Prof. Amador Martin-Pizarro Übungen: Charlotte Bartnick

Logik für Studierende der Informatik

Blatt 1

Abgabe: 30.10.2023, 14 Uhr

Aufgabe 1 (6 Punkte).

Gib (ohne Wahrheitstafeln zu benutzen) aussagenlogische Formeln sowohl in KNF als auch in DNF an, welche logisch äquivalent zu den folgenden aussagenlogischen Formeln sind.

a)
$$((A_1 \wedge A_2) \longrightarrow (A_3 \longrightarrow A_2))$$

b)
$$((A_1 \longrightarrow A_2) \longrightarrow \neg (A_1 \longrightarrow A_3))$$

Aufgabe 2 (3 Punkte).

Sind die aussagenlogischen Formeln $\neg (P \longrightarrow (Q \lor R))$ und $(\neg P \longrightarrow (Q \longrightarrow R))$ logisch äquivalent? (Ohne Wahrheitstafeln zu benutzen!)

Aufgabe 3 (5 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende aussagenlogische Formeln Tautologien sind.

a)
$$(\neg(A_1 \longrightarrow A_2) \longrightarrow (A_2 \vee A_1))$$

b)
$$(((A_1 \longrightarrow A_3) \longrightarrow (A_3 \longrightarrow A_2)) \longrightarrow (A_1 \longrightarrow A_2))$$

c)
$$(((A_1 \land A_2) \longrightarrow (A_3 \lor A_4)) \longrightarrow ((A_1 \lor A_2) \longrightarrow (A_3 \land A_4)))$$

Aufgabe 4 (6 Punkte).

Gegeben eine feste Kollektion aussagenlogischer Formeln $\{Q_i\}_{i\in\mathbb{N}}$ betrachte für eine beliebige aussagenlogische Formel $P(A_1,\ldots,A_n)$ die Formel $P(Q_1,\ldots,Q_n)$, welche aus P entsteht indem jedes Vorkommen der Aussagenvariable A_i durch die Formel Q_i ersetzt wird (für $i=1,\ldots,n$).

Beispielsweise erhält man so für $Q_1 = (A_1 \wedge A_2)$ und $Q_2 = A_4$ aus der aussagenlogischen Formel $P = (A_1 \vee A_2)$ die neue Formel $P(Q_1, Q_2) = (Q_1 \vee Q_2) = ((A_1 \wedge A_2) \vee A_4)$ (und nicht $((A_1 \wedge A_4) \vee A_4)!$).

a) Zeige induktiv über den Aufbau der Formeln, dass für jede aussagenlogische Formel $P(A_1, \ldots, A_n)$ die Formel $P(Q_1, \ldots, Q_n)$ wieder eine aussagenlogische Formel ist.

Nun betrachte für eine Belegung $\beta: \{A_i\}_{i\in\mathbb{N}} \to \{0,1\}$ die neue Belegung $\beta^*: \{A_i\}_{i\in\mathbb{N}} \to \{0,1\}$ definiert durch $\beta^*(A_i) = \beta(Q_i)$.

b) Zeige induktiv, dass für jede aussagenlogische Formel P gilt $\beta^*(P(A_1, \ldots, A_n)) = \beta(P(Q_1, \ldots, Q_n))$. Schließe daraus, dass $P(Q_1, \ldots, Q_n)$ eine Tautologie ist, falls $P(A_1, \ldots, A_n)$ eine Tautologie ist.

DIE ÜBUNGSBLÄTTER SOLLEN ZU ZWEIT EINGEREICHT WERDEN. DIE ABGABE DER ÜBUNGSBLÄTTER ERFOLGT IN DEN BRIEFKÄSTEN IN DER GEORGES-KÖHLER-ALLEE 51.