of a 1-motive
g(B) dimension of the abelian variety B
e(B) dimension of EndQ(B) for an abelian variety B
rkB(L,B) L-rank of M with respect to the simple abelian variety B
rkB(T,M) T -rank of M with respect to B
rkGm(L,M) L-rank of a Baker motive in Gm

Xred image of the lattice X(T ) in A∨(Q)Q
Xsat saturation of Xred

Gred semi-abelian variety with torus lattice Xred

Gsat semi-abelian variety with torus lattice Xsat

Lred image of the lattice L in A(Q)Q
Lsat saturation of Lred

Mred reduced motive constructed from M
Msat saturated motive constructed from M
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Chapter 16.

PTa(M) Tate periods for M
P2(M) periods of the 2nd kind wrt closed paths
Palg(M) algebraic periods
P3(M) periods of the 3rd kind wrt closed paths
Pinc2(M) periods of the 2nd kind wrt non-closed paths
Pinc3(M) periods of the 3rd kind wrt non-closed paths
PBk(M) periods of the 3rd kind wrt non-closed paths in the Baker case
δ?(M) dimension of P?(M)

Chapter 17.

Φ the map LQ ⊗X(T )Q → Pinc3(M)
R1(M) primitive relations on LQ ⊗X(T )Q
Rn(M) n-fold relations on LQ ⊗X(T )Q
Rinc2(M) full relation space

Chapter 18.

℘(z; Λ) Weierstraß ℘-function for the lattice Λ
g2, g3 lattice sums
ζ(z; Λ) Weierstraß ζ-function for the lattice Λ
σ(z; Λ) Weierstraß σ-function for the lattice λ
ω standard regular invariant differential on E
η standard differential of the second kind on E
ξP standard differential with simple pole in P
F (w,u) exponential of ξP

Chapter 19.
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ξ(λ) elliptic differential form on C
γp,q path from p to q
Ip,q(λ) Euler integral from p to q
Cλ elliptic curve in Legendre normal form
ω(λ) standard invariant differential form on Cλ
γ̃p,q lift of γp,q
cp,q closed path around p and p
c̃p,q lift of cp,q
F (1/2,1/2,1;λ) hypergeometric function
B(p, q) Euler’s Beta-function
C Legendre family of elliptic curves
η(λ) standard differential form of the second kind on Cλ
F (a, b, c;λ) hypergeometric function in general
ω(a, b, c;λ) differential form in the Euler integral
Ω(a, b, c;λ) Euler integral
ω(b, c − b) differential form in the Beta integral
B(b, c − b) Euler’s Beta-function
CN(λ) curve with affine equation yN = xr(1 − x)s(1 − λx)t

Cp degeneration Cp(0)
Xp(λ) normalisation of Cp(λ)
Xp normalisation of Cp
Jp(λ) Jacobian of Xp(λ)
Jp Jacobian of Xp

ωu,v,wn differential form on Xp(λ)
ωu,vn differential form on Xp

ωn ωu,v,wn or ωu,vn for distinguished choice of u, v,w
⟨x⟩ fractional part of a rational number x

Appendix A.
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Q−Vect category of finite dimensional Q-vector spaces
E−Mod finitely generated left E-modules
D diagram, i.e. oriented graph
T representation of a diagram

Pairseff Nori’s diagram of (effective) pairs

MMeff
Nori(k,Q) category of effective Nori motives

Hsing singular realisation of Nori motives

HNori representation of Pairseff in Nori motives
HHdg Hode realisation of Nori motives
H period realisation of Nori motives
HdR de Rham realisation of Nori motives
dnMMNori(k,Q) degree filtration on Nori motives
Q(−1) Lefschetz motive
MMNori(k,Q) category of all Nori motives
Peff set of all periods of effective Nori motives
E(M) endomorphism algebra of Hsing∣⟨M⟩

Appendix B.

DMeff
gm(k,Q) Voevodsky’s triangulated category of effective geometric motives

M standard functor Vark → DMeff
gm(k,Q), also representation of Pairseff

k

Hsing singular realisation of geometric motives

dnDM
eff
gm(k,Q) filtration by dimension

Appendix C.

V functor 1−Motk → (Q,Q)−Vect
RΓdR(X,Y ) functorial complexes computing relative de Rham cohomology
RΓsing(X,Y ) functorial complexes computing singular cohomology

RΓ̃dR(X,Y,U) Čech complexes computing relative de Rham cohomology
G Nisnevich sheaf with transfers defined by G
L Nisnevich sheaf with transfers defined by L
Mgm(⋅) geometric motive defined by a complex of Nisnevich sheaves with transfers
V (M)∨ external dual of V (M)
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Astérisque, (381):xi+254, 2016.
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