
REPORT ON THE STRUCTURE OF PERIOD SPACES

ANNETTE HUBER

Abstract. The vector space generated by the periods of a single mo-
tive is finite-dimensional. In this expository article we review what is
known about this dimension and the structure of the period space. We
concentrate on the case of 1-motives, where these are known facts rather
than conjectures.
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1. Introduction

Periods are complex numbers of the form

∫
σ
ω

where ω is an algebraic differential d-form on some algebraic variety over Q
and σ is a chain in the sense of singular homology: a formal linear combi-
nations of smooth maps from the d-simplex ∆d to Xan. This set (in fact
algebra) contains numbers like 2πi or log(2), which are of long-standing
interest in transcendence theory. In fact, Grothendieck’s period conjecture
(see Conjecture 6.1 below) makes a precise prediction on the transcendence
degree of the algebra generated by a set of periods.
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We are interested in a variant of the question. Rather than the tran-
scendence degree of an algebra we study the dimension of the vector space
generated by a set of periods.

In our report, we concentrate on 1-periods (the case d = 1 in the above
definition). In this case the set has a very good conceptual description
as periods of 1-motives. Via Wüstholz’s Analytic Subgroup Theorem, the
conjectures can actually be verified. This has been explored in detail in
the monograph [HW22]. In particular, unconditional dimension formulas
are available that describe the dimension of a period space of a 1-motive in
terms of its data.

The report follows closely the contents of the survey talk at the Simon’s
Symposium. We explain the results of [HW22] and the main results of Nesa’s
thesis [Nes22]. He gives a more conceptual reinterpretation of the terms in
the dimension formulas and investigates the connection to the Tannakian
version of the picture and the older literature.

Notably, Brown [Bro17] gives an explicit description of the coradical fil-
tration of the period algebra under a technical assumption. However, as we
will explain in Section 6 this does not translate directly into formulas for
period spaces.

Under the period conjecture, describing the period algebra amounts to
describing a motivic Galois group or a Mumford-Tate group. The case of
1-motives has been studied by Bertrand [Ber98] and Bertolin [Ber02, Ber20].
They introduce and study the notion of a deficient 1-motive based on an
explicit construction by Jacquinot and Ribet in [JR87]. The (conjectural)
transcendence degree of their period algebra is smaller than in the generic
case. Betrand asked me why this phenomenon does not appear in the study
of period spaces. Nesa discusses in detail the period space of such deficient
1-motive, answering this question. We explain this in Section 7

As the report will make clear, the theory is not yet in final shape, see
Remark 5.9.

Acknowledgments. This note discusses results obtained jointly with Gis-
bert Wüstholz in [HW22]. I thank him for a wonderful and productive
collaboration.

The discussion of the interplay between the period space and the period
algebra owes a lot to the input of Peter Jossen to myself and Nicola Nesa.
The type of example to look for in Section 6 were pointed out by Fritz
Hörmann, who was also a rich source of advice on everything to do with
Tannaka duality.

Finally, I am thankful to Francis Brown for pointing me to [Bro17] and
his patient explanations during the Simons Symposium. I am optimistic
that the approach suggested by his formulas will settle the remaining open
questions that I still see.
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2. Periods and the weight filtration

We work over the field of algebraic numbers Q and fix an embedding
Q ⊂ C. All motives are over Q with Q-coefficients.

We generally use the notation of [HW22]. We denote by 1−MotQ the

category of iso-1-motives over Q studied by Deligne in [Del74]. Its objects
have the form [L→ G] where L is a free abelian group of finite rank, and G
a semi-abelian group over Q, i.e., an algebraic group which is an extension

0→ T → G→ A→ 0

of an abelian variety by a torus, and L → G is a group homomorphism.
Morphisms in the category are morphisms of complexes tensored with Q.
In particular, the category 1−MotQ contains the isogeny category of the

category of abelian varieties as a full subcategory. The category is abelian.
The category of Nori motives is equipped with exact weight filtration

functors. They have an explicit description in the case of 1-motives.

Definition 2.1 (Deligne). The weight filtration on M = [L → G] is given
by

WnM =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 n < −2,

[0→ T ] n = −2,

[0→ G] n = −1,

M n ≥ 0,

where T is the torus part of G.

Moreover, there are (at least) two natural functors on the category of
motives that we call realisations. Again they have a very explicit description
in the case of 1−MotQ. We refer to Deligne’s original article [Del74] or

[HW22, Chapter 8] for details.

Definition 2.2 (Deligne). Let M ∈ 1−MotQ. We denote Vsing(M) the sin-

gular realisation of M , a finite dimensional Q-vector space, and by VdR(M)
the de Rham realisation of M , a finite dimensional Q-vector space. We
denote by

φM ∶ Vsing(M)C → VdR(M)C
the period isomorphism.

In particular, the two realisations are vector spaces of the same dimension,
actually of dimension

rk(L) + 2 dimA + dimT,

where M = [L → G] and A,T are the abelian and torus parts of G, respec-
tively.

This allows us to give the central definition of this note:
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Definition 2.3. Let M ∈ 1−MotQ be a one-motive. The space of periods of

M is the Q-subspace P⟨M⟩ of C generated by the entries of a matrix for the
period isomorphism φM in a Q-basis of Vsing(M) and a Q-basis of VdR(M).

While the entries of the period matrix depend on a choice of basis, the
vector space generated by it does not. Alternatively, we can consider the
period pairing

V ∨
dR(M) × Vsing(M)→ C, (ω,σ)↦ ω(φM(σ))

where V ∨
dR(M) is the space of Q-linear forms on VdR(M). From this point

of view, P⟨M⟩ is the subgroup generated by the image of period pairing or
the image of the linear map

V ∨
dR(M)⊗Q Vsing(M)→ C.

. Note that P⟨M⟩ is finite dimensional over Q.

Question 2.4. What is the dimension of P(M)?

This is what we want to address here. Note that the weight filtration on
M induces filtrations on Vsing(M) and V ∨

dR(M) and hence a bifiltration on
P⟨M⟩. In fact, in bases adapted to the filtrations, the period matrix has a
structure

⎛
⎜
⎝

P00 P01 P02

0 P11 P12

0 0 P22

⎞
⎟
⎠
.

We will analyse the blocks one by one. The entries P00, P11, P22 correspond
to pure 1-motives (see Section 3, and the entries P01, P12 to 1-extensions
(see Section 4. It is the contribution of P02 which is most complex and
somewhat mysterious(see Section 5.

3. Pure motives

The category 1−MotQ is Artinian: every object is a finite extension of

simple ones. There are three types of simple 1-motives:

● M = [Z→ 0] with space of periods equal to Q;
● M = [0→ Gm] with space of periods equal to 2πiQ;
● M = [0→ A] where A is a simple abelian variety.

Their period spaces have trivial intersection.

Proposition 3.1. Let M1, M2 be non-isomorphic simple 1-motives. Then

P⟨M1⟩ ∩P⟨M2⟩ = 0.

This is a special case of [HW22, Theorem 16.2].
Moreover, the space of periods of a simple abelian variety is well-understood.

If A is simple of dimension g, then its singular and de Rham realisation have
dimension 2g. Endomorphisms of A give rise to relations between periods.
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Proposition 3.2. Let A be a simple abelian variety of dimension g with
endomorphism algebra EndQ(A) of dimension e. Then

dimQP⟨A⟩ = 4g2

e
.

This is a special case of [HW22, Proposition 15.14], but also appears in
earlier work Wüstholz. Translated to the language of periods of curves, these
periods correspond to periods obtained by integrating differential forms of
the first or second kind (differential forms without poles, or without residues,

respectively) on smooth projective curves over Q over closed paths.

Remark 3.3. Equivalently, we can say that Vsing(A) and V ∨
dR(A) are d =

2g/e-dimensional vector spaces over the division algebra EndQ(A) and then

dimQP⟨M⟩ = d2e.

It turns out that this second point of view is the one that generalises well.

Together these propositions give a dimension formula for periods of pure
motives.

Corollary 3.4. Let M = ⊕N
i=1M

ni
i be a direct sum with non-isomorphic

simple motives Mi. Then

dimQP⟨M⟩ =
N

∑
i=1

dimQP⟨Mi⟩

where dimP⟨Mi⟩ = 1 if Mi = [Z→ 0], [0→ Gm] and given by the formula in
Proposition 3.2 if M = [0→ A] with a simple abelian variety.

4. 1-extensions

A general 1-motive [L → G] contains two subquotients which are 1-
extensions of pure motives:

[L→ A], [0→ G]
where 0 → T → G → A is the decomposition of G into its torus and abelian
part. Sometimes, there is also a subquotient of the form

[L→ T ]
for a torus T . These are the motives whose periods we consider in this
section.

Remark 4.1. In terms of periods of curves, a 1-motive of the form [L→ A]
appears for differential forms of the first or second kind on a curve of positive
genus, integrated over formal linear combinations of paths with end points
defined over Q. A 1-motive of the form [0→ G] corresponds to an arbitrary
algebraic differential form (no assumption on the poles or residues) on a
curve of positive genus, integrated over a closed path. A 1-motive of the
form [L → T ] is found when describing differential forms of the third kind
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on a curve of genus 0 integrated over a formal linear combination of paths
with points defined over Q.

This list is not exclusive: they can also appear for non-trivial reasons
inside more complicated motives.

Their periods only intersect, if there is a trivial reason.

Proposition 4.2 ([HW22, Theorem 16.2]). Assume that G is a semi-abelian
variety with abelian part A. Then:

P⟨[L→ A]⟩ ∩P⟨[0→ G]⟩ = P⟨A⟩.

We now concentrate on the case M = [L → A] and assume L ≠ 0, A ≠ 0.
We call them motives of the second kind. As in the pure case, periods for
non-isogenous simple abelian varieties do not interact.

Proposition 4.3. Let A1, A2 be non-isogenous simple abelian varieties,
[L1 → A1] and [L2 → A2] two 1-motives with L1, L2 ≠ 0. Then

P⟨[L1 → A1]⟩ ∩P⟨[L2 → A2]⟩ = P⟨[Z→ 0]⟩ = 2πiQ.

The statement follows directly from the dimension formula [HW22, Propo-
sition 15.18]. This allows us to reduce dimension computations to the case
of a single simple abelian variety.

Definition 4.4 ([HW22, Chapter 16]). Let M = [L → A] with L ≠ 0. We
call

Pinc2(M) = P⟨M⟩/(Q +P⟨A⟩)
the space of incomplete periods of the second kind.

By the results formulated in the previous section, the sum is direct, so
that we have

dimP⟨[L→ A]⟩ = dimPinc2(M) + dimP⟨A⟩ + 1.

Proposition 4.2 can be reformulated as

Pinc2(M) =⊕
B

Pinc2([L→ B])

where B runs through the simple factors of A (without multiplicities) and
L→ B is the composition L→ A→ B.

Proposition 4.5 ([HW22, Proposition 15.18]). Let [L sÐ→ A] be a 1-motive
where A is a simple abelian variety of dimension g with endomorphism al-
gebra E = EndQ(A) of Q-dimension e and L ≠ 0. Then

dimQPinc2⟨[L→ A]⟩ = 2g ⋅ rkA(L,M)

where rkA(L,M) is the E-dimension of E ⋅ s(L)Q ⊂ A(Q)Q.

The same number has a more conceptual interpretation. We need a bit
of notation:



REPORT ON THE STRUCTURE OF PERIOD SPACES 7

Definition 4.6. Let C be an abelian category, X ∈ C an object. We de-
note by ⟨X⟩ the smallest full abelian category closed under subquotients
containing X.

The objects of X are the subquotients of the objects Xn for n ∈ N.

Proposition 4.7 (Nesa [Nes22, Proposition 3.3.12]). Let M = [L → A]
be a 1-motive with A a simple abelian variety with endomorphism algebra
E = EndQ(A), L ≠ 0. Then

rkA(L,M) = dimE (Ext1⟨M⟩([Z→ 0],A)) .

This allows us to give a better reformulation of the dimension formula.

Corollary 4.8. Let M = [L → A] be a 1-motive with A a simple abelian
variety with endomorphism algebra E = EndQ(A), L ≠ 0. Put d the E-
dimension of Vsing(A). Then

dimQPinc2([L→ A]) = d ⋅ dimQ (Ext1⟨M⟩([Z→ 0],A)) .

Proof. We have d = 2g/e. �

Remark 4.9. Note that ⟨M⟩ is not closed under extensions in the category
1−MotQ. In fact,

Ext11−MotQ
([Z→ 0],A) ≅ A(Q)Q

is not finite-dimensional. Recall that 1−MotQ is a hereditary category, i.e.,

it has homological dimension 1. This is still true for ⟨M⟩ of the shape con-
sidered right now, but not for general M , see the example after Lemma 5.7.
It is becoming increasingly clear that this is a source for the problems that
will be discussed later.

The case of a motive of the form [0→ G] is completely analogous. Indeed,
its period space is in bijection with the periods of the Cartier dual [X(T )→
A∨] where A is the dual abelian variety and X(T ) the character group of
the torus.

Periods of motives of the form [L → T ] are linear combinations of loga-
rithms of algebraic numbers. The dimension formula is nothing but Baker’s
Theorem. Again it has a reinterpretation in terms of Ext1

⟨M⟩
(Gm, [Z→ 0]).

For details we refer to [HW22, Chapter 15.3.1] and [Nes22, Chapter 3].

5. Incomplete periods of the third kind

We now turn to the general case: M = [L→ G] with 0→ T → G→ A→ 0
the decomposition into torus and and abelian part. We are interested in the
periods not coming from the subquotients [L→ A] or [0→ G].

Definition 5.1. We call

Pinc3⟨M⟩ = P⟨M⟩/(P⟨[L→ A]⟩ +P⟨G⟩)
the space of incomplete periods of the third kind.
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In the setting of curves, these periods arise as integrals of arbitrary alge-
braic differential forms with respect to (formal linear combinations of) paths
with end point in algebraic points.

As Vsing(L) ≅ LQ and V ∨
dR(T ) ≅ X(T )Q, the weight filtration induces a

surjection

Φ ∶ LQ ⊗X(T )Q↠ Pinc3(M).
In [HW22, Chapter 17], we give an explicit description of its kernel. It is
easier in the special case L = Z and, in fact, the general case can easily be
reduced to it.

Lemma 5.2. Let M = [Zr sÐ→ G] be a 1-motive. Then the periods of M
agree with the periods of

[Z→ Gr]
with structure map 1 ↦ (s(e1), . . . , s(er)) (where e1, . . . , er is the standard
basis of Zr).

We concentrate on the special case.

Proposition 5.3. Let M = [L→ G] with L of rank 1. Then

Pinc3⟨M⟩ ≅ LQ ⊗X(T )Q/R1(M)

where R1(M) is generated by the subspaces

α∗(L1Q)⊗ β∗(X(T2)Q) ⊂ LQ ⊗X(T )Q
with respect to all exact sequences

M1
αÐ→M

β
Ð→M2.

Example 5.4. Let E be an elliptic curve, G an extension of E by Gm

which is non-split in the isogeny category, g0 ∈ G a non-torsion point. Let
M = [Z → G] be given by 1 ↦ g0. In order to compute R1(M), we have to
consider all non-trivial surjections

β ∶M →M2.

We claim that the torus part of M2 is trivial. Assume it is not, hence
isomorphic to Gm. Then the group part of β is of the form G → G2 with
G2 = Gm or G2 ≅ G. In the first case, we would have a splitting of G,
contradicting our assumption. This leaves G2 ≅ G. As β is assumed non-
trivial, we must have M2 ≅ [0 → G]. The kernel of β is isomorphic to
[Z→ 0]. This defines a splitting

M ≅ [Z→ 0]⊕ [0→ G],

contradicting the choice of g0.
We have thus established that the torus part of M2 is trivial. This implies

β∗(X(T2)Q) = 0 and hence R1(M) = 0. In other words,

dimPinc3⟨M⟩ = 1.
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Remark 5.5. The argument is independent of the endomorphism algebra
of E, so it applies equally in the CM and non-CM case. There are also no
conditions on the relation of the points in E and E∨ involved in the con-
struction as they appear for deficient 1-motives, see Section 7. In particular,
the result applies to Ribet’s example of a deficient motive in Example 7.3.

This is much less satisfactory than the formulas in the other cases. Under
an additional condition, there is indeed a clean formula:

Proposition 5.6 ([HW22, Corollary 15.7]). Let M = [L → G] such that
the abelian part of M is simple with endomorphism algebra E = EndQ(A) of
dimension e.

If M is saturated, then

dimQPinc3⟨M⟩ = e ⋅ rkA(L,M)rkA(T,M)

Instead of going through the definition of saturatedness (see [HW22, Def-
inition 15.1]), we point out its conceptual meaning:

Lemma 5.7 (Appendix A). If M is saturated, then ⟨M⟩ is hereditary.

Note that this is not always the case. For the motive M of Example 5.4
with a CM-elliptic curve, the category fails to be hereditary. Another ex-
ample was worked out by Nesa in [Nes22, Example 3.4.13]:

M = [Z xÐ→ A]⊕ [G]
where G is an extension of A by Gm which is non-split up to isogeny, x(1)
non-torsion.

Using Nesa’s identification in Proposition 4.7 of the ranks, we get a more
conceptual formulation. Note that Ext1

⟨M⟩
(A, [Z → 0]) has an operation

of E on the right via the first argument, whereas Ext1
⟨M⟩

(Gm,A) has an

operation of E on the left via the second argument.

Corollary 5.8. Let M = [L→ G] such that the abelian part of M is simple
with endomorphism algebra E = EndQ(A).

If M is saturated, then

dimQPinc3⟨M⟩ = dimQ (Ext1⟨M⟩(A, [Z→ 0])⊗E Ext1⟨M⟩(Gm,A))

Proof. We have non-canonically

Ext1⟨M⟩(A, [Z→ 0]) ≅ ErkA(L,M)

Ext1⟨M⟩(Gm,A) ≅ ErkA(T,M)

and hence their tensor product is isomorphic to

ErkA(L,M)rkA(T,M).

Its Q-dimension is
e ⋅ rkA(L,M)rkA(T,M).

�
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Remark 5.9. This gives us a good interpretation of the formula completely
in terms of the category. Note that the same assumption is also used by
Brown in [Bro17] in the Tannakian setting. In fact, I was led to consider
this notion in the present context after a discussion with him at the Simons
Symposium.

The fact that not all ⟨M⟩ are hereditary is the key reason why the formulas
for Pinc3(M) are complicated.

6. The Tannakian point of view

The presentation here stresses the space of period numbers and Q-linear
relations between them. A lot of the existing literature considers the algebra
generated by the period numbers and its transcendence degree. In particu-
lar, Brown gave a very good description of the latter in the hereditary case,
see [Bro17]. This makes it worthwhile to relate the two approaches.

Let M ∈ 1−Motk. We denote by ⟨M⟩⊗ the smallest full abelian rigid
tensor subcategory of the category of Nori motives closed under subquotients
and containing M . It becomes Tannakian via the fibre functor H ∶= Hsing

(singular homology) on the category or Nori motives:

H ∶ ⟨M⟩⊗ → Q−Vect.

Restricting to the subcategory ⟨M⟩, we get back the singular realisation
Vsing considered above. Let G(M), the motivic Galois group of M , be the
Tannakian dual. It is a linear algebraic group over Q operating on H(N)
for all objects N ∈ ⟨M⟩⊗ such that the category is equivalent is the category
of G(M)-representations.

We formulate the (mixed motive) case of the classical period conjecture.

Conjecture 6.1 (Grothendieck, André).

trdegQ(P⟨M⟩) = dimG(M).

The 1-motive case was studied by Bertrand and Bertolin, see also the next
section. It is wide open: even the case of a single non-CM elliptic curve is
not known.

It is now tempting to extract results from the structure theory of algebraic
groups. Recall that every linear algebraic group G sits in a canonical short
exact sequence

0→ Gu → G→ Gr → 0

with Gr reductive and Gu connected and unipotent. In the case G = G(M),
the group Gr is nothing but the Tannaka dual of ⟨M ss⟩⊗, where M ss is the
semi-simplification of M .

Example 6.2. The Krull dimension is additive in the short exact sequence.
In [Bro17], Brown gives an algorithmic description of the coradical filtration
on O(G(M)u). Because of the Grothendieck period conjecture, this can be
read as a computation of the period spaces.
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In fact, we have even finer information from the weight filtration. The
weight filtration on C = ⟨M⟩⊗ induces, as in [SR72] by Saavedra, a filtration
of G(M).

Definition 6.3.

WiG(M) = {g ∈ G(M)∣

∀N ∈ C, k ∈ Z, v ∈Wk(H(N)) ∶ (g ⋅ v) − v ∈Wk+i(H(N))}.

In fact, in suffices to check the condition for N = M . This gives the
alternative description

WiG(M) = ker(G→ GL(⊕
k

Wk(H(M))/Wi+i(H(M)))) .

In our case the filtration is necessarily concentrated in degrees −2,−1,0 as
it is on M itself.

Corollary 6.4. W−1G(M) agrees with the unipotent radical of G(M) and
the reductive quotient gr0G(M) = G(M)r is G(M ss) where M ss is the semi-
simplification of M .

We are interested in the relation with the linear space of periods. Note
that

⟨M⟩ ⊂ ⟨M⟩⊗

and the restriction of the fibre functor gives back Vsing. By construction of
Tannaka duality, G(M) ⊂ GL(Vsing(M)).

Definition 6.5. Let G ⊂ GL(V ) be an algebraic subgroup. The space of
matrix coefficients OV (G) of G with respect to V is the image of

End(V )∨ → O(GL(V ))→ O(G)
which maps each linear functional to an algebraic function on G.

Example 6.6. (1) Let G ⊂ GLn(Q) be the group of upper triangular
matrices. Then the space of matrix coefficients is the subspace of
Q[G] generated by the coordinate functions Xij for 1 ≤ i, j ≤ n.
They vanish for i > j.

(2) Let G ⊂ GL2(Q) be the subgroup of matrices of the form

(1 a
0 1

) .

Then the space of matrix coefficients is spanned by the constant
function 1 and the coordinate function X11. It has dimension 2.

Note that the space of matrix coefficients depends on the choice of a
faithful representation of G. In the application to G(M) it depends on the
choice of generator for ⟨M⟩⊗, not only on the category. More precisely: on
the choice of ⟨M⟩ ⊂ ⟨M⟩⊗.
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This notion is actually very analogous to the definition of the period space.
We can reinterpret

End(Vsing(M))∨ ≅ Vsing(M)∨ ⊗ Vsing(M).

On the other hand, P⟨M⟩ is the image of

Vsing(M)∨Q ⊗ Vsing(M)→ V ∨
dR(M)⊗ Vsing(M)

under the period pairing. Indeed:

Proposition 6.7 ([Nes22, Proposition 4.3.2]). Let M be a 1-motive, V =
Vsing(M) as representation of G(M). Then:

dimQOV (G(M)) = dimQP⟨M⟩.

We learned about this fact from Jossen, but have not found a reference in
the literature. There is one subtlety worth stressing: The proof depends on
the validity of the period conjecture for ⟨M⟩ (which is known) rather that
⟨M⟩⊗ (which is open).

Examples. We want to understand how the space of matrix coefficients in-
teracts with the structure theory of an algebraic group G: the decomposition
into unipotent and reductive part or even the weight filtration on motivic
Galois groups.

Let G be a linear algebraic group. Every faithful representation V of G
restricts to a faithful representation of Gu and induces a surjection

OV (G)→ OV (Gu).

We fix a cocharacter of G, or, equivalently a splitting of G → Gr. This
induces another surjection

OV (G)→ OV (Gr).

Remark 6.8. In the setting of motives such a splitting is induced by the
functor N ↦ N ss together with the choice of splitting of the weight filtration
of the fibre functor.

Question 6.9. Does the map

OV (G)→ OV (Gu) ×OV (Gr)

on spaces of matrix coefficients have good properties?

It is an isomorphism in the case of upper triangular matrices considered
in Example 6.6 (1). However, we argue that this is misleading and there
is no good relation in general. This is in contrast to the case of coordinate
rings where we have

O(G) ≅ O(Gr)⊗O(Gr).
We begin with a couple of examples of abstract linear algebraic groups

(not necessarily linked to motives) in order to illustrate the problems.
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Example 6.10 ([Nes22, Section 6.4.1]). Let G = {e}, V = Q. Then Gu =
Gr = {e}. We have OV (G) = Q (the constant functions) in each case. In
particular,

1 = dimOV (G) < dimOV (Gr) + dimOV (Gu) = 2.

This trivial example suggests that it is the constant functions causing the
problem. However, this is not the only issue. Examples like the following
were first suggested by Hörmann.

Example 6.11 ([Nes22, Example 4.1.17]). Let G ⊂ GL4 be the subgroup of
matrices of the form

⎛
⎜⎜⎜
⎝

λ λr1 λr2
λ
2 (r

2
1 + r22)

0 σ −τ σr1 − τr2
0 τ σ τr1 + σr2
0 0 0 1

⎞
⎟⎟⎟
⎠

with λ = σ2 + τ2 ≠ 0. It has dimension 4. The space of matrix coefficients
has dimension 9. On the other hand, Gu is the subgroup of matrices of the
form

⎛
⎜⎜⎜
⎝

1 r1 r2
1
2(r

2
1 + r22)

0 1 0 r1
0 0 1 r2
0 0 0 1

⎞
⎟⎟⎟
⎠

and Gr is the subgroup of matrices of the form

⎛
⎜⎜⎜
⎝

λ 0 0 0
0 σ −τ 0
0 τ σ 0
0 0 0 1

⎞
⎟⎟⎟
⎠

In both cases the dimension is 2 and the space of matrix coefficients has
dimension 4:

G Gu Gr

dim(⋅) 4 2 2
dimQOV (⋅) 9 4 4

Note that the coefficient λr2 is linearly independent of the other entries for
G, but the corresponding entry in Gu and Gr no longer is.

Remark 6.12. The example can be blown up to arbitrary size, destroying
any hope of a general dimension formula for the spaces of matrix coefficients
in terms of Gr and Gu.

In the next section, we will see an explicit example of a 1-motive where
the same phenomenon occurs, see Proposition 7.5.

Remark 6.13. In these examples, there are many quadratic relations be-
tween matrix coefficients. Understanding the linear relations between matrix
coefficients for G requires not only knowledge of the matrix coefficients of
Gu and Gr, but also of the quadratic relations between them.
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7. Deficient motives

Recall from Definition 6.3 the weight filtration on G(M).

Definition 7.1. A 1-motive is called deficient, if W−2G(M) = 0.

This happens for example if the lattice or torus part of M vanishes or if

M = [0→ G]⊕ [L→ 0]
decomposes. However, there are also non-trivial examples. A whole class
appears in the work of Jaquinot and Ribet [JR87], [Rib87]. In fact, this was
the starting point for Bertolin’s investigation [Ber02].

Remark 7.2. Note that being deficient is a property of the category ⟨M⟩⊗
rather than of M itself. As Nesa points out in [Nes22, Proposition 6.3.4]
this is not the case for trivially deficient motives. Being trivially deficient
is a property of the motive itself. Theorems 3.5 and 3.7. in [Ber02] are
misstated. If M is deficient, it is not necessarily trivially deficient. Rather
the category ⟨M⟩⊗ has another generator which is trivially deficient. We
refer to [Nes22, Section 6.3] for more details.

We follow Nesa’s description of Ribet’s construction in a special case.

Example 7.3 ([Nes22, Example 6.3.2, Section 6.4.6]). Let E be an elliptic
curve with CM by J = i (the complex unit). Let ρ ∶ E → E∨ the polarisation.
Then f = ρ ○ J ∶ E → E∨ is an anti-symmetric isogeny (see [Nes22, Ex.
1.4.20]). Let a ∈ E be non-torsion. Ribet defines an object

M = [Z→ G] ∈ Ext1([Z 1↦aÐÐ→ E], [Gm])
which is well-behaved with respect to Cartier duality.

For this let G′ be the semi-abelian variety defined by f(a) ∈ E∨ and G
the semi-abelian variety defined by (f − f∨)(a). We choose b′ ∈ G′ above
a ∈ A. This defines

M ′ = [Z 1↦b′ÐÐ→ G′].
Its Cartier dual is in

Ext1([Z
f(a)
ÐÐ→ A∨,Gm).

Let M ′′ be the pull-back of the Cartier dual motive of M ′ along

[Z aÐ→ A]→ [Z
f(a)
ÐÐ→ A∨].

Let

M =M ′ −M ′′ ∈ Ext1([Z aÐ→ A,Gm)
where − refers to the Baer sum. In [Nes22, Section 6.3.3], Nesa explains how
the deficiency of M follows from Ribet’s [Rib87, Theorem §2].

Remark 7.4. The motive of the example M is of the form considered in
Example 5.4. Its space of incomplete periods of the third kind has dimension
1. The vanishing of W−2G(M) does not imply the vanishing of this matrix
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coefficient. This answers a question of Bertrand. The explicit computation
below shows how this phenomenon arises.

Nesa computes the motivic Galois group explicitly as a subgroup of GL(V )
where V =H(M) = Vsing(M) in a suitable basis compatible with the weight
filtration.

Proposition 7.5 ([Nes22, Prop. 6.4.6–6.4.12]). The group G(M) ⊂ GL(V )
consists of matrices of the form

⎛
⎜⎜⎜
⎝

λ λr1 λr2 λs
0 σ −τ σr1 − τr2
0 τ σ τr1 + σr2
0 0 0 1

⎞
⎟⎟⎟
⎠

where λ = σ2 + τ2, s = (r21 + r22)/2.

The space of matrix coefficients has dimension 9. In particular, the entry
λs is linearly independent from the others, confirming the computation of
Pinc3⟨M⟩ also in this case.

On the other hand, the entry λs is algebraically dependent on the others.
The group G(M)u =W−1G(M) consists of matrices of the form

⎛
⎜⎜⎜
⎝

1 r1 r2 (r21 + r22)/2
0 1 0 r1
0 0 1 r2
0 0 0 1

⎞
⎟⎟⎟
⎠

It has dimension 2, whereas the space of matrix coefficients has dimension
4. We see that indeed W−2G(M) = {e}.

Moreover, G(M)r is a form of G2
m. It consists of matrices of the form

⎛
⎜⎜⎜
⎝

σ2 + τ2 0 0 0
0 σ −τ 0
0 τ σ 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

The dimension is 2, whereas the space of matrix coefficients has dimension
4.

G Gu Gr

dim(⋅) 4 2 2
dimQOV (⋅) 9 4 4

Again there is no good relation between the spaces of matrix coefficients of
G(M), G(M)u and G(M))r as in the abstract examples of the last chapter.

Appendix A. An Ext-computation

We verify Lemma 5.7:

Lemma A.1. If M̃ is saturated, then ⟨M̃⟩ is hereditary.
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Proof. Let M̃ = [L̃ s̃Ð→ G̃] with torus part T̃ and abelian part Ã. The

assumption means that L̃ → Ã(Q)Q and X(T̃ ) → Ã∨(Q)Q are injective and

EndQ(Ã) = EndQ(M̃).
We abbreviate Exti for Exti

⟨M̃⟩
. Let S ∈ ⟨M̃⟩. We claim that

Ext2(S, ⋅) = 0.

This equivalent to right-exactness of Ext1(S, ⋅). If we have a short exact
sequence

0→ S1 → S2 → S3 → 0

and the claim holds for S1 and S3, then it holds for S2. Hence it suffices to
consider simple objects S.

For S = [Gm], every short exact sequence in Ext1([Gm],M) is split by the
weight-filtration. We have Ext1([Gm], ⋅) = 0 and there is nothing to show.

For S = [A] with a simple abelian variety A, we have (again by the weight
filtration)

Ext1([A],M) = Ext1([A], [T ])
where T is the torus part of M . Given a surjection M1 →M2, we also have
a surjection T1 → T2 on the torus parts. The latter is split up to isogeny,
providing a splitting on the level of Ext1.

Finally, consider S = [Z → 0]. With the same argument as in the last
case, we have

Ext1([Z→ 0],M) = Ext1([Z→ 0], [G])
where G is the group part of M . Given a surjection T1 → T2 of tori or a
surjection of abelian varieties A1 → A2, we get again a splitting on the level
of Ext1. A short diagram chase shows that is suffices to establish surjectivity
of

Ext1([Z→ 0],G)→ Ext1([Z→ 0],A)
where A is the abelian part of G.

Let A1, . . . ,An be the simple constituents of A and Gi = Ai ×A G. Then

∏Gi → ∏Ai ≅ A factors up to isogeny via G. Hence surjectivity for all
Gi implies surjectivity for G. Without loss of generality, A is simple. As
[A] is in ⟨M̃⟩, the abelian variety has to be a subquotient of Ãn for some

n. As A is simple, it is even a direct factor of Ã. Let E = EndQ(A) be its
isomorphism algebra.

We will construct a morphism G̃ → G lifting Ã → A. Admitting this, we
get a commutative diagram

Ext1([Z→ 0], G̃) //

��

Ext1([Z→ 0],G)

��
Ext1([Z→ 0], Ã) π // Ext1([Z→ 0],A)
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By [Nes22, Proposition 3.2.1], every element in Ext1([Z → 0],A) is of the
form

απ∗s̃(l) ∈ A(Q)Q
for l ∈ L̃, the structure map s̃ ∶ L̃ → G̃ → Ã and α ∈ E. The motive M̃ is
saturated. By definition this means that the endomorphism α lifts to M̃ .
By replacing l by α(l), we may assume that α = id. The 1-motive

[Z sÐ→ G̃], s ∶ 1↦ s̃(l) ∈ G̃

is in Ext1([Z → 0], G̃) and a preimage of our extension class. Its image in
Ext1([Z→ 0,G) is the preimage we were looking for.

It remains to verify the claim. It is solely a statement about semi-abelian
varieties, which we treat via their classifying maps. We want to find a dotted
arrow fitting in the diagram

X(T )

[G]

��

// X(T̃ )

[G̃]
��

A∨(Q)Q
π∗ // Ã∨(Q)Q.

Let x1, . . . , xt be a basis of X(T ). Then xi defines an object in Ext1(Gm,A).
By [Nes22, Proposition 3.2.1] it can be identified with an element of the form

β∗(χ(yi)) ∈ Ã∨(Q)Q

where χ is the classifying map of G̃ applied to yi ∈ X(T̃ ) and β is an

endomorphism of Ã. As M̃ is saturated, it lifts to an endomorphism of G̃.
By replacing yi by β∗(yi), we may assume that β = id. We define the dotted
arrow by sending xi to yi. �
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