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Abstract. In this paper, we show that rationally trivial torsors un-
der split smooth linear algebraic groups induce fibre sequences in A

1-
homotopy theory. The results are geometric proofs of stabilization re-
sults for unstable Karoubi-Villamayor K-theories and a computation of
the second A

1-homotopy group of the projective line.

Contents

1. Introduction 1
2. Preliminaries and Notation 2
3. Recollections on Rationally Trivial Torsors 4
4. Fibre Sequences From Torsors 8
5. Applications 13
References 19

1. Introduction

A
1-homotopy theory is a relatively new approach to a homotopy theory

for schemes, which was developed by Morel and Voevodsky [MV99]. Al-
though some of the necessary requirements for such a theory are met, i.e.
“classical” homology theories like intersection theory and algebraic K-theory
are representable in the stable homotopy category, few concrete calculations
of homotopy groups of schemes have been produced so far. Among these are
the fundamental group of P

1 resp. the first non-vanishing homotopy group
of A

n \ {0}, cf. [Mor06b], as well as the homotopy groups of Chevalley
groups, cf. [Wen09] which builds essentially on [Mor07].

In classical algebraic topology, fibre sequences are a ubiquitous computa-
tional tool, because they connect the homotopy groups of spaces via long
exact sequences. Although fibrations and fibre sequences are a part of the
model category structure of A

1-homotopy theory, they are hard to under-
stand. The problem is to figure out conditions on a morphism p : E → B
of schemes which make sure that the point-set fibre p−1(b) is weakly equiv-
alent to the homotopy fibre. The general model categorical aspects of this
question have been investigated in [Wen07]. The first examples one could
look at are fibre bundles with smooth algebraic structure groups. Indeed, in
the case of GLn-bundles over a field, the results of [Mor07] show that any
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GLn-bundle induces an A
1-local fibre sequence, provided n ≥ 3. In this pa-

per, we explain how to extend this result to rationally trivial torsors under
split smooth linear algebraic groups satisfying only rather weak conditions.
Breaking down the model category machinery to geometrical assertions, the
main step consists in establishing homotopy invariance for torsors. This has
been done in a variety of cases, and the most powerful result of which we
will make heavy use throughout this paper was given in [CTO92]. This re-
sult states that rationally trivial torsors over affine spaces over smooth local
rings are always extended. In this paper, we use this result to establish the
following, cf. Proposition 4.3:

Theorem 1. Let k be an infinite field, and let G be a smooth connected
split reductive group. Let E → B be a G-torsor, and let R be a local ring
which is smooth and essentially of finite type over k. Then for any base
point p0 : SpecR → B of B for which the induced G-torsor over SpecR is
rationally trivial, there is a fibre sequence of pointed simplicial sets:

SingA1

• G(R) → SingA1

• E(R) → SingA1

• B(R).

This implies in particular the existence of many fibre sequences in the
simplicial model structure, which indeed turn out to be A

1-local. The corre-
sponding long exact sequences for A

1-homotopy groups can be used to show
the following result, cf. Proposition 5.11:

Corollary 1.1. The second homotopy group of the projective line sits in an
exact sequence

0 → coker
(

KV4(C∞, k)) → KMW
4 (k)

)

→ πA1

2 (P1)(k) → KV3(C∞, k) → 0.

Here KVn(C∞, k) denotes the symplectic version of Karoubi-Villamayor K-
theory of k, and KMW

n (k) is the Milnor-Witt K-theory of k.

Moreover, the results can be used to provide “topological” proofs of sta-
bilization results in Karoubi-Villamayor type K-theories, cf. Theorem 5.8.

Structure of the paper: In Section 2, we repeat basic definitions and no-
tations from A

1-homotopy theory. In Section 3, we recall the fundamental
results on rationally trivial torsors over affine spaces. These results are ap-
plied in Section 4 to show that torsors induce fibre sequences. Finally, in
Section 5, some sample computations show how to apply the results.

Acknowledgements: I would like to thank Fabien Morel for some inter-
esting discussions which shaped my understanding of his paper [Mor07].
Thanks are also due to Oliver Röndigs first for asking the question about

πA1

2 (P1), and second for insisting that I write up the answer.

2. Preliminaries and Notation

2.1. Algebraic Groups and Torsors: One of the standard references for
algebraic groups is [Bor91], and we will freely use terminology from the
theory of algebraic groups.

We will be interested in torsors under algebraic groups. A G-torsor E
over a base scheme B is then a B-scheme E → B equipped with a G-action
such that the morphism

G×B E → E ×B E
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is an isomorphism.
A torsor is called locally isotrivial if it is locally trivial in the étale topol-

ogy. A result of Seshadri [Ses63] states that torsors over normal base schemes
are always locally trivial in the étale topology.

A torsor is called rationally trivial if there is a Zariski open subset U
of B such that E ×B U is trivial. We will be mostly interested in torsors
over smooth schemes which are locally trivial in the Nisnevich topology.
The result of Seshadri implies that all rationally trivial torsors over smooth
schemes are locally trivial in the Nisnevich topology.

2.2. A
1-Homotopy Theory: The general definition of A

1-homotopy the-
ory is due to Morel and Voevodsky [MV99], and we give a brief sketch of the
construction. Note that the construction we survey below uses the model
category of simplicial presheaves as opposed to the category of simplicial
sheaves used in [MV99]. However, both constructions yield equivalent ho-
motopy categories, which is proven in [Jar00, Theorem B.6].

Consider the category of simplicial presheaves ∆opPShv(SmS) on the
category of smooth schemes SmS . This category has a model structure
where the cofibrations are monomorphisms, the weak equivalences are those
morphism which induce weak equivalences of simplicial sets on the stalks,
and the fibrations are given by the right lifting property. The topologies
which we will put on SmS are either the Zariski topology, whose coverings
are surjective collections of open subsets, or the Nisnevich topology, which
is generated by elementary distinguished squares of the form

U ×X V //

��

V

p

��
U

� �

i
// X,

where p is an étale morphism and i is an open embedding such that p restricts
to an isomorphism over X \ U . We denote the corresponding homotopy
category by Hos(SmS).

From this model structure on the category of simplicial presheaves, one
proceeds to the A

1-local model structure as follows, cf. [MV99, Section
2.2]. An object X ∈ Hos(SmS) is said to be A

1-local if for any object
Y ∈ Hos(SmS), the morphism

HomHos(SmS)(Y,X) → HomHos(SmS)(Y × A
1,X)

induced by the projection Y × A
1 → Y is a bijection, where the affine line

A
1 is considered as a simplicially constant simplicial presheaf. A morphism

f : X1 → X2 of simplicial presheaves is then called an A
1-weak equivalence

if for any A
1-local object Y the morphism

HomHos(SmS)(X2, Y ) → HomHos(SmS)(X1, Y )

induced by f is a bijection. This allows to define a new model structure on
∆opPShv(SmS) by taking cofibrations to be monomorphisms, weak equiva-
lences to be A

1-weak equivalences, and fibrations to be defined via the right
lifting property. This is proved e.g. in [MV99, Theorem 2.2.5] for simplicial
sheaves – the simplicial presheaf case can be proven analogously.



4 MATTHIAS WENDT

Our use of the term fibre sequence is the same as in Hovey’s definition
[Hov98, Definition 6.2.6], which basically states that a sequence of mor-
phisms F → E → B is a fibre sequence if after replacing p : E → B by
a fibration of fibrant spaces p̃ : Ẽ → B̃, the (homotopy) fibre of p̃ is still
weakly equivalent to F . Fibre sequences in the model structure on sim-
plicial presheaves ∆opPShv(SmS) will be called simplicial fibre sequences,
and fibre sequences in the A

1-local model structure will be called A
1-local

fibre sequences. Equivalently, an A
1-local fibre sequence is a simplicial fi-

bre sequence which is preserved by the A
1-localization functor, cf. [Wen07,

Theorem 4.3.10].

3. Recollections on Rationally Trivial Torsors

In this section, we recall the main geometric input for the construction
of fibre sequences in A

1-homotopy theory: the statement that torsors over
affine spaces (over smooth affine schemes) are always extended. I will provide
an overview of the relevant results of Raghunathan [Rag78, Rag89], Colliot-
Thélène and Ojanguren [CTO92], and a local-global principle from the work
Bass, Connell and Wright [BCW76] originating in work of Quillen [Qui76].

Theorem 3.1. Let k be an infinite field, let R be a ring which is smooth and
essentially of finite type over k, and let G be a split smooth linear algebraic
group. Then any rationally trivial G-torsor over SpecR × A

n is extended
from SpecR.

Remark 3.2. Bootstrapping the proof, the reader can easily imagine that
this result holds for suitably isotropic k-groups G as well.

Moreover, the results can be strengthened for the special groups SLn resp.
Sp2n. In these cases, the result holds for all torsors over schemes which are
smooth and essentially of finite type over an excellent Dedekind ring.

The following subsections contain the components of the proof, which
proceeds in various steps: first, we recall the local-global principle which
allows to reduce the assertion to the case where R is a local ring smooth
and essentially of finite type over k. The proof structure in [CTO92] then
allows to prove the result for such local rings.

3.1. Local-Global Principle: In this section, we discuss the local-global
principle for torsors. The question we consider is the following: Let σ : E →
SpecA[t1, . . . , tn] be a torsor under a linear group G, which is locally in the
Zariski topology extended from SpecA. Is it extended globally?

This kind of result has been stated without proof for smooth linear al-
gebraic groups over a field in [Rag78, Theorem 2]. By the work of Bass,
Connell and Wright, cf. [BCW76], it suffices to check Axiom Q for a suit-
able group-valued functor on the category of k-algebras. The functor which
we are interested in is induced by the automorphisms of a G-torsor on a
k-scheme. Axiom Q for this torsor then allows to check if such a torsor
is extended by localizing at the maximal ideals. In the case of GLn, this
is exactly the way Quillen proved the local-global principle for projective
modules over polynomial rings, cf. [Qui76] and [Lam06].

We first need to introduce the relevant notation. Let R be a commutative
ring, and let G be a functor from R-algebras to groups. For R-algebras A
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and B, and an R-algebra homomorphisms f : A[t] → B : t 7→ s, we denote
g ∈ G(A[t]) by g(t) and its image under G(f) in G(B) by g(s). Applied to
B = A, s ∈ A and A[t] → A[t] : t 7→ st, this defines g(st). We denote

G(A[t], (t)) =
{

g(t) ∈ G(A[t]) | g(0) = I
}

,

which is the kernel of the evaluation at zero morphism G(A[t]) → G(A).

Definition 3.3. Let R be any commutative ring, and let G be a functor
from R-algebras to groups. We say that G satisfies Axiom Q if for any
given R-algebra A, any element s ∈ A and any element u(t) in G(As[t], (t))
there exists an integer n ≥ 0 and an element v(t) ∈ G(A[t], (t)) such that
u(srt) = v(t)s.

The key in the proof of the local-global principle for G-torsors is to check
Axiom Q for automorphism groups of a torsor. The next result is a conse-
quence of the work of Bass, Connell and Wright [BCW76].

Proposition 3.4. Let k be an infinite field, and let G be a split smooth linear
algebraic group over k. Let R be a ring which is smooth and essentially of
finite type over k, and let E be a G-torsor over SpecR× A

n.
If for each maximal ideal m ⊆ R, the torsor Em obtained by restricting E

to SpecRm × A
n is extended, then R is extended.

Proof. The proof is sketched in [BCW76, Remark 4.15]. The category C(L)
would be the category of rationally trivial (or étale locally trivial) G-torsors
over L. The conditions for Quillen induction are met using basic properties
of torsors. Only the sheaf condition needs proof, but this follows from Axiom
Q for automorphism groups of torsors, cf. [BCW76, Lemma 1.12]. �

To prove Theorem 3.1 for all rings R which are smooth and essentially of
finite type over k, it thus suffices to prove it for local rings which are smooth
and essentially of finite type over k.

3.2. Case of Local Rings: The basic idea in settling the case of local
rings is the following structure theorem for local rings which are smooth
and essentially of finite type. This result is due to Lindel [Lin81].

Theorem 3.5. Let A be a local ring which is smooth and essentially of
finite type over a field k. Then there exists a subring B of A and an element
h ∈ B such that:

(i) B is the localization of a polynomial ring k[x1, . . . , xd] at a prime ideal,
and

(ii) Ah+B = A and Ah ∩B = Bh.

Roughly speaking, this result states that any local ring which is smooth
and essentially of finite type is a Nisnevich neighbourhood of a localization
of a polynomial ring.

We now recall the main results of [CTO92], which we will need in the
sequel. The object of interest in [CTO92] are functors F from algebras over
an infinite field to pointed sets satisfying the following properties.

(P1) The functor F commutes with filtered direct limits with flat transition
morphisms.
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(P2) For any extension field L of k, and all n ≥ 0, the following morphism
is an injection:

F (L[t1, . . . , tn]) → F (L(t1, . . . , tn)).

(P3) For all elementary affine Nisnevich squares of the form

A //

��

B

��
Af // Bf ,

the induced morphism

ker
(

F (A) → F (Af )
)

→ ker
(

F (B) → F (Bf )
)

is surjective.

The main example of such functors are H1
ét(−, G) with G a smooth alge-

braic group satisfying the isotropy hypothesis. The main results [CTO92,
Theorem 1.1] states that for such functors F , the morphism

H1
ét(R,G) → H1

ét(Q(R), G)

is injective for all local rings R which are smooth and essentially of finite
type over an infinite field. This means that rationally trivial torsors are
locally trivial.

The method of proof employed in [CTO92] also yields the the following
statement, which is the homotopy invariance we will need in the sequel.

Proposition 3.6. Let k be an infinite field, and let F a functor satisfying
the above conditions (P1), (P2) and (P3). Let R be a local ring which is
smooth and essentially of finite type over k. Then for all n ≥ 0 the morphism

F (R[t1, . . . , tn]) → F (Q(R)(t1, . . . , tn))

is injective.

Proof. The case of a local ring of the form L[t1, . . . , tn]m, where L is an ex-
tension field of k and m is a maximal ideal of the polynomial ring L[t1, . . . , tn]
is exactly [CTO92, Proposition 1.5]. Then the first two reduction steps in
the proof of [CTO92, Theorem 1.1] go through to show the claim. One uses
the structure result of Lindel, cf. Theorem 3.5, which states that a smooth
local ring R is a Nisnevich neighbourhood of a smooth local ring of the
special form above, i.e. there is an elementary distinguished square for the
Nisnevich topology

L[t1, . . . , tn]m //

��

R

��
L[t1, . . . , tn](m,f)

// Rf ,

where L[t1, . . . , tn]m → R is an étale morphism, the element f is a non-
zerodivisor in L[t1, . . . , tn]m, and the morphism

L[t1, . . . , tn]m/(f) → R/(f)

is an isomorphism. But then the following diagram is also a distinguished
square for the Nisnevich topology:
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L[t1, . . . , tn]m[tn+1, . . . , td] //

��

R[tn+1, . . . , td]

��
L[t1, . . . , tn](m,f)[tn+1, . . . , td] // Rf [tn+1, . . . , td].

Property (P3) then implies that the homotopy invariance for L[t1, . . . , tn]m
implies the homotopy invariance for R. �

To prove Theorem 3.1 for local rings smooth and essentially of finite type
over k, it suffices by Proposition 3.6 to prove the properties (P1), (P2), and
(P3) for the functor H1

ét(−, G) for G a split smooth algebraic group. A ra-
tionally trivial torsor over R[t1, . . . , tn] is an element in H1(R[t1, . . . , tn], G),
which is in the kernel of

H1
ét(R[t1, . . . , tn], G) → H1

ét(Q(R)(t1, . . . , tn), G).

By the above, such a torsor has to be trivial, and in particular extended
from R. The only nontrivial property is (P2), which is the subject of the
next subsection.

3.3. Base Case: The base case is provided by the work of Raghunathan
[Rag78], cf. also [CTO92, Section 2]. Most of what is known about torsors
over polynomial rings over fields seems to be due to the work of Raghu-
nathan. We first recall the definition of an acceptable group, cf. [Rag78].

Definition 3.7. An algebraic group G over a field k is called acceptable if
for every extension field L/k, any principal (G ⊗k L)-torsor over SpecL[t]
is extended from SpecL.

Remark 3.8. As stated in Raghunathan [Rag78], the following groups are
known to be acceptable:

(i) all groups over a field of characteristic zero,
(ii) the groups O(n) and SO(n) over a base field of characteristic not 2,
(iii) simply-connected groups of classical type over a field of characteristic

p > 5.
(iv) tori, semisimple groups of inner type An, or spinor groups.

It is also conjectured in [Rag78] that any smooth simply-connected reductive
group is acceptable, where simply-connected means that the derived subgroup
is a simply-connected semisimple group.

The following result is stated as [Rag78, Theorem C].

Proposition 3.9. Let k be a separably closed field, and let G be a connected,
reductive and acceptable group over k. Then all torsors over A

n
k are extended.

The following isotropy hypothesis is taken from [CTO92] resp. [Rag89,
Theorem A]:

(I) Each of the k-simple components of the derived group of
G is isotropic over k.

Then it is possible to prove the following result, cf. [CTO92, Proposition
2.4 and Theorem 2.5]:
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Proposition 3.10. Let k be an infinite field and let G be a smooth, reductive
and connected linear group satisfying the isotropy hypothesis. Denote by ks
a separable closure of k.

Then any torsor over A
n
k which becomes trivial over A

n
ks

and which is
trivial at a k-rational point of A

n
k is trivial. In particular, every rationally

trivial G-torsor on Speck[t1, . . . , tn] is trivial.

4. Fibre Sequences From Torsors

Let E → B be a torsor under a group G, and let R be a ring which is
smooth and essentially of finite type. We want to show that

SingA1

• (G)(R) → SingA1

• (E)(R) → SingA1

• (B)(R)

is a fibre sequence of simplicial sets. We have to consider the pointed situ-
ation, and we have to take care which base point to choose.

In this section we will use the notation

R[∆n] = R[t0, . . . , tn]/(
∑

ti = 1).

Note that this ring is isomorphic to a polynomial ring in n variables.

4.1. Choice of Basepoint: Let SpecR→ B be a morphism such that the
induced torsor E ×B SpecR → SpecR is rationally trivial. Then for any
morphism SpecR[∆n] → B which preserves the base point, the induced
G-torsor over SpecR[∆n] is rationally trivial. The following is a simple
consequence of [CTO92, Theorem 2.5] making precise the above statement,
but see also [Rag78].

Proposition 4.1. Let G be a smoooth connected and reductive group scheme
which is acceptable in the sense of [Rag78], and let E → B be a G-torsor.
Let R be any ring, and let φ : SpecR → B be a morphism such that the
induced torsor Ẽ → SpecR is rationally trivial. Then for any morphism
ψ : SpecR[∆n] → B, such that the diagram

SpecR[∆n]
ψ // B

SpecR

OO

φ

66mmmmmmmmmmmmmmm

is commutative, the torsor over R[∆n] which is induced by ψ is rationally
trivial.

Proof. Since G is acceptable, it follows that for k an algebraically closed field
any G-torsor over k[∆n] is trivial. Moreover, [CTO92, Theorem 2.5] states
that for any field k, any torsor over k[∆n] which is trivial at a k-rational
point and which becomes trivial over k[∆n] is already trivial. Applying the
conjunction of these statements to the quotient field Q(R) of R, we obtain
the result. �

Remark 4.2. Why do we have to take such care to choose the base points?
The reason is that homotopy invariance can only be obtained for rationally
trivial torsors. There are plenty examples, cf. for example [Rag89], of étale
torsors over affine spaces which are not extended, and therefore we can not
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use the arguments in this paper for all base points, only for those for which
the induced torsor is rationally trivial.

4.2. Simplicial Fibre Sequences: In this section, we show that for any
G-torsor E → B and any commutative ring R which is smooth and es-

sentially of finite type over an infinite field, the sequence SingA
1

• (G)(R) →

SingA1

• (E)(R) → SingA1

• (B)(R) is a fibre sequence of simplicial sets, pro-
vided one chooses the base point appropriately. Recall that the group G has
to satisfy the isotropy hypothesis (I). This implies that we also obtain a fibre

sequence of simplicial presheaves SingA
1

• (G) → SingA
1

• (E) → SingA
1

• (B)

Proposition 4.3. Let k be an infinite field, let G be a smooth linear group
scheme satisfying the isotropy hypothesis (I), and let R be a ring which is
smooth and essentially of finite type. Furthermore, let p : E → B be a G-
torsor, and let b : SpecR→ B be a morphism such that the induced G-torsor
over R is trivial. Then the corresponding sequence

SingA1

• (G)(R) → SingA1

• (E)(R) → SingA1

• (B)(R)

is a fibre sequence of simplicial sets. We choose b to be the base point of B,
choose an isomorphism G × SpecR → p−1(b), and choose the base point of
E as the image of 1 ∈ G.

Proof. The proof is structured as follows: in Step (i), we show that the

morphism SingA1

• (E)(R) → SingA1

• (B)(R) is a fibration for any ring R which
is smooth and essentially of finite type over k. We also identify the fibre

as SingA
1

• (G)(R). Then we prove in Step (iii) that the space SingA
1

• (B)(R)

is the quotient of a free action of SingA1

• (G)(R) on SingA1

• (E)(R). Putting
together these statements, we obtain the result, see Step (iv).

(i) We first show that SingA1

• (E)(R) → SingA1

• (B)(R) is a fibration of
simplicial sets. Therefore, consider the following lifting problem:

Λnk //
_�

��

SingA1

• (E)(R)

��

∆n
σ

// SingA1

• (B)(R).

The morphism σ corresponds to a morphism σ : SpecR[∆n] → B, which

again corresponds to a SingA
1

• (G)-torsor σ : Ẽ → SpecR[∆n]. Note that this

SingA1

• (G)-torsor is in fact induced from a G-torsor via change of structure

group along G → SingA1

• (G). The existence of the commutative diagram
implies that the restriction of this torsor to SpecR[Λnk ] →֒ SpecR[∆n] has a
section, and is therefore trivial.

By Proposition 4.1, the induced G-torsor over R[∆n] is induced from is
rationally trivial, and by Theorem 3.1, it is induced from a G-torsor over
R. Therefore, the pullback of σ to R[Λnk ] is also extended from R, and by
the above remark is in fact trivial. This can be visualized by the following
commutative triangle of isomorphisms:
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H1
Nis(R[Λnk ], G)

∼= //

∼= ((RRRRRRRRRRRRR

H1
Nis(R[∆n], G)

∼=
��

H1
Nis(R,G).

The two statements above imply that the torsor σ : Ẽ → SpecR[∆n]
is already trivial. Therefore, it has a section, i.e. we have a morphism

SpecR[∆n] → SingA1

• (E) lifting σ.
The existence of the section implies that the lifting problem can be rewrit-

ten, cf. [GJ99, Corollary V.2.7]:

Λnk //

��

SingA1

• (G)(R) × ∆n

��
∆n

=
// ∆n.

Note that this uses the fact that the preimage of the base point b ∈ B is
isomorphic to G.

The preimage of σ : SpecR[∆n] → B in the set of morphisms τ :
SpecR[∆n] → E is isomorphic to G(R[∆n]), since the set of commutative
triangles

E

p

��
SpecR[∆n]

σ
//

τ

99
t

t
t

t
t

t
t

t
t

t

B

coincides with the set of sections of E′ → SpecR[∆n], which is isomorphic
to G(R[∆n]).

In particular, the section can be chosen such that it agrees with the given

morphism Λnk → SingA
1

• (E)(R). This proves that the morphism

SingA
1

• (p) : SingA
1

• (E)(R) → SingA
1

• (B)(R)

is in fact a fibration with fibre SingA1

• (G).

(ii) It follows now from the previous step that the image of SingA1

• (E)(R)

in SingA
1

• (B)(R) is the quotient of SingA
1

• (E)(R) by the action of the sim-

plicial group SingA1

• (G)(R). The simplices which are not in the image are
points of B over which the G-torsor is not trivial, and which consequently
do not lift to points of E.

We only need to verify that this action is degreewise free, i.e. for any
σ ∈ G(R[∆n]), if σx = x for some x ∈ E(SpecR[∆n]), then σ = I. We can
again consider the trivialization over the simplex p ◦ σ : SpecR[∆n] → B,
since p is equivariant for the trivial action on B, i.e. p◦σ(x) = p(x). Because
we can equivariantly identify the n-simplices in E with G(R[∆n]) equipped
with the multiplication action, the action of G(R[∆n]) on E(SpecR[∆n]) is
free.

(iii) We have shown that the image of SingA1

• (E)(R) in SingA1

• (B)(R) is

the quotient of the simplicial group action of SingA
1

• (G)(R) on SingA
1

• (E)(R),
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and therefore we have the following fibre sequence of simplicial presheaves:

SingA
1

• (G) → SingA
1

• (E) → SingA
1

• (B)

This follows from [GJ99, Corollary V.2.7] and is an assertion similar to the

statements proved in [Mor07, Theorem 12(2)]. In fact, if SingA1

• (B)(R) is
connected or H1

ét(R,G) = 0, we have

SingA1

• (E)(R)/SingA1

• (G)(R) = SingA1

• (B)(R).

�

Corollary 4.4. Under the conditions of Proposition 4.3, the following se-
quence is a fibre sequence of simplicial presheaves on the category of smooth
schemes with any topology finer than the Zariski topology:

SingA1

• (G) → SingA1

• (E) → SingA1

• (B).

Proof. The following result shows that the property of being a fibre sequence
can be checked on points, i.e. is a local one. This can be found in [Wen07,
Proposition 3.1.11].

Let T be a site with enough points, and let the following commutative
diagram X of simplicial presheaves in ∆opPShv(T ) be given:

A //

��

B

f

��
C // D.

This is a homotopy pullback diagram iff for each point p of T , the diagram
p∗(X ) of simplicial sets is a homotopy pullback diagram.

Using this result, it suffices to check that the sequence

x∗ SingA
1

• G→ x∗ SingA
1

• E → x∗ SingA
1

• B

is a fibre sequence of simplicial sets for any point x of the topos SmS with
the Zariski topology. The stalk of a simplicial presheaf at such a point is
given by the sections over local rings of smooth schemes. �

From a principal bundle E with structure group G, we can also construct
further locally trivial morphisms, by glueing in a fibre F which is equipped
with an action ρ : F × G → G of G, yielding a fibre bundle E ×ρ F . We
can then show that the resulting morphisms induce fibre sequences. This
applies e.g. to homogeneous space bundles like projective bundles.

Proposition 4.5. Let k be an infinite field, and let p : E → B be a smooth
morphism which is obtained from a G-torsor E′ → B by change-of-fibre
along an action G×F → F . Assume that the group G satisfies the isotropy
hypothesis (I). Let b ∈ B be a rational point in B. Then the following is a
fibre sequence:

SingA1

• (F ) → SingA1

• (E) → SingA1

• (B).

The base points are chosen as in Proposition 4.3.
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Proof. It again suffices via [Wen07, Proposition 3.1.11] to prove that for any
smooth local ring R,

SingA1

• (G)(R) → SingA1

• (E)(R) → SingA1

• (B)(R)

is a fibre sequence of simplicial sets.
This can be proved via the same argument as [GJ99, Corollary V.2.7].

Replacing the space SingA
1

• (F ) with a fibrant model of SingA
1

• (F ) does not
change the assertion about the fibre sequence above, therefore we can assume

that SingA1

• (F )(R) is a fibrant simplicial set for any R.
Now consider a lifting problem:

Λnk //

��

SingA1

• (E)(R)

��

∆n
σ

// SingA1

• (B)(R).

By the assumption on the group, the G-torsor is trivial over the simplex
σ, and the sequence F → E → B is obtained by change-of-fibre along the

group action G× F → F . Therefore also SingA
1

• (E)(R) → SingA
1

• (B)(R) is
trivial over σ, and the lifting problem above is equivalent to the following
lifting problem:

Λnk //

��

SingA1

• (F )(R) × ∆n

π

��
∆n

=
// ∆n,

where π is the projection away from SingA1

• (F )(R). Since SingA1

• (F )(R) is
fibrant, the lifting problem has a solution. �

4.3. A
1-Locality. In the previous subsection, we showed that G-torsors in-

duce fibre sequences in the simplicial model structure. These fibre sequences
are indeed A

1-local, which is also a consequence of the fact that rationally
trivial torsors over affine spaces are extended, cf. Theorem 3.1. In this sub-
section, we explain this. The main steps are due to Morel in the papers
[Mor06b, Mor07, Mor09].

We first recall the relevant definitions from the theory of classifying spaces.
Let G• be a simplicial sheaf of groups. One can define a simplicial sheaf EG•

on which G• acts freely: the n-simplices are given by

(EG•)n = Gn+1
• ,

and there are the obvious face and degeneracy maps. The classifying space
is obtained taking the quotient BG• = EG•/G•. There is a fibre sequence
of simplicial sheaves

G• → EG• → BG•,

which implies isomorphisms πnG•
∼= πn+1BG•. For a further discussion of

classifying spaces of simplicial sheaves of groups in A
1-homotopy theory, cf.

[MV99].
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We now consider the particular case where we apply the above construc-

tion to the singular resolution SingA1

• G for a split smooth linear algebraic
group G. In this situation, Morel has proved that the classifying space

B SingA
1

• G is A
1-local, cf. [Mor09, Theorem 1.17]. The basic idea of his

result is as follows: by [Mor06b, Theorem 3.46], it suffices to prove A
1-

invariance of the homotopy group sheaves of B SingA
1

• G. The previous iso-

morphisms and the computations in [Wen09] imply this for the sheaves πA1

n

for n ≥ 2. The space B SingA
1

• G is A
1-connected, and πA1

1 B SingA
1

• G has
been computed by Morel [Mor09, Theorem 1.18].

Let us remark that it is also possible to prove A
1-locality of the classifying

space of rationally trivial torsors using the results from the previous section.

In [Mor07], Morel showed that the classifying space of SingA
1

• GLn is A
1-

local. The methods developed there can be extended to deal with isotropic
reductive groups.

Morel’s results on the locality of classifying spaces directly imply the
following result:

Theorem 4.6. Let k be an infinite field, let G be a smooth split linear group.
Let p : E → B be a G-torsor, and let b : Spec k → B be a morphism such
that the induced G-torsor over Speck is trivial. Then there is an A

1-local
fibre sequence

G→ E → B.

The base points are chosen as in Proposition 4.3.

Proof. By Morel’s result, the classifying space B SingA1

• G is A
1-local, hence

the fibre sequence

SingA
1

• G→ E SingA
1

• G→ B SingA
1

• G

is A
1-local. By [Wen07, Proposition 4.3.14], any fibre sequence obtained

by pullback from this universal one is A
1-local. But since we started with

a torsor, the fibre sequence SingA
1

• G → SingA
1

• E → SingA
1

• B is obtained

by pulling back the universal fibre sequence along a morphism SingA1

• B →

B SingA1

• G. This proves the result. �

5. Applications

5.1. Projective Homogeneous Spaces: We first state a simple conse-
quence concerning the A

1-homotopy groups of some projective homogeneous
spaces. If G is a split reductive group, and B is a Borel subgroup, then

B →֒ G→ G/B

is an A
1-fibre sequence. By [Wen09, Proposition 5.6], B has the homotopy

type of a connected group T of multiplicative type. This readily implies the

following statement, which generalizes Morel’s computation of πA
1

1 (P1), cf.
[Mor06b].

Proposition 5.1. Let G be a split, semisimple, simply-connected group, and
let B be a Borel subgroup. Then the following assertions hold for homotopy
groups of G/B:

(i) G/B is A
1-connected.
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(ii) There is an exact sequence

0 → πA1

1 (G) → πA1

1 (G/B) → T → 0,

where T is a group of multiplicative type which is A
1-equivalent to B.

(iii) The canonical morphism G→ G/B induces isomorphisms of homotopy
group sheaves

πA1

n (G)
∼=
→ πA1

n (G/B),

for n ≥ 2.

5.2. Stabilization for KV-theory: In this section, we apply the previous
results to obtain fibre sequences which relate different algebraic groups. The
long exact homotopy sequences for these fibre sequences provide stabilization
theorems for unstable Karoubi-Villamayor K-theories. It turns out that for
the classical groups, the successive quotients are quadrics, hence have the
A

1-homotopy type of spheres – this is a motivic analogue of the stabilization
sequences for orthogonal and unitary groups in classical topology.

The following result has been proved in [Mor07, Theorem 8].

Proposition 5.2. For n ≥ 3, there is an A
1-local fibre sequence

SingA
1

• (SLn) → SingA
1

• (SLn+1) → SingA
1

• (SLn+1/SLn)

and the morphism

SingA1

• (SLn+1/SLn) → SingA1

• (An+1 \ {0})

induced by the projection is a simplicial weak equivalence between A
1-local

spaces.

Using the results from Section 4, we can prove analoguous results for
the other split classical groups. First, we can state a result concerning all
“stabilization sequences”, which is an easy consequence of Proposition 4.3
resp. Theorem 4.6:

Proposition 5.3. Let Φ1 → Φ2 be an inclusion of root systems, and let
G(Φ1) → G(Φ2) be the corresponding homomorphism of Chevalley groups.
Then there is a simplicial fibre sequence

SingA1

• G(Φ1) → SingA1

• G(Φ2) → SingA1

• (G(Φ2)/G(Φ1)).

These fibre sequences are A
1-local if the classifying space B SingA1

• G(Φ1) is
A

1-local.
Note that G(Φ2)/G(Φ1) is a smooth affine variety. The base points are

the images of the identity in G(Φ1).

To obtain stabilization results, we need to show that the homogeneous
space G(Φ2)/G(Φ1) is highly A

1-connected. In the case of the classical
groups, we will see that the homogeneous spaces are quadrics. It was re-
marked in [AD08] that split smooth affine quadrics have the A

1-homotopy
types of motivic spheres. More precisely, let Qn be the quadric defined by
the equation

1 = qn(x) =







∑k
i xixm+i n = 2k

∑k
i xixm+i + x2

2k+1 n = 2k + 1.
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For the stabilization of the symplectic groups, we now have the following
result:

Proposition 5.4. Let k be a field, and let Sp2n →֒ Sp2n+2 be the canonical
inclusion. Then there is an isomorphism

Sp2n+2/Sp2n → Q4n+4.

Proof. We consider A
2n+2 with the standard symplectic form

ω : A
2n+2 × A

2n+2 → A
1 : (v,w) 7→ vt · J · w,

where J is the standard (2n+2)×(2n+2) alternating matrix. The symplectic
group Sp2n+2 is realized as

Sp2n+2(k) =
{

A ∈M2n+2,2n+2(k) | A
⊤ · J · A = J

}

.

It acts on A
2n+2 × A

2n+2 by left multiplication in each factor:

A · (v,w) 7→ (A · v,A · w).

It is easy to see that this action preserves the form ω:

(A · v)⊤ · J · (A · w) = v⊤ · J · w,

hence there is an action of Sp2n+2 on the hypersurface defined by ω = 1.
Fixing a point x in this hypersurface, we have a morphism

π : Sp2n+2 → V (ω − 1) : x 7→ A · x.

The isotropy group of the point x with coordinates v2n+1 = w2n+2 = 1
and vi = wi = 0 otherwise is Sp2n via the standard inclusion. Incidentally,
this point is in V (ω − 1).

We therefore obtain a morphism Sp2n+2/Sp2n → V (ω − 1) which we
want to show is an isomorphism. This morphism is surjective for dimension
reasons: V (ω − 1) has dimension 4n + 3, which is exactly the difference

dimSp2n+2 − dimSp2n = 2(n + 1)2 + n+ 1 − 2n2 − n.

By [Bor91, Proposition 6.7] this morphism is a quotient morphism if it is
separable, i.e. the differential of π induces a surjection on tangent spaces.
For Sp2n+2, this is the Lie algebra sp2n+2, the morphism sp2n → TxV (ω−1)
is basically taking the last two vectors of the matrix. A given pair of vectors
can be obtained as the last two columns of a matrix in sp2n+2 if the trace
is zero. But this is precisely the condition one obtains by computing the
tangent space of V (ω − 1) at the point x – and the differential is surjective.

Therefore, the morphism π : Sp2n+2 7→ V (ω− 1) is a quotient morphism,
and we have an isomorphism Sp2n+2/Sp2n

∼= V (ω − 1). Obviously, the
hypersurface V (ω − 1) is isomorphic to the quadric Q4n+4 by a suitable
change of signs isomorphism, which proves the claim. �

The case for the spin groups is similar. Note that over an algebraically
closed field k, we have k×/(k×)2 = 0 and therefore the morphism Spinn →
SOn is surjective with kernel Z/2Z.
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Proposition 5.5. Let k be a field of characteristic 6= 2. Let qn be the
standard quadratic form on A

n, i.e.

qn(x) =







∑k
i=1 xixm+i n = 2k

∑k
i=1 xixm+i + x2

2k+1 n = 2k + 1.

Let Spin(qn) →֒ Spin(qn+1) be the standard inclusion.
The quotient Spin(qn)/Spin(qn−1) is isomorphic to the quadric Qn which

is the hypersurface defined by qn(x) = 1.

Proof. The standard quadratic forms in the statement of the proposition are
morphisms

qn : A
n → A

1.

Then we have the quadric Qn ⊆ A
n which is the hypersurface defined by

qn(x) = 1. Fixing a vector x ∈ Qn, we can again define a morphism

π : SOn → Qn : A 7→ A · x.

For SO(q2n+1) we fix the vector (0, . . . , 0, 1), the isotropy group is SO(q2n)
acting on the plane x2n+1 = 0. For SO(q2n) we fix the vector (0, . . . , 0, 1, 1),
the isotropy group is SO(q2n+1) acting on the hyperplane xn = x2n where
the induced form is

∑

xixm+i + x2
n.

The corresponding morphism are then surjective again for dimension rea-
sons:

dimSO(q2n+1) − dimSO(q2n) = 2n2 + n− 2n2 + n = 2n

dimSO(q2n+2) − dimSO(q2n+1) = (n+ 1)(2n + 1) − 2n2 − n = 2n+ 1

These are exactly the dimensions of the quadrics considered above.
By [Bor91, Proposition 6.7] this morphism is a quotient morphism if it is

separable, i.e. the differential of π induces a surjection on tangent spaces. As
in the case of the symplectic groups, one can see surjectivity of the tangent
map by using the standard generators of the Lie algebra o2n resp. o2n+1:
in the first case, the differential of π is given by the sum of the last two
columns, in the latter case simply by the last column. Any vector with last
entry zero is the last column of a matrix in o2n+1 and any vector with the
condition v2n−1 + v2n = 0 is the sum of the last two columns of a matrix
in o2n. Therefore, π is a quotient morphism, and therefore we have an
isomorphism

SOn/SOn−1
∼= Qn.

The same statement holds for the groups Spinn acting on A
n via the quotient

map Spinn → SOn. The center acts trivially, and therefore is also contained
in the isotropy groups, which therefore are conjugates of Spinn−1. �

The following propositions describe the low-dimensional homotopy of the

simplicial sets SingA1

• (An \{0})(R) resp. SingA1

• (Qn)(R), where Qn is a odd-
dimensional split quadric. This follows from computations of A

1-homotopy
groups for these spaces, together with the affine Brown-Gersten property for
split semisimple groups.
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Proposition 5.6. Let k be an infinite field. For any regular local ring R

over k, the simplicial set SingA1

• (An\{0})(R) is (n−2)-connected. Moreover,

πn−1(SingA
1

• (An \ {0})(R)) ∼= KMW
n (R),

where KMW
n (R) is the unramified Milnor-Witt K-theory of the regular local

ring R, cf. [Mor06b].
Moreover, there is a simplicial weak equivalence

SingA1

• Q2n → SingA1

• A
n \ {0},

hence the above assertions also hold for SingA1

• (Q2n).

Proof. The first claim is a result of Morel: in [Mor06b], it was shown that
A
n \ {0} is A

1-(n− 2)-connected and that

πA
1

n−1(A
n \ {0}) ∼= KMW

n (R).

By [Mor07], the morphism

SingA1

• (SLn)/SingA1

• (SLn−1) → SingA1

• (An \ {0}

is a weak equivalence of simplicial presheaves, and the simplicial presheaf

SingA1

• (SLn)/SingA1

• (SLn−1)

has the affine Brown-Gersten property. This implies

πn(SingA1

• (An \ {0})(R)) ∼= πA1

n (An \ {0})(R)

for any regular local ring R over k.
For the second claim: as explained in [AD08, Proposition 2.4, Example

2.7], the quadric Q2n is a vector bundle torsor over A
n \ {0}. In particular,

the projection morphism is Zariski locally trivial with fibres affine spaces.
By Proposition 4.5, we obtain a simplicial fibre sequence

SingA1

• A
n−1 → SingA1

• Q2n → SingA1

• A
n \ {0}

whose fibre is simplicially contractible. �

The A
1-homotopy groups of the Chevalley groups have been described

in [Wen09], building on work in [Mor07]. It turns out that these groups
are unstable versions of Karoubi-Villamayor K-theory. The following result
can be found in [Wen09, Theorem 1]. Note that the second isomorphism is
well-known by the work of Rector, cf. also [Jar83].

Proposition 5.7. Let Φ be a root system not equal to A1, let k be an infinite
field, and let R be a ring which is smooth and essentially of finite type over
k. Then there are isomorphisms

πA1

n (G(Φ), I)(R) ∼= πn SingA1

• G(Φ)(R) ∼= KVn+1(Φ, R).

Now we have all the information to prove the stabilization result for un-
stable Karoubi-Villamayor K-theories.

Theorem 5.8. Let R be a regular local ring over an infinite field k.

(i) The homomorphisms

KVm(SLn−1, R) → KVm(SLn, R)

are surjections for m ≤ n− 1 and isomorphisms for m ≤ n− 2.
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(ii) Let n = 2k and assume that char k 6= 2. The homomorphisms

KVm(Spinn−1, R) → KVm(Spinn, R)

are surjections for m ≤ k − 1 and isomorphisms for m ≤ k − 2.
(iii) The homomorphisms

KVm(Sp2n−2, R) → KVm(Sp2n, R)

are surjections for m ≤ 2n− 1 and isomorphisms for m ≤ 2n− 2.

Proof. (i) From Proposition 5.2 and Proposition 4.3, we obtain a fibre se-
quence of simplicial sets

SingA
1

• (SLn−1)(R) → SingA
1

• (SLn)(R) → SingA
1

• (An \ {0})(R).

By Proposition 5.7 and Proposition 5.6, the long exact sequence looks as
follows:

· · · → KVm+1(SLn−1, R) → KVm+1(SLn, R) → πm(SingA1

• (An\{0})(R)) →

→ KVm(SLn−1, R) → KVm(SLn, R) → · · ·

But by Proposition 5.6, the first n− 2 homotopy groups of SingA1

• A
n \ {0}

vanish, inducing isomorphisms KVm(SLn−1, R) → KVm(SLn, R) for m ≤
n−2. Moreover, we have a surjection KVn−1(SLn−1, R) → KVn−1(SLn, R).

In a similar way, (ii) follows from Proposition 5.5 and Proposition 5.6,
and (iii) follows from Proposition 5.4 and Proposition 5.6. �

Remark 5.9. Using the argument in [Jar83, Theorem 3.14], another way
to prove the above stabilization result for all KVn would be to obtain stabi-
lization results for KV1. As far as I know, this has not been done, except
in the case of regular rings via the comparison with classical K1. This is
however not sufficient for Jardine’s argument to go through.

Finally, I would like to note that the fibre sequences obtained above can

be used to give a geometric proof of the A
1-locality of SingA

1

• (SL2) originally
due to Moser.

Corollary 5.10. The simplicial presheaf SingA1

• (SL2) is A
1-local.

Proof. From Proposition 4.3 and Proposition 5.4, we obtain a fibre sequence
of simplicial presheaves

SingA1

• Sp2 → SingA1

• Sp4 → SingA1

• Q7.

By Proposition 5.6, we have a simplicial weak equivalence SingA1

• Q7 →

SingA
1

• A
4 \ {0}, and the latter space is indeed A

1-local, by Proposition 5.2.

The space SingA1

• Sp4 is A
1-local by [Wen09, Theorem 4.10]. Since in the

above fibre sequence, base space and total space are A
1-local, the fibre is

also A
1-local. �
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5.3. The second homotopy group of the projective line: The results

above yield a description of πA1

2 (P1). Recall that P
1 is A

1-connected, and
its fundamental group is described in Proposition 5.1.

Proposition 5.11. Let k be an infinite field. For each n ≥ 1, there is an
exact sequence

KV2n+2(C∞, k) → KMW
2n+2(k) → πA

1

2n (Sp2n)(k) → KV2n+1(C∞, k) → 0.

In particular, the second homotopy group of the projective line sits in an
exact sequence

0 → coker
(

KV4(C∞, k)) → KMW
4 (k)

)

→ πA
1

2 (P1)(k) → KV3(C∞, k) → 0.

Proof. The following fibre sequence can be obtained from Proposition 5.4
and Proposition 4.3:

SingA
1

• (Sp2n) → SingA
1

• (Sp2n+2) → SingA
1

• (A2n+2 \ {0}).

This implies the existence of a long exact homotopy group sequence

→ πA
1

2n+1(Sp2n+2)(k) → πA
1

2n+1(A
2n+2 \ {0})(k) →

→ πA
1

2n (Sp2n)(k) → πA
1

2n (Sp2n+2)(k) → πA
1

2n (A2n+2 \ {0})(k)

By Proposition 5.6, the last term is 0, and we have

πA1

2n+1(A
2n+2 \ {0})(k) ∼= KMW

2n+2(k)

By Theorem 5.8 and Proposition 5.7, the first and fourth terms are isomor-
phic to the respective homotopy groups of the infinite symplectic group.
These groups can be identified with the corresponding Karoubi-Villamayor
K-groups KV•(C∞, k), cf. [Wen09, Theorem 1]. This yields the exact se-
quence claimed in the statement.

The remark about the second homotopy group of the projective line fol-
lows from this using Proposition 5.1. �

Remark 5.12. Homotopy invariance for the (infinite) symplectic group over
an infinite field implies an isomorphism KVn(C∞, k) ∼= πnBSp∞(k)+, hence
the symplectic K-theory defined via a plus construction and the Karoubi-
Villamayor K-theory for the symplectic groups agree.
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