Prof. Amador Martin-Pizarro Übungen: Charlotte Bartnick

Endliche Einfache Gruppen

Blatt 4

Abgabe: 26.05.2025, 10 Uhr

Aufgabe 1 (6 Punkte).

Betrachte Gruppen H und N derart, dass H auf N als Automorphismengruppe wirkt: Es gibt einen Gruppenhomomorphismus $\varphi: H \to \operatorname{Aut}(N)$.

(a) Zeige, dass die Verknüpfung

$$(n,h)\otimes(n_1,h_1)=(n\cdot_N\varphi(h)(n_1),h\cdot_Hh_1)$$

ein Gruppengesetz auf der Menge $N \times H$ definiert. Wir bezeichnen diese Gruppe als semidirektes Produkt $N \rtimes_{\varphi} H$.

(b) Zeige, dass $N \times \{1_H\}$ ein Normalteiler von $N \rtimes_{\varphi} H$ ist.

Wir nehmen nun an, dass die Gruppen H und N beide Untergruppe einer Gruppe G sind, mit N Normalteiler in G und $N \cap H = \{1_G\}$.

(c) Wenn $G = N \cdot H$, zeige, dass G isomorph zu $N \rtimes_{\psi} H$ ist, wobei $h \mapsto \psi(h)$ als die Konjugation auf N mit dem Element h aus H gegeben ist. In diesem Fall schreiben wir auch $G \cong N \rtimes H$.

Aufgabe 2 (8 Punkte).

Betrachte eine abelsche Gruppe A sowie $C_2 = \langle c \rangle$ die zyklische Gruppe von Ordnung 2. Beachte, dass die Abbildung $\varphi: C_2 \to \operatorname{Aut}(A)$ mit $\varphi(c)(a) = a^{-1}$ ein Gruppenhomomorphismus ist. Setze daher $G = A \rtimes_{\varphi} C_2$ und identifiziere A und C_2 mit den entsprechenden Untergruppen des semidirekten Produkts (vergleiche Aufgabe 1).

- (a) Zeige, dass jedes Element aus $G \setminus A$ eine Involution, d.h. der Ordnung 2, ist.
- Ab jetzt sei $A = C_n$ die zyklische Gruppe mit $2 \leq n$ Elementen und $G_n = C_n \rtimes_{\varphi} C_2$, die n-Diedergruppe.
- (b) Zeige, dass C_2 genau dann normal in G_n ist, wenn n=2. Folgere, dass $G_2 \cong C_2 \times C_2$.
- (c) Zeige, dass für $n \geq 3$ das Zentrum $Z(G_n)$ eine Untergruppe von C_n ist. Beschreibe das Zentrum von G_n explizit.

Aufgabe 3 (6 Punkte).

Gegeben $n \geq 2$ aus \mathbb{N} gibt es einen natürlichen Gruppenmonomorphismus $\varphi: S_{n-1} \hookrightarrow S_n$. Beachte, dass $\varphi(A_{n-1}) \leq A_n$, d.h. wir können A_{n-1} als Untergruppe von A_n auffassen.

- (a) Zeige, dass die Wirkung von A_n auf $\{1, \ldots, n\}$ (n-2)-transitiv ist, falls $n \geq 3$. **Hinweis:** Vergleiche das Vorzeichen von τ und $\tau \cdot (ij)$.
- (b) Zeige, dass $\operatorname{Stab}_{A_n}(n) \cong A_{n-1}$.
- (c) Folgere, dass für eine Primzahl p der Stabilisator $\operatorname{Stab}_{A_p}(p)$ eine maximale Untergruppe ist. Insbesondere ist die Wirkung von A_p auf die Menge $\{1,\ldots,p\}$ primitiv, wenn $p\geq 3$.

DIE ABGABE ERFOLGT IM BRIEFKASTEN 3.18 IM KELLER DES MATHEMATISCHEN INSTITUTS. DIE BLÄTTER KÖNNEN ZU ZWEIT ABGEGEBEN WERDEN.