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Abstract. We show that the spectrum of Kontsevich’s algebra of formal pe-

riods is a torsor under the motivic Galois group for mixed motives over Q.

This assertion is stated without proof by Kontsevich ([Ko] Theorem 6) and
originally due to Nori. In a series of appendices, we also provide the necessary

details on Nori’s category of motives (see the survey [Le]).
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Introduction

Let X be a smooth variety over Q. A period number of X is the value of an integral∫
Z

ω

where ω is a closed algebraic (hence rational) differential form of degree d and
Z ⊂ X(C) a closed real submanifold of dimension d. Periods are complex numbers.
A more conceptual way is to view periods of X as the values of the period pair-
ing between Hd(X(C),Q) (singular homology) and Hd

dR(X/Q) (algebraic de Rham
cohomology), or – equivalently – matrix entries of the period isomorphism [D1, D2]

Hd(X(C),Q)⊗ C −→ Hd
dR(X/Q)⊗ C
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in any two Q–bases. Stated like this, the notion generalizes to any variety over Q
or even any mixed motive over Q, independently of the chosen category of mixed
motives.
The algebra of Kontsevich-Zagier periods [KZ], defined as integrals of algebraic
functions over domains described by algebraic equations or inequalities with co-
efficients in Q is the set of all periods of all mixed motives over Q. It is a very
interesting, countable subalgebra of C. It contains e.g. all algebraic numbers, 2πi,
and all ζ(n) for n ∈ Z. Indeed, if Beilinson’s conjectures are true, then all special
values of L-functions of mixed motives are periods.
The relations between period numbers are mysterious and intertwined with tran-
scendence theory. A general period conjecture goes back to Grothendieck, see the
footnote on page 358 in [G], and the reformulations of André in [A1] and [A2]
chapitre 23. Conjecturally, the only relations are in a sense the obvious ones, i.e.,
coming from geometry. In order to make this statement precise, Kontsevich intro-
duced ([Ko] Definition 20) the notion of a formal period. We recall his definition
(actually, a variant, see Remark 2.9).

Definition 0.1. The space of effective formal periods P+ is defined as the Q-vector
space generated by symbols (X,D, ω, γ), where X is an algebraic variety over Q,
D ⊂ X a subvariety, ω ∈ Hd

dR(X,D), γ ∈ Hd(X(C), D(C),Q) with relations

(1) linearity in ω and γ;
(2) for every f : X → X ′ with f(D) ⊂ D′

(X,D, f∗ω′, γ) = (X ′, D′, ω′, f∗γ)

(3) for every triple Z ⊂ Y ⊂ X

(Y,Z, ω, ∂γ) = (X,Y, dω, γ)

with ∂ the connecting morphism for relative cohomology.

P+ is turned into an algebra via

(X,D, ω, γ)(X ′, D′, ω′, γ′) = (X ×X ′, D ×X ′ ∪X ′ ×D,ω ∪ ω′, γ ∩ γ′) .

The space of formal periods is the localization P of P+ with respect to the period
of (Gm, {1}, dXX , S1) where S1 is the unit circle in C∗.

The period conjecture then predicts the injectivity of the evaluation map P → C.
We have nothing to say about this deep conjecture, which includes for example the
transcendence of π and all ζ(2n+ 1) for n ∈ N [A1].
The main aim of this note is to provide the proof (see Corollary 2.11) of the following
result:

Theorem 0.2 (Nori, [Ko] Theorem 6). Spec(P ) is a torsor under the motivic
Galois group of Nori’s category of mixed motives over Q.

As already explained by Kontsevich, singular cohomology and algebraic de Rham
cohomology are both fiber functors on the same Tannaka category of motives. By
general Tannaka formalism, there is a pro-algebraic torsor of isomorphisms between
them. The period pairing is nothing but a complex point of this torsor. Our task
was to check that this torsor is nothing but the explicit Spec(P ). While baffling at
first, the statement turns out to be a corollary of the very construction of Nori’s
motives.



ON THE RELATION BETWEEN NORI MOTIVES AND KONTSEVICH PERIODS 3

This brings us to the second part of this paper. Nori’s unconditional construction
of an abelian category of mixed motives has been around for some time. Notes
of talks have been circulating, see [N] and [N1]. In his survey article [Le], Levine
includes a sketch of the construction, bringing it into the public domain. These
sources combined contain basically all the necessary ideas. We decided to work out
all technical details that were not obvious to us, but were needed in order to get a
full proof of our main theorem. This material is contained in the appendices. They
are supposed to be self-contained and independent of each other. We tried to make
clear where we are using Nori’s ideas. All mistakes remain of course ours.
Section 1 is another survey on Nori motives, which brings the results of the ap-
pendices together in order to establish that Nori motives are a neutral Tannakian
category. Section 2 gives an interpretation of the algebra of formal periods in terms
of Nori’s machine. The main result is Theorem 2.6. In section 3 this is combined
with the rigidity property of Nori’s category of mixed motives in order to deduce
the statement on the torsor structure.
Appendix A clarifies in detail the notion of torsor used by Kontsevich in [Ko]
which was unfamiliar to us. Appendix B is on the multiplicative structure on
Nori’s diagram categories. Appendix C establishes a criterion for an abelian tensor
category with faithful fiber functor to be rigid. Both appendices are supposed to
be applied to Nori motives but formulated in general.
The key geometric input in Nori’s approach was the so-called basic lemma to which
we refer here as Beilinson’s lemma since A. Beilinson had proved a more general
version earlier. It allows for ”cellular” decompositions of algebraic varieties, in the
sense that their cohomology looks like cohomology of a cellular decomposition of
a manifold. In appendix C this is used to compare different definitions of Nori
motives using ”pairs” or ”good pairs” or even ”very good pairs”. The results of
this section are essential input in order to apply the rigidity criterion of section D.
What is missing from our account is the proof of universality of Nori’s diagram cat-
egory for a diagram with a representation. The paper [vW] by J. von Wangenheim
provides full details. There is also the (unfortunately unpublished) paper [Br] by
A. Brughières to fill in this point.
Acknowledgements: We would like to thank Y. André, F. Knop, M. Nori, W. So-
ergel, D. van Straten, M. Wendt, and G. Wüstholz for comments and discussions.
We are particular thankful to organizers and participants of the Zürich Mathemat-
ical School’s 2011 workshop ”Motives, periods and transcendence” in Alpbach. We
thank them for their careful reading, comments and corrections of the first ver-
sion of this paper. Special thanks go to J. Ayoub, U. Choudhury, M. Gallauer,
S. Gorchinskiy, L. Kühne, and S. Rybakov.

1. Essentials of Nori Motives

We use the setup of [N] for Nori motives. The key ideas are contained in the survey
[Le]. Parts of the theory and further details are also developed in appendix B. Nori
works primarily with singular homology. We have switched to singular cohomology
throughout. We restrict to rational coefficients for simplicity.
We fix the following notation.

• By variety we mean a reduced separated scheme of finite type over Q.
• Let Q-Mod be the category of finite dimensional Q-vector spaces.
• A diagram D is a directed graph.
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• A representation T : D → Q-Mod assigns to every vertex in D an object in
Q-Mod and to every edge e from v to v′ a homomorphism T (e) : T (v) →
T (v′).
• Let C(D,T ) its associated diagram category. It is the universal abelian

category together with a functor fT : C(D,T )→ Q-Mod such that T factors
via fT . We often write T instead of fT . The category C(D,T ) arises as
the category of A(T )-comodules finite dimensional over Q for a certain
coalgebra A(T ). For the explicit construction due to Nori, see appendix
B and [vW]. When D or T are understood from the context, we often
abbreviate C(T ) or C(D).

The following are the cases of interest in the present paper:

Definition 1.1. (1) The diagramDeff of effective pairs consists of triples (X,Y, i)
with X a Q-variety, Y ⊂ X a closed subvariety and an integer i. There are
two types of edges between effective good pairs:
(a) (functoriality) For every morphism f : X → X ′ with f(Y ) ⊂ Y ′ an

edge
f∗ : (X ′, Y ′, i)→ (X,Y, i) .

(b) (coboundary) For every chain X ⊃ Y ⊃ Z of closed Q-subschemes of
X an edge

∂ : (Y,Z, i)→ (X,Y, i+ 1) .

The diagram is graded (see Definition B.14) by |(X,Y, i)| = i.
(2) The diagram Deff

Nori of effective good pairs is the full subdiagram of Deff

with vertices the triples (X,Y, i) such that singular cohomology satisfies

Hj(X(C), Y (C);Q) = 0, unless j = i.

(3) The diagram D̃eff of effective very good pairs is the full subdiagram of those
effective good pairs (X,Y, i) with X affine, X r Y smooth and either X of
dimension i and Y of dimension i− 1, or X = Y of dimension less than i.

The diagrams D of pairs, DNori of good pairs and D̃ of very good pairs are obtained
by localization (see Definition B.17) with respect to (Gm, {1}, 1).

We use the representation H∗ : DNori → Q-Mod which assigns to (X,Y, i) relative
singular cohomology Hi(X(C), Y (C),Q).

Remark 1.2. For the purposes of our paper Q-coefficients are sufficient. Nori’s
machine also works for integral coefficients.

Good pairs exist in abundance, see Appendix D.

Definition 1.3. The category of (effective) mixed Nori motives MMNori (resp.

MMeff
Nori) is defined as the diagram category C(DNori, H

∗) (resp. C(Deff
Nori, H

∗)).
For a good pair (X,Y, i) we write Hi

Nori(X,Y ) for the corresponding object in
MMNori. We put

1(−1) = H1
Nori(Gm, {1}) ∈MM

eff
Nori .

Remark 1.4. In applying the theory of Appendix B.3 we need an object of even
degree. We really localize with respect to the square of the Lefschetz object. This
causes a conflict in twist notation. In the main text of the article, we keep writing
(−1) for tensor product with 1(−1).
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Remark 1.5. It will established in Corollary 1.7 that Nori motives can equivalently
be defined using D or D̃.

Theorem 1.6. (1) This definition is equivalent to Nori’s original definition.

(2) MMeff
Nori ⊂MMNori are commutative tensor categories with a faithful fiber

functor H∗.
(3) MMNori is the localization of MMeff

Nori with respect to the Lefschetz object
1(−1).

Proof. Deff
Nori is a graded diagram in the sense of Definition B.14. It carries a

commutative multiplicative structure (see Definition B.14 again) by

(X,Y, i)× (X ′, Y ′, i′) = (X ×X ′, X × Y ′ ∪ Y ×X ′, i+ i′).

with unit given by (SpecQ, ∅, 0) and

u : (X,Y, i)→ (SpecQ, ∅, 0)× (X,Y, i) = (SpecQ×X,SpecQ× Y, i)

be given by the natural isomorphism of varieties. Let also

α : (X,Y, i)× (X ′, Y ′, i′)→ (X ′, Y ′, i′)× (X,Y, i)

β : (X,Y, i)× ((X ′, Y ′, i′)× (X ′′, Y ′′, i′′))→ ((X,Y, i)× (X ′, Y ′, i′))× (X ′′, Y ′′, i′′)

be given by the natural isomorphisms of varieties.
H∗ is a graded representation in the sense of Definition B.14. Properties (2) and
(3) depend on a choice of a sign convention such that the boundary map ∂ is
compatible with cup products in the first variable and compatible up to sign in the
second variable.
Hence by Proposition B.16, the category MMeff

Nori carries a tensor structure.
The Lefschetz object (Gm, {1}, 1) satisfies Assumption B.19, hence by Proposition

B.21 the category MMNori is the localization of MMeff
Nori at 1(−1) and also a

tensor category.
By definition, Deff

Nori is the category of cohomological good pairs in the terminology
of [Le]. In loc. cit. the category of Nori motives is defined as the category of
comodules of finite type over Q for the localization of the ring Aeff with respect to
the element χ ∈ A(1(−1)) considered in Proposition B.21. By this Proposition, the
category of Aeff

χ -comodules agrees with MMNori. �

Comparing diagrams and diagram categories. Nori establishes that the rep-
resentation T = H∗ extends to all pairs of varieties.

Corollary 1.7. The diagram categories of Deff and D̃eff with respect to singular
cohomology are equivalent toMMeff

Nori as abelian categories. The diagram categories

of D and D̃ are equivalent to MMNori.

Proof. In the following proof we omit the T in the notation C(D,T ). It suffices to
consider the effective case. The inclusion of diagrams induces faithful functors

i : C(D̃eff)→MMeff
Nori → C(Deff).

We are going to represent the diagramm Deff in C(D̃eff) such the restriction of the

representation to D̃eff gives back H∗ (up to natural isomorphism). By the universal
property this induces a faithful functor

j : C(Deff)→ C(D̃eff)
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such that j ◦ i = id (up to natural isomorphism). This implies that j is essentially
surjective and full. Hence j is an equivalence of categories. This implies also that
i is an equivalence of categories.
We now turn to the construction of the representation of Deff in C(D̃eff).
We apply Proposition D.3 to

H∗ : D̃eff → C(D̃eff)

and get a functor

R : Cb(Z[Var])→ D+(C(D̃eff)).

Consider an effective pair (X,Y, i) in D. It is represented by

Hi
Nori(X,Y ) = Hi(R(X,Y )) ∈ C(D̃eff)

where

R(X,Y ) = R(Cone(Y → X)) .

The construction is functorial for morphisms of pairs. This allows to represent
edges of type f∗.
Finally, we need to consider edges corresponding to coboundary maps for triples
X ⊃ Y ⊃ Z. In this case, it follows from the construction of R that there is a
natural triangle

R(X,Y )→ R(X,Z)→ R(Y, Z).

We use the connecting morphism in cohomology to represent the edge (Y,Z, i) →
(X,Y, i+ 1). �

Corollary 1.8. Every object of MMeff
Nori is subquotient of a direct sum of objects

of the form Hi
Nori(X,Y ) for a good pair (X,Y, i) where X = W rW∞ and Y =

W0 r (W0 ∩ W∞) with W smooth projective, W∞ ∪ W0 a divisor with normal
crossings.

Proof. By Proposition B.9 every object in the diagram category of D̃eff (and hence
MMNori) is subquotient of a direct sum of some Hi

Nori(X,Y ) with (X,Y, i) very
good.
We follow Nori: By resolution of singularities there is a smooth projective variety
W and a normal crossing divisors W0∪W∞ ⊂W together with a proper, surjective
morphism π : W r W∞ → X such that one has π−1(Y ) = W0 r W∞ and π :
W r π−1(Y )→ X r Y is an isomorphism. This implies that

Hi
Nori(W rW∞,W0 r (W0 ∩W∞))→ Hi

Nori(X,Y )

is also an isomorphism by proper base change, i.e., excision. �

Remark 1.9. Note that the pair (W rW∞,W0 r (W0 ∩W∞) is good, but not
very good in general. Replacing Y by a larger closed subset Z, one may, however,
assume that W0r (W0∩W∞) is affine. Therefore, by Lemma 1.13, the dual of each
generator can be assumed to be very good.
It is not clear to us if it suffices to construct Nori’s category using the diagram
of (X,Y, i) with X smooth, Y a divisor with normal crossings. The corollary says
that the diagram category has the right ”generators”, but there might be too few
”relations”.
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Corollary 1.10. Let Z ⊂ X be a closed immersion. Then there is a natural object
Hi
Z(X) inMMNori representing cohomology with supports. There is a natural long

exact sequence

· · · → Hi
Z(X)→ Hi

Nori(X)→ Hi
Nori(X r Z)→ Hi+1

Z (X)→ · · ·

Proof. Let U = X r Z. Put

RZ(X) = R(Cone(U → X)), Hi
Z(X) = Hi(RZ(X)) .

�

Rigidity. In order to establish duality, we need to check that Poincaré duality is
motivic, at least in a weak sense.

Definition 1.11. Let 1(−1) = H1
Nori(Gm) and 1(−n) = 1(−1)⊗n.

Lemma 1.12. (1) H2n
Nori(PN ) = 1(−n) for N ≥ n ≥ 0.

(2) Let Z be a projective variety of dimension n. Then H2n
Nori(Z) ∼= 1(−n).

(3) Let X be a smooth variety, Z ⊂ X a smooth, irreducible, closed subvariety
of pure codimension n. Then

H2n
Z (X) ∼= 1(−n).

Proof. (1) Embedding projective spaces linearly into higher dimensional projective
spaces induces isomorphisms on cohomology. Hence it suffices to check the top
cohomology of PN .
We start with P1. Consider the standard cover of P1 by U1 = A1 and U2 = P1r{0}.
We have U1 ∩ U2 = Gm. By Corollary D.19

R(P1)→ Cone

(
R(U1)⊕R(U2)→ R(Gm)

)
[−1]

is an isomorphism in the derived category. This induces the isomorphismH2
Nori(P1)→

H1
Nori(Gm). Similarly, the Čech complex (see Definition D.10) for the standard

affine cover of PN relates H2N
Nori(PN ) with HN

Nori(GNm).
(2) Let Z ⊂ PN be a closed immersion with N large enough. Then H2n

Nori(Z) →
H2n

Nori(PN ) is an isomorphism in MMNori because it is in singular cohomology.
(3) We note first that (3) holds in singular cohomology by the Gysin isomorphism

H0(Z)
∼=−→H2n

Z (X)

under our assumptions. For the embedding Z ⊂ X one has the deformation to the
normal cone [Fu, Sec. 5.1], i.e., a smooth scheme D(X,Z) together with a morphism
to A1 such that the fiber over 0 is given by the normal bundle NZX of Z in X, and
the other fibers by X. The product Z × A1 can be embedded into D(X,Z) as a
closed subvariety of codimension n, inducing the embeddings of Z ⊂ X as well as
the embedding of the zero section Z ⊂ NZX over 0. Hence, using the three Gysin
isomorphisms and homotopy invariance, it follows that there are isomorphisms

H2n
Z (X)← H2n

Z×A1(D(X,Z))→ H2n
Z (NZX)

in singular cohomology and hence in our category. Thus, we have reduced the
problem to the embedding of the zero section Z ↪→ NZX. However, the normal
bundle π : NZX → Z trivializes on some dense open subset U ⊂ Z. This induces
an isomorphism

H2n
Z (NZX)→ H2n

U (π−1(U)),
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and we may assume that the normal bundle NZX is trivial. In this case, we have

NZ(X) = NZ×{0}(Z × An) = N{0}(An),

so that we have reached the case of Z = {0} ⊂ An. Using the Künneth formula with
supports and induction on n, it suffices to consider H2

{0}(A
1) which is isomorphic

to H1(Gm) = 1(−1) by Cor. 1.10. �

The following lemma (more precisely, its dual) is formulated implicitly in [N] in
order to establish rigidity of MMNori.

Lemma 1.13. Let W be a smooth projective variety of dimension i, W0,W∞ ⊂W
divisors such that W0 ∪W∞ is a normal crossings divisor. Let

X = W rW∞

Y = W0 rW0 ∩W∞
X ′ = W rW0

Y ′ = W∞ rW0 ∩W∞
We assume that (X,Y ) is a very good pair.
Then there is a morphism in MMNori

q : 1→ Hi
Nori(X,Y )⊗Hi

Nori(X
′, Y ′)(i)

such that the dual of H∗(q) is a perfect pairing.

Proof. We follow Nori’s construction. The two pairs are Poincaré dual to each other
in singular cohomology. (This is easily seen by computing with sheaves on W and
the duality between j∗ and j!). This implies that they are both good pairs. Hence

Hi
Nori(X,Y )⊗Hi

Nori(X
′, Y ′)→ H2i

Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)

is an isomorphism. Let ∆ = ∆(W r (W0 ∪W∞)) via the diagonal map. Note that

X × Y ′ ∪X ′ × Y ⊂ X ×X ′ r ∆

Hence by functoriality and the definition of cohomology with support, there is a
map

H2i
Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)← H2i

∆ (X ×X ′).
Again, by functoriality, there is a map

H2i
∆ (X ×X ′)← H2i

∆̄ (W ×W )

with ∆̄ = ∆(W ). By Lemma 1.12 it is isomorphic to 1(−i). The map q is defined
by twisting the composition by (i). The dual of this map realizes Poincaré duality,
hence it is a perfect pairing. �

Theorem 1.14 (Nori). MMNori is rigid, hence a neutral Tannakian category. Its
Tannaka dual is given by Gmot = Spec(A(DNori, H

∗)).

Proof. By Corollary 1.8 every object ofMMNori is subquotient ofM = Hi
Nori(X,Y )(j)

for a good pair (X,Y, i) of the particular form occurring in Lemma 1.13. By this
Lemma they all admit a perfect pairing.
By Proposition C.4, the categoryMMNori is neutral Tannakian. The Hopf algebra
of its Tannaka dual agrees with Nori’s algebra by Theorem B.10. �
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2. Main Theorem

We describe the strategy of proof for Theorem 6 in [Ko]: The period algebra is
given by the comparison of Nori motives with respect to singular and de Rham
cohomology. The argument seems to be formal, so we do it abstractly. Let D
be a graded diagram with commutative product structure (see Definition B.14),
T1, T2 : D → Q-Mod two representations.

Definition 2.1. Let A1 = A(D,T1), A2 = A(D,T2). Put

A1,2 = colimFHom(T1|F , T2|F )∨

where ∨ denotes the Q-dual and F runs through all finite subdiagrams of D.

Lemma 2.2. A1,2 is a commutative ring with multiplication induced by the tensor
structure of the diagram category. The operation

End(T1|F )×Hom(T1|F , T2|F )→ Hom(T1|F , T2|F )

induces a compatible comultiplication

A1 ⊗A1,2 ← A1,2.

Proof. The hard part is the existence of the multiplication. This follows by going
through the proof of Proposition B.16, replacing End(T |F ) by Hom(T1|F , T2|F ) in
the appropriate places. �

Example 2.3. For DNori, T1 = H∗ (singular cohomology) as before and T2 = H∗dR

(de Rham cohomology) this is going to induce the operation of the motivic Galois
group Gmot on the torsor X = SpecA1,2.

Definition 2.4. We define the space of periods P1,2 as the Q-vector space generated
by symbols

(p, ω, γ)

where p is a vertex of D, ω ∈ T1(p), γ ∈ T2(p)∨ with the following relations:

(1) linearity in ω, γ;
(2) (change of variables) If f : p→ p′ is an edge in D, γ ∈ T2(p′)∨, ω ∈ T1(p),

then
(p′, T1(f)(ω), γ) = (p, ω, T2(f)∨(γ)).

Proposition 2.5. P1,2 is a commutative Q-algebra with multiplication given on
generators by

(p, ω, γ)(p′, ω′, γ′) = (p× p′, ω ⊗ ω′, γ ⊗ γ′)

Proof. It is obvious that the relations of P1,2 are respected by the formula. �

There is a natural transformation

Ψ : P1,2 → A1,2

defined as follows: let (p, ω, γ) ∈ P1,2. Let F be a finite diagram containing p. Then

Ψ(p, ω, γ) ∈ A1,2(F ) = Hom(T1|F , T2|F )∨,

is the map
Hom(T1|F , T2|F )→ Q

which maps φ ∈ Hom(T1|F , T2|F ) to γ(φ(p)(ω)). Clearly this is independent of F
and respects relations of P1,2.
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Theorem 2.6. The above map

Ψ : P1,2 → A1,2

is an isomorphism of Q-algebras.

Proof. For a finite subdiagram F ⊂ D let P1,2(F ) be the space of periods. By
definition P = colimFP (F ). The statement is compatible with these direct limits.
Hence without loss of generality D = F is finite.
By definition P1,2 is the subspace of∏

p∈D
T1(p)⊗ T2(p)∨

of elements satisfying the relations induced by D. By definition A1,2(T ) is the
subspace of ∏

p∈D
Hom(T1(p), T2(p))∨

of elements satisfying the relations induced by D. As all Ti(p) are finite dimensional,
this is the same thing.
The compatibility with coproducts is easy to see. �

Remark 2.7. This works for coefficients in Dedekind rings as long as the repre-
sentations take values in projective modules of finite type. The theorem is also of
interest in the case T1 = T2. It then gives an explicit description of Nori’s coalgebra
by generators and relations.

Recall that de Rham cohomology of a smooth algebraic variety is defined as hy-
percohomology of the complex of differential forms. It is possible to extend the
definition naturally not only to singular varieties, but to pairs of varieties. A pos-
sible reference is [Hu1] Section 7.

Definition 2.8. The space of effective formal periods P+ is defined as the Q-vector
space generated by symbols (X,D, ω, γ), where X is an algebraic variety over Q,
D ⊂ X a subvariety, ω ∈ Hd

dR(X,D), γ ∈ Hd(X(C), D(C),Q) with relations

(1) linearity in ω and γ;
(2) for every f : X → X ′ with f(D) ⊂ D′

(X,D, f∗ω′, γ) = (X ′, D′, ω′, f∗γ)

(3) for every triple Z ⊂ Y ⊂ X
(Y, Z, ω, ∂γ) = (X,Y, dω, γ)

with ∂ the connecting morphism for relative cohomology.

P+ is turned into an algebra via

(X,D, ω, γ)(X ′, D′, ω′, γ′) = (X ×X ′, D ×X ′ ∪D′ ×X,ω ∪ ω′, γ ∩ γ′)
The space of formal periods is the localization P of P+ with respect to the period
of (Gm, {1}, dXX , S1) where S1 is the unit circle in C∗.

Remark 2.9. This is modeled after Kontsevich [Ko] Definition 20 but does not
agree with it. He restricts to smooth X and D a divisor with normal crossings.
The above definition uses effective pairs (X,D, d) in the sense of Definition 1.1. By
Corollary 1.7, it is clear that it suffices to take good or even very good pairs. By
Corollary 1.8, it then suffices even to take generators of Kontsevich’s form. However,
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we do not know, if these pairs generate all relations. Also, he only imposes relation
(3) in a special case.
Moreover, Kontsevich considers differential forms of top degree rather than coho-
mology classes. This change is harmless. They are automatically closed. He im-
poses Stokes’s formula as an additional relation, hence this amounts to considering
cohomology classes.

Theorem 2.10. Let D be the diagram of pairs (see Definition 1.1). Let

T1 = H∗ : D → Q-Mod (singular cohomology)

T2 = H∗dR : D → Q-Mod (de Rham cohomology)

then the space of formal periods P (Definition 2.4) agrees with the comparison
algebra A1,2 (Definition 2.8).

P = P1,2 = A1,2 .

Proof. We first restrict to the effective situation. Let P eff
1,2 and Aeff

1,2 be the algebras

for this diagram. Note that Hd(X(C), D(C),Q) is dual to Hd(X(C), D(C),Q).
Hence by definition P+ = P eff

1,2.
Recall that there is a natural comparison isomorphism between singular cohomology
and de Rham cohomology (see e.g. [Hu2] §8) over C. Hence by Theorem 2.6
P eff

1,2 = Aeff
1,2 and P1,2 = A1,2. By localization and the analogue of Proposition B.21,

this implies P = A1,2. �

Corollary 2.11. The algebra of formal periods P remains unchanged when we re-
strict in Definition 2.8 to (X,D, ω, γ) with X affine of dimension d, D of dimension
d− 1 and X rD smooth, ω ∈ Hd

dR(X,D), γ ∈ Hd(X(C), D(C),Q).

Proof. By the same proof, Theorem 2.10 holds also for the diagram D̃ of very good
pairs. By the analogue of Corollary 1.7, the comparison algebra A1,2 is the same
for both diagrams. �

All formal effective periods (X,D, ω, γ) can be evaluated by ”integrating” ω along
γ. More precisely, there is a natural pairing

Hd
dR(X,D)×Hd(X(C), D(C))→ C

This induces a ring homomorphism

ev : P → C
which maps (Gm, {1}, dX/X, S1) to 2πi. Numbers in the image of ev are called
Kontsevich-Zagier periods.

Corollary 2.12. The algebra of Kontsevich-Zagier periods is generated by (2πi)−1

together with periods of (X,D, ω, γ) with X smooth affine, D a divisor with normal
crossings, ω ∈ Ωd(X).

Proof. Note that the period 2πi is of this shape.
By Corollary 1.8 the category MMeff

Nori is generated by motives of good pairs
(X,Y, d) of the form X = W \W∞, Y = W0\(W∞∩W0) with W smooth projective
of dimension d and W0 ∪W∞ a divisor with normal crossings. Hence their periods
together with (2πi)−1 generate the algebra of Kontsevich-Zagier periods.
By Remark 1.9 we can assume that X ′ = W \ W0 is affine. Let Y ′ = W∞ \
(W0 ∩W∞). By Lemma 1.13 the motive Hd

Nori(X,Y ) is dual to Hd
Nori(X

′, Y ′)(d).
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Hence the periods of Hd
Nori(X,Y ) are in the algebra generated by (2πi)−1 and the

periods of Hd
Nori(X

′, Y ′). As X ′ is affine and Y ′ a divisor with normal crossings,
Hd

dR(X ′, Y ′) is generated by Ω(X ′). �

3. Torsor structure on P1,2

We return to the abstract setting. Let D be a graded diagram with commutative
product structure, T1, T2 → Q-Mod two representations which become isomorphic
after some field extension K/Q. The isomorphism is denoted by

ϕ : T1 ⊗K → T2 ⊗K.

Using the universal property of C(T1) we immediately obtain:

Lemma 3.1. T2 extends to a fiber functor

T2 : C(T1)→ Q-Mod.

Proof. Consider the abelian category A whose objects are pairs (V1, V2) of Q-vector
spaces together with an isomorphism v : V1 ⊗K → V2 ⊗K. The data T1, T2 and
ϕ together define a representation

T : D → A .

Via the projection to the first component T is compatible with T1. The universal
property (appendix B.10) implies that we have a commutative diagram of functors:

C(T1)

T

��

fT1

$$IIIIIIIII

D //

T̃1

==zzzzzzzz

T ""EEEEEEEEE Q-Mod

A
p1

99tttttttttt

The composition of C(T1)→ A with the projection p2 to the second component is
the extension T2. �

In particular we have two fiber functors T1, T2 : C(T1)→ Q-Mod.

Lemma 3.2. Assume C(T1) is a neutral Tannakian category. In this way we obtain
two affine group schemes G1 = Aut⊗(T1), G2 = Aut⊗(T2) and an affine scheme
X = X1,2 = Iso⊗(T1, T2). If A1, A2 and A1,2 denote the Hopf algebras defined
above then we have

G1 = Spec(A1), G2 = Spec(A2), and X = Spec(A1,2).

Proof. This follows (almost verbatim) the Tannakian pattern, see [DM]. �

In a similar way we can define an affine scheme X2,1 = Iso⊗(T2, T1). These schemes
are related via natural morphisms

X1,2 ×X2,1 −→ G1, X2,1 ×X1,2 −→ G2,

and

G1 ×X1,2 −→ X1,2, X1,2 ×G2 −→ X1,2.
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Theorem 3.3. There is a natural isomorphism of affine schemes

ι : X1,2 −→ X2,1

given by f 7→ f−1. Furthermore, X1,2 and X2,1 carry the structure of affine torsors
in the sense of appendix A.

Proof. The assertion about ι is clear. Using the natural maps above, one obtains a
commutative diagram

X1,2 ×X1,2 ×X1,2

id×ι×id
��

X1,2 ×X2,1 ×X1,2

���
�
�
�
�
�
�

((QQQQQQQQQQQQQ

vvmmmmmmmmmmmmm

G1 ×X1,2

((QQQQQQQQQQQQQQ
X1,2 ×G2

vvmmmmmmmmmmmmmm

X1,2

with, as the composition of the two vertical maps, an induced morphism in the
category of affine schemes

(·, ·, ·) : X1,2 ×X1,2 ×X1,2 −→ X1,2

fitting into the diagram. It satisfies the axioms of a affine torsor, as defined in
appendix A. The assertion about X2,1 is proved in a similar way. �

Corollary 3.4. The algebra of formal periods P (see Definition 2.8) has a natural
torsor structure under Gmot.

Proof. By Theorems 2.6 and 2.9 we have A1,2 = P = P1,2 The previous theorem
defines a map

A1,2 −→ A1,2 ⊗A1,2 ⊗A1,2,

i.e., a natural map

P −→ P ⊗ P ⊗ P.
Finally note that G1 = Gmot is the motivic fundamental group by definition. �

Remark 3.5. In terms of period matrices this is given by the formula in [Ko]:

Pij 7→
∑
k,`

Pik ⊗ P−1
k` ⊗ P`j .

The torsors in this section are naturally topological torsors in the pro-fppf topology.

Appendix A. Torsors

Kontsevich uses the following definition of torsors in [Ko]. This notion at least goes
back to a paper of R. Baer [Ba] from 1929, see the footnote on page 202 of loc. cit.
where Baer explains how the notion of a torsor comes up in the context of earlier
work of H. Prüfer [P]. In yet another context, ternary operations satisfying these
axioms are called associative Malcev operations, see [J] for a short account.
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Definition A.1 ([Ba] p. 202, [Ko] p. 61, [Fr] Definition 7.2.1). A torsor is a set
X together with a map

(·, ·, ·) : X ×X ×X → X

satisfying:

(1) (x, y, y) = (y, y, x) = x for all x, y ∈ X
(2) ((x, y, z), u, v) = (x, (u, z, y), v) = (x, y, (z, u, v)) for all x, y, z, u, v ∈ X.

Morphisms are defined in the obvious way, i.e., maps X → X ′ of sets commuting
with the torsor structure.

Lemma A.2. Let G be a group. Then (g, h, k) = gh−1k defines a torsor structure
on G.

Proof. This is a direct computation:

(x, y, y) = xy−1y = x = yy−1x = (y, y, x),

((x, y, z), u, v) = (xy−1z, u, v) = xy−1zu−1v = (x, y, zu−1v) = (x, y, (z, u, v)),

(x, (u, z, y), v) = (x, uz−1y, v) = x(uz−1y)−1v) = xy−1zu−1v.

�

Lemma A.3 ([Ba] page 202). Let X be a torsor, e ∈ X an element. Then Ge := X
carries a group structure via

gh := (g, e, h), g−1 := (e, g, e).

Moreover, the torsor structure on X is given by the formula (g, h, k) = gh−1k in
Ge.

Proof. First we show associativity:

(gh)k = (g, e, h)k = ((g, e, h), e, k) = (g, e, (h, e, k)) = g(h, e, k) = g(hk).

e becomes the neutral element:

eg = (e, e, g) = g; ge = (g, e, e) = g.

We also have to show that g−1 is indeed the inverse element:

gg−1 = g(e, g, e) = (g, e, (e, g, e)) = ((g, e, e), g, e) = (g, g, e) = e.

Similarly one shows that g−1g = e. One gets the torsor structure back, since

gh−1k = g(e, h, e)k = (g, e, (e, h, e))k = ((g, e, (e, h, e)), e, k)

= (g, (e, (e, h, e), e), k) = (g, ((e, e, h), e, e), k)

= (g, (h, e, e), k) = (g, h, k).

�

Proposition A.4. Let µl : X2 ×X2 → X2 be given by

µl ((a, b), (c, d)) = ((a, b, c), d).

Then µl is associative and has (x, x) for x ∈ X as left-neutral elements. Let
Gl = X2/ ∼l where (a, b) ∼l (a, b)(x, x) for all x ∈ X is an equivalence relation.
Then µl is well-defined on Gl and turns Gl into a group. Moreover, the torsor
structure map factors via a simply transitive left Gl-operation on X which is defined
by

(a, b)x := (a, b, x).
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Let e ∈ X. Then
ie : Ge → Gl, x 7→ (x, e)

is group isomorphism inverse to (a, b) 7→ (a, b, e).
In a similar way, using µr ((a, b), (c, d)) := (a, (b, c, d)) we obtain a group Gr with
analogous properties acting transitively on the right on X and such that µr factors
through the action X ×Gr → X.

Proof. First we check associativity of µl:

(a, b)[(c, d)(e, f)] = (a, b)((c, d, e), f) = ((a, b, (c, d, e)), f) = (((a, b, c), d, e), f)

[(a, b)(c, d)](e, f) = ((a, b, c), d)(e, f) = (((a, b, c), d, e), f)

(x, x) is a left neutral element for every x ∈ X:

(x, x)(a, b) = ((x, x, a), b) = (a, b)

We also need to check that ∼l is an equivalence relation: ∼l is reflexive, since one
has (a, b) = ((a, b, b), b) = (a, b)(b, b) by the first torsor axiom and the definition of
µ. For symmetry, assume (c, d) = (a, b)(x, x). Then

(a, b) = ((a, b, b), b) = ((a, b, (x, x, b)), b) = (((a, b, x), x, b), b)

= ((a, b, x), x)(b, b) = (a, b)(x, x)(b, b) = (c, d)(b, b)

again by the torsor axioms and the definition of µl. For transitivity observe that

(a, b)(x, x)(y, y) = (a, b)((x, x, y), y) = (a, b)(y, y).

Now we show that µl is well-defined on Gl:

[(a, b)(x, x)][(c, d)(y, y)] = (a, b)[(x, x)(c, d)](y, y) = (a, b)(c, d)(y, y).

The inverse element to (a, b) in Gl is given by (b, a), since

(a, b)(b, a) = ((a, b, b), a) = (a, a).

Define the left Gl-operation on X by (a, b)x := (a, b, x). This is compatible with
µl, since

[(a, b)(c, d)]x = ((a, b, c), d)x = ((a, b, c), d, x),

(a, b)[(c, d)x] = (a, b)(c, d, x) = ((a, b, (c, d, x))

are equal by the second torsor axiom. The left Gl-operation is well-defined with
respect to ∼l:
[(a, b)(x, x)]y = ((a, b, x), x)y = ((a, b, x), x, y) = (a, (x, x, b), y) = (a, b, y) = (a, b)y.

Now we show that ie is a group homomorphism:

ab = (a, e, b) 7→ ((a, e, b), e) = (a, e)(b, e)

The inverse group homomorphism is given by

(a, b)(c, d) = ((a, b, c), d) 7→ ((a, b, c), d, e).

On the other hand in Ge one has:

(a, b, e)(c, d, e) = ((a, b, e), e, (c, d, e)) = (a, b, (e, e, (c, d, e))) = (a, b, (c, d, e)).

This shows that ie is an isomorphism. The fact that Ge is a group implies that
the operation of Gl on X is simply transitive. Indeed the group structure on
Ge = X is the one induced by the operation of Gl. The analogous group Gr
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is constructed using µr and an equivalence relation ∼r with opposite order, i.e.,
(a, b) ∼r (x, x)(a, b) for all x ∈ X. The properties of Gr can be verified in the same
way as for Gl and are left to the reader. �

Definition A.5. A torsor in the category of schemes is a scheme X and a morphism

X ×X ×X → X

which on S-valued points is a torsor for all S.

This simply means that the diagrams of the previous definition commute as mor-
phisms of schemes. The following is the scheme theoretic version of Lemma A.4.

Proposition A.6. Let X be a torsor in the category of affine schemes. Then
there are affine group schemes Gl and Gr operating from the left and right on X
respectively such that X is a Gl- and Gr-torsor.

Proof. We use Thm. 1.4 from [SGA3, exposé VII] to obtain affine scheme quotients
by equivalence relations. In the case of Gl we have to construct the quotient
Gl = X2/ ∼l. The case of Gr is similar. Then it follows also that the action
homomorphism Gl ×X → X will be algebraic as the morphism µl also descends.
In order to apply [SGA3] we need to construct two morphisms

p0, p1 : R→ X2

from an affine scheme R to X2, such that

R→ X2 ×X2

is a closed embedding, for all T the image R(T )→ (X2×X2)(T ) is an equivalence
relation, i.e., reflexive, symmetric and transitive and such that the first projection
R→ X2 is flat. We choose

R := X2 ×X
and set

p0(a, b, x) := (a, b), p1(a, b, x) := (a, b)(x, x) = ((a, b, x), x).

Then the first projection R→ X2 is flat. The image of R is an equivalence relation
by Proposition A.4. It remains to show that (p0, p1) : R → X2 × X2 is a closed
embedding. But this follows as (p0, p1)(a, b, x) = ((a, b), ((a, b, x), x)) is a graph
type morphism. �

Appendix B. Localization and multiplication in diagrams

A sketch of Nori’s construction of motives is contained in Levine’s survey [Le] §5.3.
We use this as a starting point and develop the theory further to the extent needed
for the proof of the main theorem 2.10 on periods. Full proofs for the basics of
diagram categories can be found in von Wangenheim’s diploma thesis [vW].

B.1. Diagrams and diagram categories. Let R be a noetherian ring.

Definition B.1. A small diagram D is a directed graph on a set of vertices such
that for every vertex there is a distinguished edge id : v → v. A diagram is called
finite if it has only finitely many vertices. A finite subdiagram of a small diagram D
is a diagram containing a finite subset of vertices of D and all edges (in D) between
them.



ON THE RELATION BETWEEN NORI MOTIVES AND KONTSEVICH PERIODS 17

Remark B.2. We added the notion of identity edges to Nori’s definition given in
[Le]. It is useful when considering multiplicative structures.

Example B.3. Let C be a small category. Then we can associate a diagram D(C)
with vertices the set of objects in C and edges given by morphisms.

Definition B.4 (Nori). A representation T of a diagram D in a category C is a
map T of directed graphs from D to D(C) such that id is mapped to id.

We are particularly interested in categories of modules.

Definition B.5. ByR-Mod we denote the category of finitely generatedR-modules.
By R-Proj we denote the subcategory of projective R-modules of finite type.

Nori constructs a certain universal abelian category C(T ) attached to a diagram
and a representation T . For later use we recall Nori’s construction.

Definition B.6 (Nori). Let T be a representation of D in R-Mod. For each finite
subdiagram F ⊂ D let End(T |F ) be the ring of endomorphisms of the functor T |F ,
more precisely, as

End(T |F ) :=

(ep)p∈F ∈
∏
p∈F

EndR(T (p)) | eq ◦ T (m) = T (m) ◦ ep ∀p, q ∈ F ∀m ∈ Mor(p, q)

 .

Let

C(T |F ) = End(T |F )−Mod

be the category of finitely generated R-modules equipped with anR-linear operation
of algebra End(T |F ). Finally let

C(T ) = colimFC(T |F ) .

In the cases of most interest, there is more direct description.

Proposition B.7. Suppose R is a Dedekind domain or a field and T takes values
in R-Proj. Let A(F, T ) := HomR(End(T |F ), R). We set

A(T ) := colimFA(F, T ).

Then C(T ) is the category of finitely generated R-modules with an R-linear A(T )-
comodule structure.

Proof. The assumptions on R and T ensure that End(T |F , R) is a locally free R-
module. This allows to pass to the comodule description for finite diagrams, then
pass to the limit.
For full details see [vW] Satz 5.23. (He uses principal ideal domains. The arguments
work without changes for Dedekind domains.) �

The main step in Nori’s construction of an abelian category of motives is the fol-
lowing result:

Proposition B.8 (Nori’s diagram category). Let R be a noetherian ring. Let D
be a diagram and T : D → R-Mod be a representation. Then there is a category
C(T ) together with a faithful exact R-linear functor fT : C(T ) → R-Mod and a

representation T̃ : D → C(T ) such that fT ◦ T̃ = T and T̃ is universal with respect
to this property, i.e., for any other representation F : D → A into some R-linear
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abelian category A with a faithful exact functor A → R-Mod there is a unique
functor (up to unique isomorphism) C(T )→ A such that

C(T )

∃!

���
�
�
�
�
�
�

fT

$$IIIIIIIII

D
T

//

T̃
=={{{{{{{{

F

""EEEEEEEE R-Mod

A

::tttttttttt

commutes up to unique isomorphism.
C(T ) is functorial in D and T in the obvious way.

We are going to view fT as an extension of T from D to C(T ) and write simply T
instead of fT .

Proof. [Le, N]. A detailed proof is given in [Br] or in [vW] Theorem 2.4. The
condition on R being noetherian is needed to ensure that End(T |F ) is a finitely
generated R-module. �

The following properties hopefully allow a better understanding of the nature of
C(T ).

Proposition B.9. (1) As an abelian category C(T ) is generated by the T̃ (v)
where v runs through the set of vertices of D, i.e., it agrees with its smallest
full subcategory containing all such T̃ (v).

(2) Each object of C(T ) is a subquotient of a finite direct sum of objects of the

form T̃ (v).

(3) If α : v → v′ is an edge in D such that T (α) is an isomorphism, then T̃ (α)
is also an isomorphism.

Proof. Let C′ ⊂ C(T ) be the subcategory generated by all T̃ (v). By definition the

representation T̃ factors through C′. By the universal property of C(T ) we obtain
a functor C(T )→ C′, hence an equivalence of subcategories of R-Mod.
The second statement follows from the first criterion since the full subcategory in
C(T ) of subquotients of finite direct sums is abelian hence agrees with C(T ).
The assertion on morphisms follows since the functor fT : C(T )→ R-Mod is faithful
and exact between abelian categories. �

Theorem B.10. Let R be a field and A be a neutral R-linear Tannakian category
with fiber functor T : D(A) → R-Mod. Then A(T ) is equal to the Hopf algebra of
the Tannakian dual.

Proof. By construction, see [DM] Theorem 2.11 and its proof. �

We need to understand the behavior under base-change. Let S be a noetherian
R-algebra. Then T ⊗ S is an S-representation of D.

Lemma B.11 (Base change). Let S be a flat noetherian R-algebra and T : D →
R-Proj a representation. Let F ⊂ D be a finite subdiagram. Then:

(1)

EndS(T ⊗ S|F ) = EndR(T |F )⊗ S
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(2) If R is a field or a Dedekind domain and T takes values in R-Proj, then

A(F, T ⊗ S) = A(F, T )⊗ S , A(T ⊗ S) = A(T )⊗ S .

Proof. We write TS = T ⊗ S.
End(T |F ) is defined as a limit, i.e., a kernel

0→ End(T |F )→
∏

p∈O(D)

EndR(T (p))
φ−→

∏
m∈Mor(p,q)

HomR(T (p), T (q))

with φ(p)(m) = eq ◦T (m)−T (m) ◦ ep. As S is flat over R, this remains exact after
⊗S. As T (p) is projective, we have

EndR(T (p))⊗ S = EndS(T ⊗ S(p))

Hence we get

0→ End(T |F )⊗ S →
∏

p∈O(D)

EndS(TS(p))
φ−→

∏
m∈Mor(p,q)

HomS(TS(p), TS(q))

This is the defining sequence for End(TS |F ). This finishes the proof of the first
statement.
Recall that A(F, T ) = HomR(End(T |F ), R). Both R and EndR(T |F ) are projective
because R is now a field or a Dedekind domain. Hence

HomR(EndR(T |F ), R)⊗S ∼= HomS(EndR(T |F )⊗S, S) ∼= HomS(EndS((TS)|F ), S).

This is nothing but A(F, TS).
Tensor products commute with direct limit, hence the statement for A(T ) follows
immediately. �

B.2. Multiplicative structure. Construction and properties of the tensor struc-
ture are not worked out in detail in [N], [N1] or [Le]. In particular, we were puzzled
by the question how the graded commutativity of the Künneth formula is dealt with
in the construction. The following is an attempt to clarify this on the formal level.
The first version of this section contained a serious mistake. We are particularly
thankful to Gallauer for pointing out both the mistake and the correction.
Recall that R-Proj is the category of projective R-modules of finite type for a fixed
noetherian ring R.

Definition B.12. Let D1, D2 be small diagrams. Then D1 × D2 is the small
diagram with vertices of the form (f, g) for f a vertex of D1, g a vertex of D2, and
with edges of the form α× id and id× β for α an edge of D1 and β an edge of D2

and with id = id× id.

Remark B.13. Levine in [Le] p.466 seems to define D1×D2 by taking the product
of the graphs in the ordinary sense. He claims (in the notation of loc. cit.) a map
of diagrams

H∗Sch′ ×H∗Sch′ → H∗Sch′.

We do not understand it on general pairs of edges. If α, β are edges corresponding
to boundary maps and hence lower the degree by 1, then we would expect α×β to
lower the degree by 2. However, there are no such edges in H∗Sch′.
Our restricted version of products of diagrams is enough to get the implication.
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Definition B.14. A graded diagram is a small diagram D together with a map

| · | : {vertices of D } → Z/2Z .

For an edge γ : e → e′ we put |γ| = |e| − |e′|. If D is a graded diagram, D ×D is
equipped with the grading |(f, g)| = |f |+ |g|.
A commutative product structure on a graded D is a map of graded diagrams

× : D ×D → D

together with choices of edges

αf,g : f × g → g × f
βf,g,h : f × (g × h)→ (f × g)× h

for all vertices f, g, h of D.
A graded representation T of a graded diagram with commutative product structure
is a representation of T in R-Proj together with a choice of isomorphism

τ(f,g) : T (f × g)→ T (f)⊗ T (g)

such that:

(1) The composition

T (f)⊗ T (g)
τ−1
(f,g)−−−→ T (f × g)

αf,g−−−→ T (g × f)
τ(g,f)−−−→ T (g)⊗ T (f)

is (−1)|f ||g| times the natural map of R-modules.
(2) If γ : f → f ′ is an edge, then the diagram

T (f × g)
T (γ×id)−−−−−→ T (f ′ × g)

τ

y yτ
T (f)⊗ T (g)

T (γ)⊗id−−−−−→ T (f ′)⊗ T (g)

commutes.
(3) If γ : f → f ′ is an edge, then the diagram

T (g × f)
T (γ×id)−−−−−→ T (g × f ′)

τ

y yτ
T (g)⊗ T (f)

(−1)|γ|id⊗T (γ)−−−−−−−−−−→ T (g)⊗ T (f ′)

commutes.
(4) The diagram

T ((f × g)× h)
T (βf,g,h)−−−−−−→ T (f × (g × h))y y

T (f)⊗ T (g × h) T (f × g)⊗ T (h)y y
T (f)⊗ (T (g)⊗ T (h)) −−−−→ (T (f)⊗ T (g))⊗ T (h)

commutes under the standard identification

T (f)⊗ (T (g)⊗ T (h)) ∼= (T (f)⊗ T (g))⊗ T (h).
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A unit for a graded diagram with commutative product structure D is a vertex 1
of degree 0 together with a choice of edges

uf : f → 1× f

for all vertices of f . A graded representation is unital if T (uf ) is an isomorphism
for all vertices f .

Remark B.15. In particular, T (αf,g) and T (βf,g,h) are isomorphisms. If f = g

then T (αf,f ) = (−1)|f |. If 1 is a unit, then T (1) satisfies T (1) ∼= T (1) ⊗ T (1).
Hence it is a free R-module of rank 1.

Proposition B.16. Let D be a graded diagram with commutative product structure
with unit and T a unital graded representation of D in R-Proj.

(1) Then C(T ) is a commutative and associative tensor category with unit and
T : C(T )→ R-Mod is a tensor functor.

(2) If in addition R is a field or a Dedekind domain, the coalgebra A(T ) carries
a natural structure of commutative bialgebra (with unit and counit).

The unit object is going to be denoted 1.

Proof. We consider finite diagrams F and F ′ such that

{f × g|f, g ∈ F} ⊂ F ′ .

We are going to define natural maps

µ∗F : End(T |F ′)→ End(T |F )⊗ End(T |F ).

Assume this for a moment. Let X,Y ∈ C(T ). We want to define X ⊗ Y in
C(T ) = colimFC(T |F ). Let F such that X,Y ∈ C(T |F ). This means that X and
Y are finitely generated R-modules with an action of End(T |F ). We equip the
R-module X ⊗ Y with a structure of End(T |′F )-module. It is given by

End(T |′F )⊗X ⊗ Y → End(T |F )⊗ End(T |F )⊗X ⊗ Y → X ⊗ Y

where we have used the comultiplication map µ∗F and the module structures of X
and Y . This will be independent of the choice of F and F ′. Properties of ⊗ on
C(T ) follow from properties of µ∗F .
If R is a field or a Dedekind domain, let

µF : A(F, T )⊗A(F, T )→ A(F ′, T )

be dual to µ∗F . Passing to the direct limit defines a multiplication µ on A(T ).
We now turn to the construction of µ∗F . Let a ∈ End(T |F ′), i.e., a compatible
system of endomorphisms af ∈ End(T (f)) for f ∈ F ′. We describe its image
µ∗F (a). Let (f, g) ∈ F × F . The isomorphism

τ : T (f × g)→ T (f)⊗ T (g)

induces an isomorphism

End(T (f × g)) ∼= End(T (f))⊗ End(T (g)).

We define the (f, g)-component of µ∗(a) by the image of af×g under this isomor-
phism.



22 ANNETTE HUBER AND STEFAN MÜLLER-STACH

In order to show that this is a well-defined element of End(T |F ) ⊗ End(T |F ), we
need to check that diagrams of the form

T (f)⊗ T (g)
µ∗(a)(f,g)//

T (α)⊗T (β)

��

T (f)⊗ T (g)

T (α)⊗T (β)

��
T (f ′)⊗ T (g′)

µ∗(a)(f′,g′)

// T (f ′)⊗ T (g′)

commute for all edges α : f → f ′, β : g → g′ in F . We factor

T (α)⊗ T (β) = (T (id)⊗ T (β)) ◦ (T (α) ◦ T (id))

and check the factors separately.
Consider the diagram

T (f × g)
af×g

//

T (id×β)

��

τ

''OOOOOOOOOOO
T (f × g)

τ

wwooooooooooo

T (id×β)

��

T (f)⊗ T (g)
µ∗(a)(f,g)//

T (id)⊗T (β)

��

T (f)⊗ T (g)

T (id)⊗T (β)

��
T (f)⊗ T (g′)

µ∗(a)(f,g′)

// T (f)⊗ T (g′)

T (f × g′)
af×g′ //

τ

77ooooooooooo
T (f × g′)

τ

ggOOOOOOOOOOO

The outer square commutes because a is a diagram endomorphism. Top and bottom
commute by definition of µ∗(a). Left and right commute by property (3) up to
the same sign (−1)|f ||β|. Hence the middle square commutes without signs. The
analogous diagram for α× id commutes on the nose. Hence µ∗(a) is well-defined.
We now want to compare the (f, g)-component to the (g, f)-component. Recall
that there is a distinguished edge αf,g : f × g → g × f . Consider the diagram

T (f)⊗ T (g)
µ∗(a)(f,g)//

��

T (f)⊗ T (g)

��

T (f × g)

τ

77ppppppppppp

T (αf,g)

��

af×g // T (f × g)

τ

ggNNNNNNNNNNN

T (αf,g)

��
T (g × f)

τ
''NNNNNNNNNNN

af×g // T (g × f)

τ
wwppppppppppp

T (g)⊗ T (f)
µ∗(a)(g,f)

// T (g)⊗ T (f)

By the construction of µ∗(a)(f,g) (resp. µ∗(a)(g,f)) the upper (resp. lower) tilted
square commutes. By naturality the middle rectangle with αf,g commutes. By
property (1) of a representation of a graded diagram with commutative product,
the left and right faces commute where the vertical maps are (−1)|f ||g| times the
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natural commutativity of tensor products of T -modules. Hence the inner square
also commutes without the sign factors. This is cocommutativity of µ∗.
The associativity assumption (3) for representations of diagrams with product
structure implies the coassociativity of µ∗.
The compatibility of multiplication and comultiplication is built into the definition.
In order to define a unit object in C(T ) it suffices to define a counit for End(T |F ).
Assume 1 ∈ F . The counit

u∗ : End(T |F ) ⊂
∏
f∈F

End(T (f))→ End(T (1)) = R

is the natural projection. The assumption on unitality of T allows to check that
the required diagrams commute. �

B.3. Localization. The purpose of this section is to give a diagram version of the
localization of a tensor category with respect to one object, i.e., a distinguished
object X becomes invertible with respect to tensor product. This is the standard
construction used to pass e.g. from effective Chow motives to all motives. Again
we thank Gallauer for pointing out a mistake in the original version as well as the
correction.
We restrict to the case when R is a field or a Dedekind domain and all representa-
tions of diagrams take values in R-Proj.

Definition B.17 (Localization of diagrams). Let Deff be a graded diagram with
a commutative product structure with unit 1. Let f0 ∈ Deff be a vertex of even
degree. The localized diagram D has vertices and edges as follows:

(1) for every f a vertex of Deff and n ∈ Z a vertex denoted f(n);
(2) for every edge α : f → g in Deff and every n ∈ Z, an edge denoted

α(n) : f(n)→ g(n) in D;
(3) for every vertex f in Deff and every n ∈ Z an edge denoted (f × f0)(n)→

f(n+ 1).

Put |f(n)| = |f |.
We equip D with a commutative product structure

× : D ×D → D f(n)× g(m) 7→ f × g(n+m)

together with

αf(n),g(m) = αf,g(n+m)

βf(n),g(m),h(r) = βf,g,h(n+m+ r)

Let 1(0) together with

uf(n) = uf (n)

be the unit.

Note that there is a natural inclusion of multiplicative diagrams Deff → D which
maps a vertex f to f(0).

Remark B.18. The restriction to f0 of even degree is not serious. If f0 is odd, we
consider localization with respect to f0 × f0 instead.

Assumption B.19. Let T be a multiplicative unital representation of Deff with
values in R-Proj such that T (f0) is locally free of rank 1 as R-module.
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Lemma B.20. T extends uniquely to a graded representation of D such that
T (f(n)) = T (f) ⊗ T (f0)⊗n for all vertices and T (α(n) = T (α) ⊗ T (id)⊗n for
all edges. It is multiplicative and unital with the choice

T (f(n)× g(m))
τf(n),g(m)−−−−−−→ T (f(n))⊗ T (g(m))

τf,g(n+m)

y y=

T (f)⊗ T (g)⊗ T (f0)⊗n+m
∼=−−−−→ T (f)⊗ T (f0)⊗n ⊗ T (g)⊗ T (f0)⊗m

where the last line is the natural isomorphism.

Proof. Define T on the vertices and edges of D via the formula. The conditions of
τf(n),g(m) are satisfied because f0 is even. �

Proposition B.21. Let Deff , D and T be as above. Let A and Aeff be the corre-
sponding bialgebras. Then:

(1) C(D,T ) is the localization of C(Deff , T ) with respect to the object T̃ (f0).
(2) Let χ ∈ End(T (f0))∨ = A({f0}, T ) be the dual of id ∈ End(T (f0)). We

view it in Aeff . Then A = Aeff
χ (localization of algebras).

Proof. Let D≥n ⊂ D be the subdiagram with vertices of the form f(n′) with n′ ≥ n.
Clearly, D = colimnD

≥n and hence

C(D,T ) ∼= colimnC(D≥n, T ) .

Consider the morphism of diagrams

D≥n → D≥n+1, f(m) 7→ f(m+ 1).

It is clearly an isomorphism. We equip C(D≥n+1) with a new fibre functor fT ⊗
T (f0)∨. It is faithful exact. The map f(m) 7→ T̃ (f(m + 1)) is a representation of
D≥n+1 in the abelian category C(D≥n+1, T ) with fibre functor fT ⊗ T (f0)∨. By
the universal property this induces a functor

C(D≥n, T )→ C(D≥n+1, T ) .

The converse functor is constructed in the same way. Hence

C(D≥n, T ) ∼= C(D≥n, T ), A≥n ∼= A≥n+1.

The map of graded diagrams with commutative product and unit

Deff → D≥0

induces an equivalence on tensor categories. Indeed, we represent D≥0 in C(Deff , T )

by mapping f(m) to T̃ (f) ⊗ T̃ (f0)m. By the universal property, this implies that
there is a faithful exact functor

C(D≥0, T )→ C(Deff , T )

inverse to the obvious inclusion. Hence we also have Aeff ∼= A≥0 as unital bialgebras.
On the level of coalgebras, this implies

A = colimA≥n = colimAeff

with A≥n = A(D≥n, T ) isomorphic to Aeff as coalgebras. Aeff also has a mul-
tiplication, but the A≥n do not. However, they carry an Aeff -module structure
corresponding to the map of graded diagrams

Deff ×D≥n → D≥n.
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We want to describe the transition maps of the direct limit. From the point of view
of Deff → Deff it is given by f 7→ f × f0.
In order to describe Aeff → Aeff it suffices to describe End(T |F ) → End(T |F ′)
where F, F ′ are finite subdiagrams of Deff such that f × f0 ∈ O(F ′) for all vertices
f ∈ O(F ). It is induced by

End(T (f))→ End(T (f × f0))
τ−→ End(T (f))⊗ End(T (f0)) a 7→ a⊗ id.

On the level of coalgebras this corresponds to the map

Aeff → Aeff , x 7→ χx.

Note finally, that the direct limit colimAeff with transition maps given by multipli-
cation by χ agrees with the localization Aeff

χ . �

Appendix C. Nori’s Rigidity Criterion

Implicit in Nori’s construction of motives is a rigidity criterion, which we are now
going to formulate and prove explicitly.
Let R be a Dedekind domain or a field and C an R-linear tensor category. Recall
that R-Mod is the category of finitely generated R-modules and R-Proj the category
of finitely generated projective R-modules.
We assume that the tensor product is associative, commutative and unital. Let 1
be the unit object. Let T : C → R-Mod be a faithful tensor functor with values in
R-Mod. In particular, T (1) = R.
We introduce an ad-hoc notion.

Definition C.1. Let V be an object of C. We say that V admits a perfect duality
if there is morphism

q : V ⊗ V → 1

or

1→ V ⊗ V
such that T (V ) is projective and T (q) (respectively its dual) is a non-degenerate
bilinear form.

Definition C.2. Let V be an object of C. By 〈V 〉⊗ we denote the smallest full
abelian unital tensor subcategory of C containing V .

We start with the simplest case of the criterion.

Lemma C.3. Let V be an object such that C = 〈V 〉⊗ and such that V admits a
perfect duality. Then C is rigid.

Proof. By standard Tannakian formalism, C is the category of comodules for a
bialgebra A, which is commutative and of finite type as an R-algebra. Indeed, the
construction of A as a coalgebra was explained in Proposition B.7. We want to show
that A is a Hopfalgebra, or equivalently, that the algebraic monoid M = SpecA is
an algebraic group.
By Lemma C.6 it suffices to show that there is a closed immersion M → G of
monoids into an algebraic group G. We are going to construct this group or rather
its ring of regular functions. We have

A = limAn
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with An the Tannakian dual of Cn = 〈1, V, V ⊗2, . . . , V ⊗n〉, the smallest full abelian
subcategory containing 1, V, . . . , V ⊗n. By construction there is a surjective map

n⊕
i=0

EndR((T (V )⊗i)∨ → An

or dually an injective map

A∨n →
n⊕
i=0

EndR(T (V )⊗i)

where A∨n consists of those endomorphisms compatible with all morphisms in Cn.
In the limit there is a surjection of bialgebras

∞⊕
i=0

EndR((T (V )⊗i)∨)→ A

and the kernel is generated by the relation defined by compatibility with morphisms
in C. One such relation is the commutativity constraint, hence the map factors via
the symmetric algebra

S∗(End(T (V )∨)→ A .

Note that S∗(End(T (V )∨) is canonically the ring of regular functions on the alge-
braic monoid End(T (V )). Another morphism in C is the pairing q : V ⊗ V → 1.
We want to work out the explicit equation induced by q.
We choose a basis e1, . . . , er of T (V ). Let

ai,j = T (q)(ei, ej) ∈ R
By assumption the matrix is invertible. Let Xst be the matrix coefficients on
End(T (V )) corresponding to the basis ei. Compatibility with q gives for every pair
(i, j) the equation

aij = q(ei, ej)

= q((Xrs)ei, (Xr′s′)ej)

= q

(∑
r

Xrier,
∑
r′

Xr′jer′

)
=
∑
r,r′

XriXr′jq(er, er′)

=
∑
r,r′

XriXr′jarr′

Note that the latter is the (i, j)-term in the product of matrices

(Xir)
t(arr′)(Xr′j) .

Let (bij) = (aij)
−1. With

(Yij) = (bij)(Xi′r)
t(arr′)

we have the coordinates of the inverse matrix. In other words, our set of equations
defines the isometry group G(q) ⊂ End(T (V )). We now have expressed A as
quotient of the ring of regular functions of G(q).
The argument works in the same way, if we are given

q : 1→ V ⊗ V
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instead. �

Proposition C.4 (Nori). Let C and T : C → R-Mod be as defined at the beginning
of the section. Let {Vi|i ∈ I} be a set of objects of C with the properties:

(1) It generates C as an abelian tensor category, i.e., the smallest full abelian
tensor subcategory of C containing all Vi is equal to C.

(2) For every Vi there is an object Wi and a morphism

qi : Vi ⊗Wi → 1

such that T (qi) : T (Vi) ⊗ T (Wi) → T (1) = R is a perfect pairing of free
R-modules.

Then C is rigid, i.e., for every object V there is a dual object V ∨ such that

Hom(V ⊗A,B) = Hom(A, V ∨ ⊗B) , Hom(V ∨ ⊗A,B) = Hom(A, V ⊗B) .

This means that the Tannakian dual of C is not only a monoid but a group.

Remark C.5. The Proposition also holds with the dual assumption, existence of
morphisms

qi : 1→ Vi ⊗Wi

such that T (qi)
∨ : T (V )∨ ⊗ T (Wi)

∨ → R is a perfect pairing.

Proof. Consider V ′i = Vi ⊕Wi. The pairing qi extends to a symmetric map q′i on
V ′i ⊗ V ′i such that T (q′i) is non-degenerate. We now replace Vi by V ′i . Without loss
of generality, we can assume Vi = Wi.
For any finite subset J ⊂ I let VJ =

⊕
j∈J Vj . Let qJ be the orthogonal sum of the

qj for j ∈ J . It is again a symmetric perfect pairing.
For every object V of C we write 〈V 〉⊗ for the smallest full abelian tensor subcate-
gory of C containing V . By assumption we have

C =
⋃
J

〈VJ〉⊗

We apply the standard Tannakian machinery. It attaches to every 〈VJ〉⊗ an R-
bialgebra AJ such that 〈VJ〉⊗ is equivalent to the category of AJ -comodules. If we
put

A = limAJ

then C will be equivalent to the category of A-comodules. It suffices to show that
AJ is a Hopf-algebra. This is the case by Lemma C.3. �

Finally, the missing lemma on monoids.

Lemma C.6. Let R be noetherian ring, G be an algebraic group scheme of finite
type over R and M ⊂ G a closed immersion of a submonoid with 1 ∈M(R). Then
M is an algebraic group scheme over R.

Proof. This seems to be well-known. It is appears as an exercise in [Re] 3.5.1 2.
We give the argument:
Let S be any finitely generated R-algebra. We have to show that the functor
S 7→ M(S) is a group. We take base change of the situation to S. Hence without
loss of generality, it suffices to consider R = S. If g ∈ G(R), we denote the
isomorphism G→ G induced by left multiplication with g also by g : G→ G. Take
any g ∈ G(R) such that gM ⊂M (for example g ∈M(R)). Then one has

M ⊇ gM ⊇ g2M ⊇ · · ·
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As G is Noetherian, this sequence stabilizes, say at s ∈ N:

gsM = gs+1M

as closed subschemes of G. Since every gs is an isomorphism, we obtain that

M = g−sgsM = g−sgs+1M = gM

as closed subschemes of G. So for every g ∈M(R) we showed that gM = M . Since
1 ∈M(R), this implies that M(R) is a subgroup. �

Appendix D. Yoga of good pairs

We recall the definition of good pairs from the main text.
Let R be noetherian ring, k a subfield of C. A variety is a separated reduced scheme
of finite type over k. We denote by X(C) the set of complex points equipped with
the analytic topology.
We denote by Z[Var] the additive category whose objects are varieties over k and
whose morphisms on connected varieties are formal Z-linear combinations of mor-
phisms between varieties. We denote Z[Aff] the full subcategory whose objects are
affine varieties.
By base change to C we can consider the corresponding analytic space and its
singular cohomology.

Definition D.1. (1) A triple (X,Y, i) of a variety X and a closed subvariety
Y and an integer i is called good pair if singular cohomology satisfies

Hj(X(C), Y (C);R) = 0, unless j = i.

and Hi(X(C), Y (C);R) is free.
(2) The diagram Deff of good pairs has as vertices good pairs. There are

two types of edges between effective good pairs: first the edges induced
by morphisms f∗ : (X ′, Y ′, i) → (X,Y, i) of triples for f : X → X ′ and
f(Y ) ⊂ Y ′. The second type of edges ∂ : (Y,Z, i)→ (X,Y, i+ 1) arises for
every chain X ⊃ Y ⊃ Z of closed k-subvarieties of X (coboundary).

(3) A good pair is called very good if X is affine and X r Y smooth and either
X of dimension i and Y of dimension i−1 or X = Y of dimension less than
i.

(4) The diagram D̃eff of very good pairs has as vertices the very good pairs
and edges as in Deff .

Lemma D.2 (Basic Lemma of Nori). Let X be an affine scheme of finite type over
k ⊂ C of dimension n and Z ⊂ X be a closed subscheme of dimension ≤ n − 1.
Then there is a closed subscheme Y ⊃ Z such that (X,Y, n) is a good pair.

• dim(Y ) ≤ n− 1.
• Hi(X(C), Y (C);R) = 0 for i 6= n.
• Hn(X(C), Y (C);R) is a free R-module.

Moreover, X r Y can be chosen smooth.

A similar result holds in arbitrary characteristic by work of Beilinson [B, Lemma
3.3] and Kari Vilonen apparently used similar methods in his Master thesis [V].
The aim of this appendix is to establish the following result.
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Proposition D.3. Let A be an R-linear abelian category with a faithful forgetful
functor to R-Mod. Let T : D̃eff → A be a representation. Then there is a natural
contravariant triangulated functor

R : Cb(Z[Var])→ Db(A)

on the category of bounded homological complexes in Z[Var] such that for every good
pair (X,Y, i) we have

Hj(R(Cone(Y → X)) =

{
0 j 6= i

T (X,Y, i) j = i

Moreover, the image of R(X) in Db(R-Mod) computes singular cohomology of
X(C).

We are mostly interested in two explicit examples of complexes.

Definition D.4. Consider the situation of Proposition D.3. Let Y ⊂ X be a closed
subvariety with open complement U , i ∈ Z. Then we put

R(X,Y ) = R(Cone(Y → X)), RY (X) = R(Cone(U → X)) ∈ Db(A)

T (X,Y, i) = Hi(R(X,Y )), TY (X, i) = Hi(RY (X)) ∈ A
T (X,Y, i) is called relative cohomology. TY (X, i) is called cohomology with support.

The strategy of the proof combines a variation of constructions in [Hu2] and a key
idea of Nori.
The first step is to replace arbitrary complexes by affine ones. The idea for the
following construction is from the étale case, see [F] Definition 4.2.

Definition D.5. Let X a variety. A rigidified affine cover is a finite open affine
covering {Ui}i∈I together with a choice of an index ix for every closed point x ∈ X
such that x ∈ Uix . We also assume that in the covering every index i ∈ I occurs as
ix for some x ∈ X.
Let f : X → Y be a morphism of varieties, {Ui}i∈I a rigidified open cover of X
and {Vj}j∈J a rigidified open cover of Y . A morphism of rigidified covers (over f)

φ : {Ui}i∈I → {Vj}j∈J
is a map of sets φ : I → J such that f(Ui) ⊂ Vφ(i) and for all x ∈ X we have
φ(ix) = jf(x).

Remark D.6. Under these conditions the rigidification makes φ unique if it exists.

Lemma D.7. The projective system of rigidified affine covers is filtered and strictly
functorial, i.e., if f : X → Y is a morphism of varieties, pull-back defines a map
of projective systems.

Proof. Any two covers have their intersection as common refinement. The rigidifi-
cation extends in the obvious way. Preimages of rigidified covers are rigidified open
covers. �

Definition D.8. Let F =
∑
aifi : X → Y be a morphism in Z[Var]. The support

of F is the set of fi with ai 6= 0.
Let X∗ be a homological complex of varieties, i.e., an object in Cb(Z[Var]). An
affine cover of X∗ is a complex of rigidified affine covers, i.e., for every Xn the
choice of a rigidified open cover ŨXn and for every g : Xn → Xn−1 in the support
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of the differential Xn → Xn−1 in the complex X∗ a morphism of rigidified covers

g̃ : ŨXn → ŨXn−1 over g.

Let F∗ : X∗ → Y∗ be a morphism in Cb(Z[Var]) and ŨX∗ , ŨY∗ affine covers of X∗
and Y∗. A morphism of affine covers over F∗ is a morphism of ridigied affine covers
fn : ŨXn → ŨYn over every morphism in the support of Fn.

Lemma D.9. Let X∗ ∈ Cb(Z[Var]). Then the projective system of rigidified affine
covers of X∗ is non-empty, filtered and functorial, i.e. if f∗ : X∗ → Y∗ is a
morphism of complexes and ŨX∗ an affine cover of X∗, then there is affine cover

ŨY∗ and a morphism or complexes of rigidified affine covers. Any two choices are
compatible in the projective system of covers.

Proof. Let n be minimal with Xn 6= ∅. Choose a rigidified cover of Xn. The support
of Xn+1 → Xn has only finitely many elements. Choose a rigidified cover of Xn+1

compatible with all of them. Continue inductively.
Similar constructions show the rest of the assertion. �

Definition D.10. Let X be a variety and ŨX = {Ui}i∈I a rigidified affine cover
of X. We put

C?(ŨX) ∈ C−(Z[Aff]),

the Čech complex associated to the cover, i.e.,

Cn(ŨX) =
∐
i∈In

⋂
i∈i
Ui,

where In is the set of tuples (i0, . . . , in). The boundary maps are the ones obtained
by taking the alternating sum of the boundary maps of the simplicial scheme.
If X∗ ∈ Cb(Z[Var]) is a complex, ŨX∗ a rigidified affine cover, let

C?(ŨX∗) ∈ C−,b(Z[Aff])

be the double complex Ci(ŨXj ).

Note that all components of C?(ŨX∗) are affine. The projective system of these
complexes is filtered and functorial.
In the second step, we replace every affine X by a complex of very good pairs. This
follows the key idea of Nori as follows: Using induction one gets from the Basic
Lemma D.2:

Corollary D.11. Every affine variety X has a filtration

∅ = F−1X ⊂ F0X ⊂ · · · ⊂ Fn−1X ⊂ FnX = X,

such that (FjX,Fj−1X, j) is very good.

Filtrations of the above type are called very good filtrations.

Proof. Let dimX = n. Put FnX = X. Choose a subvariety of dimension n − 1
which contains all singular points of X. By the Basic Lemma there is a subvariety
Fn−1X of dimension n − 1 such that (FnX,Fn−1X,n) is good. By construction
Fn−1X r Fn−1X is smooth and hence the pair is very good. We continue by
induction. �

Corollary D.12. Let X be an affine variety. The inductive system of all very good
filtrations of X is filtered and functorial.
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Proof. We follow Nori, [N]. Let F∗X and F ′∗X be two very good filtrations of X.
Fn−1X ∪ F ′n−1X has dimension n − 1. By the Basic Lemma there is subvariety
Gn−1X ⊂ X of dimension n − 1 such that (X,Gn−1X,n) is a good pair. It is
automatically very good. We continue by induction.
Consider a morphism f : X → X ′. Let F∗X be a very good filtration. Then f(FiX)
has dimension at most i. As in the proof of Corollary D.11, we construct a very
good filtration F∗X

′ with additional property f(FiX) ⊂ FiX ′. �

Definition D.13. Let X be a variety, {Ui}i∈I a rigidified affine cover of X. A

very good filtration on ŨX is the choice of very good filtrations for⋂
i∈J

Ui

for all J ⊂ I compatible with all inclusions between these.
Let f : X → Y be a morphism of varieties, φ : {Ui}i∈I → {Vj}j∈J a morphism
of rigidified affine covers above f . Fix very good filtrations on both covers. φ is
called filtered, if for all I ′ ⊂ I the induced map⋂

i∈J
Ui →

⋂
i∈I

Vφ(i)

is compatible with the filtrations.
Let X∗ ∈ Cb(Z[Var]) be bounded complex of varieties, ŨX∗ an affine cover of X∗.

A very good filtration on ŨX∗ is a very good filtration on all ŨXn compatible with
all morphisms in the support of the boundary maps.

Note that the Čech complex associated to a rigidified affine cover with very good
filtration is also filtered in the sense that there is a very good filtration on all
Cn(ŨX) and all morphisms in the support of the differential are compatible with
the filtrations.

Lemma D.14. Let X be a variety, ŨX a rigidified affine cover. The inductive
system of very good filtrations on ŨX is non-empty, filtered and functorial.
The same statement also holds for a complex of varieties X∗ ∈ Cb(Z[Var]).

Proof. Let ŨX = {Ui}i∈I be the affine cover. We chose recursively very good
filtration on

⋂
i∈J Ui with decreasing order of J , compatible with the inclusions.

We extend the construction inductively to complexes, starting with the highest
term of the complex. �

Definition D.15. Let X∗ ∈ C−(Z[Aff]). A very good filtration of X∗ is given by a
very good filtration F.Xn for all n which is compatible with all morphisms in the
support of the differentials of X∗.

Lemma D.16. Let X∗ ∈ Cb(Z[Var]) and ŨX∗ an affine cover of X∗ with a very

good filtration. Then the total complex of C?(ŨX∗) carries a very good filtration.

Proof. Clear by construction. �

Recall that D̃eff → A be a representation is of the diagram of very good pairs.

Definition D.17. Let F.X be an affine variety with a very good filtration. We
put R̃(F.X) ∈ Cb(A)

· · · → T (FjX∗, Fj−1X∗)→ T (Fj+1X∗, FjX∗)→ . . .
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Let F.X∗ be a very good filtration of a complex X∗ ∈ C−(Z[Aff]). We put

R̃(F.X∗) ∈ C+(A) the total complex of the double complex R̃(F.Xn)n∈Z.

Proof of Proposition D.3: We first define R : Cb(Z[Var])→ Db(A) on objects. Let

X∗ ∈ Cb(Z[Var]). Choose a rigidified affine cover ŨX∗ of X∗ . Choose a very good

filtration on the cover. In induces a very good filtration on TotC?(ŨX∗). Put

R(X∗) = R̃(TotC?(ŨX∗)).

Note that any other choice yields a complex isomorphic to this one in D+(A).

Let f : X∗ → Y∗ be a morphism. Choose a refinement Ũ ′X∗ of ŨX∗ which maps to

ŨY∗ and a very good filtration on Ũ ′X∗ . Choose a refinement of the filtrations on

ŨX∗ and ŨY∗ compatible with the filtration on Ũ ′X∗ . This gives a little diagram of

morphisms of complexes R̃ which defines R(f) in D+(A). �

Remark D.18. Nori suggests working with Ind-objects (or rather pro-object in
our dual setting) in order to get functorial complexes attached to affine varieties.
However, the mixing between inductive and projective systems in our construction
does not make it obvious if this works out for the result we needed. In order to
avoid this situation, one could however do the construction in two steps.

As a corollary of the construction in the proof, we also get:

Corollary D.19. Let X be a variety, ŨX a rigidified affine cover with Čech complex
C?(ŨX). Then

R(X)→ R(C?(ŨX))

is an isomorphism in D+(A).
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[P] H. Prüfer: Theorie der Abelschen Gruppen, Math. Zeitschrift Band 20 (1924), 165-

187.

[Re] L. E. Renner: Linear Algebraic Monoids, Encyclopaedia of mathematical sciences,
Vol. 134, Springer Verlag (2005).

[SGA3] M. Demazure et A. Grothendieck: Séminaire de Géométrie Algébrique du Bois
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