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Abstract. We show that homotopy invariance fails for homology of elemen-
tary groups of rank two over integral domains which are not fields. The proof

is an adaptation of the argument used by Behr to show that rank two groups

are not finitely presentable. We also show that homotopy invariance works
for the Steinberg groups of rank two groups over integral domains with many

units.
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1. Introduction

In this paper, we discuss homotopy invariance for homology of linear groups
of rank two. Here, homotopy invariance refers to the question if the canonical
inclusion G(R) ↪→ G(R[t]) induces an isomorphism on group homology. The groups
we consider here are the Chevalley group G(Φ, R) resp. the elementary subgroup
E(Φ, R) for a root system Φ of rank two.

For SL2, homotopy invariance is known to fail because for any integral domain
R which is not a field there are matrices in SL2(R[t]) which are not elementary,
cf. [KM97]. This in particular implies that SL2(R[t]) typically has a much big-
ger abelianization than SL2(R). On the other hand, it follows from the theory of
trees that the elementary subgroup E2 has homotopy invariance, i.e. for any inte-
gral domain R, the inclusion E2(R) → E2(R[t]) induces an isomorphism in group
homology, cf. [Knu01, Theorem 4.6.7].

In this paper, we show that – similar to the case SL2 – homotopy invariance
fails for groups of rank two. Whereas the problem with SL2 lies in the generators,
the problem shifts to the relations and is exhibited in the second homology group
H2(G(Φ, R[t]),Z). Unlike the case SL2, this problem can not be avoided by passing
to the elementary subgroup. More precisely, we have the following, cf. Theorem 6.3.

Theorem 1. Let R be an integral domain which is not a field. Let Φ be a reduced
and irreducible root system of rank 2. If Φ = B2 assume that −1 is not a square in
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R. Then the kernel of the reduction map

H2(E(Φ, R[t]),Z)→ H2(E(Φ, R),Z)

surjects onto an abelian group of infinite rank. In particular, homotopy invariance
for elementary groups of rank 2 fails.

This provides counterexamples to [Knu01, Theorem 4.6.8]. The condition in case
Φ = B2 is the same appearing in [Beh79]. I expect it not to be necessary, but that
would require a lot more computations with Bruhat decompositions.

It is actually possible to explicitly describe relations which span an infinite rank
submodule of this kernel: any matrix h in SL2(R[t]) which is not in E2(R[t]) but
becomes elementary in G(Φ, R[t]) via a suitable embedding SL2(R[t]) ↪→ G(Φ, R[t])

produces a non-trivial relation. These relations have the simple form h̃σ(h̃)−1 where

h̃ is a chosen lift of h to the corresponding Steinberg group St(Φ, R[t]) and σ is a
suitable automorphism of St(Φ, R[t]).

The argument we use is an adaptation of the technique used by Behr [Beh79]
to show that rank two groups over Fq[t] are not finitely presentable. Informally,
the structure of the argument is the following. First we recall from [KM97] that
the subcomplex SL2(R[t]) · Q of the Bruhat-Tits tree has infinitely many distinct
connected components. Then we embed SL2 into the rank two group G(Φ) such
that there is an automorphism σ of G(Φ) fixing the image of the embedding. This
induces an automorphism of the rank two Bruhat-Tits building whose fixed point
set contains an isomorphic copy of the Bruhat-Tits tree for SL2, in particular
many simplices of this fixed point set are not in the subcomplex E(Φ, R[t]) · Q.
The elementary factorization of a Krstić-McCool matrix hp,k produces a path from
P0 to hp,kP0. The automorphism of the building produces another path which
compose to a loop, corresponding to the relation that there are two elementary
factorizations of hp,k related by the automorphism σ. The resulting loop is obviously
non-contractible because any contraction would produce a path in the intersection
of the fixed set of σ with the subcomplex E(Φ, R[t]) · Q.

I would like to point out the analogy between the behaviour of homotopy invari-
ance for Chevalley groups over smooth rings and finite presentability of Chevalley
groups over Fq[t]. The group SL2(Fq[t]) is not finitely generated. The groups of
rank two over Fq[t] are finitely generated, but are not finitely presentable. For
homotopy invariance, SL2(R[t]) has too many (non-constant) generators. For rank
two groups over smooth rings this problem disappears because of the Suslin-Abe
factorization ([Sus77], [GMV91, Theorem 1.2], and [Abe83]) but these groups do
have too many (non-constant) relations. In view of the finite presentability of
groups of rank at least three, cf. [RS76], it seems natural to expect that homotopy
invariance for H2 holds for all groups of rank at least three over rings which are
smooth and essentially of finite type.

The second main result of the present paper is a reformulation of [Knu01, The-
orem 4.6.8] which still holds. Whereas for SL2 one has to pass to E2, in the rank
two case one has to pass to the Steinberg group to obtain homotopy invariance.
Due to the previous theorem, it is not possible to argue with subcomplexes of the
building. Instead, one has to pass to the universal covering of the subcomplex of
the building. The proof of the following result is given in Theorem 6.4.

Theorem 2. Let R be an integral domain with many units and let Φ be an irre-
ducible and reduced root system of rank 2. Then the canonical inclusion R ↪→ R[t]
induces isomorphisms

H•(St(Φ, R),Z)
∼=−→ H•(St(Φ, R[t]),Z).
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Remark on the non-split case: Theorem 1 is here formulated for the Chevalley
groups. However, the arguments given for Theorem 1 work the same way for non-
split groups of rank two. A non-trivial relation in G(R[t]) can be constructed from
an automorphism σ of G which fixes a rank 1 subgroup Gσ and non-elementary
elements of Gσ ∩E(R[t]). Such elements can be constructed for non-split groups of
type A1 by the same method employed in [KM97].

Structure of the paper: In Section 2 we recall preliminaries and notation for linear
groups and buildings. In Section 3 we recall the work of Krstić-McCool on the SL2

case. In Section 4, we discuss embeddings of the Bruhat-Tits tree in buildings of
rank two. These preliminaries are used in Section 5 to construct many loops in the
subcomplex of the building, and in Section 6 we deduce the consequences for group
homology.

Acknowledgements: In earlier work on the homotopy invariance problem, I
claimed homotopy invariance for rank two groups, based on Knudsons [Knu01,
Theorem 4.6.8]. I would like to thank Aravind Asok and Christian Haesemeyer
for pointing out the problem with Knudson’s injectivity argument. The resulting
discussions started my search for counterexamples to homotopy invariance for SL3.

2. Preliminaries and notation

The rings in this paper are commutative integral domains with multiplicative
unit. For such an integral domain R we denote by Q(R) the field of fractions of R.

For a background on linear algebraic groups, we refer to [Bor91]. For a reduced
and irreducible root system Φ and a commutative ring R, we denote by G(Φ, R)
the R-points of the (simply-connected) Chevalley group G(Φ) associated to Φ. By
construction this comes with a natural choice of maximal torus T . The elements
of the corresponding root subgroups of G(Φ) will be denoted by xα(u) for α ∈ Φ
and u ∈ R. By E(Φ, R) we denote the elementary subgroup of G(Φ, R) which is
generated by xα(u) for α ∈ Φ and u ∈ R. We denote by St(Φ, R) the Steinberg
group associated to Φ and R which is generated by xα(u) for α ∈ Φ and u ∈ R
subject to the usual commutator relations:

xα(u+ v) = xα(u)xα(v), and

[xα(u), xβ(v)] =
∏

i,j>0,iα+jβ∈Φ

xiα+jβ(Nα,β,i,ju
ivj) if α+ β 6= 0.

We denote by B(R) the R-points of the (fixed choice of) Borel subgroup B of
G(Φ) containing the maximal torus T , and by N(R) we denote the R-points of the
normalizer of the maximal torus T . Canonical representatives of the Weyl group
elements σα are given by wα = xα(1)x−α(−1)xα(1).

For an integral domain R, the field Q(R)(t) has a valuation whose uniformizer
is t−1 and we denote by O the corresponding discrete valuation ring. The group
G(Φ, Q(R)(t)) has a BN-pair (B,N(Q(R)(t))), where the group B is given by the
elements G(Φ, Q(R)(t)) which lie in G(Φ,O) and whose reduction modulo t−1 lies
in B(Q(R)). The Weyl group of the BN-pair is denoted by W (Φ). There is an
associated affine (or euclidean) building, for background on the theory of Bruhat-
Tits buildings we refer to [AB08]. The building will typically be denoted by B, the
corresponding group with BN-pair will be clear from the context. The cases we
consider in this paper are root systems of rank ≤ 2. In the case of rank 1, this
is the Bruhat-Tits tree which we will usually denote by T . In the case of rank
2 root systems, the building is a two-dimensional simplicial complex obtained by
gluing copies of the corresponding Coxeter complex of type Ã2, B̃2 resp. G̃2. These
Coxeter complexes are tilings of the euclidean plane by suitable triangles.
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We use the following notation: the standard apartment is denoted by A. The
fundamental chamber C is a 2-simplex, its vertices are called P0, P1 and P2. The
notation Pi follows [Beh79], so P0 is the 0-simplex whose stabilizer is G(Φ,O), and
P0P1 is the long edge in case Φ = B2 and the short edge in case Φ = G2. The
edge connecting Pi and Pj will be denoted by PiPj . Soulé’s fundamental domain,
cf. [Sou79], is denoted by Q. It is the cone generated by the fundamental chamber
C. We do not distinguish in our notation which building Q lies in, this will always
be clear from the context.

Recall also from [AB08] that the simplices of the building can be identified
with cosets of standard parahoric subgroups in G(Φ, Q(R)(t)). The action is then
given by multiplication and the stabilizers are the corresponding conjugates of the
standard parahoric subgroups.

3. Recalling the case SL2

Let R be an integral domain. The following matrices in which k is a positive
integer and p ∈ R is a non-zero non-unit appear in the paper [KM97]:

hp,k =

(
1 + ptk t3k

p3 1− ptk + p2t2k

)
∈ SL2(R[t]).

It is shown in [KM97] that if R is an integral domain which is not a field, then
for a maximal subset P of non-associate non-invertible elements, the matrices hp,k
for p ∈ P span a free subgroup of SL2(R[t]) which maps isomorphically to a free
quotient of SL2(R[t])/U2(R[t]).

From the above it follows that these matrices span an infinite rank submod-
ule of H1(SL2(R[t]),Z) = SL2(R[t])ab. For R a local integral domain we have
SL2(R) = E2(R), and the elementary group E2(R) is perfect if the residue field
of R has at least 5 elements. Therefore H1(SL2(R),Z) = 0, and the above ma-
trices provide counterexamples to homotopy invariance for H1 of SL2. Note that
homotopy invariance for H1 of the elementary group E2 is known for any integral
domain R with many units, cf. [Knu01, Theorem 4.6.7].

The following proposition shows that for an integral domain which is not a field
the subcomplex SL2(R[t]) ·Q of the Bruhat-Tits tree T associated to SL2(Q(R)(t))
has infinitely many distinct connected components. The arguments are reformu-
lations of the proof of [KM97] adapted to the later application in the rank two
case.

Proposition 3.1. Let R be an integral domain.

(i) If p is not invertible and k > 0, then the unique geodesic between P0 and
hp,kP0 is not contained in SL2(R[t]) · Q.

(ii) If the unique geodesic between hp,kP0 and hq,lP0 is contained in SL2(R[t]) ·Q
then k = l and p is associate to q.

(iii) Consider the filtration of the tree T (n) = SL2(Q(R)[t]) · Q(n) obtained from
Q(n) = {x ∈ Q | α(x) ≤ n}, i.e. the first n segments of Q. Then P0 and
hp,kP0 can not be connected in (SL2(R[t]) · Q) ∪ T (k − 1).

In particular, for R not a field and P a maximal subset of non-associate non-
invertible elements, the matrices hp,k provide infinitely many distinct connected
components of SL2(R[t]) · Q.

Proof. First note that geodesics in trees are unique. In fact, the geodesic connecting
two vertices is the unique path without backtracking between these two vertices.
The geodesic between P0 and hp,kP0 resp. between hp,kP0 and hq,lP0 can therefore
be determined by producing a factorization of the matrices hp,k as iterated products
of matrices in SL2(Q(R)) andB2(Q(R)[t]). Note that becauseQ(R)[t] is a euclidean
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ring, we have an equality SL2(Q(R)[t]) = E2(Q(R)[t]), so such a factorization
always exists.

An explicit factorization of hp,k into elementary matrices can be given as follows:

hp,k = e12(p−2tk)e21(p3)e12(p−1t2k − p−2tk).

(i) From the above factorization, we can explicitly see the path from P0 to
hp,kP0 – first k steps in Q, then k steps back in e12(p−2tk)Q, then 2k steps in
e12(p−2tk)e21(p3)Q and finally 2k steps back in hp,kQ.

This path does not contain a backtracking if the edges e12(tkp−2)P01 and hp,kP01

are different from P01. Other backtrackings can not appear because only the points
e12(tkp−2)P0 and hp,kP0 can be conjugate to P0. The previous conditions are
equivalent to e12(tkp−2) 6∈ B(Q(R)) and hp,k 6∈ B(Q(R)), where B(Q(R)) is the
upper triangular matrix group with entries in Q(R). But this is obvious. Therefore,
the above path is a geodesic in the tree, and the distance between P0 and hp,kP0 is
6k. The proof that the path between P0 and hp,kP0 breaks, i.e. there is a segment
of the path not contained in SL2(R[t]) · Q, is deferred to (iii).

(iii) To establish the claim, it suffices to show that e12(tkp−2)Pk−1,k 6∈ SL2(R[t])·
Q where Pk−1,k denotes the k-th edge of Q. Denoting by B the stabilizer of Pk−1,k,
this is equivalent to

e12(tkp−2) ·B(k − 1) ∩ SL2(R[t]) ·B(k − 1) = ∅.

A matrix in e12(tkp−2) has the form(
a1 + c1t

kp−2 b1 + d1t
kp−2

c1 d1

)
with deg a1 = deg d1 = 0, deg c1 ≤ −k and deg b1 ≤ k−1. This matrix is contained
in SL2(R[t])B(k − 1) if there exist a2, b2, c2, d2 with deg a2 = deg d2 = 0, deg c2 ≤
−k and deg b2 ≤ k − 1 such that(

a1 + c1t
kp−2 b1 + d1t

kp−2

c1 d1

)(
a2 b2
c2 d2

)
=(

(c2d1 + a2c1)tkp−2 + b1c2 + a1a2 (d1d2 + b2c1)tkp−2 + b1d2 + a1b2
c2d1 + a2c1 d1d2 + b2c1

)
is contained in SL2(R[t]). But because of the degree bounds on bi, a1 and d2, we
have deg(b1d2 +a1b2) ≤ k−1, in particular (d1d2 +b2c1)p−2tk ∈ R[t]. Again for de-
gree reasons, deg b2c1 ≤ −1, therefore the coefficient of tk is in fact d1(0)d2(0)p−2 ∈
R where by di(0) we denote the corresponding constant coefficients. Reduction
modulo t−1 shows that d1(0) and d2(0) have to be invertible elements of R, there-
fore p has to be invertible as well. This contradicts the assumption and shows the
claim. Note that the same argument shows e12(tkp−2)Pi−1,i 6∈ SL2(R[t]) · Q for
any 1 ≤ i ≤ k.

(ii) Probably, a similar argument also proves that the path from hp,kP0 to hq,lP0

has to break unless k = l and p and q are associate. However, we deduce this
fact from the corresponding result of Krstić-McCool: the quotient of the Bruhat-
Tits tree modulo the SL2(R[t])-action is homotopy equivalent to the quotient T/H
in [KM97] – a homotopy equivalence is given by contracting Soulé’s fundamental
domain to the fundamental chamber. Under this homotopy equivalence, it is clear
that the path connecting hp,kP0 and hq,lP0 is mapped to the loop in T/H consisting

of the edges eq,l, (e′q,l)
−1, e′p,k and e−1

p,k. By the assertions (1) and (2) in [KM97],

this loop is not contractible in T/H. Therefore, the path connecting hp,kP0 and
hq,lP0 can not be contained in SL2(R[t]) · Q. In particular, we get infinitely many
distinct connected components in SL2(R[t]) · Q. �
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Remark 3.2. Alternatively, the path in T from P0 to hp,kP0 can be obtained from
the Bruhat-decomposition

hp,k =

(
1 0

t−3k − pt−2k + p2t−k 1

)(
0 t3k

−t−3k 0

)(
1 0

t−3k + pt−2k 1

)
.

In particular, we see that the path has length 6k and lives in the apartment gA
where g = e21(t−3k − pt−2k + p2t−k). However, the factorizations provided in the
proof above are better adapted to showing that there is no path from P0 to hp,kP0

defined over R[t].

4. The Bruhat-Tits building for rank two groups

We recall several pieces of information on Bruhat-Tits buildings of rank two from
[Beh79] which we will use in the proof. First, we need a suitable set of generators
of E(Φ, R[t]), cf. [Beh79]. We use the notation of Behr.

Proposition 4.1. We define a set of generators of E(Φ, R[t]) which will be denoted
by Γ. We denote by Γi, i = 0, 1, 2, 3 the stabilizer of Pi in E(Φ, R[t]). The point
P3 appears in the case G2 and is the point wα0

P0 for α0 the longest root.

(i) In the cases Φ = A2 and Φ = B2, the group E(Φ, R[t]) is generated by Γ =
Γ0 ∪ (Γ1 ∩ Γ2).

(ii) In the case Φ = G2, the group E(Φ, R[t]) is generated by Γ = Γ0 ∪ Γ3.

Definition 4.2. We define automorphisms of G(Φ) which will be denoted by σ in
the sequel.

(i) In the case Φ = A2, an automorphism of SL3 is given by wα 7→ wβ, wβ 7→ w−1
α

and xα+β(u) 7→ xα+β(u). This is the diagram automorphism (i.e. taking the
transpose inverse) followed by conjugation with wα+β.

(ii) In the case Φ = B2, we take σ to be the inner automorphism given by conjuga-
tion with wβ which fixes x2α+β and maps wα 7→ w−1

α+β and xα(1) 7→ xα+β(−1).

(iii) In the case Φ = G2, we take σ to be the inner automorphism given by conju-
gation with wα which leaves x3α+2β invariant.

Definition 4.3. We now define an embedding of SL2 into G(Φ) which will be
denoted by ι in the sequel.

(i) In the case Φ = A2, we embed SL2 as subgroup corresponding to the root
α+ β.

(ii) In the case Φ = B2, we embed SL2 as long root subgroup corresponding to the
root 2α+ β.

(iii) In the case Φ = G2, we embed SL2 as long root subgroup corresponding to
3α+ 2β.

It is obvious from the above definitions that the automorphism σ fixes the image
of the embedding ι.

Remark 4.4. (i) In the case Φ = A2 the fixed set is exactly the image of ι, as
can be seen by the Bruhat decomposition: the automorphism σ fixes the Borel
B, not pointwise but as a subgroup. Therefore σ(BwB) = Bσ(w)B, hence any
element fixed by σ must lie in a double coset of the form BwB with w = σ(w).
The only double cosets with this property are B and Bwα+βB which form the
Bruhat decomposition of the image of ι.

(ii) In the other two cases B2 and G2, the fixed point group is strictly larger: ob-
viously, conjugation with wα fixes wα. In fact, it fixes a larger subgroup of
the SL2 copy generated by xα and x−α. Moreover, the matrix wα is diago-
nalizable if and only if −1 is a square in R. In this case, for any matrix g
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diagonalizing wα, the whole sector gQ is fixed by wα because wα is contained
in the stabilizer gBg−1 of Q.

The automorphism σ induces an automorphism of the building. On the standard
apartment, this automorphism induces reflection along a line. The intersection of
this line with Q is a half-line Qσ. In case A2, this half-line is the symmetry axis of
the cone Q, in the other two cases B2 and G2 the half-line is the ray generated by
the short edge of the fundamental chamber C.

Proposition 4.5. The fixed point set of the automorphism of the building contains
an isomorphic copy of the tree T , and

(E(Φ, R[t]) · Q) ∩ T = (SL2(R[t]) ∩ E(Φ, R[t])) · (Q∩ T ).

Proof. There is a morphism from the tree T to the two-dimensional building B
associated to G(Φ, Q(R)(t)) given as follows. We denote the fundamental domain
of SL2(Q(R)[t]) on the tree T by Q′ and the fundamental domain for G(Φ, Q(R)[t])
on B by Q. Then we identify Q′ with the half-line Qσ via an isomorphism also
denoted ι. Then the inclusion ι : SL2(Q(R)[t]) ↪→ G(Φ, Q(R)[t]) induces a map
from T to B by mapping the point gy ∈ T to the point ι(g)ι(y).

The inclusion ⊇ is clear: a point in (SL2(R[t]) ∩ E(Φ, R[t])) · (Q ∩ T ) has the
form gy for y ∈ Q ∩ T and g ∈ SL2(R[t]) ∩ E(Φ, R[t]). In particular g and y are
fixed by σ, so is gy, hence the image of T is contained in the fixed set.

Now we need to show that the map T → B is injective. Assume there exist
vertices P and Q which are distinct in T and are identified in B. Because the em-
bedding is equivariant for the inclusion of SL2(Q(R)(t)) into E(Φ, Q(R)(t)) we can
assume without loss of generality that P = P0. Also, there exists g ∈ SL2(Q(R)(t))
such that Q = gP0 or Q = gP1. Because the actions preserve types, only the first
case is possible. From a Bruhat decomposition of g we can determine the distance
between P0 and gP0 in the tree. But a Bruhat decomposition for g in SL2(Q(R)(t))
also provides a Bruhat decomposition for ι(g) in E(Φ, Q(R)(t)) with the correspond-
ing Weyl group element. Therefore, if the distance between P and Q is non-zero in
the tree T , then it remains non-zero in B. In fact, we obtain an isometric embedding
of T into B if we metrize Q′ via the identification with Qσ.

Finally, the nontrivial inclusion ⊆ in the statement. Let x ∈ (E(Φ, R[t]) ·Q)∩T .
From x ∈ E(Φ, R[t]) ·Q we conclude that x = gy for g ∈ E(Φ, R[t]) and y ∈ Q, and
from x ∈ T we conclude x = g′y′ with g′ ∈ SL2(Q(R)[t]) and y′ ∈ Q ∩ T . Since Q
is a fundamental domain, it follows that y = y′. So if we denote by P the stabilizer
of y, then g′P contains g. But there exists a 2-simplex z ∈ E(Φ, R[t]) containing
y. In particular, we can assume that P is the stabilizer of a 2-simplex in Q and
g′P contains a matrix g ∈ E(Φ, R[t]). Since g and g′ are both in E(Φ, Q(R)[t]),
we can even replace P by P ∩ E(Φ, Q(R)[t]) which is an extension of the Borel of
E(Φ, Q(R)) by a unipotent group with entries in Q(R)[t]. But the finitely many
denominators can be cleared using the torus action, so we can write an element p ∈
P ∩E(Φ, Q(R)[t]) as product p = p1p2 with p1 ∈ B(Φ, Q(R)) and p2 ∈ U+(Φ, R[t]),
in the latter U+ denotes the unipotent radical of the Borel. Summing up, we can
assume that g′B(Q(R)) contains a matrix g ∈ E(Φ, R[t]), i.e.

g ∈ E(Φ, R[t]) ∩ SL2(Q(R)[t]) ·B(Q(R)) = ι(SL2(R[t])) ·B(R).

Therefore, we can change g up to a matrix in B(R) to a matrix in ι(SL2(R[t])).
This establishes the claim. �

5. Nontrivial loops and relations

We now define loops in E(Φ, R[t]) · Q associated to Krstić-McCool matrices. As
in Behr’s argument, the relation is given by two different elementary factorizations
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of

hp,k =

(
1 + ptk t3k

p3 1− ptk + p2t2k

)
∈ SL2(R[t]).

We use the homomorphism ι : SL2(R[t]) → G(Φ, R[t]) from Definition 4.3 and
denote the image of hp,k in G(Φ, R[t]) again by hp,k. The next proposition provides
elementary factorizations of hp,k showing that hp,k ∈ E(Φ, R[t]).

Proposition 5.1. (i) Let Φ = A2. Then

hp,k = x−β(p2)xα(tk)x−α−β(−p)x−α(p+ tk)xα(p)xα+β(tk)

x−α−β(p)x−α(−tk)xα(−p− tk)xα+β(−tk)xβ(−t2k)x−α(−p).
(ii) Let Φ = B2. Then

hp,k = x−α−β(−p2)x−β(−p2tk − p)xα(−tk)x−α(p)xβ(tk)x−β(p)

xα(tk)x−α(−p)xα+β(t2k)xβ(−pt2k − tk).

(iii) Let Φ = G2. Then

hp,k = x−β(p2)x3α+β(tk)x−3α−2β(−p)x−3α−β(p+ tk)x3α+β(p)x3α+2β(tk)

x−3α−2β(p)x−3α−β(−tk)x3α+β(−p− tk)x3α+2β(−tk)xβ(−t2k)x−3α−β(−p).

Proof. Just do the matrix multiplication to verify (i) and (ii). The assertion (i)
can be obtained by the factorization algorithm of Park and Woodburn, cf. [PW95].
The assertion (ii) is basically the proof from [BMS67, Section 13] of the Mennicke-
symbol equality [

tk

1 + ptk

]{
tk

1 + ptk

}
=

{
t3k

1 + ptk

}
For (iii) we only rewrite (i) by replacing α 7→ 3α+β (and hence α+β 7→ 3α+2β). �

For a local ring R which is smooth and essentially finite type over a field, the ex-
istence of such matrix factorizations is clear from the Suslin-Abe type factorization
G(Φ, R[t]) = G(Φ, R)E(Φ, R[t]). However, we chose to write some down explicitly.

Now we rewrite these elementary factorizations as follows:

(i) In case Φ = A2, we replace occurrences of xα(tk) by wβxα+β(tk)w−1
β and

occurrences of xβ(tk) by w−1
α xα+β(tk)wα, respectively. Then we apply Behr’s

method from [Beh79] to write xα+β(tk) as product of elements w±1
α , w±1

β and

xα+β(t)±1 using inductively the commutator formula

xα+β(tm) = [w−1
β xα+β(−t)wβ , w−1

α xα+β(tm−1)wα].

This produces a new factorization of hp,k which only uses constant matrices
and xα+β(±t).

(ii) In case Φ = B2, we use

xα+β(tn) = [xα(1), xβ(tn)]x2α+β(tn)−1

xα(tn) = w2α+βxα+β(tn)w−1
2α+β

to replace any occurrences of short root elements with t-powers by constants
or long-root elements. We can restrict to use the long root element x2α+β by
the formula

xβ(tn) = wα+βx−2α−β(−tn)w−1
α+β .

Then we can inductively use Behr’s formula

x2α+β(tm) = [wβx2α+β(t)[wαx2α+β(−t)w−1
α , xα(1)]w−1

β , wαx2α+β(−tm−2)w−1
α ]

x2α+β(tm−1)[wαx2α+β(−tm−1)w−1
α , xα(1)]

to obtain an elementary factorization of hp,k which only uses constant matrices
and x2α+β(±t).
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(iii) In case Φ = G2, we first replace occurrences of x3α+β(tk) by wβx3α+2β(tk)w−1
β

and occurrences of xβ(tk) by w−1
3α+βx3α+2β(tk)w3α+β . Then we use the com-

mutator formula

x3α+2β(tm) = [w−1
β x3α+2β(−t)wβ , w−1

3α+βx3α+2β(tm−1)w3α+β ]

to produce a factorization of hp,k which only uses constant matrices and
x3α+2β(±t).

Now we associate paths to these factorizations, this is the construction from
[Beh79]. In each case, we have a factorization hp,k = e1 · · · en where ei is in the set
of generators exhibited in Proposition 4.1. Since these generators are in stabilizer
subgroups, each ei stabilizes an end-point of the edge P0P in the building, where
P = P1 or P = P2 in the case A2, P = P2 in case B2, and P = P1 in case G2.
Therefore, to the word e1 · · · en we associate the path

P0P, e1(P0P ), e1e2(P0P ), . . . , e1 · · · en(P0P ).

For the above elementary factorizations of hp,k, we denote the path obtained
by this construction by Hp,k. This path connects the two vertices P0 and hp,kP0.
Looking at Proposition 5.1 and the fact that the Behr factorizations of xα(tm) are
defined over Z, we have the following obvious proposition.

Proposition 5.2. The factorizations constructed above are defined over E(Φ, R[t]),
therefore the paths Hp,k are contained in E(Φ, R[t]) · Q.

Now we are ready to construct loops associated to the Krstić-McCool matri-
ces hp,k. We consider the automorphism σ of the group G(Φ, R[t]) resp. the
building defined in Definition 4.2. This automorphism fixes the embedded copy
of SL2(R[t]), so it fixes hp,k. Note also that this automorphism preserves the sub-
complex E(Φ, R[t]) · Q. If we denote by hp,k = e1 · · · en the above elementary
factorizations, the application of σ produces a new factorization σ(hp,k) = hp,k =
σ(e1) · · ·σ(en). Applying the automorphism to the path

Hp,k = P0P, e1(P0P ), e1e2(P0P ), . . . , e1 · · · en(P0P ).

yields a new path, where we denote Pσ = σ(P ):

σ(Hp,k) = P0Pσ, σ(e1)(P0Pσ), σ(e1)σ(e2)(P0Pσ), . . . , σ(e1) · · ·σ(en)(P0Pσ).

We compose the two paths Hp,k and σ(Hp,k) and obtain a loop denoted by Lp,k
this is a path associated to the relation e1 · · · en = σ(e1) · · ·σ(en) which could also

be written as h̃p,kσ(h̃p,k)−1 = 1.
We now use these loops Lp,k to show that the subcomplex E(Φ, R[t]) · Q has a

quite big fundamental group. First of all, we show that the fundamental group of
this complex is free. Its non-triviality will be established in the next proposition.

Proposition 5.3. We denote X = E(Φ, R[t]) · Q and π = π1(X,P0). The funda-
mental group π of X is free and X has the weak homotopy type of Bπ.

Proof. First note that by definition E(Φ, R[t]) is generated by xα(u) for α ∈ Φ and
u ∈ R[t]. Using wαx−α(u)w−1

α = xα(−u) the group E(Φ, R[t]) can be generated
by constant matrices and xα(u) for α ∈ Φ+ and u ∈ R[t]. In particular, E(Φ, R[t])
is generated by stabilizers of vertices of Q. This implies that X = E(Φ, R[t]) · Q
is connected. In particular, π = π1(X,P0) does not depend on the choice of base
point.

We next show that X is aspherical, i.e. πn(X) = 0 for n ≥ 2. Note that the
simplicial complex X considered as a simplicial set is obviously not fibrant: there
are lots of Λ2

i -configurations which can not be extended to triangles. However,
any homotopy class of a map Sn = ∆n/∂∆n → Ex∞(X) is already represented
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by a morphism S → X where S is a suitable subdivision of Sn. The Bruhat-Tits
building is two-dimensional and contractible, so the composition of S → X with
the inclusion of X as subcomplex of the building factors through D → X where
D is a suitable subdivision of the two-simplex ∆2. Therefore, any homotopy class
Sn → Ex∞(X) is null-homotopic for n ≥ 2. This shows that X is aspherical, in
particular X is weakly equivalent to Bπ.

It remains to show that π is free. For this, it suffices to show that Hi(X,Z) =
Hi(π,Z) = 0 for n ≥ 2, by a theorem of Swan [Swa69]. This is done as in [Knu01,
Theorem 4.6.8]: we consider the inclusion of X into the Bruhat-Tits building B and
the associated long exact sequence for relative homology

· · · → Hn+1(B, X)→ Hn(X)→ Hn(B)→ Hn(B, X)→ · · ·
Since all complexes involved are two-dimensional, Hi(X) = 0 for i ≥ 3 and
H3(B, X) = 0. Contractibility of the building implies H2(B) and hence H2(X) = 0.
Therefore, π is a free group. �

Proposition 5.4. Let R be an integral domain, let Φ be an irreducible and reduced
root system of rank two, and denote X = E(Φ, R[t]) · Q and π = π1(X). If Φ = B2

assume that −1 is not a square in R.
Assume R is not a field. For p not invertible and k ≥ 1, the loops Lp,k are not

contractible in X, in particular the complex X is not simply-connected. Moreover,
the abelianization of π has infinite Z-rank.

Proof. First some preparatory remarks: note that Proposition 3.1, part (i), implies
that hp,kP0 and P0 are in different connected components of SL2(R[t]) · Q. By the
elementary factorizations in Proposition 5.1, we have

hp,kP0 ∈ (SL2(R[t]) ∩ E(Φ, R[t])) · (Q∩ T ),

and by Proposition 4.5, hp,kP0 and P0 lie in different connected components of
(E(Φ, R[t]) · Q) ∩ T . Note also that the automorphism σ fixes not only the points
P0 and hp,kP0 but also the geodesic line joining them. Here we take the geodesic line
in the building, which lies entirely inside the embedded tree T . We conclude that
there is a segment S of this geodesic line which is not contained in the subcomplex
E(Φ, R[t]) · Q.

Now we recall the non-contractibility arguments from [Beh79].

(i) In the case Φ = A2, there is a whole triangle ∆ containing this geodesic
segment S as fixed set of a reflection. The building can be contracted along
geodesic lines to the barycentre of ∆. We use this retraction to retract the loop
Lp,k onto ∂∆ inside the building. We already know the geodesic between P0

and hp,kP0 runs through the barycentre of ∆. Therefore, the above retraction
maps P0 and hp,kP0 to the opposite ends of the segment S. The path Hp,k

retracts to a path on the boundary of the triangle joining the opposite ends of
the segment, and σ(Hp,k) is the corresponding symmetric path. So the image
of Lp,k is not contractible in ∂∆, so Lp,k is not contractible in E(Φ, R[t]) · Q.

(ii) In the case Φ = B2, any triangle in the building containing the segment S
as a side is not contained in the subcomplex E(Φ, R[t]) · Q. The building
can be contracted along geodesics to the midpoint of the segment S and this
contraction induces a retraction from the complement of the open star of S
in the building onto the link of S. We know the geodesic between P0 and
hp,kP0 runs through the midpoint of S, therefore the above retraction maps
P0 and hp,kP0 to opposite ends of S. It then suffices to show that the image
of the path Hp,k is not fixed under the action of wβ . Assume it is fixed. Then
wβ must fix a whole two-simplex in the building, which is equivalent to wβ
being diagonalizable. This is the case if and only if −1 is a square in R. If
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−1 is not a square, there is no two-simplex fixed by wβ , so Hp,k retracts onto
a non-contractible loop in the link of S.

(iii) In the case Φ = G2, we use the embedding of E(A2, R[t]) into E(G2, R[t]) given
by the inclusion of the root system A2 into G2 as long roots. This induces a
morphism of the corresponding buildings. Note that the construction of the
loop Lp,k in the case G2 given in Proposition 5.1 was exactly induced from
the A2 situation. Therefore, the loop Lp,k lies in the image of the building
for A2. The image of Soulé’s fundamental domain Q for A2 is then the union
of the fundamental domain Q′ for G2 and wαQ′. In particular the outer
automorphism of A2 becomes conjugation with wα in G2. By Proposition 4.5,
the triangle which was used for establishing non-contractibility in case A2 is
also not contained in the subcomplex E(G2, R[t])·Q′. Therefore, the argument
in (i) shows that the loop Lp,k is not contractible. Note that the case G2

differs from Behr’s argument and uses a reduction to A2 in order to avoid the
arithmetic assumption that −1 is not a square.

The same argument shows that Lp,k and Lq,l are not homotopic unless p and q are
associate and k = l using part (ii) of Proposition 3.1. Instead of the loop Lp,k, we

now use L−1
p,kLq,l. Then we apply the above retract argument to any segment of the

geodesic connecting hp,kP0 and hq,lP0 and not lying in E(Φ, R[t]) · Q, which shows

that L−1
p,kLq,l is not contractible, or equivalently, Lp,k and Lq,l are not homotopic.

Now we discuss the abelianization H1 of π. By Proposition 5.3, π is a free
group, so H1 is a free abelian group. We use the retract argument again – if
L is a commutator, its class in π1(∂∆) (i.e. the winding number of L around
the barycentre of ∆) is trivial for any triangle ∆. Assume that H1 has a finite
basis L1, . . . , Ln. For all but finitely many triangles ∆ the winding numbers of Li
around ∆ are zero, the same then holds for linear combinations of Li. This follows
since in a building of dimension two, a loop has (up to a suitable two-dimensional
notion of backtracking) a unique contraction which moreover is compact. But from
part (iii) of Proposition 3.1 we obtain infinitely many distinct triangles ∆p,k and
corresponding loops Lp,k such that the winding number of Lp,k around ∆p,k is
non-trivial. This contradicts the existence of a finite basis. �

Remark 5.5. It seems quite likely that the assumption −1 not a square in case
B2 is unnecessary. From the proof we see, however, that this would require more
information on the retraction of the path Hp,k onto the link of the segment S.
This could be obtained by computing geodesics from the vertices of the path to the
midpoint of S, which in turn can be read off from a Bruhat-decomposition of the
partial products of the elementary factorization of hp,k.

We denote by Ẽ(Φ, R[t]) the amalgam of the stabilizers of vertices of Q. Recall
from [Sou79, Theorem 2] that there is an exact sequence

π1(X,x0)→ Ẽ(Φ, R[t])→ E(Φ, R[t])→ π0(X)→ 0.

As in the proof of Proposition 5.3, E(Φ, R[t]) is generated by stabilizers, so X is
connected. Moreover, the fundamental domain Q is simply-connected and each
complex gQ ∩ Q, g ∈ E(Φ, R[t]), is connected or empty, because Q is convex and
E(Φ, R[t]) acts by isometries. Therefore, [Sou79, Theorem 2] implies that we have
an extension of groups

1→ π1(X)→ Ẽ(Φ, R[t])→ E(Φ, R[t])→ 1.

Proposition 5.6. With the above notation, the assignment

x̃α(u) 7→
{

xα(u) α ∈ Φ+

wαxα(−u)w−1
α α ∈ Φ−



12 MATTHIAS WENDT

extends to a surjective group homomorphism φ : St(Φ, R[t])→ Ẽ(Φ, R[t]).

Proof. It suffices to show that the commutator formulas hold in Ẽ(Φ, R[t]). Sur-

jectivity is then clear since all generators of Ẽ(Φ, R[t]) are in the image of φ.
To establish the commutator formula, recall that a presentation for the amalgam

Ẽ(Φ, R[t]) can be obtained as the union of suitable presentations of the stabilizer
subgroups. In particular, it is generated by constant elementary matrices and xα(u)
for α ∈ Φ+ and u ∈ R[t] subject to the relations defining the stabilizer subgroups.
For the positive roots, it is clear that the commutator formula holds because it
holds in some stabilizer. For the other cases, we can conjugate the corresponding
commutator formula between positive roots and obtain the desired relation between
positive roots and wαxα(u)w−1

α replacing the negative roots. �

Corollary 5.7. Let R be an integral domain and let Φ be an irreducible and reduced
root system of rank two. If Φ = B2 assume that −1 is not a square in R. Denote
by

K2(Φ, R[t]) = ker (St(Φ, R[t])→ E(Φ, R[t]))

the unstable K2 associated to the root system Φ and the ring R[t]. If R is not a
field, then K2(Φ, R[t]) surjects onto a free group of infinite rank. In particular,
homotopy invariance fails for unstable K2(Φ) if Φ is of rank two.

Proof. The homomorphism φ : St(Φ, R[t]) → Ẽ(Φ, R[t]) from Proposition 5.6 re-
stricts to a homomorphism ψ : K2(Φ, R[t]) → π1(X). Let g ∈ π1(X). Since the
homomorphism φ is surjective, there exists g̃ ∈ St(Φ, R[t]) such that g = φ(g̃). But
g maps to 1 in E(Φ, R[t]), so does g̃, hence g̃ ∈ K2(Φ, R[t]). So ψ is surjective and
the claim follows from Proposition 5.3 and Proposition 5.4.

For the consequence on homotopy invariance for unstable K2, note that K2(Φ, R)
lies in the kernel of φ: the relations in K2(Φ, R) are constant and therefore already
satisfied in the stabilizer of P0. Therefore, ψ factors through K2(Φ, R[t])/K2(Φ, R).

�

Remark 5.8. (i) I want to remark that the above result has an important conse-
quence for the realization algorithm of Park and Woodburn, cf. [PW95]. The
above proposition shows that there are infinitely many different realizations of
any matrix in SL3(k[x1, . . . , xn]), n ≥ 2. These different realizations are pair-
wise distinct elements of the Steinberg group, so it is not possible to rewrite
them using only the commutator formula. Also, there is no upper bound on
the size of the realization. This is however special for the rank two case and
does not appear in the case SL4.

(ii) Note also that the above result implies that the Steinberg group St(Φ, R[t]) is
not a central extension of E(Φ, R[t]) if R is not a field. Again, this phenom-
enon disappears stably. I only bring this up because I am not aware of any
explicit examples of non-centrality of Steinberg groups in the literature.

6. Consequences for group homology

In this section, we can now draw the consequences for homology of linear groups
of rank two. We have already seen thatK2(Φ, R[t]) is quite big if R is not a field, and
in particular homotopy invariance fails for unstable K2. Obviously, if St(Φ, R[t])
was the universal central extension of E(Φ, R[t]) we could also conclude failure of
homotopy invariance for group homology. But the very same results above imply
that the Steinberg group is not even a central extension. Some more work needs to
be done.
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Recall from the previous section that the amalgam Ẽ(Φ, R[t]) sits in an extension

1→ π = π1(X)→ Ẽ(Φ, R[t])→ E(Φ, R[t])→ 1.

The next proposition provides a relation between H2 and a quotient of π.

Proposition 6.1. Let Φ be an irreducible and reduced root system of rank two, and
let R be an integral domain with at least five elements. Then there is a surjective
homomorphism

H2(E(Φ, R[t]),Z)/H2(E(Φ, R),Z) � π/[π, Ẽ(Φ, R[t])].

Proof. First note that Ẽ(Φ, R[t]) is perfect because by Proposition 5.6 it is a quo-
tient of St(Φ, R[t]) and the latter is perfect if R has at least five elements, cf. e.g.

[Ste71, Corollary 4.4]. We form the quotient Ẽ(Φ, R[t])/[π, Ẽ(Φ, R[t])] which is still
perfect. Moreover, the extension

1→ π/[π, Ẽ(Φ, R[t])]→ Ẽ(Φ, R[t])/[π, Ẽ(Φ, R[t])]→ E(Φ, R[t])→ 1

is now central. Denote by S̃t the universal central extension of the quotient

Ẽ(Φ, R[t])/[π, Ẽ(Φ, R[t])]. By uniqueness, this must be the universal central ex-
tension of E(Φ, R[t]) as well. We identify

H2(E(Φ, R[t]),Z) = ker
(
S̃t→ E(Φ, R[t])

)
and this group obviously surjects onto

π/[π, Ẽ(Φ, R[t])] = ker
(
Ẽ(Φ, R[t])/[π, Ẽ(Φ, R[t])]→ E(Φ, R[t])

)
.

In fact, the constant elements in H2(E(Φ, R),Z) come from K2(Φ, R) which

maps to 1 in Ẽ(Φ, R[t]) as remarked in the proof of Corollary 5.7. �

Now it suffices to show that there are infinitely many linearly independent ele-

ments in π/[π, Ẽ(Φ, R[t])].

Proposition 6.2. Let Φ be an irreducible and reduced root system of rank two, and
let R be an integral domain which is not a field. If Φ = B2 assume that −1 is a not

square in R. Then the abelian group π/[π, Ẽ(Φ, R[t])] has infinite rank.

Proof. An element of the extension Ẽ(Φ, R[t]) is an iterated product of elements
from π and E(Φ, R[t]). The multiplication in π is composition of loops and the
action of E(Φ, R[t]) is conjugation – equivalently, it is induced from the action of
E(Φ, R[t]) on the building.

At this point, we use the size argument of Behr. Recall from [Beh79] that there
is a filtration of the fundamental domain

Q(n) = {x ∈ Q | α0(x) ≤ n} ⊆ Q
where α0 is the highest root of Φ. This induces a filtration Fn of the complex
E(Φ, R[t]) · Q by setting Fn = E(Φ, R[t]) · Q(n). Since Q is a fundamental domain,
the subcomplexes Fn are invariant under the E(Φ, R[t])-action.

By Proposition 3.1, part (iii), together with Proposition 4.5 and Proposition 5.4,
we find that for each n there exists a triangle ∆n not contained in Fn and a loop
Lp,k which has nontrivial winding number around ∆n. In particular the action of
E(Φ, R[t]) on π has infinitely many orbits.

For a triangle ∆ in B\E(Φ, R[t]) ·Q such that there exists a loop Lp,k with non-
trivial winding number around it, the connected component of ∆ in B \E(Φ, R[t]) ·
Q consists only of finitely many triangles, and the boundary of this connected
component is a loop in π. We call this the loop associated to ∆. Now let ∆i be an
infinite set of triangles in B \ E(Φ, R[t]) · Q satisfying the following:
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(i) For each i, there exists a loop Lp,k with nontrivial winding number around
∆i.

(ii) No two ∆i have associated loops which are conjugate under the E(Φ, R[t])-
action.

(iii) For each n there are only finitely many ∆i contained in Fn.

Such an infinite set exists by the previous remarks. We obtain a well-defined map
w : π →

⊕
i Z∆i by associating to each loop L the formal sum w(L,∆i)∆i where

w(L,∆i) denotes the sum of the winding numbers of L around triangles in the
E(Φ, R[t])-orbit of ∆i. This sum is finite since there are only finitely many triangles
for which this winding number is nonzero. Obviously, the image of w is a free abelian
group of infinite rank. More precisely, the loops associated to the ∆i provide a
generating set for an infinite rank abelian subgroup of

⊕
i Z∆i.

We now investigate the map w on [π, Ẽ(Φ, R[t])]. For this, consider the action

of Ẽ(Φ, R[t]) on π. Conjugating a loop L in π by an element of π does not change
any of the winding numbers w(L,∆i). Conjugating with an element of E(Φ, R[t])
is equivalent to the action of E(Φ, R[t]) on the building, and because we are taking
the sum of winding numbers in the E(Φ, R[t])-orbit, the corresponding w(L,∆i)

also do not change. In particular, w maps [π, Ẽ(Φ, R[t])] to 0, so w factors through

w : π/[π, Ẽ(Φ, R[t])]→
⊕
i

Z∆i.

which still surjects onto an infinite rank submodule. �

Proposition 6.1 and Proposition 6.2 now immediately imply the following theo-
rem.

Theorem 6.3. Let R be an integral domain which is not a field. Let Φ be a reduced
and irreducible root system of rank 2. If Φ = B2 assume that −1 is not a square in
R. Then the kernel of the reduction map

H2(E(Φ, R[t]),Z)→ H2(E(Φ, R),Z)

surjects onto an abelian group of infinite rank.

Now we give a correction of [Knu01, Theorem 4.6.8]. Using the Steinberg group
St(Φ, R[t]) avoids the problem with the fundamental group.

Theorem 6.4. Let R be an integral domain with many units and let Φ be an
irreducible and reduced root system of rank 2. Then the canonical inclusion R ↪→
R[t] induces isomorphisms

H•(St(Φ, R),Z)
∼=−→ H•(St(Φ, R[t]),Z).

Proof. As in Proposition 5.3, we denote X = E(Φ, R[t]) · Q and π = π1(X,P0) and
recall that X is weakly equivalent to the classifying space of π. In particular, the

universal covering X̃ of X is contractible.
Recall from Proposition 5.6 that there is a surjective homomorphism

φ : St(Φ, R[t])→ Ẽ(Φ, R[t]),

where Ẽ(Φ, R[t]) denotes the amalgam of the stabilizers of vertices of Q. Recall

from [Sou79] that X̃ can be constructed by gluing together the set gQ with g ∈
E(Φ, R[t]). It follows from this that Ẽ(Φ, R[t]) acts on X̃, with fundamental domain
Q and the same stabilizers. Using the homomorphism φ, the Steinberg group

St(Φ, R[t]) also acts on the contractible space X̃.
The homomorphism φ is surjective, so the fundamental domain for the action

of St(Φ, R[t]) on X is also isomorphic to Q. The stabilizers of vertices are the
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preimages of stabilizers in E(Φ, R[t]) under the canonical projection St(Φ, R[t])→
E(Φ, R[t]).

Now for a simplex σ ⊆ Q, we denote the stabilizer of σ in E(Φ, R[t]) by Pσ, and
choose a Levi subgroup Lσ. Then the inclusion φ−1(L) ↪→ St(Φ, R[t])σ induces an
isomorphism in homology. The argument for this is exactly Knudson’s argument
in [Knu01, Theorem 4.6.2], which was generalized to arbitrary Chevalley groups
in [Wen11, Theorem 4.5]. One only needs to know that the standard projection
St(Φ, R[t]) → E(Φ, R[t]) induces isomorphisms on the corresponding unipotent
radicals. Then for a ring with many units, the extension of the torus in St(Φ, R[t])
acts non-trivially on these unipotent subgroups and the spectral sequence argument
of Knudson [Knu01, Theorem 4.6.2] then yields the result. �
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