ON sl(2, K[z])

MATTHIAS WENDT

Nagao’s theorem [Nagh9], cf. also [Ser80)], states that for any infinite field
k, there is an amalgamated free product decomposition

SLy(k[t]) = SLy(k) * gy B(Klt]),

where B(R) denotes the subgroup of upper triangular matrices over R. In
some sense, this decomposition stems from the fact that SLo(k[t]) acts on
the corresponding Bruhat-Tits tree. We want to show that the Lie algebra
analogue of the result is false.

Proposition 0.1. Let k be a field of characteristic # 2. The obvious mor-
phism

sly *p, (bo @ Ek[t]) — sla @ klt]

s mot an isomorphism.

The obvious morphism
sly *p, (bo @ Ek[t]) — sla @ klt]

is induced by the universal property of the free amalgamated product in the
category of Lie algebras. For the definition and existence of free amalga-
mated products of Lie algebras, see [BK94, Definition 4.2.1 resp. Theorem
4.4.2].

(i) The morphism is surjective. For this, it suffices to show that each of
the basis elements e; ® t" lies in the image. But this follows from

(eo)=1(o %) (50)]

(ii) The kernel is a free Lie algebra. This follows from a result of Kukin,
cf. [Kuk72, Theorem 1] or [BK94, Theorem 4.9.2] because the intersection
of the kernel with sly and by ® k[t] is trivial.

(iii) For an amalgamated free product of Lie algebras, there is a Mayer-
Vietoris sequence [Aya85]. The sequence for sly *p, (ba ® k[t]) breaks up into
short exact sequences

0 — Hy(b2) — Hp(by ® k[t]) & Hy(sle) — Hp(sl *p, (b2 ® Ek[t])) — 0

since the inclusion by < bs ® k[t] is split by evaluation at t = 0. Therefore,
we have

H; (sl2 *p, (b2 ® k[t]))/Hi(sl2) = Hi(be @ k[t])/ Hi(b2)
But H;(b2 ® R) = R and we find

Hy (b @ k[t])/H1(b2) = tk[t].
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(iv) Using the Hochschild-Serre spectral sequence for the extension of sly ®
k[t] by the kernel, we find

Hl(ﬁ[g *py b2®k[t]) = (HQ(E[Q@k[t], Hl(ker))/HQ(ﬁ[Q(X)k[t], k))EBHl (B[Q[t], /{?)

But H(slo®Kk[t], k) = 0 since slo®k[t] is perfect, here we use the assumption
that char k # 2. Therefore, we have

Ho(s[g (= k[t], H, (ker))/HQ(ﬁ[Q ® k[t], /{?) = tk[t]
implying that the kernel is quite big.
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