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AND THE BLOCH-KATO EXPONENTIAL MAP
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Abstract. In this paper we define a p-adic analogue of the Borel regu-
lator for the K-theory of p-adic fields. The van Est isomorphism in the
construction of the classical Borel regulator is replaced by the Lazard
isomorphism. The main result relates this p-adic regulator to the Bloch-
Kato exponential and the Soulé regulator. On the way we give a new
description of the Lazard isomorphism for certain formal groups. We
also show that the Soulé regulator is induced by continuous and even
analytic classes.
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Introduction

The classical Borel regulator

b∞ : K2n−1(C) → C

plays a decisive role in the study of algebraic number fields. Its simple
description makes it possible to relate this regulator quite directly to special
values of zeta functions of number fields, an insight we owe to Borel [Bor2].
Later, when Beilinson formulated his famous conjectures, he was able to
relate his regulator r∞ to Borel’s regulator map, so that the computations
by Borel implied one of the most impressive confirmations of Beilinson’s
conjectures.

One of the key features of Borel’s computation is that he is able to com-
pute the determinant of the regulator by considering suitable cup products
inside group cohomology. The actual computation turns out to be just an
application of the classical Tamagawa number formula for the general linear
group.

It is frustrating that these beautiful ideas have not found further appli-
cations. In particular progress on the Tamagawa number conjecture for
number fields is restricted to the abelian case and uses different methods.

One of the guiding ideas of this paper has been the analogue between
Bloch and Kato’s Tamagawa number conjecture and the classical Tama-
gawa number formula. In fact, it is our hope that one can reformulate the
full Tamagawa number conjecture for number fields as a Tamagawa number
formula. Pursuing this idea, we were led to a reformulation of the p-adic
regulator for number fields which is completely parallel to Borel’s definition
of his regulator in the case of the reals.
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Let us describe more precisely the main result of this paper. Let K/Qp

be a finite extension and R ⊂ K its valuation ring. Soulé has defined a
regulator map

rp : K2n−1(K) → H1
et(K, Qp(n))

between the K-theory of K and étale cohomology. We define in Section 1.2,
in complete analogy with the classical Borel regulator for C, a map

bp : K2n−1(R) → K .

We then show (Theorem 1.3.2) that the diagram

(1) K2n−1(R)
rp //

bp

**TTTTTTTTTTTTTTTT
H1

et(K, Qp(n))

K = DdR(Qp(n))

expBK

OO

commutes for all n ≥ 1. Here expBK : K → H1
et(K, Qp(n)) is the Bloch-Kato

exponential map, which is an isomorphism for n > 1.
The idea to define bp follows closely Borel’s construction (as reviewed in

Section 1.1), only that we replace the van Est isomorphism

H i(g, k, C) ∼= H i
cont(G(C), C)

between relative Lie algebra cohomology and continuous group cohomology,
by the Lazard isomorphism

H i(g, Qp) ∼= H i
cont(G(R), Qp)

(for details see Section 1.2). In the second paper [HK], we are able to relate
the Lazard isomorphism to the local Tamagawa measure, given a second
indication that this is indeed the correct construction to pursue.

The commutative diagram (1) above can be seen as a natural generalisa-
tion of the explicit reciprocity law for Gm

R∗

logp

((RRRRRRRRRRRRRRRRRR
∂ // H1

et(K, Qp(1))

K,

expBK

OO

(where ∂ is the Kummer map) established by Bloch and Kato in their work
on the exponential map [BK] 3.10.1. The function logp is continuous and
even locally analytic. A key step in the proof of our Main Theorem is to
establish continuity and even analyticity of the regulator map also for gen-
eral n.

Karoubi has defined a p-adic regulator for p-adic Banach algebras in
[Kar1], [Kar2], which was studied in more detail in the thesis of Hamida
[Ha]. As he pointed out to us, our construction should be directly related
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to his regulator in the case of p-adic fields. In his preprint [Ta], Tamme
has made this relation explicit and calculated that the Karoubi regulator on
K2n−1(R) is in fact equal to (−1)n−1

(n−1)!(2n−2)!bp.

On the way to establishing the diagram (1), we also get a new description
of the Lazard isomorphism, which should be of indepent interest. Namely,
we show that for a smooth algebraic group scheme H/R with formal group
H the Lazard isomorphism H i

la(H, Qp) ∼= H i(LieH, Qp) is induced by the
map

Φ : O(Hla)⊗n →
∧n

LieH

f1 ⊗ . . .⊗ fn 7→ df1 ∧ . . . ∧ dfn

familiar from cyclic homology. In the sequel [HKN] together with Niko
Naumann we use this description to establish the same isomorphism also for
K-analytic groups induced by smooth group schemes. In the same paper,
we also establish a Zp-integral version of Lazard’s isomorphism for certain
p-adic Lie groups.

Unfortunately, the proof of diagram (1) is quite involved and technical.
The idea is to follow Beilinson’s proof, which leads to a comparison between
the classical Borel regulator and Beilinson’s regulator in Deligne cohomology.
Our strategy adapts Beilinson’s ideas to the p-adic case replacing Deligne
cohomology by syntomic cohomology.

The paper is organised as follows: in the first section we construct the
p-adic analogue of the Borel regulator and formulate our main results. We
also draw some immediate consequences.

The second section recalls what we need about rigid syntomic cohomology
and introduces the evaluation map 2.3.2, which is the main tool in the
comparison with the locally analytic group cohomology.

The third section relates this evaluation map to locally analytic group
cohomology via the suspension map and Lie algebra cohomology. Here we
follow quite closely Beilinson’s ideas as explained by Rapoport [Ra] and
Burgos [Bu].

The fourth section shows finally that the map between locally analytic
group cohomology and Lie algebra cohomology is indeed the Lazard isomor-
phism.

The final section collects the loose ends and finishes the proof.

It is a great pleasure to thank José Burgos for answering some questions
about Beilinson’s proof of his comparison results and Elmar Große-Klönne
for his help with rigid cohomology. We also thank Max Karoubi for his
comments on an earlier version of this manuscript. Of course the whole
article owes its very existence to the beautiful ideas of Borel and Beilinson.
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Notation

In this section we collect various notations, which will be needed later.

0.1. Rings of functions. Let p be a fixed prime. Let R be a discrete
valuation ring finite over Zp with uniformiser π, residue field k and field of
fractions K. Throughout let G be GLN , the general linear group over R
and g its K-Lie algebra, ie. glN = MN (K) the N ×N -matrices.

To a smooth R-scheme X, we attach a number of spaces. The set X(R)
is denoted Xδ. It carries a natural structure of (locally) analytic manifold
over K, which is denoted X la. The underlying topological space of X la is
denoted Xcont. In Section 2 we are also going to consider its structure as
overconvergent rigid analytic manifold, denoted X† (see Example 2.1.2). In
the case X = G, the set Gδ is a group, Gcont a topological group and Gla is
a K-Lie group.

We also denote
• O(X) the global sections of the R-scheme X,
• O(Xalg) the global sections of the K-scheme X ×R K,
• O(Xδ) the ring of set-theoretic K-valued functions on X(R),
• O(Xcont) the ring of continuous K-valued functions on X(R),
• O(X la) the ring of K-valued locally analytic functions on X la, i.e.

functions which are locally representable by convergent power series
with coefficients in K,

• O(X†) the ring of overconvergent rigid analytic functions on X†.
If A is a K-vector space, we denote O(X la, A), O(Xδ, A) etc. the corre-
sponding functions with values in K.

If X. is a smooth simplicial R-scheme, O(X.) etc. are cosimplicial rings.

0.2. The classifying space. We collect some standard material on the
classifying space B.H thereby fixing our notations.

Let H/R be a reductive algebraic group over a ring R or a formal group.
As usual, let E.H be the simplicial space with

EnH = H × · · · ×H n + 1-times

with the usual face and degeneracy maps. The group H acts on E.H on the
right via

(h0, . . . , hn)h := (h0h, . . . , hnh).
The quotient by this action is the classifying space B.H and has the explicit
description

BnH = H × · · · ×H n-times
with degeneracies σi(h1, . . . , hn) = (h1, . . . , hi, 1, hi+1, . . . , hn) and faces

δ0(h1, . . . , hn) = (h2, . . . , hn)

δi(h1, . . . , hn) = (h1, . . . , hihi+1, . . . , hn) for i = 1, . . . , n− 1

δn(h1, . . . , hn) = (h1, . . . , hn−1).
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The map E.H → B.H sends (h0, . . . , hn) 7→ (h0h
−1
1 , . . . , hn−1h

−1
n ).

0.3. Group cohomology. Let H be an abstract group. Let F ∗ be a com-
plex of Qp-vector spaces with trivial operation of H. Let H i(H,F ∗) be
group hypercohomology of H with coefficients in F , i.e., in the notation
introduced above, cohomology of the complex associated to the cosimplicial
complex O(B.Hδ, F ∗).

For a K-Lie group H and a complex F ∗ of K-vector spaces, let H i
cont(H,F ∗)

be continuous group cohomology, i.e., cohomology of O(B.Hcont, F ∗) and
H i

la(H,F ∗) the locally analytic group cohomology, i.e., the cohomology of
O(B.H la, F ∗). The inclusions of function spaces induce natural transforma-
tions

H i
la(H,F ∗) → H i

cont(H,F ∗) → H i(H,F ∗).
If H is a smooth algebraic group over R, we abbreviate H i

cont(H,F ∗) =
H i

cont(H
cont, F ∗) etc.

0.4. Lie algebras and their cohomology.

Definition 0.4.1. Let H be a smooth algebraic group over R. We denote

LieH = DerK(O(Halg)e,K)

its algebraic tangent space at e. This is the K-Lie algebra of H.

Example 0.4.2. For G = GLN , we have naturally LieG ∼= g.

By definition, there is a natural pairing

O(Halg)e × LieH → K

It extends to locally analytic functions and induces

O(H la) → LieH∨

f 7→ df(e)

Definition 0.4.3. Let h be a Lie algebra over K. Then Lie algebra co-
homology H i(h,K) is defined as cohomology of the complex

∧∗ h∨K with
differential induced by the dual of the Lie bracket h⊗ h → h.

Example 0.4.4. For g = glN , H∗(g,K) is an exterior algebra on primitive
elements pn ∈ H2n−1(g,K) for n = 1, . . . , N .

We need a precise normalisation of these elements and follow [Bu] Exam-
ple 5.37.

Definition 0.4.5. Let g = glN . For n ≤ N let pn ∈ H2n−1(g,K) be the
map

pn :
∧2n−1

g → K

which attaches to (x1, . . . , x2n−1) ∈ g⊕2n−1 the value

((n− 1)!)2

(2n− 1)!

∑
σ∈S2n−1

sgn(σ) Tr(xσ(1) ◦ · · · ◦ xσ(2n−1))
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where S2n−1 is the symmetric group, Tr is the trace map from glN to K
and ◦ is matrix multiplication.

Remark 0.4.6. The exact form of this primitive element pn is not neces-
sary for our main result. What we need is the element pn ∈ H2n−1(g,K)
which is the image of the Chern class cn ∈ H2n

dR(B.GLN/K) under the sus-
pension map sG : H2n

dR(B.GLN/K) → H2n−1
dR (GLN/K) ∼= H2n−1(g,K) (see

Section 3.2 for more details on the suspension map).

1. Construction of the p-adic Borel regulator and statement
of the main results

1.1. Review of the classical Borel regulator. We briefly review the
construction of the classical Borel regulator

b∞ : K2n−1(C) → C
from [Bor1]. Recall that the K-group K2n−1(C) maps via the Hurewicz
map to the group homology H2n−1(GL(C), C) of the infinite linear group
GL(C) := lim−→N

GLN (C). Thus one needs to define a system of compatible
maps for all big enough N (also called b∞)

b∞ : H2n−1(GLN (C), C) → C,

or, by duality for group cohomology, elements

b∞ ∈ H2n−1(GLN (C), C),

compatible with enlarging N . In fact, using stabilisation, these elements
live in H2n−1(GLN (C), C) for fixed n and N big enough. Borel constructs
this b∞ with the van Est isomorphism for GLN (C) considered as real Lie
group

H2n−1(glN , uN , C) ∼= H2n−1
cont (GLN (C), C)

between relative Lie algebra cohomology for glN with respect to the Lie
algebra uN of the unitary group UN and continuous group cohomology. To
compute H2n−1(glN , uN , C) observe that the compact form of GLN (C) is
UN × UN so that we have isomorphisms

H2n−1(glN , uN , C) ∼= H2n−1(uN⊕uN , uN , C) ∼= H2n−1(uN , C) ∼= H2n−1(glN , C).

Recall from Definition 0.4.5 that we have defined a primitive element pn ∈
H2n−1(glN , C).

Definition 1.1.1. The Borel regulator b∞ is the image of pn under the
composition

H2n−1(glN , C) ∼= H2n−1(glN , uN , C) ∼= H2n−1
cont (GLN (C), C) → H2n−1(GLN (C), C).

Remark 1.1.2. Beilinson shows in [Be] (see also [Ra], [Bu]) that under the
identification of Deligne cohomology H1

D(SpecC, R(n)) ∼= C his regulator r∞
coincides with Borel’s regulator b∞ up to a rational number. It was later
shown by Burgos [Bu] that in fact 2r∞ = b∞.
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1.2. A p-adic analogue of Borel’s regulator. Recall that K/Qp is a
finite extension with valuation ring R. Our aim is to define a p-adic analogue
of Borel’s regulator. We will construct a map

bp : K2n−1(R) → K.

As before, we have the Hurewicz map K2n−1(R) → H2n−1(GL(R),K) and
it suffices to define a compatible system of maps

bp : H2n−1(GLN (R),K) → K for N ≥ n

or, equivalently, elements

bp ∈ H2n−1(GLN (R),K).

To define bp we replace the van Est isomorphism in Borel’s construction with
a slight generalisation of the Lazard isomorphism: consider GLN (R) as a
K-analytic group and let glN be its K-Lie algebra. We will prove:

Theorem 1.2.1 ([L], see also Section 5). For all i ≥ 0 one has an isomor-
phism

H i
la(GLN (R),K) ∼= H i(glN ,K)

between the locally analytic group cohomology and the Lie algebra cohomol-
ogy.

Remark 1.2.2. In the case R = Zp, this is the combination of two isomor-
phisms shown by Lazard

H i
la(GLN (Zp), Qp) ∼= H i

cont(GLN (Zp), Qp)

and
H i

cont(1 + pMN (Zp), Qp) ∼= H i(glN , Qp),
(see [L] chapter V) together with a remark of Casselman-Wigner [CW] §3
to pass from the saturated subgroup 1+pMN (Zp) to GLN (Zp). (In the case
p = 2 the saturated subgroup is 1+4MN (Z2).) For the non-trivial argument
in the general case see Section 5. In [HKN] Theorem 4.3.1, we extend the
result to all open subgroups of G(R) where G/R is a formal group scheme.

Now we can define the p-adic analogue of the Borel regulator using again
the primitive element pn ∈ H i(glN ,K) from Definition 0.4.5.

Definition 1.2.3. The p-adic Borel regulator

bp : K2n−1(R) → K

for 1 ≤ n, is defined by the element bp ∈ H2n−1(GLN (R),K) (for N big
enough), which is the image of pn under the composition

H i(glN ,K) ∼= H i
la(GLN (R),K) → H2n−1(GLN (R),K).

Remark 1.2.4. (1) Soulé [So2] was the first to study a p-adic regulator
for K2n−1(K) with values in Z[K:Qp]

p . His regulator is defined via
Iwasawa theory.



A p-ADIC BOREL REGULATOR AND BLOCH-KATO EXPONENTIAL 9

(2) Karoubi (see e.g. [Kar2]) has also defined a p-adic regulator with
values in topological cyclic homology. His construction is by homo-
topy theoretical methods. His regulator was further studied in the
thesis of Hamida [Ha]. Tamme [Ta] has been able to show that the
Karoubi regulator is in fact equal to (−1)n−1

(n−1)!(2n−2)!bp.

1.3. The main result. Before we can formulate our main result, we need
to recall the Soulé regulator and the Bloch-Kato exponential map.

Soulé [So1] has defined regulators for n > 0

rp : K2n−1(K) → H1
et(K, Qp(n)),

which are just the Chern classes

cn ∈ H2n−1(GLN (K),H1
et(K, Qp(n)))

induced by the universal Chern classes (via restriction to B·GLδ
N )

cn ∈ H2n
et (B·GLN , Qp(n)).

By abuse of notation, we also let rp be the composition

rp : K2n−1(R) → K2n−1(K) → H1
et(K, Qp(n)).

This rp is given by the restriction of the cn above to H2n−1(GLN (R),H1
et(K, Qp(n))).

Remark 1.3.1. Note that for n > 1 the morphism of Qp-vector spaces

K2n−1(R)⊗Qp → K2n−1(K)⊗Qp

is an isomorphism. This follows from the localisation sequence for K-theory
and from Quillen’s result that Ki of a finite field is torsion for i ≥ 1.

Recall ([BK] Definition 3.10) that the Bloch-Kato exponential

expBK : K → H1
et(K, Qp(n))

is the connecting morphism of the short exact sequence of continuous Gal(K̄/K)-
modules ([BK] Proposition 1.17)

0 → Qp → Bf=1
crys ⊕B+

DR → BDR → 0

tensored with Qp(n). It is an isomorphism for n > 1.
Our main result is the following:

Theorem 1.3.2. The following diagram commutes for all n > 0:

(2) K2n−1(R)
rp //

bp

**TTTTTTTTTTTTTTTTTT
H1

et(K, Qp(n))

K

expBK

OO

Idea of proof: (1) By construction, the statement of the theorem can be
formulated as follows: the p-adic Borel regulator bp ∈ H2n−1(GLN (R),K)
is mapped under the Bloch-Kato exponential expBK : K → H1

et(K, Qp(n))
to the étale Chern class cn ∈ H2n−1(GLN (R),H1

et(K, Qp(n)))
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(2) In Proposition 2.2.9 together with Proposition 2.3.4 we show that
the étale Chern class cn is the image of the syntomic Chern class
H2n−1(GLN (R),H1

syn(K, n)) under the natural map

H1
syn(R,n) → H1

et(K, Qp(n)).

(3) Using the evaluation map from syntomic cohomology (Theorem 2.4.1)
we consider the image of this syntomic Chern class in analytic group
cohomology.

(4) We apply the Lazard morphism to this element and show that it can
be identified with the primitive element in Lie algebra cohomology.
For this we have to relate the Lazard morphism to the suspension
map (see Theorem 3.1.1)

(5) This finishes the proof because it is well known that the Chern class
(in de Rham cohomology) is mapped to the primitive element under
the suspension map. In fact, this is one of the possible definitions of
Chern classes.

The detailed proof will be given in Section 5. �

Remark 1.3.3. One can see the main theorem as a kind of generalised
explicit reciprocity law for the formal group of Gm. More precisely, the
main theorem generalises the diagram

R∗

logp
((RRRRRRRRRRRRRRRRRR

∂ // H1
et(K, Qp(1))

K,

expBK

OO

(where ∂ is the Kummer map) established by Bloch and Kato in their work
on the exponential map [BK] 3.10.1.

Corollary 1.3.4. (1) The Soulé regulator cn ∈ H2n−1(GLN (R),H1
et(K, Qp(n)))

is the image of an element

ccont
n ∈ H2n−1

cont (GLN (R),H1
et(K, Qp(n)))

in continuous group cohomology for N big enough.
(2) There is an element

(exp∗BK cn)la ∈ H2n−1
la (GLN (R),K)

in locally analytic group cohomology for N big enough, such that the
composition with the Bloch-Kato-exponential map K → H1

et(K, Qp(n))
gives ccont

n .

Proof. After identifying rp (i.e, the étale Chern class) with bp this follows
from the definition of bp. In fact, however, we are going to prove this directly
as a step in the proof of the Main Theorem, see Corollary 2.5.3. �

Remark 1.3.5. In her thesis [Ha] Hamida also obtains the result that
Karoubi’s regulator is induced from a continuous (hence also from a locally
analytic) group cohomology class.
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1.4. The Lazard isomorphism as a Taylor series expansion. In our
proof of the main theorem we will give a new description of the Lazard iso-
morphism at least for formal groups associated to smooth algebraic groups.

Let H/Zp be a smooth linear algebraic group and H a p-saturated group
of finite rank (see [L] III Definition 2.1.3 and 2.1.6) with valuation ω which
is an open subgroup of H(Zp). The group H will always be considered as a
Qp-analytic manifold. Our main example is H = GLN , H = 1 + pMN (Zp)
with ω the inf-valuation.

We show in Proposition 4.3.1 that the Lie algebra L∗ of H in the sense of
Lazard (cf. Definition 4.1.1) can be identified with the algebraic Lie algebra

h ∼= L∗ ⊗Qp.

Lazard ([L] chapter V) shows in his paper that one has a chain of isomor-
phisms

H i
la(H, Qp) ∼= H i

cont(H, Qp) ∼= H i(L∗, Qp)
where the last isomorphism is induced by an isomorphism between the sat-
urations of the continuous group algebra of H and the universal enveloping
algebra of L∗. We give a much simpler description of this isomorphism:

Definition 1.4.1. Define a map of complexes

Φ : O(BnHla) ∼= O(Hla)⊗̂n →
n∧

h∨

f1 ⊗ . . .⊗ fn 7→ df1(e) ∧ · · · ∧ dfn(e).

Theorem 1.4.2 (see Proposition 4.6.1). Let us identify h ∼= L∗⊗Qp so that
H i(L∗, Qp) ∼= H i(h, Qp). The Lazard isomorphism coincides with the map
which is induced by Φ on cohomology:

Φ : H i
la(H, Qp) ∼= H i(h, Qp).

Remark 1.4.3. The map used here is well-known in connection with cyclic
homology and the Hochschild-Kostant-Rosenberg theorem, see [Lod] 1.3.14.
It would be interesting to study this relation further.

2. Syntomic cohomology

As before let R be a discrete valuation ring finite over Zp with field of
fractions K and residue field k ∼= Fq. Let K0 be the maximal absolutely
unramified subfield of K and R0 ⊂ R its ring of integers. There are no
conditions on ramification.

Let X be a smooth scheme over R. We are going to review the definition of
(a certain version of) syntomic cohomology and prove properties of the syn-
tomic Chern classes on Ki(R). The construction follows Besser’s H̃ i

syn(X, n)
[Be] Definition 9.3. We simplify the construction through systematic use of
†-spaces.

We then construct a natural map from syntomic cohomology to locally
analytic de Rham cohomology. This is used to show that syntomic Chern
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classes (and hence étale Chern classes) factor through locally analytic group
cohomology.

2.1. Weakly formal schemes and †-spaces. We review the properties of
Große-Klönne’s theory of †-spaces that we need. See [GK1], [GK2] for the
complete treatment. Loosely speaking, a †-space is a rigid analytic space
with structure sheaf of overconvergent functions. If X† is a †-space, we
denote O(X†) the ring of overconvergent functions on X.

Example 2.1.1. Let B† be the “closed unit disk” over K, i.e.,

B(Cp) = {x ∈ Cp | |x|p ≤ 1}.
Then

O(B†) =

{
f(t) =

∞∑
n=0

antn | an ∈ K, f convergent on |x| ≤ 1 + ε for some ε

}
On the other hand, let ∆† be the “open unit disk” over K, i.e.,

∆†(Cp) = {x ∈ Cp | |x| < 1}.
Then

O(∆†) =

{
f(t) =

∞∑
n=0

antn | an ∈ K, f convergent on |x| < 1

}
Weakly formal schemes play the role in the theory of †-spaces which formal

schemes play in the theory of rigid analytic spaces.
Let X be a weakly formal R-scheme ([M] or [GK1] Kapitel 3). We denote

X† its generic fibre (loc. cit. Korollar 3.4) as †-space. Let Xk be the special
fibre of X. This is a k-scheme locally of finite type. There is a natural
specialisation map

sp : X† → Xk

on the underlying topological spaces.

Example 2.1.2. There is a natural functor

(̂·) : R-schemes of finite type → weakly formal R-schemes

the weak completion of the special fibre. It preserves special fibres. For an
R scheme of finite type, we put

X† = (X̂)†.

Note that this is not the †-space attached to the variety XK if X is not
proper. We have X†(K) = X(R).

Definition 2.1.3. A †-space with reduction is a triple X = (X†,Xk, sp)
of a †-space X†, a k-scheme locally of finite type Xk and a continuous map
sp : X† → Xk of the underlying topological spaces. Morphisms are defined in
the obvious way. A morphism X → Y of †-spaces is called closed immersion
if it is a closed immersion on both components. It is called smooth if it is
smooth on both components.
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As discussed before, any weakly formal scheme X gives rise to a †-space
with reduction. If P is another weakly formal R-scheme, Yk a k-scheme
locally of finite type and Yk → Pk a closed immersion, then the tubular
neighbourhood ]Yk[P= sp−1

P (Yk) of Yk in PK is also a natural †-space with
reduction.

Remark 2.1.4. The tubular neighbourhood ]Yk[P with its reduction should
be induced by some weakly formal scheme, namely the weak completion of
Yk in P. However, the theory of †-spaces has not yet been developed up to
this point.

Example 2.1.5. For Y = SpecR, the †-space Y † consists of one point. For
P = A1, we have P † = {x ∈ Cp | |x| ≤ 1} = B† (see Example 2.1.1). For an
R-valued point a : Y → P , we have ]Yk[P (Cp) = {x ∈ Cp | |x− a| < 1}.

Smooth †-spaces have a well-behaved theory of differential forms ([GK2]
4.1). For a †-space Y †, let Ω∗

Y † be the complex of sheaves of (overconvergent)
differential forms on Y †. For a closed immersion of †-spaces Z† → Y † with
ideal of definition I, let

FilnZ†Ω∗Y † = In → In−1Ω1
Y † → In−2Ω2

Y † → . . .

be the Hodge filtration. For Z† = Y † this yields the stupid filtration Ω≥n
Y † .

The complexes FilnZ†Ω∗Y † are functorial with respect to such pairs.
If Y → P is a closed immersion of weakly formal schemes, then Y† →

]Yk[P is a closed immersion of †-spaces.

Proposition 2.1.6 (Poincaré Lemma). Let i : X → P and i′ : X → P′ be
closed immersions of smooth weakly formal schemes. Let u : P′ → P be a
smooth morphism compatible with the inclusion of X, i.e., u ◦ i′ = i. Then

FilnX†Ω∗]Xk[P
→ u∗FilnX†Ω∗]Xk[P′ = Ru∗FilnX†Ω∗]Xk[P′

are quasi-isomorphisms of complexes of sheaves.

Proof. The cohomological assertion depends on a weak fibration formula as
in rigid cohomology, [Ber] 1.3.2.
Claim: Locally ]Xk[P′∼=]Xk[P×∆d and (i′)† : X† →]Xk[P×∆d is of the form
(i†, 0).

It suffices to consider the case X, P, P′ affine. Then X†, P† and (P′)† are
affinoid. By making them small enough we can assume that the conormal
bundle of X in X′ = X ×P P′ is free of rank d. Let t1, . . . , td ∈ O(P′) be a
regular sequence defining X in X′. Then dt1, . . . , dtd are a basis of Ω1

P′/P in
a neighbourhood of X. These sections define a morphism

P′ → P′′ = P× (Â1)d

étale in a neighbourhood of X. The composition X → P′′ → (Â1)d is given
by the zero-section.
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By [Ber] Proposition 1.3.1

]Xk[P′→]Xk[P′′

is an isomorphism for the corresponding rigid analytic varieties. By [GK2]
Theorem 1.12 (a) this implies that the morphism of dagger-spaces is an
isomorphism. On the other hand

]Xk[P′′∼=]Xk[P×(A1†)d =]Xk[P×∆d

where ∆ is the open unit disc. (There is an obvious map to the right hand
side which is an isomorphism of rigid analytic spaces and hence also of
dagger-spaces). This proves the claim.

We now turn to the statement on differential forms. By [GK2] Satz 4.12

Ω∗(]Xk[P×∆d) = Ω∗(]Xk[P)⊗ Ω∗(∆)⊗d

The filtration is compatible with this decomposition. This reduces the proof
to the case P′ = ∆ and X = P the zero-section.

As ∆ is Stein, Ru∗ = u∗. Let t be the parameter of ∆. The filtration has
two steps:

Fil0Ω∗(∆) = [O(∆) → Ω1(∆)] Fil1Ω∗(∆) = [tO(∆) → Ω1(∆)]

The differential is an isomorphism on Fil1, i.e. the complex is acyclic. The
kernel on Fil0 consists of constants functions, i.e. the cohomology of a single
point. �

Proposition 2.1.7 (Rigid Cohomology ). Let X → P be a closed immersion
of smooth weakly formal schemes. Then H i(]Xk[P,Ω∗) is naturally isomor-
phic to rigid cohomology of Xk in the sense of Berthelot. If Xk is affine, it
agrees with Monsky-Washnitzer cohomology.

Proof. This is [GK1] Proposition 8.1 (b) or [GK2] Theorem 5.1. In the
affine case, rigid cohomology is known to agree with Monsky-Washnitzer
cohomology. �

2.2. Syntomic cohomology. We define syntomic cohomology on affine †-
spaces with reduction. The case of most interest is the one of the weak
completion of an affine R-scheme. The restriction to the affine case is not
essential. It simplifies the construction slightly because all †-spaces which
occur are acyclic for cohomology of coherent sheaves.

Definition 2.2.1. A syntomic data for an affine †-space with reduction X
is a collection of

• a smooth affine weakly formal R0-scheme P0 together with a σ-linear
lift Φ of absolute Frobenius on the special fibre P0k;

• a closed immersion Xk → P0k;
• a smooth affine weakly formal R-scheme P;
• a closed immersion X → P of †-spaces with reduction and a mor-

phism of weakly formal schemes P0 → P such that the two maps
Xk → Pk agree.
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A morphism of syntomic data for X is a pair of smooth morphisms u0 :
P′

0 → P0, u : P′ → P such that the obvious diagrams commute.
Let n ∈ Z. The syntomic complex RΓsyn(X, n)P0,P attached to this data

is defined as

Cone
(
FilnX†Ω∗(]Xk[P)⊕ Ω∗(]Xk[P0) → Ω∗(]Xk[P)⊕ Ω∗(]Xk[P0)

)
[−1]

where the map is given by (a, b) 7→ (a − b, (1 − Φ∗/pn)b). Its cohomology
is called syntomic cohomology H i

syn(X, n) of X. If X is a smooth affine
scheme, H i

syn(X, n) is defined as syntomic cohomology of its weakly formal
completion.

Remark 2.2.2. By the Poincaré Lemma 2.1.6, a morphism of syntomic data
induces an isomorphism on syntomic cohomology, i.e., a quasi-isomorphism
of syntomic complexes. Note, however, that the system of syntomic data
is not filtering: a pair of morphism of syntomic data α, β : (P0,Φ,P) →
(P′

0,Φ
′,P′) is not equalised on a third data. To obtain a complex indepen-

dent of choices (and hence a functorial theory), one has to proceed as Besser
in [Be] Definition 4.11 - Definition 4.13. We do not go into the details.

Remark 2.2.3. The restriction to the affine case is not necessary. In the
general case one has to replace the global sections Ω∗(]Xk[P) by global sec-
tions of a functorial injective resolution of Ω∗]Xk[P

. Indeed, in the affine case
the complexes Ω∗]Xk[P

are the ones computing Monsky-Washnitzer cohomol-
ogy of Xk. The use of dagger-spaces could be thus be avoided for the needs
of the present paper.

Example 2.2.4. Let X = SpR̂ the weakly formal completion of SpecR.
Then P0 = SpR̂0 with Φ = σ and X = P is a syntomic data. We
have ]Xk[X= X† (a single point) and hence the ideal of definition I van-
ishes. For n > 0, the complex Ω≥n(X†) vanishes. Moreover, Ω0(X†) =
K (constant functions on a single point). Hence the syntomic complex
RΓsyn(SpecR,n)P0,X is simply

Cone
(

K0
(1,1−σ/pn)−−−−−−−→ K ⊕K0

)
[−1]

The Qp-linear map (1− σ/pn) is bijective, hence

η−1 : K[−1] → RΓsyn(SpecR,n)P0,X

is a quasi-isomorphism. Hence for n > 0

H i
syn(SpecR,n) =

{
K i = 1
0 otherwise

This identification will be used very often in the sequel.

Definition 2.2.5. Let n > 0. We denote

η : H1(R,n) → K

the isomorphism of Example 2.2.4.
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Remark 2.2.6. Let X be a smooth affine R-scheme, a ∈ X(R), c ∈
H1

syn(X, n). Then η(a∗c) ∈ K. This means that c induces a (set-theoretic)
map

c : X(R) → K

We are going to show in the next section that this map is in fact locally
analytic on X(R) (but not necessarily rigid analytic in general).

Proposition 2.2.7. For smooth R-schemes X, syntomic cohomology as
defined above agrees with H̃ i

syn(X, n) defined by Besser [Be] Definition 9.3.
For R = R0, it agrees with syntomic cohomology defined by Gros [G].

Proof. Besser uses direct limits over rigid analytic functions in strict neigh-
bourhoods of ]Xk[P rather than †-spaces. By Proposition 2.1.7 this amounts
to the same. Apart from this point, the definitions agree. The second state-
ment is [Be] Proposition 9.4. �

Remark 2.2.8. The theory immediately extends to simplicial schemes over
R, in particular to BGLN .

Proposition 2.2.9 ([Be] 9.10, [Ni2]). Let X be a smooth affine R-scheme.
Then there is a natural morphism

H i
syn(X, n) → H i

et(Xk, Qp(n))

of cohomology theories compatible with Chern classes.

Proof. Besser constructs such a transformation for his version of syntomic
cohomology. (The main step in the proof is due to Niziol, see [Ni2].) In his
proof the map factors by construction through his H̃ i

syn(X, n) which is our
H i

syn(X, n) (Proposition 2.2.7). �

2.3. Evaluation maps and Chern classes. Let X be a smooth affine
R-scheme.

Definition 2.3.1. Let
Xδ =

∐
a∈X(R)·

SpecR

Recall that O(Xδ, F ) denotes the F -valued set-theoretic functions on
X(R).

Lemma 2.3.2. Let n > 0. The natural morphism of schemes Xδ → X
induces a natural map

ev : RΓsyn(X, n) → O(Xδ,H1
syn(SpecR,n))[−1]

η→ O(Xδ)[−1]

with η as in Definition 2.2.5.

Proof. We use the functoriality of syntomic complexes

RΓsyn(X, n) → RΓsyn(Xδ, n)

This gives the formula of the Lemma by Example 2.2.4. �
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Applying this map to the simplicial scheme B.G for our smooth affine
group-scheme G = GLN , we get by definition of group cohomology a natural
map

ev : H2n
syn(B.G, n) → H2n−1(G(R),K) .

Gros (for R = R0) and Besser (general case) have established the existence
of Chern classes in syntomic cohomology. The key ingredient is a universal
Chern class for i ≤ N

ci ∈ H2i
syn(B.GLN , i)

It is uniquely characterised by the fact that its image in FiliH2i(BGL†N,K ,Ω∗)
is the usual Chern class in de Rham cohomology ([Be] Proposition 7.4 and
the discussion following it).

Definition 2.3.3 ([Be] Theorem 7.5). The syntomic Chern class

cn ∈ H2n−1(GLN (R),H1
syn(R,n))

is given by applying the evaluation map of Lemma 2.3.2 for B.GLN to the
universal Chern class.

We denote RΓet(K, Qp(n)) the complex computing continuous étale co-
homology of K with coefficients in Qp(n). This agrees with continuous
cohomology of the group Gal(K̄/K).

Proposition 2.3.4. As before let G = GLN considered as smooth group
scheme over R. For n > 1, there is a natural commutative diagram

H2n
syn(B.G, n) //

��

H2n
et (B.GK , Qp(n))

��
H2n−1(G(R),H1

syn(R,n)) //

η
++VVVVVVVVVVVVVVVVVVV

H2n−1(G(R),H1
et(K, Qp(n)))

H2n−1(G(R),K)

expBK

OO

For n = 1 the diagram reads

H2
syn(B.G, 1) //

��

H2
et(B.GK , Qp(1))

��
H1(G(R),H1

syn(R, 1)) //

η
**UUUUUUUUUUUUUUUUU

H1(G(R),H1
et(K, Qp(1))) // H1(G(R), RΓet(K, Qp(1)))

H1(G(R),K)

expBK

OO

For n ≥ 1 and N big enough, the universal syntomic Chern class is
mapped to the universal étale Chern class.
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Proof. The vertical maps are the ones from Lemma 2.3.2 and their étale
analogue respectively. Note that RΓet(K, Qp(n)) is concentrated in degrees
1, 2 for n 6= 0 (even in degree 1 for n 6= 0, 1). The natural transformation of
Proposition 2.2.9 gives the horizontal maps. This yields the upper commu-
tative square. By [Be] proof of Proposition 9.9 it is compatible with Chern
classes.

In [Be] Proposition 9.11 the relation to the exponential is made explicit.
This gives the lower triangle. �

Remark 2.3.5. This proposition reduces the proof of our Main Theo-
rem 1.3.2 to a statement on universal Chern classes in syntomic cohomology.

2.4. Analyticity of evaluation maps. We are going to show that the
syntomic Chern classes cn is an element of the continuous group cohomology
of GLN (R). We want to prove:

Theorem 2.4.1. Let X be a smooth affine R-scheme, n ≥ 1. Then the
evaluation map of Lemma 2.3.2 factors naturally via a morphism in the
derived category of Qp-vector spaces

RΓsyn(X, n)
η−→ Ω<n(X la)[−1] π−→ O(X la)[−1]

Moreover, η is represented by a natural sequence of morphisms of complexes
and formal inverses of quasi-isomorphisms of complexes. For X = SpecR,
the map agrees with the one defined previously (see Definition 2.2.5).

Definition 2.4.2. Let Y be a smooth affine R-scheme, Let Y̊ the †-space
with reduction with special and generic fibre

Y̊k =
∐

a∈Y (k)

Speck

Y̊ † =
∐

a∈Y (k)

]a[Y

together with the natural specialisation map.

Remark 2.4.3. Note that by definition (Y̊ )†(K) = Y †(K) = Y (R). The
locally analytic manifolds on these spaces agree.

Lemma 2.4.4. Let (P0,Φ,P) a syntomic data for Y . Then (P′
0,Φ

′,P′)
with P′ =

∐
a∈Y (k) P0, P′ =

∐
a∈Y (k) P with Φ′ operating as σ on Y (k) and

via Φ on the P0 is a syntomic data for Y̊ . Let n > 0. Then there is a
natural isomorphism

RΓsyn(Y̊ , n)(P′
0,P′) → Ω<n(Y̊ †)[−1]

in the derived category of Qp-vector spaces. Moreover, the morphism is
represented by a natural sequence of quasi-isomorphisms of complexes going
either direction.
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Proof. All properties of a syntomic data follow from functoriality.
By the Poincaré Lemma 2.1.6, the natural inclusion⊕

a∈Y (k)

K0 → Ω∗(]Y̊k[P′
0
)

is a quasi-isomorphism. Hence

Cone

Filn
Y̊ †Ω

∗(]Y̊k[P′)⊕
⊕

a∈Y (k)

K0 → Ω∗(]Y̊k[P′)⊕
⊕

a∈Y (k)

K0

 [−1]

is quasi-isomorphic to RΓsyn(Y̊ , n). The map Φ∗ operates as σ on K0

and permutes the elements of Y (k). This map preserves the norm on⊕
a∈Y (k) K0. Hence the map 1−Φ∗/pn is an isomorphism for n > 0. Hence

the inclusion of

Cone
(
Filn

Y̊ †Ω
∗(]Y̊k[P′) → Ω∗(]Y̊k[P′)

)
[−1]

is a quasi-isomorphism. Now we apply the Poincaré Lemma again: Filn
Y̊ †Ω∗(]Y̊k[P′)

is quasi-isomorphic to the subcomplex

Filn
Y̊ †Ω

∗(Y̊ †) = Ω≥n(Y̊ †)

and Ω∗(]Y̊k[P′) to Ω∗(Y̊ †). Finally the cone

Cone
(
Ω≥n(Y̊ †) → Ω∗(Y̊ †)

)
[−1]

is quasi-isomorphic to the quotient. �

Proof of Theorem 2.4.1. We define η as the composition of the natural map

RΓsyn(Y, n) → RΓsyn(Y̊ , n)

with the quasi-isomorphism of Lemma 2.4.4

RΓsyn(Y̊ , n) → Ω<n(Y̊ †)[−1]

Note finally that Y̊ †(K) = Y (R) as K-manifolds and that overconvergent
differentials are locally analytic.

Now assume Y = SpecR. Then Y̊ = Y , O(Y̊ †) = K. The the chain of
isomorphisms in Lemma 2.4.4 agrees with the one in Example 2.2.4.

As η is natural, this implies that the evaluation map of Lemma 2.3.2
factors through η. �

We apply the arguments to B.G. For later use we record a couple of
commutative diagrams:

Proposition 2.4.5. As before let G = GLN as smooth affine algebraic group
over R. Let G† = G̊ =

∐
a∈G(k)]a[G as †-space and G = G†(K) = G(R) as
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locally analytic K-manifold. Then the following diagram commutes:

H2n(Ω≥n(B.G†)) // H2n(Ω≥n(B.G†))

H2n
syn(B.G, n)

d

OO

ev

��

η // H2n−1(Ω<n(B.G†))

∂

OO

π

��
H2n−1(G,K) H2n−1

la (G,K)oo

where d is induced from the natural map RΓsyn(B.G, n) → Ω≥n(B.G†) (see
Definition 2.2.1), ∂ is induced from the connecting map of the short exact
sequence of complexes

0 → Ω≥n(B.G†) → Ω∗(B.G†) → Ω<n(B.G†) → 0

ev is the evaluation map 2.3.2, η is the map of Theorem 2.4.1 and π is
induced by the projection Ω<n(B.G†) → O(B.G†) → O(B.Gla) .

For 1 ≤ n and N big enough, we define the Chern class can
n ∈ H2n(Ω≥nB.G†)

as image of the Chern class in algebraic de Rham cohomology. Then the uni-
versal syntomic Chern class is mapped to can

n in the top right corner.

Proof. We apply Lemma 2.4.4 to B.G. This defines the map η in the middle.
Recall that there are natural map O(B.G†) → O(B.Gla) → O(B.Gδ) and
that the latter two define locally analytic and discrete group cohomology.
The commutativity of the lower square then follows from Theorem 2.4.1.

By definition of syntomic Chern classes they are mapped to the standard
Chern classes in algebraic and hence also overconvergent de Rham coho-
mology, see [Be] Proposition 7.4 and the discussion following it. (Note that
Besser uses a more refined version of syntomic cohomology than we do. His
version of d takes values in algebraic de Rham cohomology.)

It remains to check commutativity of the upper square. By construction
of η, we have (for Y a smooth affine R-scheme):

Ω≥n(Y †) // Ω≥n(Y̊ †)

RΓsyn(Y, n)

d

OO

// RΓsyn(Y̊ , n)

d

OO

// Cone
(
Ω≥n(Y̊ †) → Ω∗(Y̊ †)

)
[−1]

∂

iiTTTTTTTTTTTTTTTT

�

Remark 2.4.6. The above diagrams work without changes for all smooth
algebraic group schemes over R.

2.5. Analyticity of Chern classes.

Theorem 2.5.1. Let n > 0 and N > n. There exists an element

(ηcn)la ∈ H2n−1
la (GLN (R),K)
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which has the same image in H2n−1(GLN (R),K) as the syntomic Chern
classes

cn ∈ H2n−1(GLN (R),H1
syn(R,n))

(cf. Definition 2.3.3) under the map η : H1
syn(R,n) → K. In particular, cn

is the image of an element

ccont
n ∈ H2n−1

cont (GLN (R),H1
syn(R,n))

Proof. The syntomic Chern class cn ∈ H2n−1(GLN (R),H1
syn(R,n)) is by

Definition 2.3.3 the image of the universal Chern class. By the lower part of
the diagram in Proposition 2.4.5 it is the image of a locally analytic class.
In particular it is the image of a continuous class. �

Example 2.5.2. Let N = 1, n = 1. By [G] Proposition 4.1, the first Chern
class

c1 : R∗ ⊗Qp → H1
syn(R, 1) = K

is given by the p-adic logarithm logp. This function is locally analytic but
not rigid analytic. However, it is (overconvergent) rigid analytic on the
residue discs. Our proof shows the same behaviour also for higher Chern
classes.

Corollary 2.5.3. Let n > 0. The étale Chern class

cn ∈ H2n−1(GLN (R),H1
et(K, n))

is the image of an element

ccont
n ∈ H2n−1

cont (GLN (R),H1
et(K, n))

in continuous group cohomology.

Proof. Combine Theorem 2.5.1 with Proposition 2.3.4. �

Theorem 2.5.1 allows to reduce the proof of our Main Theorem 1.3.2 to
continuous group cohomology.

3. The suspension map and locally analytic group cohomology

As before let G = GLN as algebraic group over R, let G† =
∐

a∈G(k)]a[G
the union of residue discs viewed as dagger-space, and G = G†(K) = GLN (R)
as K-Lie group. Let g = glN be the K-Lie algebra of G (see Definition 0.4.1).

In the last section, we constructed an element

(ηcn)la ∈ H2n−1
la (GLN (R),K) = H2n−1

la (G,K)

(see Theorem 2.5.1). In this section we are going to define (see Definition
3.4.5) a natural map

Ψ : H2n−1
la (G,K) → H2n−1(g,K) .

Eventually, we want to show that Ψ((ηcn)la) = pn, the primitive element in
Lie algebra cohomology.
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The aim of this section is to embed Ψ into a huge commutative diagram
relating it to the suspension for B.G. As the image of the universal Chern
class in algebraic de Rham cohomology under this suspension map is pre-
cisely pn, this will allow to deduce the claim (see Section 5).

We follow closely the ideas of Beilinson [Be] as outlined by Rapoport [Ra]
and Burgos [Bu].

3.1. A commutative diagram. We state the result of this chapter.

Theorem 3.1.1. There is a natural commutative diagram

H2n(Ω≥n(B.Galg))
inf

))SSSSSSSSSSSSSSS

��

sG // H2n−1
DR (Galg)

ρ∼=

��

H2n(Ω≥n(B.G†)) inf // H2n(W≥n,·(g))

sg

""DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD

H2n−1(Ω<n(B.G†)) inf //

OO

��

H2n−1(W<n,·(g))

OO

((RRRRRRRRRRRRR

H2n−1
la (G,K) Ψ // H2n−1(g,K).

The suspension map sG will be introduced in Section 3.2, ρ in Lemma
3.3.1 and the algebraic Lazard isomorphism Ψ in Definition 3.4.5. The Weil
algebra W ∗,·(g) and the map sg are defined in Section 3.5. The various maps
inf will be introduced in Section 3.6. Finally the proof of the Theorem will
be given in Section 3.8.

Remark 3.1.2. The same arguments yield the above diagram in the case
of a reductive group over K.

3.2. The suspension map sG. Consider the simplicial schemes E.G and
B.G over R. Let G. be the constant simplicial scheme and ∆ : G. → E.G
be the diagonal inclusion. Then we have a fibre diagram

G.
∆−−−−→ E.Gy

B.G
As E.G is contractible the suspension for this G-torsor gives us a morphism
for n > 0

sG : H2n
DR(B.Galg) → H2n−1

DR (Galg)
(compare [Bu] Example 4.16 and recall that H2n

DR(B.Galg) and H2n−1
DR (Galg)

are the de Rham cohomology of the generic fibre). We will use another
description of the suspension map in terms of the Eilenberg-Moore spectral
sequence

Ep,q
1 = Hq

DR(BpG
alg) =⇒ Hp+q

DR (B.Galg).
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As E0,q
1 = 0 for q > 0 we get an edge morphism

(3) sG : H2n
DR(B.Galg) → E1,2n−1

1 = H2n−1
DR (Galg),

which is none other than the suspension sG. In particular, the suspen-
sion is compatible with the ”Hodge filtration” (defined by Ω≥n(B.Galg) and
Ω≥n(Galg)) on both sides and we get a map

(4) sG : H2n(Ω≥n(B.Galg)) → H2n−1(Ω≥n(Galg)).

3.3. Lie algebra and de Rham cohomology. Let g∨ := HomK(g,K) be
the dual of g. Let C·(g) be the standard complex of Lie algebra cohomology
with coefficients in K and

H i(g) := H i(g,K).

Let Ω·(Galg) be the de Rham complex of the generic fibre G ×R K of G.
Identifying g with the left invariant vector fields on G, one has an embedding

(5) g∨ ⊂ Ω1(Galg)

of the dual of g into the 1-forms on G×R K, which induces a map of com-
plexes

C·(g) ⊂ Ω·(Galg).

It has a splitting by evaluation at the identity e.

Lemma 3.3.1 ([Ho] Lemma 4.1). The above inclusion induces an isomor-
phism

ρ : H ·(g) ∼= H ·
DR(Galg).

3.4. The infinitesimal version of B.G and Lie algebra cohomology.
Recall thatO(B.Galg) is the cosimplicial ring of K-valued algebraic functions
on B.G. If we extend Spec in the obvious way to cosimplicial rings, we have

SpecO(B.Galg) = B.G×R K.

We need an infinitesimal version of B.G. For this let m
alg
e ⊂ O(B1G

alg) =
O(Galg) be the kernel of the augmentation map defined by the unit element
e ∈ G(R). Let J · ⊂ O(B.Galg) be the cosimplicial ideal generated by (malg

e )2.

Definition 3.4.1. Let O(B1
· G

alg) := O(B.Galg)/J ·. The infinitesimal ver-
sion of B.G is the simplicial scheme

B1
· G := SpecO(B1

· G
alg).

The closed immersion B1
· G ⊂ B.G is defined by the canonical map

O(B.Galg) → O(B1
· G

alg).

It is central for our arguments that this has a counterpart for (overconver-
gent) rigid analytic functions.
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Lemma 3.4.2. The natural map of cosimplicial rings

inf : O(B.Galg) → O(B1
· G

alg)

factors naturally via

(6) inf : O(B.G†) → O(B1
· G

alg)

Proof. First consider more generally a smooth R-scheme X and x ∈ X(R).
Let J be an ideal of OXalg,x and put J† = JOX†,x. For J = mx the maximal
ideal, m

†
x is indeed the maximal ideal of OX†,x. Hence for J containing a

power of mx,
OX†,x/J† ∼= OXalg,x/J

(Note that stalks of the structure sheaf of X† as dagger-space and the cor-
responding rigid analytic variety agree.) All components of the simplicial
scheme B1

· G are of this form. This yields the claim. �

To formulate the next two propositions, we need the concept of normali-
sation for cosimplicial rings.

Definition 3.4.3. For any cosimplicial object A· in an abelian category let
CA· be the complex with CAn = An and differential d =

∑n+1
i=0 (−1)iδi. The

normalisation is the subcomplex

NA· =
n−1⋂
i=0

ker σi.

Proposition 3.4.4. There is a natural isomorphism of complexes

NO(B1
· G

alg) ∼= C·(g).

Proof. This is [Ra] Lemma 3.1 or [Bu] Proposition 8.9. The first reference
works over R and the second over C. But by inspection both proofs work
without any changes over an arbitrary field of characteristic 0. �

Definition 3.4.5. Let G = Gla, Galg or G†. Define a map of complexes

Ψ : O(B.G) → C·(g)

as the composition π∗ : O(BnG) → O(EnG) ∼= O(G)⊗̂(n+1) with the map

O(G)⊗̂(n+1) →
n∧

g∨

f0 ⊗ . . .⊗ fn 7→ f0(e)df1(e) ∧ · · · ∧ dfn(e)

Here π : EnG → BnG is the map (g0, . . . , gn) 7→ (g0g
−1
1 , . . . , gn−1g

−1
n ) The

induced map on cohomology is called algebraic Lazard morphism.

Lemma 3.4.6. The morphism Ψ agrees with the natural morphism of com-
plexes

NO(B.G†) → NO(B1
· G

alg) ∼= C·(g)
induced by inf, where the isomorphism is the one from Proposition 3.4.4.
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Proof. This follows from Burgos ([Bu] Theorem 8.4. and Proposition 8.9).
Burgos first defines a map

O(EnGalg) → Ωn
G/K

f0 ⊗ · · · ⊗ fn 7→ f0df1 ∧ · · · ∧ dfn,

which factors over O(E1
· G

alg) and induces an isomorphism NO(E1
· G

alg) ∼=
Ω·G/K , which is compatible with the G-action. As Cn(g) ⊂ Ωn

G/K are the
G-invariant differential forms the above map factors naturally as

O(EnGalg) −−−−→ Ωn
G/K

π∗
x x

O(BnGalg) Ψ−−−−→ Cn(g)

Evaluation at e is a splitting of the right vertical map. As Ψ : O(BnGalg) →
Cn(g) factors through O(BnG†) and NO(E1

· G
alg)G = NO(B1

· G
alg) by [Bu]

Proposition 8.9, we get the desired result. �

3.5. The Weil algebra and the infinitesimal suspension map sg. In
this section we will define the bigraded Weil algebra W ∗,·(g) and the sus-
pension on the level of the Lie algebra g.

Definition 3.5.1. The Weil algebra is the bigraded algebra with

W p,q(g) := Sympg∨ ⊗ Λq−pg∨

and W p,q(g) has total degree p+ q (this means that Sympg∨ has degree 2p).
Write Wn(g) :=

⊕
p+q=n W p,q(g).

The Weil algebra has a differential δ : Wn(g) → Wn+1(g), which is
uniquely determined on Sym1g∨ and Λ1g∨ as follows: let X1, . . . , Xk be
a basis of g and X∨

1 , . . . , X∨
k be the dual basis and h : Sym1g∨ → Λ1g∨ the

identity map, then

δ : Λ1g∨ → Sym1g∨ ⊕ Λ2g∨(7)

X∨ 7→ h(X∨) + dX∨,

where d : C·(g) → C·+1(g) is the differential in the Lie algebra complex and

δ : Sym1g∨ → Sym1g∨ ⊗ Λ1g∨(8)

X∨ 7→
k∑

i=1

θ(Xi)X∨ ⊗ h(X∨
i ).

Here θ(Xi)X∨(Y ) := X∨([Y, Xi]). It is clear from this definition that

W≥n,·(g) :=
⊕
p≥n

W p,·(g)
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is a subcomplex of W ∗,·(g). On the other hand,

W<n,·(g) :=
⊕
p<n

W p,·(g)

is a quotient of W ∗,·(g) and canonically isomorphic to W ∗,·(g)/W≥n,·(g).
For n = 1 we have

W<1,·(g) = C·(g).

The following lemma is classical (see Cartan [Ca] or [Ra] Lemma 2.10. for
a proof).

Lemma 3.5.2. One has:
a) H0(W ∗,·) = K
b) Hn(W ∗,·) = 0 for n > 0
c) H2n(W≥n,·) = (Symng∨)g

Consider the exact sequence

0 → W≥1,·(g) → W ∗,·(g) → C·(g) → 0.

This induces a connecting homomorphism

∂ : H2n−1(g) → H2n(W≥1,·(g)),

which is an isomorphism for n > 0 by Lemma 3.5.2.

Definition 3.5.3. The suspension morphism for g is the composition

sg : H2n(W≥n,·(g)) → H2n(W≥1,·(g)) ∂−1

−−→ H2n−1(g).

The suspension sg has a different description:

Lemma 3.5.4. The following diagram commutes:

H2n(W≥n,·(g))
sg

((QQQQQQQQQQQQ

H2n−1(W<n,·(g)) //

∂

OO

H2n−1(g).

Here the horizontal map is induced from the canonical projection W<n,·(g) →
C·(g).

Proof. This is just the compatibility of the two coboundary maps for the
two short exact sequences

0 // W≥1,·(g) // W ∗,·(g) // C·(g) // 0

0 // W≥n,·(g)
?�

O

// W ∗,·(g) //

=

OO

W<n,·(g) //

OO

0,

where the right vertical map is the canonical projection. �
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3.6. The cosimplicial de Rham complex and the Weil algebra. In
this section we formulate the extension of Proposition 3.4.4 to the de Rham
complex and the Weil algebra.

Proposition 3.6.1 ([Bu] Proposition 8.10.). There is a natural bigraded
isomorphism

NΩ∗(B1
· G

alg) ∼= W ∗,·(g).

The bigrading gives:

Corollary 3.6.2. There are natural isomorphisms

NΩ≥n(B1
· G

alg) ∼= W≥n,·(g),

NΩ<n(B1
· G

alg) ∼= W<n,·(g).

Definition 3.6.3. We also denote by inf the map of complexes induced by
inf : O(B.Galg) → O(B1

· G
alg)

NΩ∗(B.Galg) → NΩ∗(B1
· G

alg) ∼= W ∗,·(g)

(resp. for ≥ n and < n) and the isomorphisms of Corollary 3.6.2.

Lemma 3.6.4. The map inf factors through NΩ∗(B.G†) and the diagram

H2n(Ω≥n(B.G†)) inf−−−−→ H2n(W≥n,·(g))

∂

x x∂

H2n−1(Ω<n(B.G†)) inf−−−−→ H2n−1(W<n,·(g))

commutes, where the vertical maps are the boundary maps for the obvious
exact sequences.

Proof. As inf : O(B.Galg) → O(B1
· G

alg) factors through O(B.G†) the first
statement is clear. The morphism of short exact sequences

NΩ≥n(B.G†) −−−−→ NΩ∗(B.G†) −−−−→ NΩ<n(B.G†)

inf

y inf

y inf

y
W≥n,·(g) −−−−→ W ∗,·(g) −−−−→ W<n,·(g).

induces natural boundary maps. �

3.7. Comparison of the suspension maps. Now we can state the rela-
tion between the suspension sG for B.G and its infinitesimal version sg on
the Weil algebra. The proof is taken from Burgos [Bu].

Consider sG as the composition

sG : H2n(Ω≥n(B.Galg)) → H2n−1(Ω≥n(Galg)) → H2n−1
DR (Galg)

as in Section 3.2.
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Proposition 3.7.1. There is a commutative diagram

H2n(Ω≥n(B.Galg)) sG−−−−→ H2n−1
DR (Galg)

inf

y xρ

H2n(W≥n,·(g))
sg−−−−→ H2n−1(g)

where ρ is the isomorphism of Lemma 3.3.1.

Proof. Consider the map of complexes

NΩ≥n(B.Galg) → NΩ≥n(B1
· G

alg) ∼= W≥n,·(g)

defined in Definition 3.6.3. According to [Bu] Theorem 8.12 inf induces a
map

ω−1
E.G : H2n(Ω≥n(B.Galg)) → H2n(W≥n,·(g)),

which is an algebraic description of the inverse of the Chern-Weil homomor-
phism. Proposition 5.33 in [Bu] says that sG can be factored

H2n(Ω≥n(B.Galg))
ω−1

E.G−−−→ H2n(W≥n,·(g))
sg−→ H2n−1(g).

The proof in loc. cit. is only over C, but works without any changes over an
arbitrary field of characteristic zero. This gives the desired commutativity.

�

3.8. Proof of Theorem 3.1.1. We need one more lemma.

Lemma 3.8.1. The diagram

H2n−1(Ω<n(B.G†)) inf−−−−→ H2n−1(W<n,·(g))y y
H2n−1

la (G,K) Ψ−−−−→ H2n−1(g)

commutes, where Ψ is the map defined in Definition 3.4.5.

Proof. We have the commutative diagram

NΩ<n(B.G†) inf−−−−→ W<n,·(g)y y
NΩ<1(B.G†) inf−−−−→ W<1,·(g)y y=

O(B.G†) inf−−−−→ C·(g).

By Lemma 3.4.6 inf agrees with Ψ. Finally Ψ factors naturally through
O(B.Gla). �
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Proof of Theorem 3.1.1. We only have to combine the commutative dia-
grams that we have established: The statements on inf were shown in
Lemma 3.6.4. The diagram for sG is Lemma 3.7.1. The small triangle
was considered in Lemma 3.5.4. Finally the diagram for Ψ is the above
Lemma 3.8.1. �

4. The identification of Φ with the Lazard Isomorphism

In this section we work with a smooth algebraic group H/Zp and a p-
saturated group of finite rank H (see [L] III Definition 2.1.3 and 2.1.6) with
valuation ω which is an open subgroup of H(Zp). The group H will always
be considered as a Qp-analytic manifold. Our main example is H = GLN ,
H = 1 + pMN (Zp) with ω the inf-valuation.

4.1. The Lazard Lie algebra. Let AlH be the completed group ring of
H over Zp (as defined in [L] II 2.2.1.). Note that by [L] III. 3.3.2.1 H is an
analytic Taylor manifold, in particular, that H can be identified with Zr

p as
an analytic manifold. Fix

φ : H → Zr
p with φ(e) = 0

such an identification.
If we are only interested in the structure of AlH as a Zp-module, we can

identify H with Zr
p via φ and obtain as in [L] III 3.3.5 a topological basis

(zα)α∈J , where J := Nr (see [L] III 2.3.8 and III 2.3.11.3). Here zi := xi− 1
for an ordered basis x1, . . . , xr of H and zα :=

∏r
i=1 zαi

i . The valuation of
zα is

w(zα) :=
r∑

i=1

αiω(xi).

This means that every element x ∈ AlH can be written in the form

x =
∑
α∈J

λαzα

with λα ∈ Zp and the valuation is defined by

w(
∑
α∈J

λαzα) := infα∈J{v(λα) + w(zα)}

(see [L] I 2.1.17). The map H → AlH is explicitly given by
r∏

i=1

xλi
i =

∑
α∈J

(
λ

α

)
zα.

The saturation of AlH contains by definition the elements µzα, µ ∈ Qp with
w(µzα) ≥ 0, i.e., with v(µ) +

∑r
i=1 αiω(xi) ≥ 0. As αiω(xi) > αi

p−1 (see [L]
III 2.2.7.1) and v(αi!) ≤ αi

p−1 we see that

eα :=
zα

α!
∈ SatAlH.
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The saturated group algebra SatAlH (see [L] I 2.2.11) has also a structure
of a valued, diagonal Zp-algebra, i.e., one has a valued Zp-algebra morphism

∆ : SatAlH → SatAlH⊗Zp SatAlH
of supplemented algebras. This is defined using the diagonal map H →
H×H and [L] I 3.2.8, II 2.2.8.

Definition 4.1.1 ([L] IV 1.3.1). The Lazard Lie algebra L∗ of H is defined
to be

L∗ := L∗SatAlH = {x ∈ SatAlH|∆(x) = x⊗ 1 + 1⊗ x and w(x) >
1

p− 1
}.

We would like to make this more explicit. Let us first define special
elements in SatAlH:

Definition 4.1.2. Let ∂i ∈ SatAlH be the element

∂i :=
∑
αi>0

(−1)αi−1zαi
i

αi
= log(zi + 1) = log(xi).

Lemma 4.1.3. The elements ∂i are primitive in SatAlH, i.e.,

∆(∂i) = ∂i ⊗ 1 + 1⊗ ∂i.

Moreover, they give a basis of L∗.

Proof. This is just lemma IV 3.3.6 in [L] as zi + 1 = xi. �

Corollary 4.1.4. There is a morphism

U(L∗) → SatAlH.

Proof. Clear from the universal property of U(L∗). �

4.2. Distributions of locally analytic functions. We show that the
space of distributions of locally analytic functions Dcont(H) is a subspace
of SatAlH. It turns out that the elements ∂i ∈ SatAlH can also be viewed
as distributions of locally analytic functions.

Recall that a continuous function defined by the Mahler series

f(λ) =
∑
α∈J

cα

(
λ

α

)
with cα ∈ Zp

is locally analytic if lim inf |α|→∞
v(cα)
|α| > 0 (see [L] III 1.3.9.2).

Recall that O(Hla) ∼= O((Zr
p)

la) = ∪h>0LAh(Zr
p, Qp), where LAh(Zr

p, Qp)
are the locally analytic functions of order h on Zr

p with values in Qp (see [L]
III 1.3.7). Each LAh(Zr

p, Qp) is a p-adic Banach space with norm vLAh (see
[Co] 1.4.2 for the definition) and O(Hla) gets the inverse limit topology. We
define

Dcont(H) := Homcont(O(Hla), Qp).
Amice shows in the case r = 1, which extends immediately to r ≥ 1, the
following proposition:
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Proposition 4.2.1 (Amice, cf. [Co] Théorème 2.3). The ring of distribu-
tions Dcont(H) is identified via the Amice or Fourier transformation

A : Dcont(H) → Qp[[T1, . . . , Tr]]

µ 7→
∑
α

µ(
(

λ

α

)
)Tα

with the ring of power series G(T ) =
∑

α λαTα, with λα ∈ Qp, which con-
verge for v(T ) > 0 (i.e., G(T ) defines an analytic function on the open
r-dimensional unit ball).

Corollary 4.2.2. There is an injection

Dcont(H) → SatAlH⊗Zp Qp

µ 7→
∑
α

µ

((
λ

α

))
)zα.

An element D :=
∑

α ραzα ∈ SatAlH is an element in Dcont(H) if and only
if the power series GD(T ) :=

∑
α ραTα converges for v(T ) > 0. Explicitly,

for f(λ) =
∑

α∈J cα

(
λ
α

)
∈ O(Hla) one has

Df =
∑
α

cαρα.

Proof. Using Proposition 4.2.1 we see that
∑

α µ(
(
λ
α

)
)zα converges in SatAlH

as w(zi) = ω(xi) > 1
p−1 and that the map is injective. The rest of the

corollary is just a restatement of Proposition 4.2.1. �

As ∂i =
∑

αi>0
(−1)αi−1

αi
zαi
i we get:

Corollary 4.2.3. The elements ∂i are contained in Dcont(H) and the inclu-
sion L∗ ⊂ Dcont(H) defines a ring homomorphism

U(L∗) → Dcont(H).

4.3. Identification of the algebraic Lie algebra h with the Lazard
Lie algebra L∗. Recall that the algebraic Qp-Lie algebra of a smooth linear
algebraic group scheme H/Zp is defined in Definition 0.4.1 as the derivations

h := DerZp(O(Halg)e, Qp).

Inside H(Zp) we have the open, p-saturated subgroup H considered as Qp-

analytic manifold. Using the inclusion O(Halg)e ⊂ O(Hla)e ⊂ ̂O(Halg)e

(completion w.r.t. the maximal ideal), we can compare this with the Lazard
Lie algebra L∗.

Proposition 4.3.1. The inclusion O(Halg)e ⊂ O(Hla)e induces an isomor-
phism

h ∼= L∗ ⊗Zp Qp.
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Moreover, let f(λ) =
∑

α∈J cα

(
λ
α

)
be a locally analytic function and ∂i ∈ L∗,

then

∂if =
∂f

∂λi
(e).

Proof. We compute
∂f

∂λi
=

∑
α∈J

cα
∂

∂λi

(
λ

α

)
and

∂

∂λi

(
λ

α

)
|λ=0 =

{
(−1)αi−1

αi
if α = (0, · · · , αi, · · · , 0)

0 else
.

Thus,
∂f

∂λi
|λ=0 =

∑
αi>0

(−1)αi−1cαi

αi
= ∂if,

which gives the desired result. To prove that h ∼= L∗ ⊗Zp Qp, first observe
that the maximal ideal of O(Hla)e is meO(Galg)e and that the ∂i by the
above calculation form a basis of this ideal. As L∗ is generated by the ∂i

we get that L∗⊗R K ∼= meO(Galg)e/m2
eO(Galg)e. As h = me/m2

e this proves
that h ∼= L∗ ⊗Zp Qp. �

4.4. Standard complexes for group and Lie algebra cohomology.
For any augmented Zp-algebra A with augmentation ε : A → Zp we consider
two standard complexes (T.A, d) and (T̃ .A, d̃) with

TnA = T̃nA = A⊗n+1,

where for simplicity

A⊗n+1 =

{
A⊗Zp . . .⊗Zp A n + 1-times; if A has no topology
A⊗̂Zp . . . ⊗̂ZpA n + 1-times; if A complete.

and differentials

d(a0 ⊗ . . .⊗ an) :=
n∑

i=0

(−1)iε(ai)a0 ⊗ . . .⊗ âi ⊗ . . .⊗ an

d̃(a0 ⊗ . . .⊗ an) :=
n−1∑
i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an

+ (−1)na0 ⊗ . . .⊗ an−1ε(an)

To motivate these constructions, we consider two realizations E.H and Ẽ.H
of the universal bundle over the classifying space B.H. Recall that EnH =
Hn+1 with face maps δi(h0, . . . , hn) = (h0, . . . , ĥi, . . . , hn) and EnH → BnH
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given by (h0, . . . , hn) 7→ (h0h
−1
1 , . . . , hn−1h

−1
n ) (see 0.2). Let ẼnH = Hn+1

with face maps

δ̃i(h0, . . . , hn) =

{
(h0, . . . , hi−1, hihi+1, . . . , hn) if i = 0, . . . , n− 1
(h0, . . . , hn−1) if i = n

The classifying space B.H is then the quotient of these spaces by the H-right
action : diagonally on E.H and as

(h0, . . . , hn)h = (h−1h0, h1, . . . , hn)

on Ẽ.H. The map (h0, . . . , hn) 7→ (h−1
0 , h0h

−1
1 , . . . , hn−1h

−1
n ) is an equi-

variant isomorphism from E.H to Ẽ.H that is compatible with the map to
B.H.

Associated to these contractible simplicial spaces we have complexesDcont(E.H),
Al(E.H), SatAl(E.H) and similarly for Ẽ.H with differential the alternating
sums of the δi’s respectively the δ̃i’s.

Lemma 4.4.1. One has

Dcont(E.H) ∼= T.Dcont(H)

and
Dcont(Ẽ.H) ∼= T̃ .Dcont(H)

and similar results for AlH and SatAlH.

Proof. Clear from the definition. �

From the isomorphism of simplicial spaces E.H ∼= Ẽ.H one sees that there
is an isomorphism of complexes Dcont(E.H) ∼= Dcont(Ẽ.H). In a similar way
one sees:

Lemma 4.4.2. There is an isomorphism of complexes

T.UL∗ ∼= T̃ .UL∗

and both complexes are projective resolutions of Qp as trivial UL∗-module.

4.5. Review of the Lazard isomorphism. Recall that H is a p-saturated
group of finite rank with valuation ω and L∗ is its Lazard Lie algebra. The
main theorem of chapter V in [L] can be formulated as follows:

Theorem 4.5.1 ([L] V 2.4.9). There is an isomorphism

H i
cont(H, Qp) ∼= H i(L∗, Qp).

Let us review how Lazard constructs this isomorphism. First Lazard [L]
V 1.2.9 shows that HomAlH(T̃ .AlH, Qp) computes continuous group coho-
mology. Then the isomorphism is obtained from the following three quasi-
isomorphisms:

(9) HomAlH(T̃ .SatAlH, Qp)
qis−−→ HomAlH(T̃ .AlH, Qp)
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induced by AlH ⊂ SatAlH,

(10) HomSatAlH(T̃ .SatAlH, Qp)
qis−−→ HomUL∗(T̃ .UL∗, Qp),

induced by UL∗ → SatAlH and finally

(11) HomUL∗(T̃ .UL∗, Qp)
qis−−→ HomUL∗(UL∗ ⊗

∧·
L∗, Qp)

induced by the anti-symmetrisation map asn

asn :
∧n

L∗ → U(L∗)⊗n

given by

asn(X1 ∧ . . . ∧Xn) =
∑
σ∈Sn

sgn(σ)Xσ−1(1) ⊗ . . .⊗Xσ−1(n).

The fact that the latter is a quasi-isomorphism follows from [CE] XIII The-
orem 7.1.

4.6. Explicit description of the Lazard isomorphism. We describe the
Lazard isomorphism as a kind of Taylor series expansion.

In the last section the Lazard isomorphism was shown to be induced from
the map of complexes

UL∗ ⊗
∧·

L∗ → T̃ .UL∗ → T̃ .SatAlH.

In Corollary 4.2.2 we saw that the map UL∗ → SatAlH ⊗Zp Qp factors
through Dcont(H). We get a commutative diagram

HomSatAlH(T̃ .SatAlH, Qp) //

��

HomUL∗(UL∗ ⊗
∧·L∗, Qp)

HomDcont(H)(T̃ .Dcont(H), Qp)

33hhhhhhhhhhhhhhhhhhh

Using the identification

HomDcont(H)(T̃nDcont(H), Qp) ∼= Homcont(Dcont(H)⊗n, Qp) ∼= O(Hla)⊗n

and
HomUL∗(UL∗ ⊗

∧·
L∗, Qp) ∼= HomZp(

∧·
L∗, Qp)

the diagram gives:

HomSatAlH(T̃ .SatAlH, Qp) //

��

HomZp(
∧·L∗, Qp)

O(Hla)⊗·

44iiiiiiiiiiiiiiiii

We want to make the map O(Hla)⊗n → HomZp(
∧nL∗, Qp) more explicit.

Recall that we have defined in Section 0.4 for each f ∈ O(Hla) a linear
form

df(e) ∈ HomZp(L∗, Qp) ∼= HomQp(h, Qp) = h∨,
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where the isomorphism comes from Proposition 4.3.1. One has

df(e)(∂j) =
∂f

∂λj
(e).

This is the differential of f evaluated at e ∈ H.

Proposition 4.6.1. The map

O(Hla)⊗n → HomZp(
∧n

L∗, Qp) ∼=
∧n

h∨

is given by
f1 ⊗ . . .⊗ fn 7→ df1(e) ∧ . . . ∧ dfn(e).

Thus the Lazard isomorphism agrees with Φ as defined in Definition 1.4.1.

Proof. By definition, f1 ⊗ . . . ⊗ fn maps to the linear form, which maps
∂1 ∧ . . . ∧ ∂n ∈

∧nh to∑
σ∈Sn

sgn(σ)∂σ−1(1)f1 . . . ∂σ−1(n)fn.

But this is exactly the linear form df1(e)∧ . . .∧ dfn(e) with dfi(e) as defined
above. �

Remark 4.6.2. It is not hard to see that the map

O(Hla)⊗n → HomZp(U(L∗)⊗n, Qp)

is given by the whole Taylor series and not just the first coefficient. For our
purposes the above result suffices.

4.7. Comparison of Φ with Ψ. We return to the situation in Section 4.3,
where we had a smooth algebraic group scheme H/Zp and H was a p-
saturated open subgroup of H(Zp). Using Proposition 4.3.1 we identify
L∗ ⊗Qp

∼= h.
In this section we relate the map of complexes

Φ : O(BnHla) → Cn(h)

f1 ⊗ . . .⊗ fn 7→ df1(e) ∧ . . . ∧ dfn(e)

to the map of complexes

Ψ : O(BnHla) ⊂ O(EnHla) → Cn(h)

f0 ⊗ . . .⊗ fn 7→ f0(e)df1(e) ∧ . . . ∧ dfn(e)

defined in Definition 3.4.5 (for H = 1 + pMN (Zp)). We have the following
theorem:

Theorem 4.7.1. The map Φ and the map Ψ are homotopic maps of com-
plexes. In particular, they induce the same map on cohomology

Φ = Ψ : H i
la(H, Qp) ∼= H i(h, Qp).
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Proof. Write Cn(h) = HomUh(Uh ⊗
∧nh, Qp), then the map O(EnHla) →

Cn(h), which defines Ψ is induced by a map of complexes

Uh⊗
∧·

h → T·Uh → T·Dcont(H).

On the other hand, Φ : O(BnHla) → Cn(h) is induced in degree n by a map∧n
h → Uh⊗n → Dcont(H)⊗n.

We extend the first map Uh-linearly to a map of complexes

Uh⊗
∧·

h → T̃·Uh.

Using the isomorphism T̃·Uh ∼= T·Uh from Lemma 4.4.2, we get two maps
from the projective resolution Uh⊗

∧·h of Qp to the resolution T·Uh, which
must be homotopic by general facts for projective resolutions. Composing
this with the commutative diagram

T.Uh −−−−→ T.Dcont(H)y∼= y∼=
T̃ .Uh −−−−→ T̃ .Dcont(H)

gives still homotopic maps, so that Φ and Ψ coincide on cohomology. �

5. Proof of the Main Theorem

In this section we are going to put together the proofs of the results
announced in Chapter 1.

Let throughout G = GLN as algebraic group over R, G = GLN (R) as
K-Lie group and G† =

∐
a∈G(k)]a[G as underlying dagger-space. Recall that

G†(K) = G. Let 1 < n ≤ N .

Proof of Theorem 1.2.1 and of Theorem 1.3.2. We have to check injectivity
and surjectivity of the Lazard map and that primitive elements pn in Lie
algebra cohomology are related to the étale Chern classes.
Step 1: Injectivity of the Lazard map

Let Gn = 1 + πnMN (R). They are open and closed normal subgroups
of G of finite index. They are also a neighbourhood basis of e ∈ G. Hence
O(Gla)e, the ring of germs of analytic functions, is given by lim

n→∞
O(Gla

n ).

For n′ > n the natural restriction maps

H i
la(Gn,K) → H i

la(Gn′ ,K)

are injective as we working with rational coefficients. Passing to the limit
the map

H i
la(G,K) → H i(O(B.Gla)e)

is also injective. We define

Φ∞ : H i(O(B.Gla)e) → H i(g,K)
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by
f1 ⊗ . . .⊗ fn 7→ df1(e) ∧ . . . ∧ dfn(e).

Note that this is the same formula as in Definition 1.4.1.
Now let R = Zp. Then Φ is an isomorphism on the saturated subgroup G1

by Theorem 4.5.1 together with Proposition 4.6.1. (For p = 2 the saturated
subgroup is G2. The argument remains the same.) Hence Φ∞ is an also
isomorphism.

Moreover,

Lie(GLN (R)) ∼= Lie(GLN (Zp))⊗K

H i(Lie(GLN (R)),K) ∼= H i(Lie(GLN (Zp)), Qp)⊗K

O(Gla
R)e

∼= O(Gla
Zp

)e ⊗K

and the map Φ is compatible with extension of scalars. Hence Φ∞ is also an
isomorphism for general K. This implies that Φ is injective for general K.
Step 2: The commutative diagram

Putting together the commutative diagrams of Proposition 2.3.4, Propo-
sition 2.4.5 and Theorem 3.1.1, we have established the following big com-
mutative diagram:

H2n(Ω≥nB.Galg)

�� ��

sG // H2n−1
DR (Galg)

ρ

��

H2n
et (B.G, n)

��

H2n(Ω≥nB.G†) inf // H2n(W≥n,∗(g))

sg

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

H2n−1(G(R), H1
et(K, n)) H2n

syn(B.G, n)

iiSSSSSSSSSSSSSS

��

η // H2n−1(Ω<nB.G†) //

∂

OO

��

H2n−1(W <n,∗(g))

((QQQQQQQQQQQQQ

OO

H2n−1(G, K)

expBK

iiSSSSSSSSSSSSSS
H2n−1

la (G, K)oo Ψ=Φ // H2n−1(g, K)

For R = Zp we have Ψ = Φ by Theorem 4.7.1. By compatibility with
base change, we get that Ψ = Φ is the algebraic Lazard map for any R.
Step 3: Chasing elements

Consider the primitive element pn ∈ H2n−1(g,K). The Chern class
calg
n ∈ H2n(Ω≥nB.Galg) is mapped to pn under the suspension map sG.

Using Proposition 3.7.1, [GHV] VI.6.19. (which computes the image of
the Chern class under sg) and [Bu] Lemma 8.11, one verifies the normal-
ization of pn used in Definition 0.4.5. By Proposition 2.4.5 the image of
calg
n in H2n(Ω≥nB.G†) agrees with the image of the syntomic Chern class

csyn
n ∈ H2n

syn(B.G, n) under ∂ ◦ η. By the commutativity of the diagram this
implies that the image of csyn

n in H2n−1(g,K) is pn.
Step 4: Surjectivity of the Lazard map Lie algebra cohomology H∗(g,K) is
generated by the pn as an algebra and Φ is compatible with cup-product.
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We have established in Step 3 that all pn are in the image of Φ. Hence Φ is
surjective. Together with step 1 this means that Φ is invertible.
Step 5: pn maps to cet

n We have already related pn to the syntomic Chern
class. By Proposition 2.3.4 the universal syntomic Chern class is mapped to
the universal étale Chern class. Together this proves the theorem.

�

Remark 5.0.2. In the case n = 1 basically the same argument works.

Remark 5.0.3. In the case R = Zp surjectivity of Φ can be established
more directly, cf. [CW] §3: the operation of GlN on H∗(g,K) is algebraic.
Hence the stabilizer is Zariski-closed subset. It contains the open subset G1

(for the analytic topology) by Lazard’s result 4.5.1. Hence it is all of GlN .
This implies that

H∗(G(Zp),K) ∼= H∗(Lie(G),K)G(Zp) ∼= H∗(Lie(G),K) .

In [HKN] Section 4 the Casselman-Wigner argument is pushed to show that
the algebraic Lazard map is surjective (and hence an isomorphism) for all
R and open subgroups of G(R) where G is a smooth group scheme over R.
Loc. cit. Theorem 4.3.1 thus can replace the argument in Step 4 of the
above proof.
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