Prof. Amador Martin-Pizarro Übungen: Charlotte Bartnick

Logik für Studierende der Informatik

Probeklausur

Die Probeklausur besteht aus 8 Aufgaben (insgesamt 44 Punkte).

Geben Sie am Ende der Klausur Ihre Lösungen einschließlich dieses Deckblatts ab.

Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.

Viel	Erfo	$ \sigma $
4 101		٠,

Name:	
Vorname:	
Matrikelnummer [.]	

Note

Aufgabe	1	2	3	4	5	6	7	8	Σ
Punkte	2	2	6	5	12	8	5	4	44
Punkte erreicht									

Aufgabe 1 (2 Punkte).

Definiere, wann eine Theorie T in einer Sprache \mathcal{L} konsistent ist.

Aufgabe 2 (2 Punkte).

Wie lautet der Kompaktheitssatz?

Aufgabe 3 (6 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

a)
$$((A_1 \longrightarrow \neg \neg A_2) \longrightarrow (A_1 \longrightarrow A_2)).$$

b)
$$\left(\left(\left(\left(\bigwedge_{i=1}^k A_i\right) \land P\right) \longrightarrow Q\right) \longrightarrow \left(\left(\bigwedge_{i=1}^k A_i\right) \longrightarrow \left(P \longrightarrow Q\right)\right)\right).$$

Aufgabe 4 (5 Punkte).

In der Sprache \mathcal{L} sei T eine Theorie und χ , θ_1 , θ_2 Aussagen derart, dass $(\theta_1 \to \theta_2)$ aus $T \cup \{\chi\}$ folgt. Zeige, dass

$$T \cup \{(\neg \theta_2 \land \chi)\} \vdash \neg \theta_1.$$

Aufgabe 5 (12 Punkte).

Sei $\mathcal{L} = \{0, f\}$ die Sprache, welche aus einem einstelligen Funktionszeichen f und einem Konstantenzeichen 0 besteht. Betrachte die natürlichen Zahlen \mathbb{N} als \mathcal{L} -Struktur \mathcal{N} mit folgenden Interpretationen:

$$0^{\mathcal{N}} = 0 \text{ und } f^{\mathcal{N}}(x) := x + 1.$$

- a) Zeige, dass es für jedes $n \neq 0$ in \mathbb{N} ein k gibt, so dass $n = \underbrace{f^{\mathcal{N}} \circ f^{\mathcal{N}} \cdots \circ f^{\mathcal{N}}}_{k}(0)$. Schreibe eine \mathcal{L} -Aussage, welche in \mathcal{N} gilt und besagt, dass jedes $0 \neq n \in \mathbb{N}$ im Bild von $f^{\mathcal{N}}$ liegt.
- b) Zeige, dass es eine \mathcal{L} -Struktur \mathcal{M} gibt, welche elementär äquivalent zu \mathcal{N} ist, mit unendlich vielen nichtstandard Elementen $\{x_n\}_{n\in\mathbb{N}}$ in M, das heißt:

• Kein
$$x_i = \underbrace{f^{\mathcal{M}} \circ f^{\mathcal{M}} \cdots \circ f^{\mathcal{M}}}_{k}(0)$$
 für ein k in \mathbb{N} .

• Für
$$i \neq j$$
 gilt für kein k aus \mathbb{N} , dass $x_i = \underbrace{f^{\mathcal{M}} \circ f^{\mathcal{M}} \cdots \circ f^{\mathcal{M}}}_{k}(x_j)$.

Eine solche \mathcal{L} -Struktur nennen wir reich.

c) Zeige, dass es zwischen je zwei reichen L-Strukturen ein nicht-leeres Back-&-Forth System gibt.

Aufgabe 6 (8 Punkte).

- a) Sei $f: \mathbb{N} \to \mathbb{N}$ eine rekursive monoton steigende Funktion. Zeige, dass $f(\mathbb{N})$ rekursiv ist.
- b) Sei $g: \mathbb{N} \to \mathbb{N}$ eine rekursive Funktion mit unendlichem Bildbereich. Zeige, dass es eine rekursive monoton steigende Funktion $h: \mathbb{N} \to \mathbb{N}$ derart gibt, dass $h(\mathbb{N}) \subset g(\mathbb{N})$.
- c) Schließe daraus, dass jede rekursiv aufzählbare unendliche Teilmenge A von \mathbb{N} eine rekursive unendliche Teilmenge $B \subset A$ besitzt. (Bitte wenden!)

Aufgabe 7 (5 Punkte).

Sei T eine vollständige rekursiv axiomatisierbare \mathcal{L} -Theorie. Zeige, dass T entscheidbar ist.

Aufgabe 8 (4 Punkte).

Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ eine primitiv rekursive Funktion. Zeige, dass die Funktion

$$g(x_1,\ldots,x_k,y) = \sum_{z < y} f(x_1,\ldots,x_k,z)$$

auch primitiv rekursiv ist, wobei die leere Summe Wert 0 hat.