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Abstract. In this paper, we discuss the construction of classifying
spaces of fibre sequences in model categories of simplicial sheaves. One
construction proceeds via Brown representability and provides a classi-
fication in the pointed model category. The second construction is given
by the classifying space of the monoid of homotopy self-equivalences of
a simplicial sheaf and provides the unpointed classification.
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1. Introduction

In this paper, we discuss the classification of fibrations in categories of
simplicial sheaves. As usual, the results are modelled on the corresponding
results for simplicial sets or topological spaces which we first discuss.

For simplicial sets, there are two approaches to the construction of clas-
sifying spaces. The first approach uses Brown representability to classify
rooted fibrations, yielding a classification in the pointed category. This line
of construction has been pursued in the work of Allaud [All66], Dold [Dol66],
and Schön [Sch82]. The second approach applies the bar construction to the
monoid of homotopy self-equivalences of the fibre. This has been developed
in [Sta63] and [May75] and yields a classification in the unpointed category.
The two approaches do not yield equivalent classifying spaces: the rooted
fibrations carry an action of the group of homotopy self-equivalences, and
dividing out this action yields the unpointed classifying space of the second
approach.

Now we want to explain why this theory works in the general setting of
simplicial sheaves. On the one hand, fibrations of simplicial sheaves can
be glued. This is of course not true on the nose, but as for simplicial sets
there is a way around this problem. The essence of the solution is that
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some kind of “homotopy distributivity” holds – in some situations it is pos-
sible to interchange homotopy limits and homotopy colimits. The notion of
homotopy distributivity is due to Rezk [Rez98] and can be used to general-
ize various classical results on homotopy pullbacks and homotopy colimits,
such as Puppe’s theorem or Mather’s cube theorem. This theory is devel-
oped in Section 2. Once such a glueing for fibrations of simplicial sheaves
is developed, it is a simple matter to prove that the conditions for a ver-
sion of Brown representability are satisfied, yielding classifying spaces for
analogs of rooted fibrations of simplicial sheaves. On the other hand, fibra-
tions of simplicial sheaves correspond to principal bundles under homotopy
self-equivalences. Suitably formulated, we can associate to a simplicial sheaf
X a simplicial sheaf of monoids consisting of homotopy self-equivalences of
X. To this monoid we can apply the bar construction. One can prove that
the resulting space classifies fibre sequences of simplicial sheaves.

In our approach to the construction of classifying spaces, we introduce
a notion of local triviality of fibrations in the Grothendieck topology. This
condition is one possible generalization of the usual condition that all fibres
of the fibration should have the homotopy type of the given fibre F . In
the first approach via Brown representability, this condition ensures that
the fibre functor is indeed set-valued. In the second approach using the
bar construction, it comes in naturally because we can not talk about fibre
sequence if the base is not pointed.

The main result of the paper is the following theorem:

Theorem 1. Let T be a site.

(i) Let F be a pointed simplicial sheaf on T . There exists a pointed simpli-
cial sheaf BfF which classifies locally trivial fibrations with fibre F up
to (rooted) equivalence, i.e. for each pointed simplicial sheaf X there
is a bijection between the set of equivalence classes of fibre sequences
over X with fibre F and the set of pointed homotopy classes of maps
X → BF .

(ii) Let F be a simplicial sheaf on T . There exists a simplicial sheaf de-
noted by B(∗,hAut•(F ), ∗) which classifies locally trivial morphisms
with fibre F up to equivalence, i.e. for each simplicial sheaf there is
a bijection between the set of equivalence classes of locally trivial mor-
phisms over X with fibre F and the set of unpointed homotopy classes
of maps X → B(∗,hAut•(F ), ∗).

The two constructions of this space can be found in Theorem 4.17 and
Theorem 5.10. The main input in both of them is homotopy distributivity
which originally is a result of Rezk [Rez98]. We give a short proof for topoi
with enough points in Proposition 2.15.

One word on the relation between our approach and the classification
results in [DK84]: given fixed simplicial sheaves B and F , analogs of the
classification results of [DK84] can be used to construct a simplicial set
whose components are in one-to-one correspondence with fibre sequences
over B with fibre F . However, these results do not imply that the various
simplicial sets are the sections of one simplicial sheaf. It is exactly this
internal classification that we are after. For this, some sort of homotopy
distributivity is needed, as we discuss in Section 2.
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Finally, a short sketch of the envisioned applications is in order. The
main motivation for the research reported in this paper comes from A

1-
homotopy theory, which is a homotopy theory for algebraic varieties defined
by Morel and Voevodsky [MV99]. On the one hand, the homotopy distribu-
tivity results from Section 2 have been used in [Wen10] to give descriptions
of A

1-fundamental groups of smooth toric varieties. On the other hand, the
theory of classifying spaces developed here allows several results on unsta-
ble localization of fibre sequences for simplicial sets to be carried over to
simplicial sheaves. This is discussed in [Wen07, Chapter 4] and will be fur-
ther elaborated in a forthcoming paper. The most interesting application,
however, is in A

1-homotopy theory. The results presented here allow the
construction of classifying spaces, and the localization theory of [Wen07] al-
lows to obtain checkable conditions under which fibrations which are locally
trivial in the Nisnevich topology are indeed A

1-local. This will be discussed
in [Wen09].

Structure of the Paper: In Section 2, we develop the necessary preliminar-
ies for homotopy distributivity which will be needed. Section 3 we discuss
locally trivial fibrations in categories of simplicial sheaves. Then the two
classification results are proved in Section 4 and Section 5.

Acknowledgements: The results presented here are taken from my PhD
thesis [Wen07] which was supervised by Annette Huber-Klawitter. I would
like to use the opportunity to thank her for her encouragement and interest
in my work. I would also like to thank Jǐŕı Rosický for explaining to me
that his version of Brown representability applies in the situation discussed
in Section 4. Finally, I would like to thank the referee for pointing out some
mistakes concerning pointed vs. unpointed classification.

2. Homotopy Limits and Colimits of Simplicial Sheaves

2.1. Model Structures for Simplicial Sheaves. The global pattern in
the theory of model structures on categories of simplicial sheaves is always
the same: a category of simplicial sheaves behaves in many aspects like the
category of simplicial sets. This is also evident in the proofs, which reduce
statements about simplicial sheaves to known statements about simplicial
sets.

The basic definitions of sites and categories of sheaves on them can be
found in [MM92]. We will freely use these as well as the notions of homo-
topical algebra. For the definition of model categories, see [GJ99] with a
particular focus on simplicial sets, as well as [Hov98] and [Hir03].

We denote by ∆opC the category of simplicial objects in the category C.
In particular, the category of simplicial sheaves on a site T is denoted by
∆opShv(T ).

The following comprises the main facts about model structures on sim-
plicial sheaves.

Theorem 2.1. Let E be a topos. Then the category ∆opE of simplicial
objects in E has a model structure, where the

(i) cofibrations are monomorphisms,
(ii) weak equivalences are detected on a fixed Boolean localization,
(iii) fibrations are determined by the right lifting property.
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Moreover, the above definition of weak equivalences does not depend on
the Boolean localization.

The injective model structure of Jardine on the category of (pre-)sheaves
of simplicial sets on T is a proper simplicial and cellular model structure.

Existence is proved in [Jar96, Theorems 18 and 27]. Properness and sim-
pliciality are proven in [Jar96, Theorem 24]. The fact that the model cat-
egories are cofibrantly generated is implicit in Jardine’s proofs, though not
explicitly stated. The combinatoriality follows since categories of sheaves on
a Grothendieck site are locally presentable. Cellularity is proven in [Hor06,
Theorem 1.4].

2.2. Recollection on Homotopy Limits and Colimits. Homotopy col-
imits and limits are homotopy-invariant versions of the ordinary colimits and
limits for categories. Abstractly, one can define the ordinary colimit of a di-
agram X : I → C as left adjoint of the diagonal functor ∆I : C → hom(I, C),
where hom(I, C) is the category of I-diagrams in C. Similarly, the ordinary
limit is the right adjoint of the diagonal, cf. [Mac98, Section X.1]. Homo-
topy colimits and limits are then defined as suitable derived functors of the
ordinary colimit and limit functors.

A general reference for homotopy limits and colimits is [Hir03], in the
context of simplicial sheaves see also [MV99]. We shortly recall the definition
of homotopy limits and colimits.

Definition 2.2. Let C be a cofibrantly generated simplicial model category,
and I be any small category.

Colimits: The category Hom(I, C) of I-indexed diagrams in C has the
structure of a simplicial model category by taking the weak equiv-
alences and fibrations to be the pointwise ones. Then the diago-
nal ∆ : C → Hom(I, C) preserves fibrations and weak equivalences,
and therefore is a right Quillen functor. Its left adjoint colim :
Hom(I, C) → C is thus a left Quillen functor, and we can define
its derived functor

hocolim
I

= L colim
I

: X 7→ colim
I

QX ,

where Q is a cofibrant replacement in the model category Hom(I, C).
Limits: Dually, the category Hom(I, C) also has a simplicial model

structure where the weak equivalences and cofibrations are the point-
wise ones. Then the diagonal ∆ : C → Hom(I, C) preserves cofibra-
tions and weak equivalences, and therefore is a left Quillen functor.
Its right adjoint lim : Hom(I, C)→ C is thus a right Quillen functor,
and we can define its derived functor

holim
I

= R lim
I

: X 7→ lim
I
RX ,

where R is a fibrant replacement in the model category Hom(I, C).

We usually denote the homotopy colimit of an I-diagram X by hocolimI X ,
the special case of a homotopy pushout is denoted by A∪hB C. Similarly, ho-
motopy limits are usually denoted by holimI X , and the homotopy pullbacks
by A×hB C.
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There are also more concrete constructions of homotopy limits and col-
imits. Since we are not going to need these descriptions, we just refer to
[Hir03, Chapter 18].

The fact that homotopy colimits resp. limits can be defined as left resp.
right derived functors of colimits resp. limits implies that they are homotopy
invariant [Hir03, Theorem 18.5.3].

Proposition 2.3. Let C be a simplicial model category, and let I be a small
category. If f : X → Y is a morphism of I-diagrams of cofibrant objects in
C which is an objectwise equivalence, then

hocolim
I

f : hocolim
I

X → hocolim
I

Y

is a weak equivalence of cofibrant objects.
Dually, if f : X → Y is a morphism of I-diagrams in C which is an

objectwise equivalence of fibrant objects, then

holim
I

f : holim
I
X → holim

I
Y

is a weak equivalence of fibrant objects.

Moreover, homotopy colimits and limits interact nicely with the corre-
sponding left resp. right Quillen functors.

Proposition 2.4. Let F : C → D be a left Quillen functor. Then the
following diagram commutes up to isomorphism:

Ho Hom(I, C)
hocolim //

LF
��

Ho C

LF

��
HoHom(I,D)

hocolim
// HoD,

One example of this situation is the relation between homotopy colimits
and hom-functors as stated in [MV99, Lemma 2.1.19].

Finally, we state a standard fact on homotopy pullbacks, cf. also [GJ99,
Lemma II.8.22]:

Lemma 2.5. Let C be a proper model category, and let the following com-
mutative diagram be given:

X1
//

��

X2
//

��

X3

��
Y1

// Y2
// Y3.

If the inner squares are homotopy pullback squares, then so is the outer. If
the outer square and the right inner square are homotopy pullback squares,
then so is the left inner square.

2.3. Functorialities. We first recall the basic result that geometric mor-
phisms of Grothendieck topoi induce Quillen functors. This is basically a
reformulation of [MV99, Proposition 2.1.47].

Proposition 2.6. Let f : F → E be a geometric morphism of Grothendieck
topoi. We also denote by f∗ : ∆opE → ∆opF and f∗ : ∆opF → ∆opE the
induced functors on the categories of simplicial sheaves. Then (f∗, f∗) is a
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Quillen pair, i.e. f∗ preserves cofibrations and trivial cofibrations and f∗
preserves fibrations and trivial fibrations.

Finally, we recall that weak equivalences are reflected along surjective
geometric morphisms.

Proposition 2.7. Let f : E ′ → E be a surjective geometric morphism,
and let g : A → B be a morphism in E. Then g is a weak equivalence if
f∗g : f∗A→ f∗B is a weak equivalence in E ′.

Proof. If f is surjective, then any Boolean localization of E ′ is a Boolean
localization of E , because a Boolean localization of E is simply a surjective
geometric morphism B → E , where B is the topos of sheaves on a com-
plete Boolean algebra. In [Jar96], it was proved that the weak equivalences
which are defined via Boolean localizations are independent of the Boolean
localization.

A morphism f : A→ B is thus a weak equivalence in E if it is a morphism

after pullback along f∗ : E
g∗

→ E ′ → B, where the latter morphism is a chosen
Boolean localization of E ′. But by definition, this is equivalent to the fact
that g∗f is a weak equivalence in E ′. This proves the claim. �

2.4. Homotopy Colimits. In this subsection, we recall the behaviour of
homotopy colimits under the inverse image part of a geometric morphism.
The inverse image preserves homotopy colimits, and reflects them if the
geometric morphism is surjective.

Proposition 2.8. Let E be a topos, and let f : E ′ → E be a geometric
morphism. Then f∗ : ∆opE → ∆opE ′ preserves homotopy colimits.

Proof. f∗ is a left Quillen functor, cf. Proposition 2.6. The result follows
from Proposition 2.4. �

Proposition 2.9. Let E be a topos, let I be a small category, and let f :
E ′ → E be a geometric morphism. If f is surjective, then f∗ : ∆opE → ∆opE ′

reflects homotopy colimits. In other words, X : I → ∆opE is a homotopy
colimit diagram if and only if f∗X : I → ∆opE ′ is a homotopy colimit
diagram.

Proof. Recall that X is a homotopy colimit diagram if the natural map

Ψ : hocolim
I

X → colim
I
X

is a weak equivalence.
We have a diagram

f∗ hocolimX // f∗ colimX

hocolim f∗X

OO

// colim f∗X

OO

The left arrow exists because to compute hocolimX , we use a cofibrant
replacement which is preserved by the left Quillen functor f∗. Therefore
there is a cone from the cofibrant diagram X to f∗ hocolimX which has
to factor through the colimit, which is also the homotopy colimit since the
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diagram is cofibrant. The vertical morphisms are weak equivalences by
Proposition 2.4, hence f∗Ψ can be identified up to weak equivalence with
the map

hocolim
I

f∗X → colim
I

f∗X ,

which is a weak equivalence if f∗X is a homotopy colimit diagram.
If f is surjective, it reflects weak equivalences, cf. Proposition 2.7. This

proves the claim. �

This implies that homotopy colimits in a model category of simplicial
sheaves can be checked on points, provided there are enough points, cf.
[Wen07, Proposition 3.1.10].

Corollary 2.10. Let E be a topos with enough points, let I be a small
category, and let X : I → ∆opE be a diagram. Then X is a homotopy
colimit diagram if and only if for each point p of E in a conservative set
of points, the corresponding diagram p∗(X ) : I → ∆opSet is a homotopy
colimit diagram.

Proof. This follows from Proposition 2.9: if E has enough points, we can
choose a conservative set C of points, and then the geometric morphism

∏

p∈C

Set→ E

is surjective. �

2.5. Homotopy Pullbacks. Finally, we recall the behaviour of homotopy
pullbacks under inverse images of geometric morphisms. As for homotopy
colimits, they are preserved by inverse images and reflected, provided the
geometric morphism is surjective. The argument does however not work for
arbitrary homotopy limits, since the inverse image fails to be a right Quillen
functor.

Proposition 2.11. Let E be a topos, let f : E ′ → E be a geometric mor-
phism, and let the following commutative diagram X in ∆opE be given:

A //

��

B

��
C // D.

If X is a homotopy pullback diagram in ∆opE, then f∗X is a homotopy pull-
back diagram in ∆opE ′. If moreover f is surjective, and f∗X is a homotopy
pullback diagram in ∆opE ′, then X is a homotopy pullback diagram in ∆opE.

Proof. The first assertion, i.e. that homotopy pullback squares are preserved
by the inverse image part of a geometric morphism is proved in [Rez98,
Theorem 1.5].

Recall that X is a homotopy pullback diagram if there exists a factor-
ization of f : B → D into a trivial cofibration i : B → B̃ and a fibration
g : B̃ → D, such that the induced morphism A→ C ×D B̃ is a weak equiv-
alence. Since f is surjective, it suffices to show that the induced morphism
f∗(A) → f∗(C ×D B̃) ∼= f∗(C) ×f∗(D) f

∗(B̃) is a weak equivalence. Note
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that geometric morphisms preserve finite limits by definition, which explains
the last isomorphism.

Consider the diagram

f∗(A) //

��

f∗(B)

��

f∗(C)×f∗(D) f
∗(B̃) //

��

f∗(B̃)

��
f∗(C) // f∗(D).

Since homotopy pullbacks are preserved by geometric morphisms, the lower
square is a homotopy pullback. By assumption, the outer square is also ho-
motopy pullback square, therefore the upper square is a homotopy pullback,

cf. Lemma 2.5. Since f preserves weak equivalences, f∗(B) → f∗(B̃) is a

weak equivalence. Therefore, the morphism f∗(A)→ f∗(C)×f∗(D) f
∗(B̃) is

also a weak equivalence. This proves the result.
�

As for homotopy colimits, we find that homotopy pullbacks in a category
of simplicial sheaves can be checked on points, provided there are enough
points, cf. [Wen07, Proposition 3.1.11].

Corollary 2.12. Let E be a topos with enough points, and let the following
commutative diagram X of simplicial sheaves in ∆opE be given:

A //

��

B

f

��
C // D.

This is a homotopy pullback diagram iff for each point p of T in a con-
servative set of points, the diagram p∗(X ) of simplicial sets is a homotopy
pullback diagram.

2.6. Homotopy Distributivity. The results on homotopy limits and col-
imits from the previous section can be used to give a simple proof of the
following result of Rezk on homotopy distributivity in categories of simplicial
sheaves, cf. [Rez98, Theorem 1.4]. These results generalize various results
on commuting homotopy pullbacks and homotopy colimits known to hold for
simplicial sets, such as Mather’s cube theorem and Puppe’s theorem. More-
over, homotopy distributivity allows the construction of classifying spaces
for fibre sequences, cf. [Wen07].

We begin by explaining the precise definition of homotopy distributivity,
which is a homotopical generalization of the usual infinite distributivity law
which holds for topoi. It is a statement about commutation of arbitrary
small homotopy colimits with finite homotopy limits. Since any finite ho-
motopy limit can be constructed via homotopy pullbacks, it suffices to check
that homotopy pullbacks distribute over arbitrary homotopy colimits. Most
of the work on homotopy distributivity is due to Rezk [Rez98].
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The situation is the following. Let C be a simplicial model category, let
I be a small category, and let f : X → Y be a morphism of I-diagrams in
C. The diagrams we are most interested in are the following:

For any i ∈ I, we have a commutative square

(1) X (i) //

f(i)
��

colimI X

��
Y(i) // colimI Y.

Moreover, for any α : i→ j in I we have a commutative square

(2) X (i)
X (α)

//

f(i)
��

X (j)

f(j)
��

Y(i)
Y(α)

// Y(j).

Now we are ready to state the definition of homotopy distributivity, fol-
lowing [Rez98].

Definition 2.13 (Homotopy Distributivity). In the above situation, we say
that C satisfies homotopy distributivity if for any morphism f : X → Y of I-
diagrams in C for which Y is a homotopy colimit diagram, i.e. hocolimI Y →
colimI Y is a weak equivalence, the following two properties hold:

(HD i) If each square of the form (1) is a homotopy pullback, then X is a
homotopy colimit diagram.

(HD ii) If X is a homotopy colimit diagram, and each diagram of the form
(2) is a homotopy pullback, then each diagram of the form (1) is
also a homotopy pullback.

Example 2.14. The category ∆opSet of simplicial sets satisfies homotopy
distributivity. This follows e.g. from the work of Puppe [Pup74] and Mather
[Mat76]. �

More generally, homotopy distributivity holds for all model categories of
simplicial sheaves on a Grothendieck site and can be proven quite easily if
the site has enough points. We give a short and simple proof of homotopy
distributivity, based on the reflection of homotopy colimits and pullbacks
proved earlier. The general statement and proof using Boolean localizations
can be found in [Rez98].

Proposition 2.15. Let E be a Grothendieck topos with enough points. Then
homotopy distributivity holds for the injective model structure on ∆opE.

Proof. Since there are enough points, there exists a surjective geometric
morphism

f :
∏

p∈C

Set→ E ,

where C is a conservative set of points. By Propositions 2.9 and 2.11 the
properties of homotopy colimit resp. homotopy pullback diagrams can be
checked locally. The assertion then follows from homotopy distributivity for
simplicial sets. �
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We next discuss two important consequences of homotopy distributivity
for model categories of simplicial sheaves. One is a generalization of Mather’s
cube theorem [Mat76]. The other generalizes a theorem of Puppe [Pup74] on
commuting homotopy fibres and homotopy pushouts to simplicial sheaves.

Corollary 2.16 (Mather’s Cube Theorem). Let E be any Grothendieck
topos. Consider the following diagram of simplicial objects in E:

X1

��

}}||
||

||
||

// X2

��

}}||
||

||
||

X3

��

// X4

��

Y1

}}||
||

||
||

// Y2

}}||
||

||
||

Y3
// Y4

Assume that the bottom face, i.e. the one consisting of the spaces Yi, is a
homotopy pushout, and that all the vertical faces are homotopy pullbacks.
Then the top face is a homotopy pushout.

Moreover, taking the homotopy fibre commutes with homotopy pushouts:
for a commutative diagram

E2

p2

��

E0
oo

p0

��

// E1

p1

��
B2 B0

oo // B1

in which the squares are homotopy pullbacks, we have weak equivalences

hofib pi
∼=
−−−→ hofib(p : E1 ∪

h
E0
E2 → B1 ∪

h
B0
B2).

Proof. This is a consequence of homotopy distributivity, cf. Proposition
2.15, applied to homotopy pushout diagrams. The assumption in the def-
inition of homotopy distributivity is that the bottom face is a homotopy
colimit diagram, i.e. a homotopy pushout.

For the first assertion, we note that since all the vertical faces are homo-
topy pullbacks, the diagonal square in the cube consisting of X1, Y1, X4 and
Y4 is also a homotopy pullback, by the homotopy pullback lemma 2.5. By
(HD i) we conclude that the top square is a homotopy colimit diagram, i.e.
X4 is weakly equivalent to the homotopy pushout X2 ∪

h
X1
X3. The restric-

tion in the definition of homotopy distributivity that X4 be the point-set
pushout of X2 and X3 along X1 is not essential. Without loss of generality
we can assume that the morphismsX1 → X3 resp. Y1 → Y3 are cofibrations,
and that X4 resp. Y4 are point-set pushouts. If this is not the case, just
replace the morphism by cofibrations, and obtain a cube which is weakly
equivalent to the cube we started with.

For the second statement note that since the squares are homotopy pull-
backs, we have hofib p0

∼= hofib p1
∼= hofib p2. Factoring E0 → E1 resp.

B0 → B1 as a cofibration followed by a trivial fibration, we can assume that
these morphisms are cofibrations. Denote E = E1∪

h
E0
E2 and B = B1∪

h
B0
B2.
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Then we are in the situation to apply (HD ii). This implies that all the
squares

Ei //

��

E

��
Bi // B

are homotopy pullback squares. In particular, we get the desired weak
equivalences hofib pi ∼= hofib p. �

The following is a version of Puppe’s Theorem [Pup74] for simplicial
sheaves:

Proposition 2.17 (Puppe’s Theorem). Let E be a Grothendieck topos, and
let X : I → ∆opE be a diagram of simplicial objects over a fixed base sim-
plicial object Y , i.e. the following diagram commutes for every α : i→ j in
I:

X (i)
X (α) //

!!C
CC

CC
CC

C
X (j)

}}zz
zz

zz
zz

Y

There is an associated diagram of homotopy fibres

F : I → ∆opE : i 7→ hofib(X (i)→ Y )

Denoting X = hocolimI X and F = hocolimI F , we have a weak equivalence
hofib(X → Y ) ≃ F .

Proof. We construct a new morphism of diagrams G → X , where the dia-
gram G is defined by

G : I → ∆opE : i 7→ X (i)×hX hofib(X → Y ).

Without loss of generality we can assume hofib(X → Y )→ X is a fibration.
Then the homotopy pullbacks above are ordinary pullbacks, and colim G ∼=
hofib(X → Y ). We apply the homotopy pullback lemma to the following
diagram:

X (i)×hX hofib(X → Y ) //

��

X (i)

��
hofib(X → Y )

��

// X

��
∗ // Y

This implies the following weak equivalence

X (i)×hX hofib(X → Y ) ≃ hofib(X (i)→ Y ) = F(i).

Invariance of homotopy colimits under weak equivalence, cf. Proposition 2.3,
implies a weak equivalence hocolim G ∼= hocolimF . Homotopy distributivity
applied to the projection morphism G → X implies that G is a homotopy
colimit diagram. Putting everything together we obtain weak equivalences
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hofib(X → Y ) ∼= colim G ≃ hocolim G ≃ hocolimF , whence the desired
statement follows. �

2.7. Ganea’s Theorem. It is now possible to obtain some fibre sequences
for simplicial sheaves, which are known to hold for simplicial sets by ho-
motopy distributivity. In the case of simplicial sets, these fibre sequences
are all more or less consequences of Ganea’s work [Gan65]. Their simplicial
sheaf analogues have been used in [Wen10] to provide partial descriptions of
the A1-fundamental group of smooth toric varieties.

We start out with a theorem describing the homotopy fibre of the fold
map. The proof is essentially the one given in [DF96, Appendix HL], which
simply applies homotopy distributivity to one of the simplest situations pos-
sible:

Proposition 2.18 (Ganea’s Theorem). Let E be a Grothendieck topos, and
let X be a simplicial object in E. The sequence ΣΩX → X ∨X → X is a
fibre sequence in ∆opE.

Proof. This is an instance of Proposition 2.17 applied to the diagram:

X

=

��

∗oo

��

// X

=

��
X X=

oo
=

// X

We are taking the homotopy colimit of the diagram over the fixed base space
X, and the homotopy colimit of the upper line yields X ∨X. The map to
X is the fold map ∨ : X ∨X → X. Then Proposition 2.17 shows that the
fibre is given by the homotopy colimit of the diagram of fibres:

∗ ←− ΩX −→ ∗.

This is by definition ΣΩX. �

Example 2.19. A particular topological instance of the above is the fibre
sequence

S2 → CP∞ ∨ CP∞ → CP∞.

A similar fibre sequence exists in ∆opShv(SmS) with any of the usual topolo-
gies. This implies that there is a fibre sequence

Σ1
sGm → BGm ∨BGm → BGm.

A
1-locally, this yields a fibre sequence

P
1 → P

∞ ∨ P
∞ → P

∞.

�

There are also other fibre sequences one can obtain: By considering similar
diagrams as in [DF96, Appendix HL] we get the following fibration sequences
in any model category of simplicial sheaves.

Proposition 2.20. Let E be a Grothendieck topos, and X be a simplicial
object in E. The sequence ΩX0 ∗ ΩX1 → X0 ∨ X1 → X0 × X1 is a fibre
sequence in ∆opE.
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Proof. Apply Puppe’s theorem 2.17 to the following diagram, the horizontal
lines are the pushout diagrams and the vertical lines are fibre sequences:

ΩX0 × ∗

��

ΩX0 × ΩX1

��

//oo ∗ × ΩX1

��
∗ ×X1

��

∗oo

��

// X0 × ∗

��
X0 ×X1 X0 ×X1

oo // X0 ×X1.

�

Example 2.21. An instantiation of the above fibre sequence similar to the
one given in Example 2.19 is the following fibre sequence in ∆opShv(SmS):

Gm ∗Gm → BGm ∨BGm → BGm ×BGm.

A
1-locally, this yields a fibre sequence

A
2 \ {0} → P

∞ ∨ P
∞ → P

∞ × P
∞.

�

As a final example, we restate yet another theorem of Ganea [Gan65]. It
should by now be obvious, which diagram to apply Puppe’s theorem to.

Proposition 2.22. Let E be a Grothendieck topos, and let F → E → B be
any fibre sequence of simplicial objects. Then there is another fibre sequence

F ∗ ΩB −→ E ∪CF = E/F −→ B.

2.8. Canonical Homotopy Colimit Decomposition. Let p : E → B be
a fibration of fibrant simplicial sets. Then the canonical homotopy colimit
decomposition of B allows to write B as homotopy colimit of standard sim-
plices ∆n → B. Then we can pull back the fibration p to these simplices and
obtain the homotopy fibres. By homotopy distributivity, E can be written
as the homotopy colimit over the simplex category ∆ ↓ B of the homotopy
fibres. The same statement works for simplicial sheaves: The right notion
to formulate it is the canonical homotopy colimit decomposition for objects
in a combinatorial model category, which was described in detail in [Dug01].

Let M be a combinatorial model category, C be a small category. For
any functor I : C → M and a fixed cosimplicial resolution ΓI : C → ∆M,
we obtain a functor C ×∆ → M : (U, [n]) 7→ Γ(n)(U). For any object X,
we can consider the over-category (resp. comma category in Mac Lane’s
terminology [Mac98, Section II.6]) (C ×∆ ↓ X) and the canonical diagram
(C ×∆ ↓ X)→M : Γ(n)(U) 7→ U ×∆n.

Lemma 2.23. Let T be a site, and let p : E → B be a fibration of fibrant
simplicial sheaves. Then p is weakly equivalent to the morphism of simplicial
sheaves

hocolimF → hocolim(T ×∆ ↓ B),

where (T ×∆ ↓ B) is the canonical diagram associated to some fixed cosim-
plicial resolution, and the diagram F is the diagram of homotopy fibres: the
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index category is still (T ×∆ ↓ B), but an object U ×∆n → B is mapped to
the pullback (U ×∆n)×B E, which is the fibre of p over U .

This is not as useful as the same construction for simplicial sets, since
the homotopy types of the various U ∈ T are different, which is the same as
saying that a simplicial sheaf is not locally contractible. Therefore, not all
of the simplicial sheaves (U ×∆n)×B E are weakly equivalent.

3. Preliminaries on Fibre Sequences

We first repeat the definition of fibre sequences in model categories, taken
from [Hov98]. For details of the proof see [Hov98, Theorem 6.2.1].

Definition 3.1. Given a fibration p : E → B of fibrant objects with fibre i :
F → E. There is an action of ΩB on F , given as follows. Let h : A×I → B
represent [h] ∈ [A,ΩB] and let u : A→ F represent [u] ∈ [A,F ]. We define
α : A× I → E as the lift in the following diagram:

A
i◦u //

i0
��

E

p

��
A× I

h
// B

Then define [u].[h] = [w] with w : A → F to be the unique map satisfying
i ◦ w = α ◦ i1.

This defines a natural right action of [A,ΩB] on [A,F ] for any A, which
suffices to provide an action of ΩB on F .

This motivates the definition of fibre sequences [Hov98, Definition 6.2.6],
given as follows:

Definition 3.2. Let C be a pointed model category. A fibre sequence is
a diagram X → Y → Z together with a right action of ΩZ on X that is

isomorphic in Ho C to a diagram F
i
−→ E

p
−→ B where p is a fibration of

fibrant objects with fibre i and F has the right ΩB-action of Definition 3.1.

The following proposition shows that fibrations induce fibre sequences in
the sense of of Definition 3.2.

Proposition 3.3. Let C be a proper pointed model category. Let p : E → B
be a fibration, and denote by F a cofibrant replacement of p−1(∗). Then

F → E
p
−→ B is a fibre sequence.

3.1. Locally trivial morphisms. Already in the case of simplicial sets, one
has to restrict the classification problem for fibrations to obtain a classifying
space. One possible such restriction is to consider only base spaces B which
are connected. Another approach is to consider only fibrations p : E → B
for which the fibres p−1(b) have the weak homotopy type of F for all b ∈ B.

Also in the simplicial sheaf case, we need such a restriction. The obvious
way to define connectedness for simplicial sheaves is the one used e.g. in
[MV99, Corollary 2.3.22].
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Definition 3.4. Let X be a pointed simplicial sheaf on a Grothendieck site
T . We say that X is connected if L2π0X = ∗, where L2 denotes sheafifica-
tion. In other words, for any point x of the topos Shv(T ), we require that
the simplicial set x∗(X) is connected.

The main difference to the topological notion of connectedness is that a
topological space is always the disjoint union of its connected components.
This is no longer true for simplicial sheaves. The representable sheaves
of a site can be viewed as constant simplicial sheaves; usually they are
neither connected in the above sense nor decomposable into a direct sum of
connected sheaves.

The topological way out of the connectivity problem therefore becomes a
little awkward. We will consider a different type of condition which makes
sure that the fibre sequences over a general simplicial sheaf form a set (at
least after passing to equivalence classes). This is done by introducing local
triviality with respect to a Grothendieck topology – the least common de-
nominator of the algebraic topology and algebraic geometry usage of terms
like fibration.

Definition 3.5. Let T be a Grothendieck site. We say that a morphism
p : E → B of simplicial sheaves is locally trivial with fibre F , if for each
object U in T and each morphism U × ∆n → B, there exists a covering⊔
Ui → U such that there are weak equivalences

E ×B (Ui ×∆n) ≃ F × (Ui ×∆n).

Example 3.6. As an example, consider the category of smooth manifolds
with the Grothendieck topology generated by the open coverings. A fibre
sequence F → E → B is locally trivial if for each pullback E×BM →M of
this sequence to a smooth manifold M , there exists a covering

⊔
Ui →M of

M by open submanifolds such that Ui ×B E ≃ F . But a fibration E → M
over a smooth (connected) manifold M is always locally trivial in this sense:
for each contractible open submanifold U of M , then U ×M E is weakly
equivalent to the point set fibre over any point of U . Therefore, fibrations of
connected topological spaces are indeed locally trivial in the above sense.

Note also that the local triviality condition forces all points to have fibres
weakly equivalent to X. This shows that the above local triviality condition
reduces to the usual assumptions used e.g. in [All66]. �

We remark that the results discussed in Section 2 are an analogue of the
theory of quasi-fibrations. In fact, we have the following:

Proposition 3.7. Let p : E → B be a locally trivial morphism of pointed
simplicial sheaves with fibre F = p−1(∗). Then F → E → B is a fibre
sequence in the sense of Definition 3.2.

4. First Variant: Brown Representability

In this section, we will construct classifying spaces of fibre sequences via
the Brown representability theorem. For topological spaces, this approach
was used by Allaud [All66], Dold [Dol66], and Schön [Sch82]. A textbook
treatment of this approach can be found in [Rud98].
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4.1. Fibre Sequences Functor. We now define the functor mapping a
simplicial sheaf to the set of fibre sequences with fixed fibre over this simpli-
cial sheaf. We will work in the injective model category of pointed simplicial
sheaves on some site T . This is due to the fact that fibre sequences as
in Definition 3.2 are only defined in pointed model categories. Moreover,
the Brown representability theorem also requires pointed model categories.
There are examples in [Hel81] showing that Brown representability might
fail already for unpointed topological spaces.

Definition 4.1. Recall from Definition 3.2 that a fibre sequence over X

with fibre F is a diagram F → E
p
−→ X with an ΩX-action on F which

is isomorphic in the homotopy category to the fibre sequence associated to
a fibration p : Ẽ → X̃ of fibrant replacements X̃ of X and Ẽ of E. Up to
isomorphism in the homotopy category, we will usually assume that our fibre

sequence F → E
p
−→ X is represented by some actual fibration over some

fibrant replacement X̃ of X.
A morphism of fibre sequences is a diagram in ∆opShv(T )

F1

f

��

// E1

g

��

p1 // B1

h
��

F2
// E2 p2

// B2,

such that the left square commutes up to homotopy, and the right square is
commutative, and f is Ωh-equivariant, i.e. the following diagram is homo-
topy commutative:

ΩB1 × F1
//

Ωh×f
��

F1

f

��
ΩB2 × F2

// F2.

This in particular allows to define what an equivalence of fibre sequences
over X is: Two fibre sequences over X with fibre F are equivalent if there
is an isomorphism of fibre sequences

F

id

��

// E1

��

// X

id
��

F // E2
// X,

in the homotopy category Ho ∆opShv(T ). We denote this by E1 ∼ E2.

Remark 4.2. (i) The following can be assumed without loss of generality:
we can assume that the base B is fibrant, that the morphism p is a
fibration, and that F is the point-set fibre of p over ∗ →֒ B. This
basically follows from Proposition 3.3.

(ii) Note that in the definition of a morphism of fibre sequences we can
always arrange for the right square to be commutative on the nose.
We just lift the morphism h◦p1 along the fibration p2. This makes the
right square commutative, and leaves the left square commutative up
to homotopy.

Lemma 4.3. Equivalence of fibre sequences is an equivalence relation.
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Proof. This is clear since equivalence was defined by isomorphism in the
homotopy category, which implies reflexivity, symmetry and transitivity. �

Definition 4.4 (Pullback of Fibre Sequences). Let f : B1 → B2 be a pointed
map, and let F → E2 → B2 be a fibre sequence. We define a fibre sequence
with fibre F over B1 as follows:

F
a

~~}}
}}

}}
}}

��

  A
AA

AA
AA

A

E1
//

p1

��

E2

p2

��

∗

~~||
||

||
||

  B
BB

BB
BB

B

B1
f

// B2

We assume that p2 is a fibration, and define E1 as the pullback E2 ×B2
B1

of p2 along f . Note that E1 is therefore also the homotopy pullback of p2

along f , and p1 is a fibration. By the universal property of pullbacks, we
have a morphism a : F → E1. Moreover, by the pullback lemma we have
p−1
1 (∗) = F , and since p1 is a fibration, this is also the homotopy fibre.

Let T be a Grothendieck site. For given pointed simplicial sheaves X and
F on T , let Hpt(X,F ) denote the collection of equivalence classes of locally
trivial fibre sequences over X with fibre F modulo the equivalence ∼. We
want to show that this is a set.

Proposition 4.5. For any X,F ∈ ∆opShv(T )∗, the collection Hpt(X,F ) is
a set. Hence, with the pullbacks as in Definition 4.4, we have a functor

Hpt(−, F ) : ∆opShv(T )∗ → Set∗.

The natural base point of Hpt(X,F ) is given by the trivial fibre sequence
F → X × F → X, where the first map is inclusion via the base point
∗ → X, and the second is the product projection.

Proof. We first show that for every simplicial sheaf X there is only a set
of equivalence classes of fibre sequences F → E → X. We follow the lines
of [Rud98, Theorem IV.1.55]. Note that this includes forward references to
Proposition 4.14, Proposition 4.16 and Proposition 4.15.

We start with the case of fibre sequences F → E → U for U ∈ T viewed
as constant simplicial sheaf. We assume E → U is actually a fibration.
For the above fibre sequence, there exists a covering Ui of U such that
F → E ×U Ui →U Ui is a trivial fibre sequence with given trivializations
E×U Ui ≃ F ×Ui and transition morphisms F × (Ui×U Uj)→ F × (Ui×Uj)
which are weak equivalences. Now Proposition 2.15 implies that the original
fibre sequence F → E → U can be reconstructed up to equivalence as the
homotopy colimit

F → hocolimEi → hocolimUi.

The Grothendieck site is (essentially) small, so there is only a set of cov-
erings, and for a given covering, there is only a set of possible transition
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morphisms. The set of all locally trivial fibre sequences up to equivalence
is therefore contained in the product of the sets of all possible transition
morphisms (indexed by the possible coverings of U). It is therefore a set.

Next, we extend this result to simplicial sheaves of the form U ×∆n for
U ∈ T . The argument in Proposition 4.14 is independent of the Hpt(−, F )
being sets. It therefore shows that for a weak equivalence f : X → Y , if
Hpt(X,F ) is a set, then so is Hpt(Y, F ). We find that for any simplicial
sheaf of the form U ×∆n with U ∈ T , Hpt(U ×∆n, F ) is a set.

Finally, we use the decomposition of fibrations over the canonical homo-
topy colimit presentation of the base simplicial sheaf, cf. Lemma 2.23. We
consider F -fibre sequences over B, and decompose B as a homotopy colimit
over the category of simplices (T ×∆ ↓ B). The simplicial sheaves indexed
by this diagram are of the form U × ∆n for U ∈ T , and we have already
shown that fibre sequences over these form a set. Moreover, the site T is
(essentially) small, therefore the diagram is set-indexed.

We therefore have to show that for any set-indexed homotopy colimit
hocolimαXα of spaces Xα for which Hpt(Xα, F ) is a set, the collection

Hpt(hocolim
α

Xα, F )

is also a set. Since all homotopy colimits can be decomposed into homotopy
pushouts and wedges, it suffices to show this assertion for these special
homotopy colimits.

The proof of Proposition 4.16 shows that if Hpt(Xα, F ) is a set for a
set-indexed collection Xα, then Hpt(

∨
αXα, F ) is also a set.

For the homotopy pushouts, we use the proof of Proposition 4.15. We get
a surjective morphism of classes

d : Hpt(B1 ∪B0
B2, F ) ։ Hpt(B1, F )×Hpt(B0,F ) H

pt(B2, F ).

By assumption, Hpt(B1, F )×Hpt(B0,F )H
pt(B2, F ) is a set. The morphism d

decomposes a fibre sequence E over B1∪B0
B2 into the pullbacks of the fibre

sequence E to B1 resp. B2. These fibre sequences are remembered in the
element in Hpt(B1, F ) ×Hpt(B0,F ) H

pt(B2, F ). What is forgotten, and what
constitutes the kernel of d is the isomorphism between the pullbacks of E to
B1 resp. B2. Since there is only a set of automorphisms for any given fibre
sequence, the kernel of d is also a set. This implies that Hpt(B1 ∪B0

B2, F )
is also a set.

Therefore, Hpt(B,F ) is a set for any simplicial sheaf B.
We still need to check that the pullback is really well-defined. This is

a simple diagram check, using the cogluing lemma and therefore needing
properness: assume we have two fibre sequences E1 and E2 over B, which
are isomorphic in the homotopy category. We may assume that pi : Ei →
B are fibrations. If not, we choose factorizations. The independence of
the choice of such fibrant replacements is proven in Proposition 4.6. We
consider the pullback Ei ×B A of the fibre sequence Ei along the morphism
f : A→ B. The isomorphism in the homotopy category lifts to a zig-zag of
weak equivalences, so it suffices to show that a weak equivalence g : E1 → E2

pulls back to a weak equivalence f : E1×B A→ E2×B A. This follows from
the cogluing lemma [GJ99, Corollar II.8.13].
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Finally, for any fibre sequence F → E → B, which is locally trivial in
the T -topology the pullback F → E ×B B

′ → B′ along any morphism B′ is
again locally trivial. This follows by a simple argument from the pullback
lemma: the pullback of E′ = E ×B B′ along any morphism U → B′ for
U ∈ T is also the pullback of E along U → B′ → B. �

Proposition 4.6. (i) For any commutative diagram

E1
≃ //

p1   A
AA

AA
AA

A
E2

p2~~}}
}}

}}
}}

B

with p1 and p2 fibrations, the induced weak equivalence on the fibres is
equivariant for the ΩB-action.

(ii) Let p : E → B be any morphism with homotopy fibre F = hofib p.

Then the class [p̃] ∈ Hpt(B,F ) of a fibrant replacement p̃ : Ẽ → B of
p is independent of the choice of fibrant replacement.

(iii) For any homotopy pullback

E1
//

p

��

E2

q

��
B1

f
// B2,

we have f∗[q] = [p].

Proof. (i) This follows since the action as in Definition 3.1 is given by liftings
in a diagram:

A
i◦u //

i0

��

E1

≃

��
E2

p2

��
A× I

h
//

θ

EE

B

The action of ΩB on u is given by the lift θ which factors through the fibre.
Lifting to E1 and composing with the weak equivalence E1 → E2 yields a lift
for E2. Therefore, the induced weak equivalence of the fibres is equivariant
for the ΩB-action.

(ii) Note that the injective model structure on simplicial sheaves is a
proper model category, see Theorem 2.1. By Proposition 3.3, F → E → B
is a fibre sequence for p a fibration. Now for an arbitrary map p : E → B, we
define [p] as the fibre sequence associated to the fibration in a factorization

E
≃

i
//

p
  @

@@
@@

@@
@ Ẽ

p̃

��
B.
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We need to prove that this is independent of the factorization. We consider
two replacements of p by a fibration: p1 : E1 → B and p2 : E2 → B. Note

that by construction we have trivial cofibrations E1
∼=
−→ E and E2

∼=
−→ E.

We then consider the lift in the following diagram:

E
≃ //

≃

��

E2

p2

��
E1 p1

// B.

This is a weak equivalence by 2-out-of-3. As in the proof of Proposition 3.3
we obtain a weak equivalence between the fibres F1 and F2. By (i), this
morphism is equivariant for the ΩB-action, so [p1] = [p2].

(iii) Consider the homotopy pullback square in the statement of the propo-
sition. By [GJ99, Lemma II.8.16], there exists a factorization of q into a triv-

ial cofibration i : E2 → Ẽ2 and fibration q̃ : Ẽ2 → B2 such that the induced
morphism E1 → B1 ×B2

Ẽ2 is a weak equivalence. Note that f∗[q] is given

by B1 ×B2
Ẽ2. By (ii) we can take any fibration Ẽ1 → B1 with E1 → Ẽ1 a

weak equivalence, and by (i), the homotopy fibres of Ẽ1 and B1 ×B2
Ẽ2 are

weakly equivalent and the weak equivalence is ΩB-equivariant. Therefore
f∗[q] = [p]. �

4.2. Brown Representability. The Brown representability theorem is not
really a single theorem, but rather a class of results stating conditions under
which a set-valued functor on a model or homotopy category is representable.
The first appearance is in the article of Brown [Bro62] in which it is proven
that a contravariant homotopy-continuous functor on the category of topo-
logical spaces is representable, with main application to the construction of
spaces representing generalized cohomology theories. A more detailed analy-
sis of why contravariant functors and pointed model categories are necessary
assumptions was done in [Hel81]. Nowadays any reasonable textbook on al-
gebraic topology contains a section on Brown representability for topological
spaces.

There are not so many results on Brown representability for general, in
particular unstable model categories. For a general model category, Brown
representability usually fails, and at least some smallness assumptions are
necessary. The paper [Ros05] proves Brown representability for combinato-
rial model categories. There is also a representability theorem by Jardine
for compactly generated model categories, which is proven in [Jar09].

There are several names for the condition on the functors. Functors
that satisfy the conditions for the representability were called half-exact
in [Bro62], but we use the term homotopy-continuous. The terminology
homotopy-continuous is reminiscent of Mac Lane’s usage of the term contin-
uous for a functor which preserves limits [Mac98, Section V.4]. Homotopy-
continuous functors are the model category analogues of such continuous
functors, as the Brown representability is a version of the adjoint functor
theorem for model categories.



CLASSIFYING SPACES AND FIBRATIONS OF SIMPLICIAL SHEAVES 21

Definition 4.7 (Homotopy-Continuous Functor). A functor F : Cop → Set∗
on a pointed model category C is called homotopy-continuous if it satisfies
the following assumptions:

(HC i) F takes weak equivalences to bijections.
(HC ii) F (∗) = {∗}.
(HC iii) For any coproduct

∨
αXα of a set {Xα} of objects of C the following

wedge axiom is satisfied:

F
( ∨

α

Xα

)
=

∏

α

F (Xα).

(HC iv) For any homotopy pushout

A //

��

X

��
B // Y,

the induced morphism is surjective:

F (Y ) ։ F (B)×F (A) F (X).

This is called the Mayer-Vietoris axiom.

Remark 4.8. I would like to thank Jiř́ı Rosický for pointing out to me
that the homotopy-continuous functors from the previous definition induce
functors preserving weak colimits on the corresponding homotopy category.
This is due to the fact that the weak colimits are constructed out of coproducts
and weak pushouts. The wedge in the model category induces the coproduct
of the homotopy category, and weak pushouts are constructed the same way
that homotopy pushouts are, cf. [Ros05, Section 4].

The following is Rosický’s generalization of the Brown representability
theorem for combinatorial model categories.

Theorem 4.9 (Brown Representability (after Rosický)). Let C be a com-
binatorial model category. Then there is a regular cardinal λ such that the
functor

Eλ : Ho C → IndλHo Cλ

is essentially surjective, where Cλ denotes the subcategory of C consisting
of λ-small objects. In particular, any morphism preserving weak colimits is
representable by an object from Ho C.

Now we recall Jardine’s version of the Brown representability theorem
[Jar09, Theorem 24]. In this version, we need the following definition, cf.
[Jar09, Section 3]:

Definition 4.10. A model category C is called compactly generated, if there
is a set of compact cofibrant objects {Ki} such that a map f : X → Y is a
weak equivalence if and only if it induces a bijection

[Ki,X]
∼=
−−−→ [Ki, Y ]

for all objects Ki in the generating set.



22 MATTHIAS WENDT

This is a size condition that does not hold for all model categories of
simplicial sheaves. It is explained in [Jar09, Section 3, p.24] that the injec-
tive model structure on the category simplicial sheaves on the Zariski resp.
Nisnevich site is compactly generated.

Theorem 4.11 (Brown Representability (after Jardine)). For a pointed, left
proper, compactly generated model category C and a homotopy-continuous
functor F : Cop → Set∗, there exists an object Y of C, a universal element
u ∈ F (Y ), and a natural isomorphism

Tu : HomHo(C)(X,Y )
∼=
−−−→ F (X) : f 7→ f∗(u)

for any object X of C.

Corollary 4.12. Let C be any left proper, compactly generated model cate-
gory, let F,G : Cop → Set∗ be homotopy-continuous functors with classifying
spaces YF resp. YG and universal elements uF resp. uG. For any natural
transformation T : F → G there exists a morphism f : YF → YG, unique up
to homotopy, such that the following diagram commutes for all X ∈ C:

HomHo(C)(X,YF )
f∗ //

TuF
(X)

��

HomHo(C)(X,YG)

TuG
(X)

��
F (X)

T (X)
// G(X)

Proof. We setX = YF . Then T (YF )◦TuF
(YF )(id) yields an element ofG(X).

By representability, we have that TuG
(YF ) is an isomorphism and hence the

element above is of the form TuG
(YF )(f) for a morphism YF → YG, which

is unique up to homotopy. �

Remark 4.13. As discussed in [Ros08], there is a problem with repre-
sentability of morphisms in Theorem 4.9. For compactly generated model
categories, Jardine’s version also yields representability for morphisms.

Therefore, we can always construct classifying spaces, but at the moment,
we can only prove their uniqueness up to weak equivalence for compactly
generated model categories.

4.3. Proof of Homotopy-Continuity. In this paragraph we will prove
that the functor Hpt(−, F ) from Definition 4.1 is homotopy-continuous. Ap-
plying the Brown representability theorem discussed above, we get classify-
ing spaces for fibre sequences and universal fibrations.

First note that Hpt(∗, F ) is the singleton set consisting of the fibre se-
quence F → F → ∗, settling (HC ii).

The next serious thing to do is to show (HC i), i.e. that the functor
Hpt(−, F ) is homotopically meaningful, in the sense that it carries weak
equivalences between simplicial sheaves to isomorphisms of (pointed) sets.
This implies in particular that there is a right derived functor RHpt(−, F ) :
Ho Cop → Set∗.

Proposition 4.14. The functor Hpt(−, F ) sends weak equivalences of sim-
plicial sheaves to bijections of pointed sets.
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Proof. Let f : X → Y be a weak equivalence, and consider f∗ : Hpt(Y, F )→
Hpt(X,F ).

To show f∗ is surjective, let F → E
p
→ X be a fibre sequence with p a

fibration. Consider the following diagram:

E
≃

i //

p

��

Ẽ

p̃

��
X

f

≃ // Y.

Therein, Ẽ is obtained by factoring f ◦ p into a trivial cofibration i and
a fibration p̃. Since both i and f are weak equivalences, this square is a
homotopy pullback. Hence by applying Proposition 4.6 we get f∗p̃ = p.

To see that f∗ is injective, let p1 : F → E1 → Y and p2 : F → E2 →
Y be fibre sequences whose pullbacks are equivalent, i.e. f∗p1 = f∗p2 ∈
Hpt(X,F ). We assume that p1 and p2 are actually fibrations. By properness
and the fact that f is a weak equivalence, we obtain weak equivalences
Ei ×Y X ≃ f∗Ei → Ei. Therefore, the fibre sequences F → f∗Ei → X
and F → Ei → Y are isomorphic in the homotopy category. Since we also
assumed that f∗p1 = f∗p2, we have isomorphisms of fibre sequences in the
homotopy category, which are also equivariant:

E1
≃
−−−→ f∗E1

≃
−−−→ f∗E2

≃
←−−− E2.

Thus p1 and p2 are equivalent fibre sequences. �

The following propositions will prove the two main parts of homotopy-
continuity of the functor Hpt(−, F ), namely the Mayer-Vietoris and the
wedge property. This is the point where we make essential use of the ho-
motopy distributivity. This remarkable property allows to glue together
fibrations defined on a covering of the base. The outcome will not be a
fibration, but we still can determine the homotopy fibre, and therefore by
Proposition 4.6, we know what the associated fibre sequence looks like. This
is also the key argument in the work of Allaud [All66], although there is a
lot more to do if one wants to work with homotopy equivalences of CW-
complexes.

Proposition 4.15 (Mayer-Vietoris Axiom). Let B1
ι1←− B0

ι2−→ B2 be a
diagram of simplicial sheaves. We assume without loss of generality that
ι1 : B0 →֒ B1 is in fact a cofibration, so that the homotopy pushout is given
by the point-set pushout: B := B1 ∪

h
B0
B2 = B1 ∪B0

B2.
Then the induced morphism

Hpt(B1 ∪B0
B2, F ) ։ Hpt(B1, F )×Hpt(B0,F ) H

pt(B2, F )

is surjective.

Proof. What we have to show is the following: assume given two fibre se-
quences F → E1 → B1 and F → E2 → B2, such that the corresponding
pullbacks ι∗1E1 and ι∗2E2 are isomorphic fibre sequences via a given isomor-

phism ρ : ι∗1E1
∼=
−→ ι∗2E2. Then we have to show that there is a fibre sequence

over B inducing them compatibly.
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We will apply Mather’s cube theorem from Corollary 2.16. Since we know
that the pullbacks of the fibre sequences are equivalent, the squares in the
diagram are homotopy pullback squares:

E1

p1

��

ι∗1E1
∼= ι∗2E2

oo //

��

E2

p2

��
B1 B0ι1

oo
ι2

// B2.

The homotopy fibres of the vertical arrows are all weakly equivalent to F .
Then Mather’s cube theorem produces the following fibre sequence:

F → E1 ∪
h
E0
E2

p
−→ B ∼= B1 ∪

h
B0
B2.

Actually, we only get the morphism p, and know that its homotopy fibre
is F . Then we still have to do a fibrant replacement to really get a fibre
sequence with total space E := E1 ∪

h
E0
E2 ∈ H

pt(B,F ).
What is left to show is that pulling back E to Bi yields equivalences

φ : E1
∼=
−→ E and ψ : E2

∼=
−→ E such that over B0 we have φ = ψ ◦ ρ. This

also follows from homotopy distributivity: We assume p has been rectified
to a fibration. Since the squares

Ei //

pi

��

E

p

��
Bi // B

are homotopy pullback squares, the map Ei → E factors through a unique
weak equivalence from Ei to the point-set pullback of E along Bi → B. This
provides the equivalences φ and ψ. All we need to show is that the following
diagram is commutative:

ι∗1E1

ρ

��zzvvvvvvvvv

##H
HH

HH
HH

HH
H

B0 ι∗2E2oo //

ψ

��

E

E ×B B0

ddIIIIIIIIII

;;vvvvvvvvvv

By the universal property of the pullback, this implies that ψ ◦ ρ = φ, since
the morphism ι∗1E1 → E ×B B0 is by definition φ.

The upper left triangle commutes, since ρ was defined over B0. The lower
triangles commute because ψ was defined using the universal property of the
pullback E×BB0. The upper right triangle commutes because E was defined
as the glueing of ι∗1E1 and ι∗2E2 along ρ. Therefore, we get that φ = ψ◦ρ. In
particular, the image of E ∈ Hpt(B,F ) in Hpt(B1, F )×Hpt(B0,F )H

pt(B2, F )
is exactly the class of (E1, E2, ρ) we started with.

Finally, note that the result of glueing two locally trivial fibre sequences
in a homotopy colimit produces again a locally trivial fibre sequence. The
canonical homotopy colimit decomposition reduces this assertion to the case
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of homotopy colimits of simplicial dimension zero representable sheaves,
where it is obvious. �

Proposition 4.16 (Wedge Axiom). Let Bα with α ∈ I be a set of pointed
simplicial sheaves. Then

Hpt(
∨

α

Bα, F )→
∏

α

Hpt(Bα, F ) : E 7→ ι∗α(E)

is a bijection, where ια : Bα →֒
∨
αBα denotes the inclusion. In particular,

Hpt(
∨
αBα, F ) is a set if Hpt(Bα, F ) is a set for every α ∈ I.

Proof. Define E via the following homotopy pushout, where the maps F →
Eα are the ones from the definition of fibre sequence:

∨
α F

//

��

∨
αEα

��
F // E

By homotopy distributivity we find that the following squares are homotopy
pullbacks for all α:

Eα //

��

E

��
Bα //

∨
αBα.

Therefore, the homotopy fibre of
∨
α pα is also F . Rectifying it to a fibre

sequence, we get
∨
αEα ∈ H

pt(
∨
αBα, F ). This proves surjectivity.

Now assume given two fibre sequences E1 and E2 over
∨
αBα. We first

prove the weak equivalence
∨
α ι

∗
αE ≃ E for any fibre sequence E →

∨
αBα.

This follows from distributivity in categories of simplicial sheaves, since E is
isomorphic to the colimit of ι∗αEα. Then one can either use that the wedge
is already the homotopy direct product, or again appeal to the homotopy
distributivity. Then we have the sequence of weak equivalences:

E1 ≃
∨

α

ι∗αE1 ≃
∨

α

ι∗αE2 ≃ E2.

The middle weak equivalence follows from the fact [Jar96, Lemma 13.(3)]
that for a set-indexed collection of weak equivalences fα : Bα → Yα, the mor-
phism

∨
α fα is also a weak equivalence and the assumption that

∏
ι∗αE1 =∏

ι∗αE2 in
∏
αH

pt(Bα, F ).
The set theory statement is then clear, since a set-indexed product of sets

is again a set. �

Theorem 4.17. The functor Hpt(−, F ) is homotopy continuous and there-
fore representable by a space BfF . If the model category of simplicial sheaves
on T is compactly generated, then the space BfF is unique up to weak equiv-
alence.

The universal element uF ∈ H
pt(BfF,F ) corresponds to the universal

fibre sequence of simplicial sheaves with fibre F :

F → EfF → BfF
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We use the notation BfF to distinguish from other possible classifying
spaces we will discuss later on.

Using homotopy distributivity once again, we can construct change-of-
fibre natural transformations, which via Brown representability for mor-
phisms give rise to morphisms between the corresponding classifying spaces.
We state the result without giving the obvious proof.

Proposition 4.18. For any morphism f : F → F ′ of simplicial sheaves,
there is a natural transformation Hpt(−, F ) → Hpt(−, F ′). By Brown rep-
resentability this is representable by a morphism BfF → BfF ′.

Similarly, it is possible to generalize operations on fibrations, cf. [Rud98,
Proposition 1.43] or [May80], to the simplicial sheaf setting.

Corollary 4.19. There are morphisms of classifying spaces associated to
fibrewise smash

Bf (∧) : BfF1 ×B
fF2 → Bf(F1 ∧ F2),

and fibrewise suspension BfF → BfΣF .

5. Second Variant: Bar Construction

In this section, we explain the second approach to the construction of
classifying spaces of fibre sequences. Again, this approach is a direct gener-
alization of results that are known for topological spaces resp. simplicial sets.
The first result in this direction is the work of Stasheff [Sta63] which proves
that fibrations over CW-complexes with a given finite CW-complex as fibre
can be classified by homotopy classes of maps into some CW-complex. In
fact the classifying space is the classifying space of the topological monoid
of homotopy self-equivalences of the fibre. The main idea in this approach
is the construction of an associated principal bundle for a fibration. This
associates to a fibration p : E → B a new fibration Prin(p) : Prin(E)→ B,
whose fibre have the homotopy type of the topological monoid of homotopy
self-equivalences.

A vast generalization of this can be found in [May75]. There, the double
bar construction is used to construct the classifying spaces for fibrations
with given fibre. Moreover, the notion of a category of fibres allows to
classify fibrations with global structures. Again the main point in proving
the classification theorem is a principalization construction which associates
to a fibration a principal bundle.

These results can be translated to simplicial sheaves. One problem that
appears in this setting is that principalization does not work a priori. The
way around this is again the restriction to fibre sequences which are locally
trivial in a given topology. These trivializations indeed allow to translate
the principalization construction.

In the case of CW-complexes, the local triviality condition is no restric-
tion at all: every point has a contractible neighbourhood. For a fibration
over such a contractible neighbourhood, the inclusion of the fibre is a weak
equivalence (in fact a homotopy equivalence if all the spaces in sight are
CW-complexes). This means that there is a morphism (over B) E → F ×B
which is a weak equivalence. This provides the local trivializations in the
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case of CW-complexes. In fact, it allows to construct a morphism from the
associated Čech-complex of a fine enough covering to the classifying space of
the monoid of self-equivalences – for each intersection Ui∩Uj of contractible
neighbourhoods there is a morphism Ui ∩ Uj → hAut•(F ) corresponding to
the composition of the two trivializations over Ui resp. Uj . The cocycle
condition is not satisfied on the nose, but up to homotopy. Therefore, one
obtains a morphism Ui ∩Uj ∩Uk × I → hAut•(X) etc. Since the realization

of the Čech complex is homotopy equivalent to the CW-complex we started
with, we obtain a map in the homotopy category B → B hAut•(F ). This is
a slightly souped up version of the principalization construction, which also
works in the simplicial sheaf setting. Hopefully, it has become clear with
the above discussion that the local triviality condition on the fibre sequences
comes in rather naturally in the bar construction approach.

5.1. Fibre Sequence Functor. We now define the functor which will be
represented. In the case of the bar construction, this functor is the unpointed
analogue of the one defined in Definition 4.1. It associates to an unpointed
simplicial sheaf B the set of all locally trivial fibre sequences over B with
fibre F . Therefore, it does not fix an equivalence between F and p−1(∗).

Definition 5.1. Recall the definition of locally trivial morphism with fibre
F . An equivalence of locally trivial morphisms with fibre F is a diagram in
the homotopy category

E1
α //

  A
AA

AA
AA

A
E2

~~}}
}}

}}
}}

B

where α is an isomorphism. We denote by H(X,F ) the set of locally trivial
morphisms over X with fibre F modulo the above equivalence relation.

Remark 5.2. (i) The analogue of Proposition 4.5 can be proved in com-
plete analogy, we omit the proof.

(ii) In case X is actually pointed, we can obtain the set H(X,F ) by taking
fibre sequences over X modulo the equivalence relation given by ladder
diagrams in the homotopy category

F

β

��

// E1

α

��

// X

id
��

F // E2
// X,

where α and β should be isomorphisms.

5.2. Remarks on Categories of Fibres. In the following, we will not
work in the full generality of categories of fibres. Rather we will only consider
the fibre sequences which are locally trivial from Definition 4.1. However,
we want to make a few remarks on the possible definition of category of
fibres for simplicial sheaves.

The original definition of categories of fibres can be found in [May75]. A
definition of categories of fibres in equivariant topology has been given Waner
[Wan80, Definition 1.1.1] resp. French [Fre03, Definition 3.1] for equivariant
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homotopy theory. These definitions readily generalize to simplicial sheaves.
One should however note that equivariant topology is a presheaf situation
without a Grothendieck topology (at least in the case of finite groups) –
in the full generalization it is therefore necessary to include a localization
condition.

Definition 5.3 (Category of Fibres). Let T be a site. A category of fibres
is a subcategory FT of the following category:

• Objects are morphisms p : X → U of simplicial sheaves, where U is
the constant simplicial sheaf for a representable U ∈ T .
• Morphisms are commutative diagrams

X //

��

X ′

��
U // U ′

Additionally, we require that

(CFi) The map X → U is required to be locally trivial in the T -topology.
(CFii) For a morphism

X //

��

X ′

��
U // U ′

there is a T -covering
⊔
Ui → U ′ such that the induced morphisms

X ×U ′ Ui → X ′ ×U ′ Ui are weak equivalences of simplicial sheaves.

As in the equivariant definitions of categories of fibres one wants to have
a simplicial sheaf F which serves as a model for the fibres: a corresponding
category should contain at least the obvious objects p2 : F × U → U for
U ∈ T , together with the obvious morphisms

F × U1
id×f //

p2

��

F × U2

p2

��
U1

f
// U2

induced from f : U1 → U2 in T .

The notion of Γ-completeness which appears in the cited works on cate-
gories of fibres basically state that the category of fibres should be closed
under fibrant replacements. This is needed since some constructions (like
glueing) yield quasi-fibrations instead of fibrations, and one would like to
replace them by fibrations without losing the property that the fibres are
elements in the category of fibres.

The basic definitions and results concerning categories of fibres and their
principalizations can then be translated from e.g. [Fre03]. As said before, we
will only consider locally trivial fibre sequences with given fibre, as defined
in Definition 4.1. It is easy to check that this definition can be formulated
as a special case of a category of fibres.
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5.3. Homotopy Self-Equivalences. Most important for our studies in
the sequel will be the simplicial monoid of homotopy self-equivalences of a
simplicial sheaf. This is the obvious generalization of the homotopy self-
equivalences of a simplicial set.

We first recall the definition of homotopy self-equivalences of simplicial
sets. For more details on function complexes of simplicial sets, see [GJ99,
Section I.5]. Function complexes in general model categories are constructed
in [DK80]. A general discussion about what is known for the monoids of
homotopy self-equivalences can be found in [Rut97].

Definition 5.4. Let X be a fibrant simplicial set. Then there is a simplicial
set Hom(X,X) whose set of n-simplices is given by

Hom(X,X)n = hom∆opSet(X ×∆n,X).

This is a special case of function complexes of simplicial sets, cf. [GJ99].
By standard facts on function complexes, there is a fibration

Hom(X,X)→ Hom(∗,X) ≃ X,

therefore Hom(X,X) is also a fibrant simplicial set.
The monoid structure can be described as follows: for two maps f, g :

∆n ×X → X, their composition f ◦ g in the monoid Hom(X,X)n is given
by

f ◦ g : ∆n ×X
D×id
−→ ∆n ×∆n ×X

g
−→ ∆n ×X

f
−→ X,

where D : ∆n → ∆n × ∆n is the diagonal morphism on the standard n-
simplex ∆n.

It is obvious that the simplicial subset of morphisms X → X which are
weak equivalences is in fact a simplicial submonoid. The resulting monoid
of homotopy self-equivalences is denoted by hAut•(X).

Note that this monoid is group-like since X is cofibrant and fibrant. In
this case, a weak equivalence f : X → X is a homotopy equivalence and
therefore its class in π0Hom(X,X) has an inverse.

The general definition of homotopy self-equivalences in general model cat-
egory was given by Dwyer and Kan in [DK80]. Their construction yields for
an object X in a model category C a function complex hom(X,X) which is
a simplicial set. For simplicial sheaves, we can additionally use the internal
Hom to obtain a simplicial sheaf of monoids of homotopy self-equivalences.
It is explained in [MV99, Remark 1.1.7, Lemma 1.1.8] that the category of
simplicial sheaves has internal hom-objects.

Definition 5.5. Let T be a site, and let X be a fibrant simplicial sheaf. We
define the sheaf of self-homotopy equivalences, which is a simplicial sheaf
of monoids. By Theorem 2.1, the simplicial sheaves on T form a simplicial
model category, hence for any two simplicial sheaves X,Y there is a sim-
plicial set, the function complex Hom(X,Y ), whose n-simplices are given
by

Hom∆opShv(T )(X ×∆n,X).

We have a contravariant functor

T op → ∆opSet : (U ∈ T ) 7→ Hom∆opShv(T )(X × U,X).
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This functor is representable by a simplicial sheaf which we again denote by
Hom∆opShv(T )(X,X).

We can define a subpresheaf by taking for U ∈ T the subset of those
morphisms Hom∆opShv(T )(X × U,X × U) which are weak equivalences of
simplicial sheaves in ∆opShv(T ). Note that this is indeed a sheaf because
weak equivalences are defined locally: given a covering

⊔
Ui → U and weak

equivalences fi : X × Ui → X × Ui which agree on the intersections, there
is morphism f : U → U which is a weak equivalence if all the fi are weak
equivalences.

The resulting simplicial sheaf of monoids will be denoted by hAut•(X).
The monoid structure is again given by composition as in Definition 5.4.

Note that the simplicial sheaf of monoids hAut•(X) is fibrant if X is.
This is a consequence of the simplicial model structure on simplicial sheaves,
cf. [GJ99, Proposition II.3.2]: the morphisms Hom(X,X) → Hom(∗,X)
and Hom(∗,X) → Hom(∗, ∗) ∼= ∗ induced from the morphism X → ∗ are
fibrations if X is fibrant.

Lemma 5.6. Let X be a fibrant simplicial sheaf on the site T . Then X is
a left hAut•(X) space, i.e. there is an action

hAut•(X)×X → X.

Note that if X is fibrant, then a morphism X → X is a weak equivalence
if and only if the morphism induced on sections f(U) : X(U) → X(U) is a
weak equivalence of simplicial sets for all U ∈ T , cf. [MV99, Lemma I.1.10].
Therefore, hAut•(X)(U) acts on X(U) via homotopy self-equivalences of
simplicial sets.

5.4. The Bar Construction. We repeat the definition and basic proper-
ties of the bar construction following [May75]. Again the setting changes
from topological spaces to simplicial sheaves without major complications,
cf. also [MV99, Example 4.1.11].

Definition 5.7 (Two-sided geometric bar construction). Let G be a sim-
plicial sheaf of monoids on the site T . We assume that the inclusion of
the identity e → G is a cofibration. For the injective model structure, this
is no problem because every monomorphism is a cofibration. Let X and Y
be simplicial sheaves, such that X has a left G-action and Y has a right
G-action.

Then there is a bisimplicial sheaf

Bn,m(Y,G,X) = (Y ×Gn ×X)m.

For an object U of the site T , we have

Bn,m(Y,G,X)(U) = Bn,m(Y (U), G(U),X(U)),

and functoriality of the bar construction for simplicial sets provides the re-
striction maps to turn this into a simplicial sheaf. Similarly, the face and
degeneracy maps are functorial, and hence provide Bn,m(Y,G,X) above with
the structure of bisimplicial sheaf.

The diagonal Bn,n(Y,G,X) is a simplicial sheaf, which we will denote
B(Y,G,X).
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The classifying spaces for simplicial sheaves of monoids can then be ob-
tained as BG = B(∗, G, ∗), and the universal G-bundle is given by the
obvious functoriality:

EG = B(∗, G,G) → B(∗, G, ∗) = BG.

The topology enters via a fibrant replacement: for a simplicial sheaf X,
any morphism X → BG in the homotopy category can be represented up to
homotopy by a morphism X ′ → BG for some suitable trivial local fibration
X ′ → X. The notion of trivial local fibration depends on the topology, as
a trivial local fibration is a morphism of simplicial sheaves which induces a
trivial Kan fibration of simplicial sets on the stalks. The fibrant replacement
may change the global sections of B(Y,G,X), but it does not change the
homotopy types of the stalks, which therefore can be described as the bar
constructions for the simplicial sets p∗Y , p∗G and p∗X.

The following properties of the bar construction for simplicial sheaves are
direct consequences of the corresponding properties for simplicial sets resp.
topological spaces, cf. [May75, Section 7]:

Proposition 5.8. (i) The space B(Y,G,X) is n-connected if G is (n−1)-
connected and X and Y are n-connected.

(ii) If f1 : Y → Y ′, f2 : G→ G′ and f3 : X → X ′ are weak equivalences of
simplicial sheaves, then the morphism f : B(Y,G,X) → B(Y ′, G′,X ′)
is a weak equivalence.

(iii) For (Y,G,X) and (Y ′, G′,X ′) the projections define a natural weak
equivalence

B(Y × Y ′, G×G′,X ×X ′)→ B(Y,G,X) ×B(Y ′, G′,X ′).

(iv) Let f : H → G be a morphism of simplicial sheaves of monoids, and
let k : Z → Y be an equivariant morphism of right G-spaces. Then the
following diagrams are pullbacks:

B(Z,H,X)

p

��

B(k,f,id) // B(Y,G,X)

p

��
B(Z,H, ∗)

B(k,f,id)
// B(Y,G, ∗).

B(Y,G,X)
q //

p

��

B(∗, G,X)

p

��
B(Y,G, ∗)

q
// BG

Proof. For (i), note that n-connectedness means that the homotopy group
sheaves πi(B(Y,G,X)) are trivial for i ≤ n. In particular, this does not
imply that the simplicial sets B(Y,G,X)(U) are n-connected for any U ∈ T .

All four statements are of a local nature, i.e. can be checked on stalks.
The corresponding statements for topological spaces are Propositions 7.1,
7.3, 7.4 and 7.8 of [May75]. �

The following result is a version of [May75, Theorem 7.6, Proposition 7.9]
for simplicial sheaves. It provides necessary fibre sequences for the proof of
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the classification theorem. Note that for any simplicial sheaf of monoids M ,
the monoid operation induces a monoid operation on the sheaf π0M . We
say that M is grouplike if this operation turns π0M into a sheaf of groups.

Theorem 5.9. If G is grouplike, there are fibre sequences of simplicial
sheaves

(i) X → B(Y,G,X)→ B(Y,G, ∗),
(ii) Y → B(Y,G,X)→ B(∗, G,X), and
(iii) G→ Y → B(Y,G, ∗).

Proof. The corresponding statements for simplicial sets resp. topological
spaces can be found as [May75, Theorem 7.6, Proposition 7.9]. The cor-
responding statements are true for simplicial sheaves by Proposition 2.11:
everything that locally (i.e. on stalks) looks like a fibre sequence, really is a
fibre sequence. �

5.5. The Classification Theorem. Now we come to the proof of the clas-
sification theorem. The classifying space is given by the bar construction
B(∗,hAut•(F ), ∗) and the universal fibre sequence is

F → B(∗,hAut•(F ), F )→ B(∗,hAut•(F ), ∗).

It follows from the previous Theorem 5.9 that this is indeed a fibre sequence
of simplicial sheaves.

The following is a version of May’s classification result [May75, Theorem
9.2] for simplicial sheaves.

Theorem 5.10. Let T be a site, F be a fibrant simplicial sheaf on T . Then
there is a natural isomorphism of functors

H(X,F ) ∼= [X,B(∗,hAut•(F ), ∗)],

where the right-hand side denotes the set of morphisms

X → B(∗,hAut•(F ), ∗)

in the homotopy category.

Proof. The universal fibre sequence is

F → B(∗,hAut•(F ), F )→ B(∗,hAut•(F ), ∗).

We can replace this by an honest fibration of fibrant simplicial sheaves
whose fibre is weakly equivalent to F . This can be viewed as an element of
H(B(∗,hAut•(F ), ∗), F ) which we denote by π.

(i) Now we define a natural transformation

Ψ : [X,B(∗,hAut•(F ), ∗)]→ H(X,F ) : f 7→ f∗π

This is well-defined and natural by Proposition 4.6.
(ii) In the other direction, we define

Φ : H(X,F )→ [X,B(∗,hAut•(F ), ∗)]

via the following principalization construction. Let F → E → X be a fibre
sequence in H(X,F ). By assumption, this is locally trivial, i.e. there exists
a covering

⊔
Ui → X such that E ×X Ui ≃ F × Ui.
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By composition of the two trivializations for Ui, Uj , we obtain a weak
equivalence over Ui ×X UJ :

φij : F × (Ui ×X Uj)→ F × (Ui ×X Uj),

which corresponds to a morphism Ui ×X Uj → hAut•(F ).
Then there is a diagram of weak equivalences

F × (Ui ×X Uj ×X Uk)
φij //

φik ++WWWWWWWWWWWWWWWWWWWWW
F × (Ui ×X Uj ×X Uk)

φjk

��
F × (Ui ×X Uj ×X Uk).

This diagram is not commutative but commutative up to homotopy, hence
gives rise to a morphism Ui ×X Uj ×X Uk ×∆1 → hAut•(F ).

In the usual way, we obtain a T -hypercovering U• → X and a morphism
of simplicial sheaves U• → B(∗,hAut•(F ), ∗). This is indeed a morphism
X → B(∗,hAut•(F ), ∗) in the homotopy category because hypercoverings
are locally trivial fibrations.

This is well-defined, since the category of hypercoverings is filtered. For
any two hypercoverings U• and U ′

• and maps U• → B(∗,hAut•(F ), ∗),
there is a refinement V• of both U• and U ′

• and a homotopy between the
two corresponding maps V• → U• → B(∗,hAut•(F ), ∗) and V• → U ′

• →
B(∗,hAut•(F ), ∗). For the basic assertions concerning hypercovers, see
[Fri82].

(iii) The composition Ψ ◦ Φ is the identity on H(X,F ). This means
that a fibre sequence F → E → X is equivalent to f∗π for f : X →
B(∗,hAut•(F ), ∗) the morphism constructed in (ii). By Proposition 4.6, it
suffices to check this for the hypercovering U•. But since the fibre sequence
over U• is explicitly trivialized, the principalization consists of replacing
F × Ui with hAut•(F ) × Ui. The pullback of the universal fibre sequence
along F replaces hAut•(F ) again by F . Hence Ψ ◦Φ is the identity.

(iv) The composition Φ ◦Ψ is the identity on [−, B(∗,hAut•(F ), ∗)]. Any
map in the homotopy category from X to B(∗,hAut•(F ), ∗) can be repre-
sented by a hypercovering U• → X and a morphism U• → B(∗,hAut•(F ), ∗).
This hypercovering trivializes the corresponding fibre sequence, and the as-
sociated principal hAut•(F )-bundle is obtained by replacing F by hAut•(F )
as in (ii). The resulting map f : U• → B(∗,hAut•(F ), ∗) is the map we
started with. �

Remark 5.11. In case X is pointed, the relation between the classifying
spaces constructed in Section 4 and Section 5 is as follows: the global sections
of the sheaf π0 hAut•(F ) act on the set Hpt(X,F ), and the quotient modulo
this action is H(X,F ). We can not state a more general result as there
are simplicial presheaves which can not be pointed because they do not have
global sections.
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