ON
$$\mathfrak{sl}(2, K[x])$$

MATTHIAS WENDT

Nagao's theorem [Nag59], cf. also [Ser80], states that for any infinite field k, there is an amalgamated free product decomposition

$$SL_2(k[t]) \cong SL_2(k) *_{B(k)} B(k[t]),$$

where B(R) denotes the subgroup of upper triangular matrices over R. In some sense, this decomposition stems from the fact that $SL_2(k[t])$ acts on the corresponding Bruhat-Tits tree. We want to show that the Lie algebra analogue of the result is false.

Proposition 0.1. Let k be a field of characteristic $\neq 2$. The obvious morphism

$$\mathfrak{sl}_2 *_{\mathfrak{b}_2} (\mathfrak{b}_2 \otimes k[t]) \to \mathfrak{sl}_2 \otimes k[t]$$

is not an isomorphism.

The obvious morphism

$$\mathfrak{sl}_2 *_{\mathfrak{b}_2} (\mathfrak{b}_2 \otimes k[t]) \to \mathfrak{sl}_2 \otimes k[t]$$

is induced by the universal property of the free amalgamated product in the category of Lie algebras. For the definition and existence of free amalgamated products of Lie algebras, see [BK94, Definition 4.2.1 resp. Theorem 4.4.2].

(i) The morphism is surjective. For this, it suffices to show that each of the basis elements $e_i \otimes t^n$ lies in the image. But this follows from

$$\left(\begin{array}{cc} 0 & 0\\ t^n & 0 \end{array}\right) = \left[\left(\begin{array}{cc} t^n & 0\\ 0 & -t^n \end{array}\right), \left(\begin{array}{cc} 0 & 0\\ -\frac{1}{2} & 0 \end{array}\right)\right]$$

(ii) The kernel is a free Lie algebra. This follows from a result of Kukin, cf. [Kuk72, Theorem 1] or [BK94, Theorem 4.9.2] because the intersection of the kernel with \mathfrak{sl}_2 and $\mathfrak{b}_2 \otimes k[t]$ is trivial.

(iii) For an amalgamated free product of Lie algebras, there is a Mayer-Vietoris sequence [Aya85]. The sequence for $\mathfrak{sl}_2 * \mathfrak{b}_2 (\mathfrak{b}_2 \otimes k[t])$ breaks up into short exact sequences

$$0 \to H_n(\mathfrak{b}_2) \to H_n(\mathfrak{b}_2 \otimes k[t]) \oplus H_n(\mathfrak{sl}_2) \to H_n(\mathfrak{sl}_2 *_{\mathfrak{b}_2} (\mathfrak{b}_2 \otimes k[t])) \to 0$$

since the inclusion $\mathfrak{b}_2 \hookrightarrow \mathfrak{b}_2 \otimes k[t]$ is split by evaluation at t = 0. Therefore, we have

$$H_1(\mathfrak{sl}_2 \ast_{\mathfrak{b}_2} (\mathfrak{b}_2 \otimes k[t]))/H_1(\mathfrak{sl}_2) \cong H_1(\mathfrak{b}_2 \otimes k[t])/H_1(\mathfrak{b}_2)$$

But $H_1(\mathfrak{b}_2 \otimes R) = R$ and we find

$$H_1(\mathfrak{b}_2 \otimes k[t])/H_1(\mathfrak{b}_2) \cong tk[t].$$

MATTHIAS WENDT

(iv) Using the Hochschild-Serre spectral sequence for the extension of $\mathfrak{sl}_2\otimes$ k[t] by the kernel, we find

 $H_1(\mathfrak{sl}_2 \ast_{\mathfrak{b}_2} \mathfrak{b}_2 \otimes k[t]) \cong (H_0(\mathfrak{sl}_2 \otimes k[t], H_1(\ker)) / H_2(\mathfrak{sl}_2 \otimes k[t], k)) \oplus H_1(\mathfrak{sl}_2[t], k).$ But $H_1(\mathfrak{sl}_2 \otimes k[t], k) = 0$ since $\mathfrak{sl}_2 \otimes k[t]$ is perfect, here we use the assumption that char $k \neq 2$. Therefore, we have

$$H_0(\mathfrak{sl}_2 \otimes k[t], H_1(\ker)) / H_2(\mathfrak{sl}_2 \otimes k[t], k) \cong tk[t]$$

implying that the kernel is quite big.

References

[Aya85]	M. Ayadi. Suite exacte de Mayer-Vietoris pour l'homologie des algèbres de
	Lie. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 257–260.
[BK94]	L.A. Bokut and G.P. Kukin. Algorithmic and combinatorial algebra. Mathe-
	matics and its Applications, 255. Kluwer Academic Publishers Group, 1994.
[Kuk72]	G.P. Kukin. Subalgebras of the free Lie sum of Lie algebras with a joint sub-
	algebra. Algebra and Logic 11 (1972), 33-49.
[Nag59]	H. Nagao. On <i>GL</i> (2, <i>K</i> [<i>x</i>]). J. Poly. Osaka Univ. 10 (1959), 117–121.
[0] 0.0]	

H. Nagao. On GL(2, K[x]). J. Poly J.-P. Serre. Trees. Springer, 1980. [Ser80]

MATTHIAS WENDT, MATHEMATISCHES INSTITUT, UNIVERSITÄT FREIBURG, ECKER-STRASSE 1, 79104, FREIBURG IM BREISGAU, GERMANY

E-mail address: matthias.wendt@math.uni-freiburg.de