Übungen zu Lineare Algebra I – Blatt 4

Aufgabe 1. (4 Punkte) Sei G eine Gruppe. Man beweise, dass die Vorschrift $\varphi \mapsto \varphi(1)$ eine Bijektion

$$\operatorname{Grp}(\mathbb{Z},G) \xrightarrow{\sim} G$$

zwischen der Menge der Gruppenhomomorphismen von $\mathbb Z$ nach G und der Menge G selbst definiert.

Aufgabe 2. Sei $f: V \to V$ ein Endomorphismus eines Vektorraums V.

- (i) (2 Punkte) Man zeige, dass die Teilmenge $V^f = \{v \in V \mid f(v) = v\}$ der Fixpunkte von f ein Untervektorraum von V ist.
- (ii) (2 Punkte) Sei f idempotent (das heißt, $f^2 = f$). Man zeige, dass gilt $V = V^f \oplus \ker f$.

Aufgabe 3. Sei $V = \mathbb{R}^3$ und $f: V \to V$ der Endomorphismus $(x, y, z) \mapsto (y, x, 0)$.

- (i) (3 Punkte) Man bestimme im f, ker f und V^f .
- (ii) (1 Punkt) Welche Untervektorräume von V werden von f in sich selbst überführt?
- **Aufgabe 4.** (i) (2 Punkte) Sei $f: V \to W$ ein Isomorphismus (d.h. eine bijektive lineare Abbildung) von Vektorräumen. Man zeige, dass die Umkehrabbildung $f^{-1}: W \to V$ auch ein Isomorphismus von Vektorräumen ist.
 - (ii) (2 Punkte) Sei V ein Vektorraum. Man zeige, dass die Menge GL(V) der Automorphismen von V mit der Komposition von Abbildungen als Verknüpfung eine Gruppe bildet.

Abgabefrist: Donnerstag, den 20. November um 8.00 Uhr.