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Popoca, Tim Gendron, John Baldwin and Martin Ziegler.

The Oxford Logic Group provided a most favourable environment for re-

search and I am grateful to all its members. For the closest companionship

I would like to thank, besides those already mentioned, Margaret Thomas,

David Bew, Tom Foster and Gareth Jones. I am also very grateful for the

opportunity to learn during this time from Alex Wilkie, Assaf Hasson,

Piotr Kowalski, Jamshid Derakhshan and Jochen Königsmann.

Parts of this work were carried out while visiting the Logic Group at

the Institut Camille Jordan in Lyon, at the Fields Institute in Toronto

during the Thematic Program on O-minimal Structures and Real Analytic

Geometry, and at the Logic Department of the Mathematical Institute in

Freiburg. I am very grateful to everyone who contributed to making my

time at these great places possible. I would also like to thank the members
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Abstract

This thesis considers theories of expansions of the natural algebraic struc-

ture on the multiplicative group and on an elliptic curve by a predicate for

a subgroup that are constructed by Hrushovski’s predimension method.

In the case of the multiplicative group, these are the theories of fields with

green points constructed by Poizat. The convention of calling the elements

of the distinguished subgroup green points is maintained throughout this

work, also in the elliptic curve case, and we speak of theories of green

points.

In the first part of the thesis, we give a detailed account of the construction

of the theories of green points. The work of Poizat is extended to the case

of elliptic curves and an open question is answered in order to complete

the construction in the cases where the distinguished subgroup is allowed

to have torsion. Proofs of the main model-theoretic properties of the

theories, ω-stability and near model-completeness, are included, as well

as rank calculations.

In the second part, following ideas of Zilber, we find natural models of the

constructed theories on the complex points of the corresponding algebraic

group. In the case of elliptic curves, this is done under the assumption that

the curve has no complex multiplication and is defined over the reals. In

general, we also need to assume a consequence of the Schanuel Conjecture,

in the multiplicative group case, and an analogous statement in the elliptic

curve case. For the multiplicative group, the assumption is known to hold

in generic cases by a theorem of Bays, Kirby and Wilkie; our result is

therefore unconditional in these cases.

Motivated by Zilber’s work on connections between model theory and non-

commutative geometry, we prove similar results for variations of the above

theories in which the distinguished subgroup is elementarily equivalent to

the additive group of the integers, which we call theories of emerald points.
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Chapter 1

Introduction

This thesis aims to contribute to the model-theoretic study of analytic structures. In

particular, the present work fits in Boris Zilber’s programme of finding mathematically

natural models for model-theoretically well-behaved theories ([47]).

We consider theories of expansions of the natural algebraic structure on the mul-

tiplicative group and on an elliptic curve by a predicate for a subgroup that are

constructed by Hrushovski’s predimension method. In the case of the multiplicative

group, these are the theories of fields with green points constructed by Bruno Poizat

in [33]. Following the convention introduced by Poizat, we call the elements of the

distinguished subgroup green points and the other elements of the structure white

points, also in the elliptic curve case. The constructed theories are called theories of

green points. In models of the theories the dimension of the distinguished subgroup is

half of that of the ambient algebraic group. Of course, dimension here is not algebro-

geometric dimension but rather a model-theoretic rank and the subgroup is indeed

far from being an algebraic subgroup.

These theories are very well-behaved from the viewpoint of model theory (they

are ω-stable), but a priori do not have mathematically natural models. In what

follows, we explicitly find models for these theories on the complex points of the

corresponding algebraic group, under certain assumptions. This is done following the

strategy by Zilber in [46], where he considered the same question in the case of the

multiplicative group and whose results are here improved. In the case of an elliptic

curve, the green subgroup in the complex models is a dense 1-parameter subgroup.

In the multiplicative group case, the green subgroup is a union of real logarithmic

spirals in the complex plane. In order to prove that these structures are models of

the constructed theories, in general, we need to assume a consequence of the Schanuel

Conjecture, in the multiplicative group case, and of an analogous conjecture, in the

case of elliptic curves. For the multiplicative group, the assumption is known to hold
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in generic cases by a theorem of Bays, Kirby and Wilkie ([5]); our result is therefore

unconditional in these cases.

1.1 Pure model theory: constructing theories

For already more than twenty years, Hrushovski’s predimension method has been the

most widely used tool to produce theories exhibiting exotic properties. The method

was first used by Ehud Hrushovski in the late 1980s to produce counterexamples to

Zilber’s Trichotomy conjecture.

The Trichotomy conjecture proposed a classification of strongly minimal theories

by the properties of their associated pregeometries.

Strongly minimal theories are first-order theories such that all their models are

infinite and have the property that every definable subset of the universe is finite

or has finite complement. Such theories are at the tamest end of the hierarchy de-

veloped in stability theory. Moreover, they are the building blocks of all theories

of finite Morley rank and also have an important role in the study of uncountably

categorical theories. Basic examples of strongly minimal theories are the theory of

infinite sets, the theory of infinite vector spaces over a any given field, and the theory

of algebraically closed fields of any given characteristic. In every strongly minimal

theory the model-theoretic algebraic closure operator is a pregeometry and thus in-

duces a dimension function on subsets of the universe. In the case of infinite sets, the

algebraic closure of every subset of the universe is the subset itself and the associated

dimension is cardinality. In vector spaces, the algebraic closure is given by the linear

span and the associated dimension function by linear dimension. In algebraically

closed fields, the model-theoretic algebraic closure coincides with the field-theoretic

algebraic closure and the dimension function is therefore given by the transcendence

degree. These three cases exemplify different geometric behaviours: in the first case,

the pregeometry is trivial, meaning that for every set A, one has cl(A) =
⋃
a∈A cl({a});

in the second case, the pregeometry is non trivial and locally modular, a notion that

formalises the idea of being “linear”; in the third case, the pregeometry is not locally

modular. The Trichotomy conjecture states that the above are essentially all exam-

ples of pregeometries of strongly minimal theories. Formally, the conjecture can be

seen as having two parts: on the one hand, it claims that every non-locally modular

strongly minimal theory interprets the theory of an algebraically closed field, and, on

the other hand, that in every strongly minimal theory of expansions of algebraically

closed fields, every definable set is already definable in the language of rings.
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Hrushovski showed that both parts of the conjecture are, in fact, false. He con-

structed a strongly minimal theory with a non-locally modular pregeometry which

does not interpret any infinite group, thus refuting the first part of the conjecture

([14]). To disprove the second part of the conjecture, he also constructed strongly

minimal theories of expansions of algebraically closed fields having definable sets that

are not definable in the ring language; to do this he in fact proved that the union

of any two strongly minimal theories in disjoint languages can be completed to a

strongly minimal theory, called their fusion, provided the two theories have the de-

finable multiplicity property, which, he also showed, holds in theories of algebraically

closed fields ([13]).

Despite being false in its original form, the Trichotomy conjecture has been greatly

influential in the development of geometric model theory. First of all, the trichotomy

was proved to hold in the context of Zariski geometries, by Hrushovski and Zilber

([17]), and this result was applied in Hrushovski’s proof of the function field version

of the Mordell-Lang conjecture ([17]). But also, the conjecture has inspired develop-

ments in several other contexts, where similar classifications have been proved (e.g.

[26]).

Hrushovski’s method for constructing strongly minimal theories, or more gener-

ally theories of finite rank, can be thought of as having two separate stages: a first

construction, that generally produces theories of infinite rank, which is usually called

the free amalgamation construction; and a second stage, called the collapse, in which

the first construction is refined to obtain a theory of finite rank.

In this thesis we only consider theories obtained from the the first part of Hrushovski’s

method. Among the many theories constructed in this fashion, our main interest is

in Poizat’s theories of fields with green points, from [33].

Poizat constructed ω-stable theories of expansions of algebraically closed fields

by a unary predicate such that the Morley rank of the domain is twice the Morley

rank of the predicate. In the initial construction ([31]) he called the elements of the

predicate black points and the other elements of the domain white points. In this case

the Morley rank of the predicate is ω and the Morley rank of the domain is ω ·2. This

refuted a conjecture of Berline and Lascar, which stated that all superstable theories

of algebraically closed fields had U-rank ωα, for some ordinal α. He also carried out

the collapse, obtaining a theory of Morley rank two, where the predicate has rank

one. Later Poizat also constructed similar theories in which the interpretation of the

predicate is a subgroup of the additive group of the field, case in which he called the

elements of the subgroup red points, and theories in which the interpretation of the
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predicate is a multiplicative subgroup, case in which he called the elements of the

subgroup green points ([33]). In the case of red points, his theory has Morley rank

ω · 2 in the case of fields of positive characteristic and rank ω2 · 2 in the characteristic

zero case. In the green case, the field always has characteristic zero and the theory

has Morley rank ω · 2.

Before giving some details about the construction, let us briefly discuss the two

main reasons for interest in the theories of fields with green points.

The first reason is that the construction has direct relevance for the question of

existence of so-called bad fields. A bad field is an expansion of an algebraically closed

field by a predicate for a multiplicative subgroup whose Morley rank is finite and

greater than one. The question of whether such structures exist arose in work on the

Algebraicity Conjecture due to Cherlin and Zilber, which states that every simple

group of finite Morley rank is an algebraic group over an algebraically closed field

and which is open since the late 1970s. The non-existence of bad fields would have

simplified some of the work on the conjecture (see, for example, the introduction of

[2]). Eventually, however, it was suspected that bad fields of characteristic zero could

be obtained by Hrushovski’s method. Poizat’s construction of fields with green points

was effectively the first step in this direction. It produced an analogue of a bad field of

infinite rank. Moreover, carrying out the corresponding collapse would complete the

construction of a bad field. This was subsequently done by Baudisch, Hils, Martin-

Pizarro and Wagner in [2]. Let us also mention that, by a result of Wagner ([41]),

the existence of bad fields of positive characteristic p would imply that there are only

finitely many p-Mersenne primes. Bad fields of positive characteristic are therefore

not expected to exist, but proving their nonexistence is, for the same reason, difficult.

The second reason is that the construction of the theories of fields with green points

involves strong algebro-geometric results in an essential way. Besides being interesting

in its own right, this technical difficulty also exposes strong connections with Zilber’s

construction of fields with pseudo-exponentiation, where similar results have to be

applied. In both cases questions of intersections of algebraic subvarieties of algebraic

tori with algebraic subgroups naturally appear. In this regard, Zilber’s Conjecture

on intersections with tori (CIT), from [44], answers all the questions involved, but its

general validity remains an open question. The conjecture was indeed motivated by

Zilber’s work on the model theory complex exponentiation. A partial result, usually

called Weak CIT, follows from a theorem of Ax in differential algebra by a model-

theoretic argument, as showed by Poizat in [33] and by Zilber in [44]. Remarkably, for

the construction of theories of green points, Weak CIT suffices. This was shown by
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Poizat in [33] in the case where the theory requires the green subgroup to be torsion-

free and he stated the question of whether this was also true for arbitrary torsion in

the green subgroup. We answer this question positively in Chapter 4. Another strong

algebraic result that is needed in the construction is the Thumbtack Lemma, which

was first proved by Zilber in [52] (see also [6]) and which is now available in a very

general form by a theorem of Bays, Gavrilovich and Hils [4]. The Thumbtack Lemma

is used in an essential way to prove that the theories of green points are ω-stable.

This point is not explicit in Poizat’s original paper and has only become clear in more

recent works on the topic, e.g. [11].

The first part of this thesis, which consists of chapters 2 to 4, is dedicated to the

construction of the theories of green points, extending the work of Poizat to include

the case where the multiplicative group is replaced by an elliptic curve. Chapter 2

contains a general presentation of the first part of Hrushovski’s construction method.

Chapter 3 collects the main algebro-geometric facts needed for the construction. In

Chapter 4, the construction of the theories is carried out and their main model-

theoretic properties are proved.

Schematically, the construction of the theories of green points is as follows:

Fix A defined over a field k0 of characteristic zero; throughout A is assumed to be

the multiplicative group or an elliptic curve. Note that for every algebraically closed

field K extending k0, there is a natural structure on the set A = A(K) of K-points

of A in the language having a predicate for each Zariski closed subset of a cartesian

power An of A. Also, every such A is a divisible End(A)-module, where End(A)

denotes the ring of algebraic endomorphisms of A.

Consider the class C of structures of the form (A,G), where A = A(K) for some

algebraically closed field K extending k0 (carrying the structure described above) and

G is a divisible End(A)-submodule of A. We introduce the following predimension

function δ on structures in C: given (A,G) ∈ C and a finite subset Y of A,

δ(Y ) = 2 tr. d.k0(Y )− lin. d.(span(Y ) ∩G),

where tr. d.k0(Y ) denotes the transcendence degree of the field extension k0(Y )/k0,

span(Y ) is the divisible hull of the End(A)-submodule of A generated by Y , and lin. d.

denotes End(A)-linear dimension. For any finite-(End(A)-)dimensional subset Y of A,

the value δ(Y ) is defined to be δ(Y0) for any finite Y0 such that span(Y0) = span(Y ).

With the above, the set up for the construction of the theories of green points is

already determined. The construction then follows the general method, which is pre-

sented in detail in Chapter 2 and which we now briefly summarize. Associated to the
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predimension function there is the notion of self-sufficient sets. A finite-dimensional

subset Y of A is said to be self-sufficient in a subset Z of A containing Y , if for

every finite dimensional subset Y ′ of Z containing Y , δ(Y ′) ≥ δ(Y ). Given any

finite-dimensional substructure X0 of a structure A0 in C such that its domain X0

is self-sufficient in A0, consider the class C0 of structures B in C such that there is

a self-sufficient embedding of X0 into B (that is an embedding with self-sufficient

image). The structures A in C0 having the property that all self-sufficient embed-

dings between finite-dimensional substructures of structures in C0 can be realised,

up to isomorphism, by substructures of A are said to be rich. Provided the class

of substructures of structures in C0 satisfies some natural properties with respect to

self-sufficient embeddings, most notably the amalgamation property, rich structures

can be found in C0 by the construction of Fräısse limits. The universality property of

rich structures implies that all rich structures in C0 are back-and-forth equivalent, and

hence elementarily equivalent. Moreover, it also follows that the complete first-order

theory common to all rich structures in C0 has a form of quantifier elimination; this

is stated in Proposition 2.3.10, and further elaborated in Proposition 2.3.11, in the

general context. Section 4.1 contains the proofs of the necessary provisions for the

above scheme to go through in the case of green points.

Regarding the constructed theory, besides the aspects of completeness and quanti-

fier elimination, there is also the question of finding an explicit axiomatization. There

is a general scheme for doing this: first finding axioms for the class C0 and then fur-

ther axioms such that the ω-saturated models of both sets of axioms are precisely

the rich structures in C0. It follows that the two sets of axioms together form an

axiomatization of the theory.

However, the task of finding these two sets of axioms depends strongly on the

particular instance of the construction at hand and is not included in the general

presentation in Chapter 2. This aspect is only treated for the theories of green points,

in Section 4.2.

Section 4.3 contains the proofs of the main model-theoretic properties of the theo-

ries. They are ω-stable by Theorem 4.3.3 and near model-complete by Theorem 4.3.6.

Theorem 4.3.12 shows that the Morley rank of the domain is ω · 2 and that of the

distinguished subgroup is ω.
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1.2 Analytic structures: finding models

With the disproof of the Trichotomy conjecture, the question of finding natural models

for the newly found theories naturally arises. This can be thought of as an initial

step towards a revised classification of strongly minimal theories in the spirit of the

conjecture.

In this direction, the observation that the Schanuel Conjecture from transcenden-

tal number theory can be seen as the natural inequality for a predimension function

on the complex exponential field Cexp = (C,+, ·, exp) has proved to be very fertile.

Indeed, it was the starting point for the programme of relating the new examples to

classical analytic structures laid out in [47]. The series of works culminating with

Zilber’s construction of fields with pseudo-exponentiation ([44], [52], [48], [51]) can

be seen as the most central instance of the programme. A full realisation of the pro-

gramme in this case would amount to proving the conjecture that the unique field

with pseudo-exponentiation of cardinality continuum is indeed the complex expo-

nential field. This would include proving the Schanuel conjecture, and is therefore

thought to be out of reach. Also, even assuming the Schanuel conjecture, only very

partial results towards a proof of the conjecture are known.

In [46], Zilber finds natural models for Poizat’s theory of fields with black points,

unconditionally, and for the theory of fields with green points, assuming the Schanuel

Conjecture. These are some of few instances where the programme has been fully

realised, modulo the hard transcendence questions.

In the second part of this thesis, Chapters 5 to 7, we improve and extend the work

of Zilber in [46] to find natural models for the theories of green points in the cases of

the multiplicative group and of an elliptic curve without complex multiplication de-

fined over the reals. For this, we need to assume instances of the Schanuel Conjecture

for raising to powers, a consequence of the Schanuel Conjecture, in the multiplicative

group case, and analogous statements in the elliptic curve case.

Chapter 6 deals with the multiplicative group case. The main result of this chapter

is Theorem 6.1.1. The following is a shorter statement for the theorem:

Theorem. Let ε = 1 + βi, with β a non-zero real number, and let Q be a non-trivial

divisible subgroup of (R,+) of finite rank. Let

G = exp(εR +Q).

Assume the Schanuel Conjecture for raising to powers in K = Q(βi).
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Then the structure (C∗, G) can be expanded by constants to a model of a theory of

green points. In particular, (C∗, G) is ω-stable.

In the cases where β is generic in the o-minimal structure Rexp, the Schanuel

Conjecture for raising to powers in K = Q(βi) is known to hold by a theorem of Bays,

Kirby and Wilkie ([5]). In these cases, the above result is therefore unconditional.

The elliptic curve case is treated in Chapter 7. The main theorem of Chapter 7

is Theorem 7.1.2, which we now state, also in a shortened version.

Theorem. Let E be an elliptic curve without complex multiplication and let E =

E(C). Assume the corresponding lattice Λ has the form Z + τZ and Λ = Λc.

Let ε = 1 + βi, with β a non-zero real number, be such that εR ∩ Λ = {0}. Put

G = expE(εR).

Assume the Weak Elliptic Schanuel Conjecture for raising to powers in K :=

Q(βi) (wESCK) holds for E.

Then the structure (E,G) can be expanded by constants to a model of a theory of

green points. In particular, (E,G) is ω-stable.

Intuitively, that the distinguished subset has real dimension one and the ambient

complex field has real dimension two corresponds to the fact that in the theory the

Morley rank of the predicate is half of that of the domain. In all cases, the definition

of the subgroup has been chosen in such a way that, the first set of axioms in the

theories of green points, those defining the class C0, can be easily shown to hold in

the structure, with the help of existing Schanuel-style conjectures. The main part of

the proof of the theorems is to show that the second set of axioms, the one that relate

to richness and to what we later call the existential closedness property, also hold. To

do this we use the same strategy as in [46], with corrections and improvements. The

density of the subgroup plays an important role; in a certain sense, this density is in

fact necessary for the structure not to define the reals, which would imply instability

(this follows from the proof of a theorem of Marker, [22, Theorem 3.1], which has

been extended by Peterzil and Starchenko, [27, Theorem 1.3]).

In [49] Zilber suggests considering variations of the theories of green points, in

the multiplicative group case, in which the distinguished subgroup is elementarily

equivalent to the additive group of the integers. These theories are called theories of

emerald points. We do so in Section 6.5 and prove analogous results to those in the

green case in Theorem 6.5.13 and Theorem 6.5.13. The new theories are superstable,

non-ω-stable. As in the green case, the U-rank of the domain is ω · 2 and that of the

distinguished subgroup is ω.
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Let us finally note that the above results are also interesting because they give

new examples of stable expansions of the complex field. Most known examples of

such structures are covered by the theorems on expansions by small sets in [9] and

the green subgroups are not small.

1.3 Outlook

Let us now briefly comment on some possible continuations of the work in this thesis.

One of the motivations for this work was that it may contribute to the work on

connections between model theory and non-commutative geometry. More precisely,

it is hoped that the structures considered in this thesis may be useful in finding a

tame model-theoretic setting for non-commutative tori, which are basic examples of

non-commutative spaces. Non-commutative tori can be defined by a construction of

non-commutative quotients of tori by dense 1-parameter subgroups.

In the case of complex elliptic curves, we have found a model-theoretically tame,

namely ω-stable, structure on a torus, which on top of a natural algebraic structure

also has a dense 1-parameter subgroup as a definable set. We thus have a structure

where the basic ingredients for the construction of a non-commutative torus are de-

finable. However, standard model-theoretic tools do not seem to be able to account

for the construction of non-commutative quotients. Finding appropriate tools for this

purpose seems to be an interesting problem in the bigger programme of understanding

non-commutative phenomena in model-theory, which can also be seen, for example,

in the examples of non-classical Zariski geometries of Hrushovski and Zilber ([17]).

Regarding this project, let us simply note that the notion of generalised imagi-

naries, introduced by Hrushovski in [15], seems to be a good candidate for a suitable

framework.

Another interesting project is to explore the possibility that the methods that

have been used in this thesis to obtain results about expansions of the complex field

can be applied in the study of similar expansions of the real field. The starting point

for the project is the question about tameness of the expansions of the real field by

the groups of green points in the complex numbers, as defined in chapters 6 and 7.

We suspect that the arguments in Chapter 6 can be strengthened to prove a real

version of the existential closedness result. This suggests the conjecture that, under

the same Schanuel-type assumption, the theories of these expansions of the real field

are near model complete.
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This project is particularly interesting because it connects with the programme of

studying expansions of o-minimal structures by trajectories of definable vector fields.

There is a classification of the expansions of the real field by locally closed trajectories

of linear vector fields: such structures are either o-minimal, they are essentially the

expansion of the real field by a logarithmic spiral in R2 (and thus are not o-minimal,

but at least d-minimal), or they define the integers ([25]). The situation for non-

locally closed trajectories is much less clear. The simplest case yet to be understood

is the following: consider the expansion of the real field by a subgroup G of the torus

S1 × S1 in R4 of the following form:

G = {exp(it), exp(irt) : t ∈ R},

where r is an irrational real number. Conjecturally, our methods could be used to

show that if r is generic in Rexp, then the theory of this structure is near model

complete and, consequently, does not define the integers. This would show that in

the case of non-locally closed trajectories new kinds of structures appear, with respect

to the above classification of expansions by locally closed trajectories (see Section 3

of [25]).
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Chapter 2

Predimension constructions

This chapter contains a general account of some aspects of Hrushovski’s predimension

construction method. Since we shall only consider theories of infinite rank, we do not

treat the part of the method that is usually called collapse, but only what is commonly

referred to as the free amalgamation construction. Our choice of terminology is meant

to stress the importance of the predimension function, and the related notion of

self-sufficient embeddings, in obtaining a complete theory with a certain quantifier

elimination, over that of the intermediate stage of constructing a generic structure by

means of amalgamation.

The framework laid out in this chapter will be specialised to several instances later

in the thesis. Our aim is to isolate some hypotheses and results inherent to the general

method, rather than to the different particular cases considered in the thesis. The

scope of our general approach is, however, limited, both in terms of generality and of

strength of results, to the needs of the present work. In this chapter we only deal with

some algebraic aspects of the construction, leading to a quantifier elimination result

(Proposition 2.3.10) as the main statement; the key aspect of finding axioms for the

constructed complete theory is only treated in the main instance of application of the

method, in Chapter 4.

Everything in this chapter is well-known. It is hoped, however, that the exposition

will offer clarification of some subtle details. The proofs of the most straightforward

facts are omitted.

2.1 Pregeometries and dimension functions

The notion of dimension is fundamental in all what follows. In particular, the dimen-

sion theory in a pregeometry will be part of our basic language throughout this work.

We start by introducing the basic definitions thereof and fixing some conventions.
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This is in part intended to make the introduction of the notion of a predimension

function more natural. The proofs of standard facts are generally omitted; some of

them can be found, for example, in Section 8.1 of [23].

Let A be a set.

Definition 2.1.1. A closure operator on A is a map cl : P(A)→ P(A) satisfying the

following conditions:

PG1 (Expansivity) For all X ⊂ A, X ⊂ cl(X).

PG2 (Monotonicity) For all X, Y ⊂ A, if X ⊂ Y then cl(X) ⊂ cl(Y ).

PG3 (Idempotency) For all X ⊂ A, cl(cl(X)) = cl(X).

A closure operator on A is said to be a pregeometry if it satisfies the further conditions:

PG4 (Finite character) For all X ⊂ A, cl(X) =
⋃
X′⊂

fin
X cl(X ′).

PG5 (Exchange principle) For all X ⊂ A and x, y ∈ A, if y ∈ cl(Xx) \ cl(X) then

x ∈ cl(Xy).

Remark 2.1.2. Let cl be a pregeometry on A.

A set X ⊂ A is said to be cl-closed if cl(X) = X. Equivalently, X is cl-closed if

there exists a set Y such that cl(Y ) = X.

A set X ⊂ A is said to be cl-independent if for every x ∈ X, x 6∈ cl(X \ {x}).
Let X, Y ⊂ A be such that Y ⊂ X. We say that Y is a cl-generating subset of X

if X ⊂ cl(Y ); equivalently, if cl(X) = cl(Y ).

We say that X is a cl-basis of Y if X is a maximal cl-independent subset of Y ,

or, equivalently, X is a minimal cl-generating subset of Y .

For every subset X of A there exists a cl-basis and all cl-basis of X have the same

cardinality. This cardinality is the cl-dimension of X.

We therefore have an associated function dcl : P(A)→ Card that assigns to each

subset X of A its cl-dimension. Due to the finite character of pregeometries, the

function dcl is determined by its values at finite subsets of A and the fact that it is

the dimension function of a pregeometry. With this in mind, we will also refer to the

restriction of dcl to P
fin

(A) by dcl.

We shall now make explicit the correspondence between pregeometries and di-

mension functions. We start with a definition of the notion of dimension function

suitable for our purposes.
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Definition 2.1.3. A dimension function on A is a map d : P
fin

(A) → N such that

the following conditions hold.

D1 d(∅) = 0.

D2 For all X, Y ⊂
fin
A, if X ⊂ Y then d(X) ≤ d(Y ).

D3 For all X, Y, Z ⊂
fin
A, if d(XY ) = d(Y ) then d(XY Z) = d(Y Z). 1

D4 For all x ∈ A, d({x}) ≤ 1.

Lemma 2.1.4. If cl is a pregeometry on A, then dcl is a dimension function on A.

In proving the converse of 2.1.4, we will make use of the following definitions of

and remarks on localisation of pregeometries and dimension functions.

Definition 2.1.5. Given a closure operator cl on A and a subset Y of A, we define

a map clY : P(A)→ P(A) by

clY (X) = cl(X ∪ Y ).

We call clY the localisation of cl at Y . We also write cl(X/Y ) for clY (X).

Lemma 2.1.6. Let Y be a subset of A. If cl is a closure operator on A, then so is

clY .

Moreover, if cl is a pregeometry on A, then clY is also a pregeometry on A.

Definition 2.1.7. Let d be a dimension function on A. For Y ⊂
fin
A, we define the

localisation of d at Y as the function dY : P
fin

(A)→ N given by

dY (X) := d(XY )− d(Y ),

for any X ⊂
fin
A. We also write d(X/Y ) for dY (X), and refer to this value as the

dimension of X over Y .

For an arbitrary subset Y of A, we define the localisation of the dimension function

d at Y as follows: for X ⊂
fin
A,

dY (X) := min
Y ′⊂

fin
Y

d(X/Y ′).

Lemma 2.1.8. For every dimension function d on A and every Y ⊂ A, dY is a

dimension function on A.

1Equivalently, for all Y,Z ⊂
fin
A and all x ∈ X, if d(xY ) = d(Y ) then d(xY Z) = d(Y Z).
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Lemma 2.1.9. For any dimension function d on A we have the following addition

formula: for all X, Y, Z ⊂
fin
A with X ⊃ Y ⊃ Z,

d(X/Z) = d(X/Y ) + d(Y/Z).

Proof. Using just Definition 2.1.7 we have:

d(X/Z) = d(X)− d(Z) = d(X)− d(Y ) + d(Y )− d(Z) = d(X/Y ) + d(Y/Z).

Lemma 2.1.10. Suppose d is a dimension function on A. Then there is a corre-

sponding pregeometry cld on A defined by:

x ∈ cld(X) ⇐⇒ ∃X ′ ⊂
fin
X, d(x/X ′) = 0.

Note that, by D3, if X is finite then

x ∈ cld(X) ⇐⇒ d(x/X) = 0.

Proof. We shall check that the conditions in the definition of pregeometry hold for

cld:

1. (Expansivity) X ⊂ cld(X):

Clear.

2. (Monotonicity) X ⊂ Y =⇒ cld(X) ⊂ cld(Y ):

Clear.

3. (Idempotency) cld(cld(X)) = cld(X):

The inclusion from right to left follows immediately from 1 and 2.

To prove the other inclusion, suppose x ∈ cld(cld(X)) and let us show that

x ∈ cl(X). It is easy to see that we may assume X is finite. Then let X ′ be

a finite subset of cld(X) such that d(x/X ′) = 0. Let X ′ = {x1, . . . , xn}. Since

X ′ is contained in cld(X), for every 1 ≤ i ≤ n, d(xi/X) = 0. Then, using the

addition formula for d,

d(x/X) = d(x/X ′) + d(X ′/X) = d(X ′/X) =
∑

1≤i≤n

d(xi/Xx1 · · · xi−1).

But, for every i, we know that d(xi/X) = 0. Hence, by D3, d(xi/Xx1 · · ·xi−1) =

0. Thus, d(x/X) = 0, i.e. x ∈ cld(X).
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4. (Finite character) cld(X) =
⋃
X′⊂

fin
X cld(X ′):

Clear.

5. (Exchange principle) y ∈ cld(Xx) \ cld(X) =⇒ x ∈ cld(Xy):

Suppose towards a contradiction that there exist X ⊂ A and x, y ∈ A such

that y ∈ cld(Xx) \ cld(X) but x 6∈ cld(Xy). By the definition of cld, this

means d(xyX) = d(Xx), d(yX) 6= d(X), and d(xyX) 6= d(yX). Therefore

also d(xX) 6= d(X); because otherwise d(xyX) = d(xX) = d(X), and then,

by D2, d(yX) = d(X), which would yield a contradiction. Hence, by D4,

d(y/X) = d(x/X) = d(x/Xy) = 1. But then, on the one hand,

d(xy/X) = d(y/Xx) + d(x/X) = 0 + 1 = 1.

and, on the other hand,

d(xy/X) = d(x/Xy) + d(y/X) = 1 + 1 = 2.

A contradiction.

Remark 2.1.11. In the proof of the above lemma we have only used the fact that the

function d has property D4 in order to show that cld satisfies the Exchange principle.

Indeed, we see that whenever d has properties D1-D3, cld is a closure operator with

finite character on A and its restriction to the set A1 = {x ∈ A : d(x) ≤ 1} is a

pregeometry on A1.

Finally, let us note that the correspondence between dimension functions and

pregeometries is bijective; indeed, cldcl
= cl and dcld = d. Also, we have the fol-

lowing commutativity property between localisation and passing between dimension

functions and pregeometries: cldY = (cld)Y and dclY = (dcl)Y .

2.2 Predimension functions

2.2.1 Predimension functions

Let A be a set and cl0 be a pregeometry on A.

Definition 2.2.1. A predimension function δ on A is a function δ : P
fin

(A)→ Z.
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The expression predimension function refers to functions that have a special role

in our constructions and arguments, it does not, however, imply any properties of the

function in question beyond having domain P
fin

(A) and taking values in Z.

Definition 2.2.2. Let δ be a predimension function on A.

Let y ⊂ A. Let δy, the localisation of δ at y, be the function defined by

δy(x) = δ(xy)− δ(y),

for all x ⊂ A. We also write δ(x/y) for the value δy(x), which we call the predimension

of x over y.

Definition 2.2.3. Let δ be a predimension function on A.

The function δ is said to be well-defined with respect to cl0 if δ factors through the

quotient P
fin

(A)/ ∼0, where, by definition, x ∼0 y if cl0(x) = cl0(y).

If δ is a predimension function, well-defined with respect to cl0, then for any finite

dimensional cl0-closed set X the expression δ(X) will denote the value δ(x) for a finite

x such that cl0(x) = X.

Definition 2.2.4. Let δ be a predimension function on A, well-defined with respect

to cl0.

For a cl0-finite dimensional set Y , we define the localisation of δ at Y , δY , to be

the function δy for any finite y with cl0(y) = cl0(Y ).

We also write δ(x/Y ) for the value δY (x), and call it the predimension of x over

Y .

Lemma 2.2.5. Let δ be a predimension function, well-defined with respect to cl0,

and let Y be a cl0-finite dimensional set. Then the predimension function δY on A is

well-defined with respect to (cl0)Y .

Definition 2.2.6. A predimension function δ on A is said to be submodular with

respect to cl0 if it is well-defined with respect to cl0 and it satisfies the following

submodularity inequality with respect to the lattice of finitely generated cl0-closed

subsets of A: for all finite dimensional cl0-closed sets X, Y ,

δ(X ∨ Y/Y ) ≤ δ(X/X ∧ Y ),

where X ∧Y = X ∩Y and X ∨Y = cl0(X ∪Y ). Notice that X ∧Y and X ∨Y are the

natural lattice operations on the collections of finitely generated cl0-closed subsets of

A.
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Remark 2.2.7. Let us note that for a predimension function δ, well-defined with

respect to cl0, the property of submodularity with respect to cl0 can also be expressed

as follows: for all x, y ⊂ A,

δ(xy/Y ) ≤ δ(x/X ∩ Y ),

where X = cl0(x) and Y = cl0(Y ).

Remark 2.2.8. We also note that every dimension function d is submodular with

respect to the corresponding pregeometry cl, and also with respect to any weaker

pregeometry cl′ (i.e. any pregeometry cl′ such that cl′(X) ⊂ cl(X) for all X).

Definition 2.2.9. A pregeometry cl is said to be modular if the corresponding di-

mension function d has the property that for all cl-closed sets X, Y ,

d(X ∨ Y/Y ) = d(X/X ∧ Y ).

Remark 2.2.10. A pregeometry cl is modular if and only if the lattice of finite

dimensional cl-closed sets, ordered by inclusion, is a modular lattice. Recall that a

lattice (L,∨,∧) is said to be modular if for all x, y, z ∈ L, if x ≤ z implies x∨(y∧z) =

(x ∨ y) ∧ z.

It is easy to see that the pregeometry given by the linear span in a module is a

modular pregeometry.

Lemma 2.2.11. Let δ be a predimension function, submodular with respect to cl0,

and let Y be a cl0-finite dimensional set. Then the predimension function δY on A is

submodular with respect to (cl0)Y .

For the rest of this section assume δ is a predimension function on A, submodular

with respect to cl0.

Lemma 2.2.12. The following addition formula holds: for all finite dimensional

cl0-closed sets X, Y, Z with X ⊃ Y ⊃ Z,

δ(X/Z) = δ(X/Y ) + δ(Y/Z).

Proof. Indeed, δ(X/Z) = δ(X) − δ(Z) = δ(X) − δ(Y ) + δ(Y ) − δ(Z) = δ(X/Y ) +

δ(Y/Z).
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Remark 2.2.13. It is easy to see that the above lemma can be rephrased as follows:

for all finite dimensional cl0-closed sets X, Y, Z,

δ(X ∨ Y/Z) = δ(Y/Z) + δ(X/Y ∨ Z).

We shall use the expression addition formula to refer to either of the two equivalent

formulations.

Lemma 2.2.14. Suppose cl0 is a modular pregeometry on A and δ is a submodular

predimension function with respect to cl0. Then the following inequality holds: for all

finite dimensional cl0-closed sets X, Y , Z with Z ⊂ Y ,

δ(X/Z) ≥ δ(X ∧ Y/Z) + δ(X/Y )

Proof.

δ(X/Z) = δ(X ∨ (X ∧ Y )/Z)(as X = X ∨ (X ∧ Y ))

= δ(X ∧ Y/Z) + δ(X/Z ∨ (X ∧ Y )) (by the addition formula)

= δ(X ∧ Y/Z) + δ(X/(Z ∨X) ∧ Y )) (by the modularity of cl0)

= δ(X ∧ Y/Z) + δ(X ∨ Z/(Z ∨X) ∧ Y ))

(since Z ⊂ (Z ∨X) ∧ Y and δ(Z∨X)∧Y is is well-defined w.r.t. (cl0)(Z∨X)∧Y )

≥ δ(X ∧ Y/Z) + δ((X ∨ Z) ∨ Y/Y ) (by submodularity of δY w.r.t. (cl0)Y )

= δ(X ∧ Y/Z) + δ(X/Y ) (since Z ⊂ Y and δZ is well defined w.r.t. by (cl0)Z)

2.2.2 Self-sufficient sets

Assume δ is a submodular pregeometry on A with respect to cl0 and the pregeometry

cl0 is modular.

Definition 2.2.15. Let X be a cl0-closed subset of A.

A finite dimensional cl0-closed subset Y of X is self-sufficient in X, written Y ≤
X, if for all x ⊂

fin
X, δ(x/Y ) ≥ 0.

An arbitrary cl0-closed subset Y of X is self-sufficient in X, also written Y ≤ X,

if it is the union of a directed system of finite dimensional self-sufficient cl0-closed

subsets of X with respect to inclusions. Equivalently, Y is self-sufficient in X if the
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collection of all its finite dimensional cl0-closed subsets that are self-sufficient in X is

directed with respect to inclusions and has Y as union.

For arbitrary subsets Y of X, we say that Y is self-sufficient in X if cl0(Y ) is

self-sufficient in X in the above sense.

Lemma 2.2.16. 1. (Transitivity) Let X, Y, Z be cl0-closed subsets of A. If Z ≤ Y

and Y ≤ X then Z ≤ X.

2. (Unions of self-sufficient chains) Let (Xi)i∈I , be an increasing ≤-chain of subsets

of A, i.e. for all i, j ∈ I, if i ≤ j then Xi ≤ Xj. Put X =
⋃
i∈I Xi. Then for

all i ∈ I, Xi ≤ X.

Proof. (Transitivity.) Suppose Z ≤ Y and Y ≤ X. Assume further that Y, Z

are finite dimensional. Let X ′ be a finite dimensional cl0-closed subset of X. By

Lemma 2.2.14, we have

δ(X ′/Z) ≥ δ(X ′ ∧ Y/Z) + δ(X ′/Y )

The first summand on the right hand side is nonnegative as Z ≤ Y . The second

summand is nonnegative as Y ≤ X. Hence δ(X ′/Z) ≥ 0. Thus, Z ≤ X.

The result follows for arbitrary Y, Z. Indeed, if Z ≤ Y and Y ≤ X, then Z is the

union of the directed system of its finite dimensional cl0-closed subsets that are self-

sufficient in Y and Y is the union of the directed system of its finite dimensional cl0-

closed subsets that are self-sufficient in X. By finite dimensionality and directedness,

every element Zi of the first system is contained in some element Yj of the second

system; also Zi ≤ Yj, because Zi ≤ Y . Since also Yj ≤ X, by the transitivity

property proved above we get Zi ≤ X. Thus, Z is the union of a directed system of

finite dimensional cl0-closed self-sufficient subsets of X, and hence Z is self-sufficient

in X.

(Unions of self-sufficient chains.) If Xi is finite dimensional, then simply note that

every x ⊂
fin
X is contained in some Xj with i ≤ j and, since Xi ≤ Xj, δ(x/Xi) ≥ 0;

thus, Xi ≤ X.

If Xi is infinite dimensional, then, for each j ≥ i, that Xi is self-sufficient in Xj

means that the finite dimensional cl0-closed sets of Xi that are self-sufficient in Xj

form a directed system with union Xi. But then all finite dimensional cl0-closed sets

of Xi that are self-sufficient in some Xj with j ≥ i also form a directed system with

union Xi. Using finite dimensionality and directedness as above, one sees that every

finite dimensional cl0-closed subset of Xi that is self-sufficient in some Xj with j ≥ i
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is self-sufficient in X. Thus, Xi is the union of a directed system of finite dimensional

cl0-closed subsets that are self-sufficient in X. Hence Xi ≤ X.

Lemma 2.2.17. If Y1 and Y2 are finite dimensional self-sufficient cl0-closed subsets

of A, then so is Y1 ∩ Y2.

Proof. Let Y = Y1∩Y2. Let X be a finite dimensional cl0-closed subset of A containing

Y . Applying Lemma 2.2.14 and the submodularity of δ directly, we have:

δ(X/Y ) ≥ δ(X ∩ Y1/Y ) + δ(X/Y1)

= δ(X ∩ Y1/(X ∩ Y1) ∩ Y2) + δ(X/Y1)

≥ δ((X ∩ Y1) ∨ Y2/Y2) + δ(X/Y1).

Since Y1 and Y2 are self-sufficient, the two summands in the last expression are non-

negative. Therefore δ(X/Y ) ≥ 0. Thus, Y is self-sufficient.

2.2.3 The self-sufficient closure

Definition 2.2.18. Let X ⊂ A. The self-sufficient closure of X, denoted sscl(X), is

the smallest cl0-closed self-sufficient subset of A containing X.

Lemma 2.2.19. Let δ be a submodular predimension function on A with respect to

the modular pregeometry cl0. Assume the values of δ are bounded from below in Z.

Then for every set X, the self-sufficient closure of X exists.

Proof. Assume X has finite cl0-dimension. Since the values of δ are bounded from

below in Z, among all the finite dimensional cl0-closed sets Y containing X we can

find one such that δ(Y ) is minimal, and such Y is then clearly self-sufficient. Thus,

the collection SX of all self-sufficient finite dimensional cl0-closed sets containing X is

non-empty. By Lemma 2.2.17, SX is closed under finite intersections. Also, since all

the elements of SX are finite dimensional cl0-closed sets, any intersection of elements

of SX is the intersection of finitely many of them. Thus, the intersection of all elements

of SX is in SX , and it is indeed the self-sufficient closure of X.

For arbitrary X, we have

sscl(X) =
⋃
{sscl(X ′) : X ′ ⊂

fin
X}.

To see this note that the set on the right hand side is self-sufficient in A because it is

the union of a directed system of finite-dimensional cl0-closed self-sufficient subsets

of A; also, it is contained in any self-sufficient subset of A that contains X, for it

is clear from the definitions that such a set must contain each of the sscl(X ′) for

X ′ ⊂
fin
X.
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2.2.4 Proper predimension functions and dimension

Definition 2.2.20. A predimension function δ on a set A is said to be proper with

respect to a pregeometry cl0 if it is submodular with respect to cl0; for every finite x,

δ(x) ≥ 0; and δ(∅) = 0.

Remark 2.2.21. Given a submodular predimension function δ on A, with respect to

a pregeometry cl0, and a self-sufficient subset Z of A, the localisation δZ of δ at Z is a

proper predimension function with respect to the pregeometry (cl0)Z . In particular,

if δ is bounded from below, then one can obtain a proper predimension function by

localising at the self-sufficient closure of the empty set.

Let us also note that if δ is a proper predimension function on A, then the set

cl0(∅) is self-sufficient in A.

We now show how to define a dimension function d from the proper predimension

function δ.

Definition 2.2.22. The dimension function d associated to δ is defined, for all finite

x ⊂ A, by the formula

d(x) = min{δ(x′) : x ⊂ x′ ⊂
fin
A}.

Remark 2.2.23. We note that d satisfies conditions D1-D3 of the definition of di-

mension function on A (Definition 2.1.3). Hence d is a dimension function on the set

A1 = {x ∈ A : d(x) ≤ 1} in the sense of 2.1.3.

Thus, associated to d we have a closure operator with finite character cld on A

which restricts to a pregeometry on A1.

For X ⊂
fin
A and x0 ∈ A,

x0 ∈ cld(X)

⇐⇒ d(x0/X) = 0

⇐⇒ d(x0X) = d(X)

⇐⇒ There exists x ⊃ x0 such that δ(x/ sscl(X)) = 0

⇐⇒ x0 ∈ sscl(X) or

there exists x ⊃ x0, cl0-independent over sscl(X), such that δ(x/ sscl(X)) = 0.

Remark 2.2.24. Note that if x is self-sufficient, then δ(x) = d(x). Also, for all x,

d(x) = δ(sscl(x)).
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2.3 Rich structures

We now leave the context of a fixed set A and consider classes of first-order structures.

Let C be a class of first-order L-structures, for some first-order language L.

Definition 2.3.1. Suppose we have family of pregeometries {clA0 : A ∈ C} satisfying

the following conditions:

• For all A ∈ C, clA0 is a pregeometry on A.

• Partial isomorphisms preserve the pregeometries, that is: for all A1,A2 ∈ C, if

f is a partial isomorphism from A1 to A2 with domain X1 and image X2, then

for every (finite) set Y ⊂ X1 and every element y ∈ X1, y ∈ clA1
0 (Y ) if and only

if f(y) ∈ clA2
0 (f(Y )).

We then say that the class C has a pregeometry cl0, and write cl0 for each clA0 , A ∈ C.

The second condition in the above definition asks for compatibility among the

different pregeometries clA0 . Indeed, it guarantees that for any (finite) subset X of

a structure A in C, the value cl0(X) := clA0 (X) does not depend on the choice of

A. The same kind of compatibility condition appears in the following definition of a

predimension function for the class C.

Definition 2.3.2. Suppose the class C has a pregeometry cl0. We say that the class

C has a submodular (resp. proper) predimension function δ with respect to cl0 if there

exists a family of functions {δA : A ∈ C}, satisfying the following:

• For every A ∈ C, δA is a submodular (resp. proper) predimension function on

A with respect to the pregeometry clA0 .

• For every A1,A2 ∈ C, X1 ⊂fin
A1 and X2 ⊂fin

A2, if there exists a partial

isomorphism from A1 to A2 mapping X1 onto X2 then δA1(X1) = δA2(X2).

If δ is a predimension function for C, then for every x ⊂ A ∈ C we write δ(x) for the

value δA(x).

Henceforth, we assume C to be a class with a modular pregeometry cl0 and a

proper predimension function δ with respect to cl0.

Let Sub C be the class of substructures of structures in C whose domain is a cl0-

closed set. Let Fin C be the class of structures in Sub C whose domain has finite

cl0-dimension.

We consider cl0 and δ as a modular pregeometry and proper predimension function

for the class Sub C, extending their definitions by taking restrictions.
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Definition 2.3.3. Let X ,Y be structures in Sub C.
If X is a substructure of Y and X is a self-sufficient subset of Y , then we say that

Y is a strong extension of X and write X ≤ Y .

An embedding f : X → Y is said to be a self-sufficient embedding, or a strong

embedding, if f(X) is a self-sufficient subset of Y . If Z ⊂ X, we say that f is an

embedding over Z if f(z) = z for all z ∈ Z.

Definition 2.3.4. A structureA ∈ C is said to be rich (with respect to δ and cl0) if for

every X ,Y ∈ Fin C with X ≤ A and X ≤ Y , there exists a self-sufficient embedding

of Y into A over X .

Definition 2.3.5. For A1 and A2 in C, let F(A1,A2) to be the following set of partial

isomorphisms

F(A1,A2) = {f : X1

∼=−→ X2 : Xi ≤ Ai, Xi fin. dim. cl0-closed, i = 1, 2}.

Remark 2.3.6. Remember that a collection F of partial isomorphisms from a struc-

ture A1 to a structure A2 is said to be a back-and-forth system if F is non-empty and

has the following properties:

• (Forth) For all f ∈ F , for all a1 ∈ A1, there exists g ∈ F extending f such that

a1 is in the domain of g.

• (Back) For all f ∈ F , for all a2 ∈ A1, there exists g ∈ F extending f such that

a2 is in the image of g.

If there exists a back-and-forth system of partial isomorphisms from A1 to A2, then

we say that the structures A1 and A2 are back-and-forth equivalent.

It is a theorem of Karp that two structures are back-and-forth equivalent if and

only if they satisfy the same L∞ω-sentences (recall that L∞ω is the extension of first-

order logic where conjunctions of arbitrary sets of formulas in a given finite set of

variables are allowed as formulas). From this, it follows that every element of a back-

and-forth system is a partial elementary map and that back-and-forth equivalent

structures are elementarily equivalent.

Remark 2.3.7. Note that for all A1,A2 in C, F(A1, A2) is non-empty. Indeed,

there is a partial isomorphism with domain clA1
0 (∅) and image clA2

0 (∅), due to the

assumption that cl0 is a pregeometry for the class C, and these sets are self-sufficient

in A1 and A2, respectively, because δ is a proper predimension function.
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Note that for any A ∈ C, A is rich if and only if for every X ,Y ∈ Fin C and every

self-sufficient embedding f of X into Y , there exits a self-sufficient embedding of Y
into A extending f−1. It is then easy to see that if A1 and A2 are rich structures in

C, then F(A1,A2) is a back-and-forth system. It follows that all rich structures in C
are L∞ω-equivalent and, in particular, elementarily equivalent.

We further note the following:

Lemma 2.3.8. Let A1 and A2 be rich structures in C. Let f : X1

∼=−→ X2 be a partial

isomorphism from A1 to A2 such that Xi is a self-sufficient cl0-closed subset of Ai,

for i = 1, 2, respectively. Then f is an elementary map.

Proof. If X1 and X2 are finite dimensional, then f is in the back-and-forth system

F(A1,A2) and is hence an elementary map.

In general, X1 is the union of a directed system of finite dimensional sets (X i
1),

self-sufficient in A. Note that X2 is the union of the directed system of sets f(X i
1).

Since each X i
1 is self-sufficient in A1, X i

1 is, in particular, self-sufficient in X1. Since

f is a partial isomorphism, each f(X i
1) is therefore self-sufficient in X2. Therefore,

by transitivity of self-sufficiency, each f(X i
1) is self-sufficient in A2. Thus, every

restriction of f to an X i
1 is a partial isomorphism between a self-sufficient subset of

A1 and a self-sufficient subset of A2 and hence is an elementary map. Since f is

the union of the directed system of its restrictions to the X i
1, it follows that f is an

elementary map.

2.3.1 Existence of rich structures

The following lemma gives sufficient conditions for the existence of rich structures in

the class C.

Lemma 2.3.9. Assume the following:

• (Sub C has the amalgamation property for self-sufficient embeddings) For all

Y0,Y1, Y2 ∈ Sub C with Y0 ≤ Y1 and Y0 ≤ Y2, there exist Y ∈ Sub C and

self-sufficient embeddings j1 : Y1 → Y and j2 : Y2 → Y with j1|Y0 = j2|Y0.

• (C is closed under unions of self-sufficient increasing chains) If (Ai)i∈I is a self-

sufficient increasing sequence of structures in C, then the structure A =
⋃
i∈I Ai

is in C.

• (Extension property) for all Y ∈ Sub C there exists A ∈ C with Y ≤ A.
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Then for every Y ∈ Sub C there exists a rich structure A ∈ C with Y ≤ A.

Proof. It is sufficient to show the following:

Claim: for all Y ∈ Sub C, there exists A ∈ C with Y ≤ A such that for all

X ,X ′ ∈ Fin C with X ≤ Y and X ≤ X ′, there is a self-sufficient embedding of X ′

into A over X .

Indeed, the above claim implies the lemma: given any Y ∈ Sub C, we can construct

a self-sufficient increasing chain of structures (Ai)i<ω in C starting with any A0 in C
with Y ≤ A0 (such exist by the extension property), and inductively taking Ai+1 to

be as provided by the claim for Ai. Since C is closed under unions of self-sufficient

increasing chains, the structure A =
⋃
iAi is in C. It is easy to see that A is rich and

Y ≤ A.

Proof of the claim: Let Y ∈ Sub C. Let ((Xi,X ′i ))i<λ be an enumeration of all pairs

(X,X ′) with X ,X ′ ∈ Fin C , X ≤ Y and X ≤ X ′. We define a self-sufficient increasing

chain (Ai)i<λ of structures in C as follows: Let A0 be any structure in C with Y ≤ A0

(extension property). For each limit ordinal 0 < σ < λ, let Aσ :=
⋃
i<σAi. For each

i < λ, let Z ∈ Sub C be as provided by the amalgamation property of Sub C for the

extensions Xi ≤ Ai, Xi ≤ X ′i ; after an identification, we may assume Ai ≤ Z; let Ai+1

be a structure in C with Z ≤ Ai+1 (extension property). The structure A :=
⋃
i<λAi

is then as required.

2.3.2 Quantifier elimination

Let T be a first-order L-theory whose class of models C has a modular pregeometry

cl0 and a proper predimension function δ with respect to cl0. Furthermore, assume

that every ω-saturated model of T is rich.

Let L∗ be an expansion of the language L by predicates for some L-definable

relations and let T ∗ denote the canonical extension of T to an L∗-theory such that

every model A of T expands to a unique model A∗ of T ∗ according to the definitions

of the new predicates.

Proposition 2.3.10. 1. The theory T is complete.

2. Suppose that for any rich structure A in C, every finite L∗-partial isomorphism

from A∗ to A∗ extends to a partial isomorphism in F(A,A). Then T ∗ has

quantifier elimination in the language L∗.

Proof. 1. The completeness of T follows immediately from Remark 2.3.7.
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2. Suppose L∗ is an expansion of the language by predicates for L-definable rela-

tions such that for any rich structure A in C, every finite L∗-partial isomorphism

from A∗ to A∗ extends to a partial isomorphism in F(A,A). Thus, for every

rich A in C, every L∗-partial isomorphism from A to A is an L-elementary map.

Since L∗ is an expansion by definable predicates, every L-elementary map is also

an L∗-elementary map. Thus, every L∗-partial isomorphism is L∗-elementary,

which means that the the quantifier-free L∗-type of any tuple in a model of

T determines its L∗-type. Quantifier elimination for T ∗, in the language L∗,

follows by a standard compactness argument.

We now consider the particular case where L∗ is the expansion of the language

L by a predicate for each existentially definable set in L, which is often of interest,

and isolate a sufficient condition for quantifier elimination of the theory T ∗ in the

expanded language L∗.

Recall that an L-theory T is said to be near model complete if, for the above

language L∗, T ∗ has quantifier elimination.

Proposition 2.3.11. Assume the following property holds: For all a ⊂ A |= T , there

exists an existential L-formula τ δa (x) such that

• A |= τ δa (a), and

• for all a′ ⊂ A′ |= T , if A′ |= τ δa (a′) then δ(a′) ≤ δ(a).

Then:

1. For all a ⊂ A |= T , there exists an existential L-formula τd
a (x) such that

• A |= τd
a (a), and,

• for all a′ ⊂ A′ |= T , if A′ |= τd
a (a′) then d(a′) ≤ d(a).

2. For all n ≥ 1, for all r ≥ 0, there is a set Φn,r(x) of existential L-formulas such

that for all A ∈ C and all a ∈ An,

δ(a) ≤ r ⇐⇒ A |=
∨

Φn,r(a).

3. For all n ≥ 1, for all r ≥ 0, there is a set Ψn,r(x) of existential L-formulas such

that for all A ∈ C and all a ∈ An,

d(a) ≤ r ⇐⇒ A |=
∨

Ψn,r(a).
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4. For all models A1,A2 of T ∗, every finite partial L∗-isomorphism from A1 to A2

preserves the dimension function d.

5. For all ω-saturated models A1,A2 of T ∗, every finite partial L∗-isomorphism

from A1 to A2 extends to a member of F(A1,A2).

6. T is a near model complete L-theory.

Proof. 1. It is easy to see that we can take τd
a (x) to be ∃yτ δ(a,b)(x, y) where b is

such that (a, b) is a cl0-basis of the self-sufficient closure of a.

2. Given n, r, put

Φn,r(x) = {τ δa (x) : A |= T, a ∈ An, δ(a) ≤ r}

3. Given n, r, put

Ψn,r(x) = {τd
a (x) : A |= T, a ∈ An, d(a) ≤ r}

4. Immediate from the previous part.

5. Let f : a1 7→ a2 be a partial L∗-isomorphism from A1 to A2. Let b1 be an

enumeration of sscl(a1). Let Θ(x, y) be the quantifier-free L-type of a1b1. Notice

that since f is an L∗-partial isomorphism, Θ(a2, y) is finitely satisfiable in A2.

Therefore, by the ω-saturation of A2, there exists a realisation b2 in A2 of

Θ(a2, y). We thus have an L-partial isomorphism f̂ : b1 7→ b2 extending f .

Also,

δ(b2) = δ(b1) = d(a1) = d(a2),

where the last equality holds by the previous part of this lemma; hence b2 is

self-sufficient in A2. Therefore, f̂ is in F(A1,A2).

6. It follows immediately from the previous part and Lemma 2.3.8 that finite par-

tial L∗-isomorphisms are L-elementary maps, and hence L∗-elementary maps.

Thus, T ∗ has quantifier elimination, i.e. T is near model complete.
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Chapter 3

Algebraic preliminaries

This chapter collects the main algebro-geometric results that will be used in the later

chapters. We start by introducing the algebraic groups that we shall work with and

then give precise statements and references for results relating to the Conjecture on

Intersections with Tori, the Mordell-Lang property, Ax’s theorem and the Thumbtack

Lemma.

3.1 Algebraic groups

For us, an algebraic variety (often simply variety) A over a field k0 will be given by

a set of polynomial equations and inequations over k0 defining a subset of affine or

projective space. Thus, given an algebraic variety A, for each field K extending k0

we have a corresponding set A(K) consisting of all K-points of A. In fact, we shall

also call the sets of the form A(K) algebraic varieties, but this should not give rise

to confusion.

Suppose A is a variety over a field k0. A variety B over a field extension k1 of

k0 such that B(K) is a Zariski closed subset of A(K) for every K ⊃ k1 is said to be

a subvariety of A defined over k1. We also call the Zariski closed subsets of A(K)

subvarieties of A(K).

An algebraic group A over k0 is an algebraic variety together with polynomials

over k0 defining a group operation on A(K) and the corresponding inversion operation

for all field extensions K of k0.

A subvariety B of an algebraic group A such that B(K) is a subgroup of A(K),

for every K over which both A and B are defined, is said to be an algebraic subgroup

of A. In this case we also say that each B(K) is an algebraic subgroup of A(K).

The most basic examples of algebraic groups are probably those of the additive

and multiplicative groups. The additive group, denoted Ga, consists of the variety
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defined by the polynomial equation in one variable x = x together addition as group

operation. The multiplicative group, denoted Gm, has set of K-points K∗ for every

field K and its group operation is given by multiplication. 1

An elliptic curve is a 1-dimensional abelian variety. An abelian variety is an

irreducible, complete algebraic group. The group operation on an abelian variety is

always commutative ([30, Example 4.6]), additive notation is therefore used.

For details on the definitions of algebraic groups and abelian varieties, see e.g.

[30]. A general reference for elliptic curves is [36].

Over fields of characteristic zero, which is the only case that we shall deal with,

all elliptic curves can be realised as subvarieties of the projective plane P2 given by a

homogeneous Weierstrass equation

zy2 = 4x3 + αxz2 + βz3,

where α, β ∈ k0 are such that the polynomial 4x3 + αx + β has distinct roots, and

having the point O := [0, 1, 0] at infinity as the identity element for the group opera-

tion. Sometimes, especially in the context of equations, we also use 0 to denote the

point O.

Let A be the multiplicative group or an elliptic curve over a field k0 of characteristic

0. We use additive notation for the group operation on A.

The endomorphisms of A given by regular functions (i.e. given by polynomials on

affine charts) form a ring, where addition is induced by the group operation of A and

multiplication is given by composition. We denote this ring by End(A).

If A is the multiplicative group then the ring End(A) consists only of the maps

x 7→ n·x (in additive notation) for n ∈ Z and is thus isomorphic to Z. If A is an elliptic

curve then End(A) is isomorphic to either Z or Z[θ], for some imaginary quadratic

algebraic integer θ. In the latter case it is said that A has complex multiplication

(CM) by Z[θ].

Let A = A(K) with K an algebraically closed field containing k0.

Note that A is an End(A)-module. We have a dimension function on A given by

the End(A)-linear dimension, which we denote by lin. d.End(A), or simply by lin. d..

We use 〈Y 〉 or spanEnd(A)(Y ) to denote the End(A)-span of a subset Y of A.

1This description of Gm does not, in fact, fit our definition of algebraic groups. However, this
imperfection can be ignored by a customary identification of K∗ with the algebraic subvariety H of
K2 defined by the equation xy = 1, under which each a ∈ K∗ is identified with the point (a, a−1)
on H, multiplication on K∗ corresponds to coordinatewise multiplication on the hyperbola H and
inversion on K∗ corresponds to switching the two coordinates on H.
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Since K is algebraically closed, A is divisible. Also, the ring End(A) is an integral

domain and kA := End(A)⊗Z Q is its fraction field. The quotient A/Tor(A) is a kA-

vector space and for every Y ⊂ A, lin. d.End(A)(Y ) equals the kA-linear dimension of

φ(Z) in A/Tor(A), where φ : A→ A/Tor(A) is the quotient map. The pregeometry

on A/Tor(A) given by the kA-span induces a pregeometry on A that we shall denote

by span; this means that for Y ⊂ A, span(Y ) = φ−1(spankA(φ(Y ))).

The algebraic group structure on A induces an algebraic group structure on each

cartesian power An, n ≥ 1. There is the following characterisation of the algebraic

subgroups of An; for the case of the multiplicative group a proof can be found in [8,

Section 3.2], for the elliptic curve case we refer to [40, Lemma 1].

Every algebraic subgroup C of An is defined by a system of equations of the form

m · y = 0,

where y is a n-tuple of variables and m, and m is a k × n-matrix with entries in

End(A), for some k.

Furthermore, if m has rank k, then C has dimension n − k (as a Zariski closed

set). In this case we say that C has codimension k.

It follows that a coset α+C of an algebraic subgroup C is defined by a system of

equations of the form

m · y = b,

with y,m as before and b ∈ Ak.
Note that for any algebraically closed intermediate field k0 ⊂ K ′ ⊂ K we have:

the coset α + C is defined over K ′, if and only if, α + C has a K ′-rational point, if

and only if, α + C = α′ + C for some α′ ∈ A(K ′)n.

3.2 The Conjecture on Intersections with Tori (CIT)

Let B = B(K), with K algebraically closed, be a smooth algebraic variety. If V,W

are subvarieties of B such that V ∩W 6= ∅, then every irreducible component of the

intersection has dimension at least dimV + dimW − dimB. This follows from [35,

I.6 Theorem 6] and the fact that dimension is a local notion.

Definition 3.2.1. Let V,W be subvarieties of B with non-empty intersection. Let S

be an irreducible component of V ∩W . Then, S is said to be an atypical component

of the intersection of V and W if

dimS > dimV + dimW − dimB.
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Otherwise, that is if dimS = dimV + dimW − dimB, we say that S is a typical

component of the intersection of V and W .

Let B′ be a smooth subvariety of B containing S. Then, S is said to be an atypical

component of the intersection of V and W with respect to B′ if

dimS > dimV ∩B′ + dimW ∩B′ − dimB′.

Otherwise, that is if dimS = dimV ∩ B′ + dimW ∩ B′ − dimB′, we say that S is a

typical component of the intersection of V and W with respect to B′.

In order to explain the terminology introduced in the above definition, let us note

that if the dimension of the intersection of V and W is larger than dimV + dimW −
dimB, this is due to the existence of algebraic dependences between the equations

defining V and those defining W . Such dependences are closed conditions, therefore

in generic cases the dimension of each of the irreducible components of the intersection

is equal to dimV + dimW − dimB.

We shall now state Zilber’s Conjecture on Intersections with Tori (CIT). We for-

mulate the statement in the full generality of semiabelian varieties. A semiabelian

variety is a commutative algebraic group that is an extension of an abelian variety by

an algebraic torus (i.e. a power of Gm). We shall not actually work with semiabelian

varieties (in fact we would have to use a more general notion of variety to do so).

For our purposes it suffices to know that both abelian varieties and algebraic tori are

semiabelian varieties. Indeed, we shall only consider the cases of powers of an elliptic

curve and of algebraic tori.

We consider below a semiabelian variety B defined over a field k0, which is always

assumed to have characteristic zero. When B is the multiplicative group, k0 is assumed

to be the field of rational numbers. Throughout K denotes an algebraically closed

field extending k0.

Conjecture 3.2.2 (CIT). Let B = B(K) be a semiabelian variety defined over a field

k0 of characteristic zero.

For every k ≥ 0, every subvariety W of B defined over k0, there exists a finite

collection of proper algebraic subgroups C1, . . . , Cs of B with the following property:

if S is an atypical component of the intersection of W and a proper algebraic subgroup

C of B, then for some i ∈ {1, . . . , s}, S is contained in Ci.

In the multiplicative group case, the above is Conjecture 1 in [44]. There it is

shown that the CIT implies the following version that allows parameters (see Theorem

1 and Proposition 1 in that paper).
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Conjecture 3.2.3 (CIT with parameters). Let B = B(K) be a semiabelian variety

defined over a field k0 of characteristic zero.

For every k ≥ 0, every subvariety W (x, y) of B1+k defined over k0 and every

c ∈ Bk, there exists a finite collection of proper algebraic subgroups C1, . . . , Cs of B

and elements α1, . . . , αr of B with the following property:

for every coset α + C of a proper algebraic subgroup C of B, if S is an atypical

component of the intersection of W (x, c) and α+C, then for some i ∈ {1, . . . , s} and

some j ∈ {1, . . . , r}, S is contained in αj + Ci and S is a typical component of the

intersection of W (x, c) and α + C with respect to αj + Ci.

The following theorem deals with the same situation as the CIT. Here, however,

the conclusion is weaker. Following common practice, we refer to the theorem as

Weak CIT. For the multiplicative group this is Corollary 3 in [44] and Corollaire 3.6

in [33]. In the general case of semiabelian varieties the result is due to Kirby, Theorem

4.6 in [19].

Theorem 3.2.4 (Weak CIT). Let B = B(K) be a semiabelian variety defined over a

field k0 of characteristic zero.

Let k ≥ 0 and let W (x, y) be a subvariety of B1+k defined over k0.

Then there exists a finite collection of proper algebraic subgroups C1, . . . , Cs of B

with the following property:

for any c ∈ Bk and any coset α + C of a proper algebraic subgroup C of B, if

S is an atypical component of the intersection of W (x, c) and α + C, then for some

i ∈ {1, . . . , s} and some α′ ∈ B, S is contained in α′+Ci and S is a typical component

of the intersection of W (x, c) and α + C with respect to α′ + Ci.

Indeed, it is easy to see that the CIT with parameters (and hence also the CIT)

implies the Weak CIT. The difference between the two consists in that the CIT with

parameters provides a finite collection of cosets of algebraic subgroups that controls

all atypical intersections while the Weak CIT only gives a finite collection of subgroups

such that the collection of all their cosets controls all atypical intersections.

3.3 The Mordell-Lang Property

We are now interested in the content of the (absolute) Mordell-Lang conjecture, in

characteristic zero. This is a theorem, after work of Laurent, Faltings, Vojta, Raynaud

and McQuillan. For more precise attributions and bibliography we refer to [12].
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Theorem 3.3.1 (Mordell-Lang conjecture). Let K be an algebraically closed field of

characteristic 0. Let B = B(K) be a semiabelian variety. Let Γ be a subgroup of

B of finite rank. Then for every subvariety W of B, there exist a natural number r,

elements γ1, . . . , γr of Γ and algebraic subgroups B1, . . . , Br of B such that γi+Bi ⊂ W

and

W ∩ Γ =
r⋃
i=1

γi + (Bi ∩ Γ).

As it is already in use, we shall say that a subgroup Γ of B has the Mordell-Lang

property if it satisfies the conclusion of the above theorem.

Let us remark that in [44] it is proved that the CIT implies the Mordell-Lang

conjecture in characteristic zero.

3.4 Ax’s Theorem

The following theorem of Ax from differential algebra plays an important role in

several aspects of the present work.

Theorem 3.4.1 (Ax, [1]). Let (F,+, ·, D) be a differential field of characteristic 0

with field of constants k. Suppose x1, . . . , xn ∈ F and y1, . . . , yn ∈ F ∗ are such that

Dyi
yi

= Dxi, for each i = 1, . . . , n,

and x1, . . . , xn are Q-linearly independent.

Then

tr. d.(x1, . . . , xn, y1, . . . , yn/k) ≥ n+ 1.

In fact, the proofs of the multiplicative group case of the Weak CIT (3.2.4) in [44]

and [33] show that that statement follows comparably easily from the above theorem

by a model-theoretic argument. The same happens in the semiabelian case, where the

Weak CIT follows from a generalisation of Ax’s Theorem ([19]). We shall not discuss

the more general version, but we will use the following version for elliptic curves from

[18].

Theorem 3.4.2 ([18]). Let (F,+, ·, D) be a differential field of characteristic 0 with

field of constants k and let E be an elliptic curve over F with affine part given by the

equation z2 = f(y), where f(y) is a cubic with distinct roots. Suppose x1, . . . , xn, y1, . . . , yn ∈
F are such that f(yi) 6= 0 and (Dyi)

2

f(yi)
= (Dxi)

2 for all i = 1, . . . , n and x1, . . . , xn are

Q-linearly independent.
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Then

tr. d.(x1, . . . , xn, y1, . . . , yn/k) ≥ n+ 1.

Ax’s theorem, in both the above forms, will be important in proving the countable

closure property for certain pregeometries associated to the complex exponential field

and some related structures. This is explained in Chapter 5.

3.5 The Thumbtack Lemma

In order to establish the ω-stability of the theories of expansions of algebraic groups

by green points that will be constructed in Chapter 4, we will need to apply a result

that is usually referred to as the Thumbtack Lemma.

Definition 3.5.1. Let K/k be an extension of algebraically closed fields, both ex-

tending k0. A tuple a ⊂ A = A(K) is said to be Kummer generic over k, if every

End(A)-module automorphism of span(A(k) + 〈a〉) fixing A(k) + 〈a〉 pointwise is

induced by a field automorphism of k(a)
alg

over k0.

The above terminology is taken from [11]. In fact, the definition here differs from

the one in [11], Definition 4.1, but our use of the term is legitimized by Fact 4.2 there.

To explain the concept of Kummer genericity, let a be a tuple of elements of

A = A(K) and consider a sequence (ai : i ≥ 1) of tuples in A with a1 = a and

(aij)i = aj for all i, j ≥ 1. If V is the locus of a over k, then for every i, ai lies in the

variety 1
i
V , that is the inverse image of V under the map x 7→ ix (with respect to

the group operation on A). Since, in general, the variety 1
i
V is not irreducible, the

type of ai over k is, in general, not determined by that of a.

However, it is easy to see that a is Kummer generic over k if and only if all

sequences (ai : i ≥ 1), with a1 = a and (aij)i = aj for all i, j ≥ 1, are conjugated by

a field automorphism of k(a)
alg

over k0. Thus, in other words, a is Kummer generic

over k if and only if the type of a over k determines the type over k of any sequence

sequence (ai : i ≥ 1) as above.

Theorem 3.5.2 (Thumbtack Lemma). Let A be the multiplicative group or an elliptic

curve. Let k and K be algebraically closed fields extending k0 with k ⊂ K.

For every a ∈ A = A(K), there exists a kA-linear basis a′ of span(A(k) ∪ a) over

A(k) that is Kummer generic over k.
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In the multiplicative group case, the above theorem is Theorem 2.3 in [6] (which

builds upon [52]). For elliptic curves without complex multiplication and defined over

a number field k0, it is case N = 1 of Lemma 4.2.1.iii in [3]. The result holds for arbi-

trary semiiabelian varieties by a theorem of Bays, Gavrilovich and Hils ([4][Theorem

1.1]), which in fact follows from a version by the same authors in the more general

context of groups of finite Morley rank ([4][Theorem 6.4]).
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Chapter 4

Expansions of algebraic groups by
green points

This chapter contains the construction of the theories of green points on the multi-

plicative group and on elliptic curves. As mentioned in the introduction, this gener-

alises the work of Poizat in [33].

4.1 Structures

In this section, we begin by considering a class of structures with a predimension

function and showing how this is an instance of the general setting of Chapter 2.

4.1.1 An explanation: Varieties as structures

Let A be an algebraic variety defined over a field k0.

Let LA be the first-order language consisting of an n-ary predicate for each sub-

variety of An defined over k0, n ≥ 1.

Let K be an algebraically closed field extending k0. Consider the natural LA-

structure on A(K):

(A(K), (W (K))W∈LA).

Let TA denote the complete theory of this structure.

The following is the key fact about TA that we shall use. Details on bi-interpretations

and a proof of this fact can be found in [3, Fact A.2.1].

Fact 4.1.1. Let ACFk0 be the theory of algebraically closed fields extending k0 in

the expansion of the field language by constants for each element of k0. Then, TA is

bi-interpretable with ACFk0.
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Since we consider A as embedded in affine or projective space, there is a natural

interpretation of TA in ACFk0 . In fact, there is an interpretation of ACFk0 in TA

that gives the bi-interpretability when paired with the natural interpretation of TA in

ACFk0 .

Fact 4.1.1 has several relevant consequences: the theory TA does not depend on

the choice of K, and every model A of TA is of the form A = A(K) for a corresponding

algebraically closed field K extending k0. Also, TA has quantifier elimination.

Suppose A is irreducible and 1-dimensional. Then TA is strongly minimal. There-

fore aclTA induces a pregeometry on every model A of TA. By the bi-interpretability,

acleq
TA

equals acleq
ACFk0

. From this we get that for any tuple of elements b of a model

of TA, the aclTA-dimension of b equals the acleq
ACFk0

-dimension of b when viewed as

living in Keq, where K is the field corresponding to A. The acleq
ACFk0

-dimension of

b equals the transcendence degree over k0 of any normalised representation of b in

homogeneous coordinates, which we shall denote by tr. d.(b/k0), or, in this chapter,

simply by tr. d.(b), since A and k0 are fixed.

4.1.2 Setup

Let A be the multiplicative group Gm or an elliptic curve over a field of characteristic

zero.

Let L = LA ∪ {G} be the expansion of the language LA by a unary predicate G.

Let C be the class of all L-structures A = (A,G) where A � TA and G is a divisible

End(A)-submodule of A. Note that the class C is elementary.

Following a convention introduced by Poizat, given an L-structure A = (A,G) in

C, we call the elements of G green points and the elements of A \G white points.

Let A = (A,G) be a structure in C. Let clA0 be the pregeometry on A induced by

the pregeometry given by the kA-linear span on the quotient A/Tor(A).

Note that if A,B are structures in C with A ⊂ B, then A is clB0 -closed and for all

Y ⊂ A, clA0 (Y ) = clB0 (Y ). Therefore we shall write simply cl0 for clA0 for any A. In

the terminology of Chapter 2, cl0 is a pregeometry for the class C.
Note that the dimension function associated to cl0 coincides with the End(A)-

linear dimension. Henceforth in this chapter, we shall refer to the cl0-dimension

simply as linear dimension and write lin. d. for it. Moreover, for a subset X of a

structure A ∈ C, we also denote the set cl0(X) by span(X).

Note that in the lattice of cl0-closed sets we haveX∨Y = X+Y andX∧Y = X∩Y .

Moreover, it is easy to see that the modularity of the pregeometry on A/TorA given

by the kA-linear span implies that cl0 is also a modular pregeometry.
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Consider the predimension function δA defined on finite subsets Y of A by

δA(Y ) = 2 tr. d.(Y )− lin. d.(span(Y ) ∩G).

It is clear that if A,B are structures in C with A ⊂ B, then for all Y ⊂
fin

A,

δA(Y ) = δB(Y ). Thus, we shall henceforth drop the superindex and write simply δ.

Lemma 4.1.2. Let A be a structure in C. The function δ is a submodular predimen-

sion function on A with respect to cl0.

Proof. Well-definedness with respect to cl0 is clear from the definition of δ and the

inclusion span(Y ) ⊂ aclTA(Y ).

We now show that δ satisfies the submodularity inequality with respect to cl0.

Note that tr. d. is submodular with respect to cl0 (for any dimension function is

submodular with respect to its corresponding pregeometry and also with respect to

any weaker pregeometry). Hence for all finite dimensional cl0-closed sets X, Y ,

tr. d.(X + Y/Y ) ≤ tr. d.(X/X ∩ Y ). (4.1)

Let us look at the negative term in the definition of δG and consider the function

lin. d.G(y) := lin. d.(span(y) ∩ G), for y ⊂
fin
A. Clearly, lin. d.G is well-defined with

respect to cl0. We further note that it satisfies the following supermodularity property:

for all finite dimensional cl0-closed sets X, Y ,

lin. d.G(X + Y/Y ) ≥ lin. d.G(X/X ∩ Y ). (4.2)

One can see this as follows:

lin. d.G(X/X ∩ Y ) = lin. d.(X ∩G/X ∩ Y ∩G)

= lin. d.(X ∩G/(X ∩G) ∩ (Y ∩G))

= lin. d.((X ∩G) + (Y ∩G)/Y ∩G)

(by the modularity of lin. d. with respect to span)

≤ lin. d.((X + Y ) ∩G/Y ∩G).

Thus, for all finite dimensional cl0-closed sets X, Y , we have, substracting 4.2 from

4.1,

δ(X + Y/Y ) ≤ δ(X/X ∩ Y ). (4.3)

This means that δ is submodular with respect to cl0.
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We have thus seen that δ is a submodular predimension function for the class C
with respect to the modular pregeometry cl0.

As in Chapter 2, let us denote by Sub C the class of substructures of structures in

C whose domain is a cl0-closed set.

Let us fix a finite dimensional structure X0 = (X0, G0) in Sub C.
Let C0 be the class of structures A in C into which there is a self-sufficient embed-

ding of X0, expanded by constants for the image of such an embedding. For A ∈ C0,

we identify X0 with the self-sufficient substructure of A consisting of the interpreta-

tions of the constants; with this convention in place, we shall not be explicit about

the interpretation of constants in our notation for the structures in C0, writing simply

A = (A,G), instead of A = (A,G)X0 .

Note that for A0 := aclTA(X0), the structure A0 = (A0, G0) is in C0. In particular,

this implies that the class C0 is always non-empty. Moreover, the structure A0 embeds

self-sufficiently in all structures in C0, hence we may say that it is prime in C0 with

respect to self-sufficient embeddings. Also, note that for all A = (A,G) ∈ C0, we

have TorG = TorG0; indeed, recall that A = A(K) for some algebraically closed field

K ⊃ k0 and note that all the torsion points of A have coordinates in kalg
0 , therefore we

have TorA = TorA(kalg
0 ) = TorA0, and hence also TorG = TorA∩G = TorA0∩G =

TorG0.

Lemma 4.1.3. δX0 is a proper predimension function for the class C0 with respect to

the modular pregeometry (cl0)X0.

Proof. Since for all A in C the predimension function δ is submodular on A with

respect to cl0, also for all A ∈ C0 the predimension function δX0 is submodular with

respect to the modular pregeometry (cl0)X0 (see 2.2.11).

Moreover, by the very definition of C0, for all A in C0 the values of δX0 on finite

subsets of A are non-negative, and clearly δX0(∅) = 0.

We have thus seen that all assumptions in Chapter 2 hold in the situation consid-

ered in this chapter. All definitions from Chapter 2 are thus in place and all results

from Chapter 2 are at hand.

Henceforth, we shall always work over X0 and, in order to ease the notation, we

shall write simply δ for δX0 and cl0 for (cl0)X0 .

A simple but very useful remark, particular to the case treated in this chapter,

follows.
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Remark 4.1.4. Let Y be a finite dimensional cl0-closed subset of a structure A ∈ C0.

Recall that, by definition, Y is self-sufficient in A if for every finite dimensional cl0-

closed subset X of A, δ(X/Y ) ≥ 0. We now note that Y is self-sufficient in A if and

only if for every finite dimensional cl0-closed set X contained in G, δ(X/Y ) ≥ 0.

This follows immediately from the inequality: δ(X/Y ) ≥ δ((X + Y ) ∩G/Y ). We

also point out that Y is self-sufficient in A if and only if for every End(A)-linearly

independent tuple x ⊂ G, δ(x/Y ) ≥ 0.

4.1.3 Existence of rich structures

To establish the existence of rich structures in the class C0 we now show that the

sufficient conditions found in 2.3.9 hold for the class C0.

Amalgamation property

Definition 4.1.5 (Free Amalgam). Let Xi = (Xi, Gi), for i = 1, 2, 3, be structures

in Sub C and assume X1 ⊂ Xi for i = 2, 3. The free amalgam X = (X,G) of X2 and

X3 over X1 is defined as follows: Replace X3 by an isomorphic copy over X1 so that

X2 and X3 are aclTA-independent over X1 inside a monster model Ā of TA. Then let

X := X2 +X3 (in Ā) with the induced structure from Ā and let G = G2 +G3.

Remark 4.1.6. Note that the above X is in Sub C. Indeed, A := aclTA(X) is an

infinite algebraically closed set in a model of the strongly minimal theory TA and

hence a model of TA. Also, it is easy to see that G is a divisible subgroup of X.

See that X comes with canonical embeddings Xi → X over X1, i = 2, 3. Moreover,

X is unique up to isomorphism over these embeddings.

Lemma 4.1.7 (Asymmetric Amalgamation Lemma). Let Xi = (Xi, Gi), for i =

1, 2, 3, be structures in Sub C0 and assume X1 ⊂ Xi for i = 2, 3. If X1 is self-sufficient

in X2, then the free amalgam X of X2 and X3 over X1 is in Sub C0 and, under the

canonical embedding, X3 is self-sufficient in X .

Proof. Let us identify X3 with its image under the canonical embedding into X .

Since we know X ∈ Sub C, by the transitivity of self-sufficiency it suffices to show

that X3 is self-sufficient in X . Let Y be a finite dimensional cl0-closed subset of G

and let us show that δ(Y/X3) ≥ 0 (this is enough, by 4.1.4). Since G = G2 + G3,

there exists finite dimensional cl0-closed sets Y2 and Y3 of X2 and X3, respectively,

such that Y = Y2 + Y3. Then, since δ(−/X3) is well defined with respect to (cl0)X3 ,

we have δ(Y/X3) = δ(Y2/X3). Also, by the independence of X2 and X3 over X1,
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we know that δ(Y2/X3) = δ(Y2/X1). Thus, δ(Y/X3) = δ(Y2/X1), and the latter is

non-negative because X1 is self-sufficient in X2.

Corollary 4.1.8. Sub C0 has the amalgamation property with respect to self-sufficient

embeddings.

Remark 4.1.9. Since the free amalgam of finite dimensional structures in Sub C0

is finite dimensional, we also have that the amalgamation property with respect to

self-sufficient embeddings holds for the class Fin C0 of finite dimensional structures in

Sub C0.

Unions of chains

Lemma 4.1.10. The class C0 is closed under unions of self-sufficient increasing

chains.

Proof. Since TA and the theory of divisible abelian groups are ∀∃-axiomatizable, so

is the class C. Therefore C is closed under unions of increasing chains. Since every

element of a self-sufficient increasing chain is self-sufficient in the union of the chain

and self-sufficiency is transitive (2.2.16), it follows immediately that the class C0 is

closed under unions of self-sufficient increasing chains.

Extension property

Lemma 4.1.11. For all X in Sub C0 there exists A ∈ C0 with X ≤ A.

Proof. Let X = (X,G) be a structure in Sub C. Let Ā be a model of TA with X ⊂ Ā.

In Ā, let A = aclTA(X). Note that A, with the induced structure from Ā, is a model

of TA. Then A = (A,G) is a structure in C. It is easy to see that, not having any new

green points, A is a self-sufficient extension of X . By transitivity of self-sufficiency,

if X is in Sub C0, then A is in C0.

Furthermore, we have the following useful fact:

Lemma 4.1.12. Let A be a structure in C. Let Y be a finite dimensional cl0-closed

subset of A and let Z = aclTA(Y ). Then Y is self-sufficient in A if and only if Z is

self-sufficient in A.
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Proof. Assume Y is self-sufficient in A. Let Y ′ be a finite dimensional cl0-closed

subset of Z containing Y . Let X be a finite dimensional cl0-closed subset of A.

Since aclTA(Y ) = aclTA(Y ′), we have tr. d.(X/Y ′) = tr. d.(X + Y ′/Y ). Since Y is

self-sufficient, there is no green point in Z \ Y and hence Y ∩ G = Y ′ ∩ G = Z ∩ G;

therefore lin. d.G(X/Y ′) = lin. d.((X+Y ′)∩G/Y ′∩G) = lin. d.((X+Y ′)∩G/Y ∩G) =

lin. d.G(X + Y ′/Y ). It follows that δG(X/Y ′) = δG(X + Y ′/Y ) ≥ 0. Thus, Y ′ is self-

sufficient in A. Since Z is the union of the directed system of all such Y ′, we get that

Z is self-sufficient in A.

To prove the converse, suppose Z is self-sufficient in A. Then, by definition, it

is the union of a directed system of self-sufficient finite dimensional cl0-closed sets.

Since Y is finite dimensional, using the directedness of the system we can find a finite

dimensional cl0-closed subset Y ′ of Z that contains Y and is self-sufficient in A. For

every finite dimensional cl0-closed subset X of A, we have tr. d.(X/Y ) = tr. d.(X/Y ′)

and lin. d.G(X/Y ) ≤ lin. d.(X/Y ′), hence δG(X/Y ) ≥ δG(X/Y ′) ≥ 0. Therefore Y is

self-sufficient in A.

4.2 The theories

We now turn to the task of finding axioms for the complete theory common to all

rich structures in the class C0.

We shall henceforth assume that our choice of X0 is such that X0 has a cl0-basis

consisting of green points.

4.2.1 Axiomatizing C0

The first step in finding axioms for the theory of rich structures in C0 is to axiomatize

the class C0. The following lemma is the key element in doing this. It generalises

Corollaire 3.4 of [33].

Given an algebraic variety (or, more generally, a definable set) of the form W (x, y),

the algebraic variety (respectively, definable set) W (x, c) is also denoted by Wc.

Lemma 4.2.1. Let A = (A,G) ∈ C. For every complete LA-l-type Θ(y), there exists

a partial L-l-type ΦΘ(y) consisting of universal formulas with the following property:

for every realisation c of Θ in A with c ∈ Gl,

A � ΦΘ(c) if and only if span c is self-sufficient in A.
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Proof. For any type Θ with no realisations consisting purely of green points the

statement is trivial, thus assume we have a realisation c′ ∈ Gl of Θ(y). Let ΦΘ(y) be

the partial type consisting of the following formulas:

For each n ≥ 1 and each subvariety W (x, y) of An+l defined over k0 such that Wc′

is irreducible over k0(c′) and has dimension < n
2
, the formula

∀x
((
W (x, y) ∧

∧
1≤j≤n

G(xj) ∧ ¬W ∗(x, y)
)
→

∨
1≤i≤s

∨
1≤j≤ri

Bij proper

N ij · y +Bij(nij(M
i · x))

)
,

where:

• s, C1, . . . , Cs are as provided by Theorem 3.2.4 (Weak CIT) for the subvariety

Wc′ of An, and each Ci is defined by the system of equations M i · x = 0,

M i ∈ Matni×n(End(A)) of rank ni;

• for each i ∈ {1, . . . , s}; ri, γ′i1, . . . , γ′iri , Bi1, . . . , Biri are as provided by Theo-

rem 3.3.1 (Mordell-Lang property) for the variety Wi, which we define to be

the k0(c′)-Zariski closure of M i ·Wc′ , and the finite rank subgroup (span c′)ni

of Ani ; and N i1, . . . , N ir ∈ Matni×l(End(A)), ni1, . . . , niri ∈ N are such that

nijγ
′
ij = N ij · c′;

• W ∗(x, y) :=
⋃s
i=1W

∗i(x, y) and, for each i = 1, . . . , s, we define W ∗i(x, y) to be

a variety such that W ∗i(x, c′) is the k0(c′)-Zariski closure of the set

{x ∈ Wc′ : dimWc′ ∩ x+ Ci > dimWc′ − dimWi}.

Note that the above set is the union of the non-generic (i.e. not of minimal

dimension) fibres inside Wc′ for the map given by x 7→ xM
i
. By a standard fact,

this set is contained in a proper closed subset of Wc′ . Therefore W ∗
c′ ( Wc′ .

Let c be any realisation of Θ in A with c ⊂ G. Note that since Θ is a complete

LA-type, c and c′ are conjugates by an automorphism of the LA-structure A.

Suppose A |= ΦΘ(c). To see that span c is then self-sufficient in A, suppose

towards a contradiction that there exists b ∈ An such that δ(b/ span c) < 0. It is easy

to see that we may assume b to be in Gn and linearly independent over span c. Let

Wc := W (x, c) be the algebraic locus of b over k0(c). Then, since δ(b/ span c) < 0,

we have dimWc <
n
2
. Hence also Wc′ is irreducible over k0(c′) and dimWc′ <

n
2
.
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Thus, there is a formula in ΦΘ(y) corresponding to W (x, y). If the disjunction in

the formula is non-empty then we get a linear dependence on b over span c, hence a

contradiction. If the disjunction is empty, then the fact that the formula is satisfied

by c means that the set (Wc\W ∗
c )∩Gn is empty; but our b is in this set (b is not in W ∗

c

because it is generic and, as noted earlier, W ∗
c is contained in a proper closed subset

of Wc), hence also a contradiction. This proves that span c is then self-sufficient in

A.

Conversely, assume span c is self-sufficient in A and let us see that A |= ΦΘ(c). Let

n ≥ 1 and let W (x, y) be a subvariety of An+l over k0 such that W (x, c) is irreducible

over k0(c) and of dimension < n
2

and suppose b is an element of the set (Wc\W ∗
c )∩Gn.

Since tr. d.(b/c) ≤ dimW < n
2

and by assumption δ(b/ span c) ≥ 0, the tuple

b must be linearly dependent over span c. Thus, let α + C be a coset of a proper

algebraic subgroup of An containing b of dimension lin. d.(b/ span c), α ∈ span c.

Let S be an irreducible component of Wc ∩ α + C containing b. Then S is an

atypical of the intersection of Wc and α+ C: to see this note that, on the one hand,

S is defined over k0(c)alg and so dimS ≥ tr. d.(b/c) ≥ 1
2

lin. d.(b/ span c) = 1
2

dimC

and, on the other hand, since dimWc <
n
2
, we have dimWc + dim(α + C) − n <

dimC − n
2
< 1

2
dimC.

Applying an automorphism σ ∈ Aut(A) with σ(c) = c′, we have that σ(S) is

an atypical component of the intersection of Wc′ and σ(α) + C. Therefore there

exists i ∈ {1, . . . , s} such that σ(S) is contained in a coset σ(α∗) + Ci and σ(S) is a

typical component of the intersection of Wc′ and σ(α)+C with respect to σ(α∗)+Ci.

Applying σ−1, we get that S is contained in α∗ +Ci and S is a typical component of

the intersection of Wc and α + C with respect to α∗ + Ci.

Since S is defined over k0(c)alg, it has k0(c)alg-rational points. Hence we may

assume α∗ ∈ (k0(c)alg)n. Let us now look at the coefficients of the equations defining

the coset α∗ + Ci, namely β∗ := M i · α∗ ∈ (k0(c)alg)ni . Also, β∗ = M i · b ∈ Gni .

Thus, since span c is self-sufficient, β∗ ∈ (span c)ni . So, M i · b ∈ Wi ∩ (span c)ni and,

applying appropriate automorphisms as before, we have Wi ∩ (span c)ni =
⋃ri
j=1 γij +

(Bij ∩ (span c)ni), where γij ∈ span c satisfies nijγij = N ij · c. Therefore we can find

j ∈ {1, . . . , ri} such that M i · b ∈ γij +Bij, and hence nij(M
i · b) ∈ (N ij · c) +Bij.

It now suffices to show that Bij is a proper algebraic subgroup of An. This

follows from the fact that Wi is a proper subvariety of Ani , as the following dimension

calculations show: first, from the atypicality of S we have

dimS > dimWc + dimC − n.
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Also, from the typicality of S with respect to α∗ + Ci we have

dimS = dimWc ∩ (α∗ + Ci) + dim(α + C) ∩ (α∗ + Ci)− dim(α∗ + Ci).

Combining the last two expressions we get

dimWc + dimC − n < dimWc ∩ (α∗ +Ci) + dim(α+C) ∩ (α∗ +Ci)− dim(α∗ +Ci).

Reorganising terms and noting that α + C = b+ C and α∗ + Ci = b+ Ci,

dimWc − dimWc ∩ (b+ Ci)

< n− dim(b+ Ci) + dim(b+ C) ∩ (b+ Ci)− dim(b+ C)

≤ n− dim(b+ Ci)

= ni.

Since b is not in W ∗
c , we know dimWi = dimWc − dimWc ∩ (b + Ci). Therefore

dimWi < ni.

Remark 4.2.2. If one works under the assumption that the group G is torsion-free,

then a simpler argument, using the Weak CIT but not the Mordell-Lang property,

suffices to prove the above lemma. Indeed, this is the well-known argument of Poizat

in Corollaire 3.4 of [33].

In [33], it is noted that in the more general situation, where the torsion of G is not

necessarily trivial, the statement holds if one assumes the CIT. Without the extra

assumption, however, the question of how to get the result was left open. The above

proof answers this question.

Let us remark some limitations of the above lemma, in comparison with the ar-

gument in [33], which applies to the torsion-free case. Here one limitation is that we

had to restrict to tuples c with coordinates in G, which is not necessary there. But

also, the result there is more uniform, since for each l, it gives a type Φl(y) that works

for all l-tuples b, independently of their algebraic types. This difference is due to the

fact that the Weak CIT is uniform in families, but the same kind of uniformity is not

available for the Mordell-Lang property.

Lemma 4.2.3. There exists an LX0-theory T 0 such that for every LX0-structure A =

(A,G), A |= T 0 if and only if A is in C0.

Proof. It suffices to show that the following conditions on a structure (A,G) can be

expressed by a set of LX0-sentences.
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1. A is a model of TA,

2. G is a divisible subgroup of A,

3. qf-tpA(X0) = qf-tpX0(X0),

4. X0 is self-sufficient in A,

It is clear that we can find a set of LX0-sentences Σ expressing conditions 1, 2, 3.

Let c0 be a kA-linear basis of X0 consisting of green points, let Θ = qf-tpLA
(c0).

By Lemma 4.2.1, the set of LX0-sentences ΦΘ(c0) expresses 4 modulo Σ. Thus,

T 0 := Σ ∪ ΦΘ(c0) is as required.

Henceforth let T 0 denote the theory found in the proof of the above lemma.

4.2.2 Rotund varieties

The rest of Section 4.2 is dedicated to finding a theory whose ω-saturated models

are precisely the rich structures in C0. We then show that the theory is the complete

theory of every rich structure in C0.

We start by defining rotund varieties, which serve as the main technical tool in

finding the required theory.

Let A = A(K) be a model of TA.

Definition 4.2.4. An irreducible subvariety W of An is said to be rotund if for every

k× n-matrix M with entries in End(A) of rank k, the dimension of the constructible

set M ·W is at least k
2
. 1

Remark 4.2.5. For any subvariety W of An and any C ⊂ A such that W is defined

over k0(C), if b is a generic point of W over k0(C), then: W is rotund if and only if

for every k × n-matrix M with entries in End(A) of rank k,

tr. d.(M · b/C) ≥ k

2
.

Remark 4.2.6. If W is a rotund subvariety of An, then, in particular, for every

non-zero m ∈ End(A)n, dimm ·W ≥ 1. This implies that W is not contained in any

coset of a proper algebraic subgroup of An. To refer to this property, we say that W

is free (of linear dependences).

1Recall that the dimension of a constructible subset of An is, by definition, the dimension of its
Zariski closure.
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Remark 4.2.7. Let us note that rotund varieties correspond to strong extensions of

structures in Sub C0 as follows:

Consider a structure X ∈ Sub C0, with X ⊂ Ā |= TA. Let W be an irreducible

subvariety of Ān defined over X and let b be a generic point of W over k0(X) in

Ā. Let Y be the substructure of Ā with domain Y = X + span b and set G(Y ) :=

G(X) + 〈bi : i ≥ 1〉, where bi is a sequence of tuples in (span b)n with b1 = b and for

all i, j ≥ 1, jbij = bi. Then Y = (Y,G(Y )) is a structure in Sub C extending X .

Moreover, for every k × n-matrix M of rank k with entries in End(A), we have

2 dim(M ·W )− k = 2 tr. d.(M · b/k0(X))− lin. d.(M · b) = δ(M · b/X).

Hence, if Y is a strong extension of X , then the above value is always non-negative,

and hence W is a rotund variety.

Conversely, assume W is a rotund variety and let us see that then Y is a strong

extension of X . Indeed, for every tuple b′ ⊂ Y , there exists a k × n-matrix M such

that span(b′X) = span((M ·b)X); therefore δ(b′/X) = δ(M ·b/X) = 2 dim(M ·W )−k
and, by the rotundity of W , this value is non-negative.

Examples of rotund varieties We shall now give some examples of rotund va-

rieties. Besides illustrating the notion, they will be useful for some of our later

arguments.

For the first two families of examples let us consider the case where A is the

multiplicative group. We thus write the group operation on A = K∗ multiplicatively.

First example: “X + Y = c”. For any c ∈ A = K∗, the subvariety of (K∗)2

defined by the equation x + y = c, where + denotes addition in K, is rotund. This

follows from transcendence degree calculations. 2

Second example: Generic hyperplanes. A hyperplane in Kn is a variety

defined by an equation of the form c · x = d for some non-zero c ∈ Kn and some

d ∈ K. If C is a subset of K and c ∈ Kn is such that tr. d.(c/C) = n then the

hyperplane defined by the equation c · x = 1 is said to be a generic hyperplane over

C.

2 Explanation: Note that it is sufficient to show that the variety is free. Let b = (b1, b2) be a
generic point of the variety defined by x + y = c over Q(c)alg. Note that b1 is transcendental over
Q(c)alg and b2 = c− b1.

Let m = (m1,m2) ∈ Z2 be non-zero. Suppose towards a contradiction that bm = c′ for some
c′ in Q(c)alg. Then c′ = bm1

1 bm2
2 = bm1

1 (c − b1)m2 . Since b1 is transcendental over c, we see that

m2 = −m1. Thus, 1
c′ = (c−b1)m1

b
m1
1

= ( c
b1
−1)m1 . But this contradicts that b1 is transcendental over c.

47



Let Hn,k(x, y
1, . . . , yk) be the subvariety of Kn+kn defined by the system of equa-

tions M · x = 1, where M is the k × n-matrix with rows y1, . . . , yk and 1 denotes the

tuple in Kk whose entries are all equal to 1.

A variety of the form Hn,k(x, c
1, . . . , ck) for some c1, . . . , ck ∈ Kn is the intersection

of k hyperplanes. If C is a subset of K and tr. d.(c1, . . . , ck/C) = nk then we say that

Hn,k(x, c
1, . . . , ck) is the intersection of k (independent) generic hyperplanes over C.

The following lemma follows Lemme 3.1 in [33] and Lemma 5.2 in [46].

Lemma 4.2.8. If V ⊂ (K∗)n is a rotund variety defined over C ⊂ K of dimension

d with d − 1 ≥ n
2

and Hn,1(x, c) is a generic hyperplane over C, then V ∩Hn,1(x, c)

is a rotund variety of dimension d− 1.

Proof. Let Hc denote the hyperplane Hn,1(x, c).

Let us first show that all irreducible components of V ∩Hc have dimension d− 1:

Since V is defined over C, V has rational points in Q(C)alg and such points cannot

be in Hc, for c is assumed to be algebraically independent over C, hence V 6⊂ Hc.

Therefore V ∩Hc is a proper subvariety of the irreducible variety V . Thus, dimV ∩
Hc < dimV = d. But also, by the smoothness of (K∗)n and the dimension of

intersection inequality, the dimension of every irreducible component of V ∩Hc is at

least dimV + dimHc − n = d + (n − 1) − n = d − 1. Thus, every component has

dimension d− 1.

Let us now see that V ∩ Hc is in fact irreducible: Let V1 and V2 be irreducible

components of V ∩ Hc (not necessarily distinct). Let a1 be a generic point of

V1 over Cc and let a2 be a generic point of V2 over Cca1. Note tr. d.(a1/Cc) =

tr. d.(a2/Cca1) = d − 1. Using the additivity of the transcendence degree, we there-

fore obtain tr. d.(a1a2c/C) = n + 2d − 2. By the independence of a1 and a2 over C,

dimHa1 ∩ Ha2 = n − 2; hence tr. d.(c/Ca1a2) ≤ n − 2. Using again the additivity

we get tr. d.(a1a2/C) ≥ 2d. It easily follows that, in fact, tr. d.(a1a2/C) = 2d and

tr. d.(c/Ca1a2) = n − 2. Thus, a1 and a2 are independent generic points of the irre-

ducible variety V over C and c is a generic point of the irreducible variety Ha1 ∩Ha2

over Ca1a2. This means that independently of the choice of the components V1 and

V2 the type of a1a2c over C is always the same. Then V ∩ Hc must have only one

irreducible component, as otherwise we get different types by choosing V1 = V2 and

V1 6= V2.

We now turn to showing that V ∩ Hc is rotund. Let a be a generic point of

V ∩Hc over Q(Cc)alg. Note that a is then also a generic point of V over Q(C)alg and

tr. d.(c/Ca) = n− 1.
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Claim: Let b ⊂ Q(Ca)alg. If tr. d.(b/Cc) < tr. d.(b/C), then a ⊂ Q(b)alg.

Proof of claim: Assume tr. d.(b/Cc) < tr. d.(b/C). Let U be the locus of c over

Q(Cb)alg. From our assumption, using the exchange principle, we have tr. d.(c/Cb) <

tr. d.(c/C). Thus, dimU = tr. d.(c/Cb) < tr. d.(c/C) = n.

The hyperplane Ha must be contained in U ; otherwise, dimU ∩Ha < dimU < n,

contradicting the fact that tr. d.(c/Ca) = n− 1. Since dimU ≤ n− 1 = dimHa, we

conclude that U = Ha.

Since U is defined over Q(Cb)alg, we can find b′ ∈ U with coordinates in Q(Cb)alg.

Then a is uniquely determined by the conditions (1) b′ · a = 1 and (2) for all z ∈ Ha,

(z − b′) · a = 0. Thus, a ⊂ Q(Cb)alg.

Applying the claim: Let M be a k × n-matrix with integer entries of rank k.

Let b = aM ∈ (K∗)k. Suppose towards a contradiction that tr. d.(b/Cc) < k
2
. By

the rotundity of V , tr. d.(b/C) ≥ k
2
. Hence tr. d.(b/Cc) < tr. d.(b/C). Therefore, by

the claim, a ⊂ Q(Cb)alg. Thus, tr. d.(b/Cc) = tr. d.(a/Cc) = d − 1 ≥ n
2
≥ k

2
. A

contradiction. This shows that V ∩Hc is rotund.

Remark 4.2.9. It follows from the above lemma, by induction, that if V ⊂ (K∗)n

is a rotund variety defined over C ⊂ K of dimension d and Hn,k(x, c
1, . . . , ck) is the

intersection of k generic hyperplanes over C with d−k ≥ n
2
, then V ∩Hn,k(x, c

1, . . . , ck)

is a rotund variety of dimension d− k.

In particular, the subvariety Hn,k(x, c
1, . . . , ck) of (K∗)n defined by the intersection

of k generic hyperplanes with k ≤ n
2

is rotund.

Third example: Generic hyperplanes in the elliptic curve case. Let us

now consider analogues of the rotund varieties in the previous example in the case

where A is an elliptic curve.

As mentioned before, we consider A = A(K) as a subvariety of P2(K) whose affine

part is defined by an equation y2 = 4x3 + αx+ β, with α, β ∈ k0.

The above arguments about generic hyperplanes in the multiplicative group case

can be easily adapted to show the following: Let V be a rotund subvariety of An

defined over C of dimension d with d − 1 ≥ n
2
. If H is a hyperplane in K2n, generic

over C, then the intersection of V and the Zariski closure of H in (P2)n is a rotund

subvariety of An of dimension d− 1.

Also, if H is the intersection of k hyperplanes in K2n, generic over C, with d −
k ≥ n

2
, then the intersection of V and the Zariski closure of H in (P2)n is a rotund

subvariety of An of dimension d − k. In particular, the intersection of An and the

Zariski closure in (P2)n of the intersection of k generic hyperplanes in K2n, where

k ≤ n
2
, is a rotund subvariety of An of dimension n− k.
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Definability of rotundity

Lemma 4.2.10. For every subvariety W (x, y) of An+k defined over k0, there exists

a quantifier-free LA-formula θ(y) such that for all A |= TA and all c ∈ Ak,

A � θ(c) ⇐⇒ W (x, c) is rotund.

Proof. Let W (x, y) be a subvariety of An+k defined over k0. Let C1, . . . , Cs be proper

algebraic subgroups of An as provided by the Weak CIT (3.2.4) for the family of

subvarieties of An defined by W (x, y). For each i = 1. . . . , s, let M i be an ni × n-

matrix with entries in End(A) of rank ni such that Ci is defined by the system of

equations M i · x = 0.

Let θ(y) be the conjunction of the following:

• a quantifier-free LA-formula θ0(y) such that θ0(c) holds if and only if the variety

Wc is irreducible and has dimension ≥ n
2
,

• for each i = 1, . . . , s, a quantifier-free formula θi(y) such that θi(c) holds if and

only if the dimension of M i ·Wc is at least ni
2

.

The existence of the formulas θi(y), i = 0, . . . , s is given by the following facts: that

the theory of algebraically closed fields of any given characteristic (in this case 0) has

the definable multiplicity property (Lemma 3 in [13]), which transfers to the theory TA,

since the bi-interpretation is rank preserving, to give that the irreducibility of Wc is a

definable property on c; the definability of Morley rank in strongly minimal theories

(Corollary 5.6 in [43]), which here corresponds to the definability of dimension. We

also use that the theory TA has quantifier elimination.

It is clear that for all c, if W (x, c) is rotund, then θ(c) holds.

To prove the converse, suppose towards a contradiction that we have c such that

θ(c) holds but W (x, c) is not rotund. We can then find a k×n-matrix M with entries

in End(A) of rank k ≥ 1 such that dimM · W (x, c) < k
2
. Let C be the algebraic

subgroup of An defined by the equation M · x = 0.

Let b be a generic point of Wc over k0(c)alg and let S be an irreducible component

of Wc ∩ b+ C containing b.

Note that dimS = dimWc ∩ b+ C. Indeed, we have

dimS ≥ tr. d.(b/c(M · b)) = tr. d.(b/c)− tr. d.(M · b/c) = dimWc − dimM ·Wc,

and, by the theorem on the dimension of fibres ([35, I.6.3]), dimWc − dimM ·Wc =

dimWc ∩ (b+ C); hence dimS = dimWc ∩ b+ C.
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Since dimM ·Wc <
k
2
; in particular, dimM ·Wc < k. Hence

dimS = dimWc − dimM ·Wc > dimWc − k.

Therefore

dimS > dimWc − k.

But

dimWc − k = dimWc + (n− k)− n = dimWc + dim(b+ C)− n.

Thus, dimS > dimWc+dimC−n, i.e. S is an atypical component of the intersection

of Wc and b+ C.

Thus, by 3.2.4 (Weak CIT), there exists i ∈ {1, . . . , s} and b′ ∈ An such that S is

contained in b′+Ci and S is a typical component of the intersection of Wc and b+C

with respect to b′ + Ci, i.e. dimS = dimWc ∩ (b′ + Ci) + dim(b + C) ∩ (b′ + Ci) −
dim(b′ + Ci).

Note that our assumption that dimM ·Wc <
k
2

can be written as dimWc∩(b+C) >
1
2

dimC. Also, if C ′ is any algebraic subgroup of An with C ′ ⊂ C and b + C ′ ⊃ S,

then

dimWc ∩ (b+ C ′) ≥ dimS = dimWc ∩ (b+ C) >
1

2
dimC ≥ 1

2
dimC ′.

Hence dimWc ∩ (b + C ′) > 1
2

dimC ′. This implies that we may assume C to be the

minimal algebraic subgroup having a coset that contains S. Thus, C ∩ Ci = C and

therefore the typicality equation becomes

dimS = dimWc ∩ (b′ + Ci) + dimC − dimCi.

One can then easily see the following

dimWc ∩ (b′ + Ci) = dimS − dimC + dimCi

> −1

2
dimC + dimCi

≥ 1

2
dimCi.

This implies that dimM i ·Wc <
ni
2

, which contradicts the fact that θ(c) holds.
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4.2.3 The EC-property

Definition 4.2.11. A structure (A,G) in C0 is said to have the EC-property if for

every even n ≥ 1 and every rotund subvarietyW of An of dimension n
2
, the intersection

W∩Gn is Zariski dense in W ; i.e. for every proper subvariety W ′ of W the intersection

(W \W ′) ∩Gn is non-empty.

Lemma 4.2.12. There exists a set of ∀∃-L-sentences T 1 such that for any structure

(A,G) in C0

(A,G) � T 1 ⇐⇒ (A,G) has the EC-property.

Proof. For each even integer n ≥ 1, and each subvariety W (x, y) of An+k defined

over k0, let θW (y) be a formula as provided by Lemma 4.2.10. Let T 1 be the theory

containing, for each pair of subvarieties W (x, y) and W ′(x, y) of An+k, the following

sentence:

∀y
((
θW (y) ∧ dimWy =

n

2
∧W ′

y ( Wy

)
→ ∃x

(
W (x, y) ∧ ¬W ′(x, y) ∧

n∧
i=1

G(xi)
))

It is clear that T 1 expresses the EC-property.

Henceforth, let T 1 denote the theory defined in the above proof. Also, let T :=

T 0 ∪ T 1.

The rest of this section shows that T axiomatizes the complete theory common

to all rich structures in C0.

Definition 4.2.13. Let A be a structure in C0.

A is said to be existentially closed (with respect to self-sufficient extensions) if for

any quantifier-free formula φ(x), if there exist a self-sufficient extension A′ of A and

a tuple b′ ⊂ A′ such that A′ � φ(b′), then there exists b ⊂ A such that A � φ(b).

A is said to be strongly existentially closed (with respect to self-sufficient exten-

sions) if for any partial type Φ(x) over a finite subset of A consisting of quantifier-free

formulas, if there exist a self-sufficient extension A′ of A and a tuple b′ ⊂ A′ such

that A′ � Φ(b′), then there exists b ⊂ A such that A � Φ(b).

Clearly, if A is strongly existentially closed, then A is existentially closed. Also, if

A is ω-saturated, then A is strongly existentially closed if and only if it is existentially

closed.
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Lemma 4.2.14. If A ∈ C0 is existentially closed, then A has the EC-property.

Proof. Let A = (A,G) ∈ C0 be existentially closed, with A = A(K). Let W be a

rotund subvariety of of An of dimension n
2

and let W ′ be a proper subvariety of W ,

both defined over K. We want to see that (W \W ′) ∩ Gn is non-empty. Let b be a

generic point of W over K in a model Ā of TA extending A. Let Y be the substructure

of A′ with domain A + span(b). Let (bi)i≥1 be a sequence of tuples in (span b)n such

that b1 = b and for all i, j ≥ 1, jbij = bi, and let G(Y ) := G(A) + 〈bi : i ≥ 1〉. The

rotundity of W gives that Y = (Y,G(Y )) is a strong extension ofA in Sub C0 (as noted

in 4.2.7). By the extension property, we can find A′ in C0 with Y ≤ A′. Thus, A ≤ A′

and b is a solution in A′ of the quantifier-free formula W (x) ∧ ¬W ′(x) ∧
∧n
i=1 G(xi).

Since A is existentially closed, there exists a solution of the same formula in A, hence

(W \W ′) ∩Gn is non-empty.

Lemma 4.2.15. If A ∈ C0 is rich, then A is strongly existentially closed.

Proof. Let A ∈ C0 be rich. Let Φ(x) be a quantifier-free partial type over a finite

subset c of A, A′ be a strong extension of A and b be a solution of Φ(x) in A′. By

replacing c by an appropriate basis of its self-sufficient closure, we may assume that

span c is self-sufficient in A. Let X be the substructure of A with domain span c. Let

Y be the substructure of A′ with domain span bc. Since X ≤ A ≤ A′, by transitivity

X ≤ A′. In particular, X ≤ Y . Thus, by the richness of A, we can find an embedding

j of Y into A over X. Then j(b) is clearly a solution of Φ(x) in A.

4.2.4 Axiomatizing richness up to ω-saturation

It is clear from the definitions that the models of T are precisely the structures in C0

satisfying the EC-property. We shall now see that the ω-saturated models of T are

precisely the rich structures in C0. It follows that T axiomatizes the complete theory

common to all rich structures in C0.

Rich structures are models of T

Remark 4.2.16. By 4.2.14, every existentially closed structure in C0 is a model of

T . In particular, by 4.2.15, every rich structure in C0 is a model of T .
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ω-saturated models of T are rich

Definition 4.2.17. Let X ,Y be structures in Sub C0. Assume X ≤ Y . We say that

X ≤ Y is a minimal strong extension if X 6= Y and there exists no Z ∈ Sub C0 with

X ( Z ( Y such that X ≤ Z ≤ Y .

Remark 4.2.18. Note that every strong extension X ≤ Y with X ,Y in Fin C0 decom-

poses into a finite tower of minimal strong extensions, i.e. there exist a positive integer

n and X0, . . . ,Xn ∈ Fin C0 such that X0 = X , Xn = Y and for all i = 0, . . . , n − 1,

Xi ≤ Xi+1 is a minimal strong extension.

Consequently, for all A ∈ C0, the structure A is rich if and only if for all X ,Y ∈
Fin C0 such that X ≤ A and X ≤ Y is a minimal strong extension, there exists a

self-sufficient embedding of Y into A over X .

Remark 4.2.19. Let X ,Y ∈ Fin C0 with X ≤ Y and δ(X) = δ(Y ). It is easy to

see that the extension X ≤ Y is minimal if and only if for every cl0-closed Z with

X ( Z ( Y , δ(Z/X) > 0.

Lemma 4.2.20. Let X ,Y be structures in Fin C0 such that X ≤ Y is a minimal

strong extension. Then exactly one of the following holds:

1. ( Prealgebraic extension) There exists an even number n ≥ 2 and a cl0-basis

b ∈ G(Y )n of Y over X with tr. d.(b/X) = n
2
, and hence δ(b/X) = 0.

2. ( Green generic extension) There is b0 ∈ G(Y ) \X such that Y = X + span b0

and b0 is transcendental over X, hence δ(b0/X) = 1.

3. ( Algebraic extension) G(Y ) = G(X) and there is b0 ∈ Y \ X such that Y =

X + span b0 and b0 is algebraic over X, hence δ(b0/X) = 0.

4. ( White generic extension) G(Y ) = G(X) and there is b0 ∈ Y \ X such that

Y = X + span b0 and b0 is transcendental over X, hence δ(b0/X) = 2.

Proof. Let X ,Y be structures in Fin C0 such that X ≤ Y is a minimal strong exten-

sion. Then exactly one of the following cases occurs:

Case 1: G(Y ) 6= G(X) and δ(Y/X) = 0.

First note that, by minimality, Y = X+spanG(Y ). Let n be the linear dimension

of Y over X, which is also the linear dimension of G(Y ) over G(X), by modularity.

Then, since δ(Y/X) = 0, we have tr. d.(Y/X) = n
2
. Thus, if b ∈ G(Y )n is a cl0-basis

of Y over X, then b is also a cl0-basis of G(Y ) over G(X) and tr. d.(b/X) = n
2
.
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Case 2: G(Y ) 6= G(X) and δ(Y/X) > 0.

As in the previous case, Y = X + spanG(Y ). Moreover,

lin. d.(Y/X) = lin. d.(G(Y )/G(X)) = 1.

To see this, take an element b0 in G(Y ) \ G(X), and note that tr. d.(b0/X) = 1,

and hence δ(b0/X) = 1. Now, if lin. d.(Y/X) is strictly greater than one then we

get a tower of proper strong extensions: either X ≤ X + span b0 ≤ Y is such a

tower, or otherwise there exists a tuple b ⊂ Y starting with the element b0 such that

span b0 ( span b ( Y and δ(span b/ span b0) < 0, and hence δ(X + span b) = δ(X),

from which it follows thatX ≤ X+span b ≤ Y is a tower of (proper) strong extensions.

Thus, for any element b0 ∈ G(Y ) \X, Y = X + span b0.

Case 3: G(Y ) = G(X) and δ(Y/X) = 0.

By the minimality of the extension, Y = X + span b0 for any b0 ∈ Y \ X. Also,

since δ(Y/X) = 0, any such b0 is algebraic over X.

Case 4: G(Y ) = G(X) and δ(Y/X) > 0.

As in the previous case, Y = X+span b0, for any b0 ∈ Y \X. Thus, tr. d.(Y/X) ≤ 1

and, since we are assuming δ(Y/X) > 0, such b0 must be transcendental over X, and

hence δ(Y/X) = 2.

We shall henceforth use the names given in the above lemma to the different kinds

of extensions. For the sake of brevity let us also stress the language by making the

following definition:

Definition 4.2.21. Let us say that a rotund subvariety W of An is prealgebraic

minimal if it has dimension n
2

and for every 1 ≤ k < n, and every k × n-matrix with

entries in End(A) of rank k, dimM ·W > k
2
.

It is easy to see that a rotund variety W is prealgebraic minimal if and only if any

strong extension constructed from W as in Remark 4.2.7 is a prealgebraic minimal

extension.

Using Remark 4.2.19, a minor modification of the proof of Lemma 4.2.10 (strength-

ening the formula θ0(y) to require dimWy = n
2

and each θi(y) to correspond to the

strict inequality dimM i ·Wc >
ni
2

) yields the following :

Lemma 4.2.22. For every subvariety W (x, y) of An+k defined over k0, there exists

a quantifier-free LA-formula θ′(y) such that for all A |= TA and all c ∈ Ak,

A � θ′(c) ⇐⇒ W (x, c) is a prealgebraic minimal rotund subvariety.
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The following two remarks use the above definability lemma and model-theoretic

arguments to find new rotund varieties from the ones coming from intersections of

generic hyperplanes. These results will then be applied in the proof of Lemma 4.2.25.

Remark 4.2.23. Let us first consider the case where A is the multiplicative group.

For each n ≥ 1, if H2n,n(x, c1, . . . , cn) is the intersection of n generic hyperplanes in

A2n (i.e. tr. d.(c1, . . . , cn) = 2n2), then H2n,n(x, c1, . . . , cn) is a prealgebraic minimal

rotund variety.

Indeed, we already know, by 4.2.9, that H2n,n(x, c1, . . . , cn) is a rotund vari-

ety of dimension n. Now consider a generic point b of H2n,n(x, c1, . . . , cn) over

C :=
⋃
ci and let b′ be a subtuple of b of length k with 1 ≤ k < 2n. Us-

ing the algebraic independence of C one sees the following: if 1 ≤ k ≤ n, then

tr. d.(b′/C) = tr. d.(b/C) − tr. d.(b/Cb′) ≥ n − (n − k) = k > k
2
; if n < k < 2n,

then tr. d.(b′/C) = tr. d.(b/C) − tr. d.(b/Cb′) ≥ n − 0 = n > k
2
. This shows that

H2n,n(x, c1, . . . , cn) is prealgebraic minimal.

Then, by Lemma 4.2.22 and the model-completeness of TA, it follows that for each

n ≥ 1, there exist tuples c1∗, . . . , cn∗ ∈ ((Qalg)∗)n such that H2n,n(x, c1∗, . . . , cn∗) is a

prealgebraic minimal rotund subvariety of A2n.

As noted earlier, in the elliptic curve case we have an analogue of each generic hy-

perplane H2n,n(x, c1 . . . , cn) with algebraically independent c1 . . . , cn over k0, namely

the Zariski closure of the intersection of the generic hyperplane H4n,2n(x, c′1 . . . , c′2n),

where c′1, . . . , c′2n are algebraically independent over k0, and An. Therefore we also

have an analogue of the varieties H2n,n(x, c1∗, . . . , cn∗) found above, i.e. prealgebraic

minimal rotund subvarieties of A2n defined over kalg
0 . To ease the notation, we shall

henceforth, also in the case where A is an elliptic curve, use H2n,n(x, c1∗, . . . , cn∗) to

denote such a subvariety of A2n.

Remark 4.2.24. Let A = (A,G) be a model of T . Let us see that A = aclTA(G).

If A is the multiplicative group, then a stronger statement is easy to prove: by

the rotundity of the varieties defined by the equations X + Y = c with c ∈ A = K∗,

that A satisfies the EC-property directly implies that G+G = A.

Assume now that A is an elliptic curve.

Let c ∈ K, c 6= 0. Let q1, . . . , q4 be algebraically independent over k0(c). The

set H(x, y, q, c) defined by the equation q1x1 + q2y1 + q3x1 + q4y2 = c is a generic

hyperplane in K4. Therefore this equation defines a rotund subvariety of A2. By the

algebraic independence assumption, the algebraic type of q over k0(c)alg does not fork

over kalg
0 . An alternative way of expressing this last fact is that the algebraic type
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of q over k0(c)alg is a coheir of its restriction to kalg
0 , which means that it is finitely

satisfiable in kalg
0 . Combining this finite satisfiability with the fact that the rotundity

of H(x, y, q, c) is definable on the parameters q, c (in the algebraic language), we see

that there exists q∗1, . . . , q
∗
4 ∈ k

alg
0 such that the equation q∗1x1 + q∗2y1 + q∗3x1 + q∗4y2 = c

defines a rotund subvariety of A2. Since A satisfies the EC-property, this subvariety

has a solution in G2. This implies that c is in acleq
A (G). It follows that K ⊂ acleq

A (G)

and, therefore, A = aclA(G).

Additionally, let us note the following: suppose we start the above argument

with c ∈ K transcendental over k0 and thus find q∗1, . . . , q
∗
4 ∈ k

alg
0 such that q∗1x1 +

q∗2y1 + q∗3x1 + q∗4y2 = c defines a rotund subvariety of A2. Then, for any c′ ∈ K

transcendental over k0, since c and c′ are conjugates over kalg
0 , the subvariety of A2

defined by q∗1x1 + q∗2y1 + q∗3x1 + q∗4y2 = c′, with the same q∗1, . . . , q
∗
4 as before, is also

rotund. This is used in the proof of the following lemma.

Lemma 4.2.25. If A is an ω-saturated model of T , then A is a rich structure in C0.

Proof. Assume A = (A,G) is an ω-saturated model of T . Since T contains T 0, which

by definition axiomatizes the class C0, it is clear that A is in C0.

To show that A is rich, let X ,Y be structures in Fin C0 such that X is self-sufficient

in A and X ≤ Y is a minimal strong extension. We need to show that there is a

self-sufficient embedding of Y into A over X. We consider different cases for the

different kinds of minimal strong extensions, as determined in Lemma 4.2.20.

Case 1: X ≤ Y is a prealgebraic minimal extension.

Let b ∈ G(Y )n be a cl0-basis of Y over X.

Let (bi)i≥1 be a sequence of tuples in G(Y )n such that b1 = b and for all i, j ≥ 1,

jbij = bi. Note that G(Y ) = G(X) + 〈bi : i ≥ 1〉. It is sufficient to show that

qf-tp((bi)i/X) is realised in A to obtain an embedding of Y into A over X. Moreover,

since in this case δ(X) = δ(Y ), any such embedding is necessarily self-sufficient.

Let us show that indeed qf-tp((bi)i/X) is realised in A. By the ω-saturation of

A, it is sufficient to show that for each n ≥ 1, the type qf-tp((bi)i≤n/X) is realised

in A: Fix n ≥ 1. Let N =
∏

i≤n i. Let V := locus(bN/k0(X)alg). By Remark 4.2.7,

V is a rotund subvariety of An. Notice that, since δ(bN/X) = δ(Y/X) = 0, we

have dimV = n
2
. Since A is a model of T , for every proper subvariety V ′ of V over

k0(X)alg, the intersection (V \ V ′) ∩ Gn is non-empty. By the ω-saturation of A, it

follows that we can find a generic point b′N of V over k0(X)alg in Gn. Note that b′N

is a realisation of qf-tp(bN/X). For each i ≤ n, let (b′i) := N
i
b′N . Then (b′i)i is a

realisation of qf-tp((bi)i≤n/X) in A.
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Case 2: X ≤ Y is a green generic extension.

This amounts to finding an element b0 ∈ A such that d(b0/X) = 1, or, equivalently,

b0 6∈ cld(X).

By 4.2.24, we can find a finite dimensional X ′ ⊂ G such that X ⊂ aclTA(X ′).

Since always aclTA ⊂ cld, we also have cld(X) ⊂ cld(X ′). It therefore suffices to find

b0 ∈ A outside cld(X ′). Thus, we may assume that X is contained in G.

There is a partial type Φ(x0) over X expressing the following: x0 ∈ G; x0 6∈
aclTA(X); for each n ≥ 1, for all x1, . . . , xn ∈ G, δ(x0, . . . , xn/X) > 0.

Indeed, for each n ≥ 1, the condition above can be expressed by a set of formulas

in the variables x1, . . . , xn. To see this one can slightly modify the argument in the

proof of 4.2.1, this time looking at varieties of dimension ≤ n
2
, instead of < n

2
, which

one can see makes no essential difference. Note that here we use our assumption

that X is contained in G, for it is only in this case that we know how to express the

predimension inequalities.

It is now sufficient to find a realisation for the type Φ(x0) inA. By the ω-saturation

of A, it suffices to show that Φ(x0) is finitely satisfiable in A. For this, it is in turn

sufficient to show that for each n ≥ 1, there is a prealgebraic minimal extension Xn
of X = (X,G ∩X) with lin. d.(Xn/X) > n (and apply the result of Case 1).

Such extensions can be found as follows: For each n ≥ 1, let H2n,n(x, c∗1, . . . , c∗n)

be as in (the end of) Remark 4.2.23 and let b be a generic of H2n,n(x, c∗1, . . . , c∗n)

over k0(X)alg. Put Xn := X+ span b and Gn := G(X) + 〈bi : i ≥ 1〉, where (bi)i≥1 is a

sequence of tuples such that b1 = b and for all i, j ≥ 1, jbij = bi. Then Xn = (Xn, Gn)

is a prealgebraic minimal extension of X and lin. d.(Xn/X) = 2n > n.

Case 3: X ≤ Y is an algebraic extension.

Let b0 be any element of Y \X. Let b′0 ∈ A be a root of the minimal polynomial of b0

over X. Then Y is isomorphic to the substructure ofA with domain Y ′ := X+span b′0.

Since δ(Y ′) = δ(Y ) = δ(X), Y ′ is self-sufficient in A.

Case 4: X ≤ Y is a white generic extension.

It suffices to find an element b0 in A with d(b0/X) = 2. By the argument in Case

2, we can find b1 ∈ A with d(b1/X) = 1 and b2 ∈ A with d(b2/Xb1) = 1. Note that,

by additivity, d(b1, b2/X) = 2,

We shall now find such a b0.

Let us first deal with the case where A is the multiplicative group. Let b0 := b1+b2

and let us show that indeed d(b0/X) = 2. Let us consider two cases:

Case 1: b1 ∈ aclTA(sscl(Xb0)). Then d(b1/Xb0) = 0. And also b2 ∈ aclTA(sscl(Xb0)),

hence d(b2/Xb0) = 0. It follows that d(b0/X) = d(b1, b2/X) = 2.
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Case 2: b1 6∈ aclTA(sscl(Xb0)). Then (b1, b2) is a generic point of the variety

defined by X + Y = b0 over sscl(Xb0). Therefore δ(b1, b2/ sscl(Xb0)) = 0, and hence

d(b1, b2/Xb0) = 0. Thus, d(b0/X) = 2.

Let us now show how to do an analogous argument in the elliptic curve case. Since

b1 and b2 are independent in the sense of cld, they are also independent in the sense of

aclA. In particular, b1 and b2 are not algebraic over the empty set in the sense of TA

and therefore lie in the affine part of the elliptic curve A (the unique point at infinity

is algebraic). Let us thus write b1 = (b11, b12) and b2 = (b21, b22), with each bij in K.

By Remark 4.2.24, we can find q∗1, . . . , q
∗
4 ∈ k

alg
0 such that for any c ∈ K transcen-

dental over k0, the equation q∗1x1 + q∗2y1 + q∗3x2 + q∗4y2 = c defines a rotund subvariety

of A2. Define b01 := q∗1b11 + q∗2b12 + q∗3b21 + q∗4b22, and let b02 ∈ K be such that the

point b0 := (b01, b02) is in A. Since b1 and b2 are aclA-independent, b11 and b12 are

algebraically independent over k0. Therefore b01 is transcendental over k0. Hence, the

equation q∗1x1+q∗2y1+q∗3x2+q∗4y2 = b01 defines a rotund subvariety of A2 having (b1, b2)

as a solution. From here one can follow the same argument as in the multiplicative

group case (considering two cases, etc.), to show that d(b0/X) = d(b1, b2/X) = 2.

Rich structures are ω-saturated

Proposition 4.2.26. The theory T is complete and its ω-saturated models are pre-

cisely the rich structures.

Proof. By Remark 4.2.16, every rich structure is a model of T . Note that the existence

of rich structures in C0 was proved in Section 4.1.3, and thus we know T is consistent.

By Lemma 4.2.25, every ω-saturated model of T is rich.

Let us now show that every rich structure is ω-saturated. LetA be a rich structure.

Let A′ be an ω-saturated elementary extension of A. By Lemma 4.2.25, A′ is rich

and, by Lemma 2.3.8, A and A′ are L∞ω-equivalent. Since L∞ω-equivalence preserves

λ-saturation for all infinite cardinals λ, A is ω-saturated.

We have thus seen that the ω-saturated models of T are precisely the rich struc-

tures. Completeness of T follows immediately by 2.3.8.

4.3 Model-theoretic properties of T

In this section we prove that the theory T is ω-stable and near model complete. We

also calculate U -ranks and Morley ranks in the theory T . For missing definitions and

basic facts from stability theory we refer to Chapter 1 of [29] and [32].
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Throughout this section we work in a monster model Ā = (Ā, G) of T (sufficiently

saturated and strongly homogeneous).

4.3.1 ω-stability

Here we show how the quantifier elimination for T provided by Proposition 2.3.10

implies that the theory T is ω-stable. We follow the proof of Poizat in [33], but

we note that an application of the Thumbtack Lemma (3.5.2) is necessary for the

argument to yield the full result.

Lemma 4.3.1. For every subset B of Ā, aclT (B) = aclTA(sscl(B)).

Moreover, every algebraically closed subset of Ā is self-sufficient.

Proof. For the first part, it is sufficient to show that the equality holds for finite B.

Thus, fix a finite B ⊂ Ā
(⊃) Let a be a cl0-basis of sscl(B). It suffices to show that a ⊂ aclT (B). Every

automorphism of Ā fixing B pointwise fixes sscl(B) set-wise. Thus, all conjugates of

a over B are contained in sscl(B), and hence there are at most countably many of

them. By the saturation of Ā, we get that in fact there must be only finitely many.

This shows that every element in a is algebraic over B.

(⊂) Let a be an element of Ā \ aclA(sscl(B)) and let us show that a is not in

aclT (B).

Let C = sscl(B) and D = sscl(aB). For each n ≥ 1, let Dn be the free amalgam

of n isomorphic copies of D over C. By the richness of Ā, each Dn embeds strongly

into Ā over C. The different copies of a in each Dn have all the same type, this is

because the different copies of D are self-sufficient in Dn and hence are self-sufficiently

embedded in Ā, so the isomorphisms between them are elementary maps. It follows

that the type of a over B has infinitely many realisations in Ā. Therefore a is not in

aclT (B).

The second part of the statement follows immediately from the first and Lemma 4.1.12.

Lemma 4.3.2. For all sequences a, a′ ⊂ Ā, possibly infinite, the following are equiv-

alent:

1. tp(a) = tp(a′),

2. The map a 7→ a′ extends to an L-isomorphism from aclT (a) onto aclT (a′).

3. The map a 7→ a′ extends to an L-isomorphism from sscl(a) onto sscl(a′).
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4. The map a 7→ a′ extends to an L-isomorphism between self-sufficient subsets of

Ā,

Proof. That (1.) implies (2.) holds for arbitrary first-order theories, by an easy

argument.

To see that (2.) implies (3.), note that any isomorphism from aclT (a) onto aclT (a′)

sending a to a′ has to map sscl(a) onto sscl(a′). Indeed, to see this simply notice that,

since aclT (a) is self-sufficient in Ā (by Lemma 4.3.1), sscl(a) is the intersection of all

finite dimensional cl0-closed subsets B of aclT (a) that are self-sufficient in aclT (a),

and similarly for a′.

It is clear that (3.) implies (4.).

The implication from (4.) to (1.) follows immediately from Lemma 2.3.8.

Theorem 4.3.3. The theory T is ω-stable.

Proof. Let λ be an infinite cardinal. We shall see that for all B ⊂ Ā with |B| ≤ λ,

there are no more than λ complete 1-types over B; thus showing that T is λ-stable

for all infinite λ, i.e. that it is ω-stable.

Let B ⊂ Ā be of cardinality λ. By passing to the algebraic closure aclT (B) of

B, we may assume that B is a self-sufficient subset of Ā of the form A(K) for some

algebraically closed subfield K of K̄, where K̄ is an algebraically closed field such

that Ā = A(K̄).

Consider an arbitrary element a0 in Ā. Recall that by Lemma 4.3.2, the type of

a0 over B is determined by the isomorphism type of sscl(Ba0) over B.

Let a be a cl0-basis of sscl(Ba0) over B. Note that a is a finite tuple: working over

(the self-sufficient set) B, the set sscl(Ba0) is the self-sufficient closure of a finite set

and is thus finite dimensional (over B). Suppose (ai)i≥1 is a sequence of tuples such

that (1) a1 = a and for all i, j ≥ 1, jaij = ai, and such that (2) if a coordinate aj of

a is in G, then for all i ≥ 1, aij is also in G. Then the isomorphism type of sscl(Ba0)

over B is determined by the quantifier-free type of the sequence (ai)i≥1 over B.

Thus, there are at most as many possibilities for the type of the element a0 over B

as possible quantifier-free types over B of sequences (ai)i≥1 with the above properties.

Let us now, at first, see that there are at most λ · 2ℵ0 possibilities for the quantifier-

free type of such sequence (ai)i≥1 over B. Indeed, if we fix the algebraic type of a

over B then then there are only finitely many possibilities for the algebraic type of

each ai over B. Therefore there are at most λ · 2ℵ0 possibilities for the algebraic type

of the sequence (ai)i≥1 over B. Also, there are only finitely many possibilities for

the colouring of the tuple a, which determines the colouring of the sequence (ai)i≥1.
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Thus, there are no more than λ · 2ℵ0 possibilities for the quantifier-free type of such a

sequence (ai)i≥1. This shows that the theory T is λ-stable for all λ ≥ 2ℵ0 and hence

superstable.

Let us now improve on the above to see that, in fact, the theory T is ω-stable. For

this we use the Thumbtack Lemma (3.5.2). Indeed, by the Thumbtack Lemma, we

may assume without loss of generality that a is Kummer generic over B. Then the

algebraic type of a over B determines the algebraic type of the whole sequence (ai)i≥1.

Therefore there are at most λ possible quantifier-free types over B of sequences (ai)i≥1

as above. This shows that T is ω-stable.

4.3.2 Near model completeness

We shall now show that the theory T is near model complete. We do this by showing

that the sufficient condition found in Prop 2.3.11 holds in our case. Here we follow

Lemma 10.3 in [2].

Let L∗ be the expansion of the language L by a predicate for each existentially

definable set in L. As with any extension of the language by definable predicates, T

extends canonically to a complete L∗-theory T ∗.

Lemma 4.3.4. Let V (x, y) be a subvariety of An+k defined over k0. There exists

a quantifier-free LA-formula φ(x, y) such that for every b ∈ Āk such that Vb is a

prealgebraic minimal rotund subvariety of Ān the following holds:

• every generic point a of Vb over b satisfies φ(x, b), and

• for every a |= φ(x, b) and every self-sufficient cl0-closed set B containing b,

either a ⊂ B or a is a generic point of Vb over B.

Proof. This is Lemma 4.4 in [2]. Since the lemma deals only with the definability of

relative predimension, one sees that it holds without changes in our greater generality.

Lemma 4.3.5. For all a, b ⊂ Ā with span(b) ≤ Ā, there exists an existential L-

formula τ δa,b(x, y) such that

• A |= τ δa,b(a, b), and

• for all a′, b′ ⊂ Ā, if A |= τ δa,b(a
′, b′) then δ(a′/b′) ≤ δ(a/b).
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Proof. Let B := span(b) and A := span(ab). Then B ≤ A is a finite dimensional

strong extension.

We may assume that the extension B ≤ A is minimal. Indeed, in the general case,

the extension can be decomposed into a tower of minimal strong extensions and the

conjunction of the formulas obtained for each of the minimal extensions in the tower

is equivalent to an existential formula with the required properties.

We deal separately with the different cases from Lemma 4.2.20. Cases 2,3,4 are

easy: if the extension B ≤ A is a green generic extension (case 2), then we can take

the formula τ δa,b(x, y) to be G(x); if the extension is algebraic (case 3) then we can take

τ δa,b(x, y) to be any formula witnessing the algebraicity of a over b; if the extension is

white generic (case 4), then τ δa,b(x, y) can be the formula x = x.

Let us thus assume that B ≤ A is a prealgebraic minimal extension (case 1). Let

n be the linear dimension of A over B. Let c ⊂ Gn be a green linear basis of A over

B. Let V (z, d) be the locus of c over Q(b)alg and let τ(w, b) be a formula isolating

the type of d over b. Consider the conjunction τ̃(x, y, z) of the following formulas:

• ψ(x, z) , where ψ(x, z) is such that A |= ψ(a, c) and for all a′, c′, if A |= ψ(a′, c′)

then span(a′) = span(c′);

•
∧
iG(zi) ;

• ∃w(τ(w, y) ∧ φ(z, w) ∧ θ′(w) , where θ′(w) expresses that Vw is prealgebraic

minimal rotund (see Lemma 4.2.22) and φ(z, w) is as provided by Lemma 4.3.4

for V (z, w).

Note that τ̃(x, y, z) is equivalent to an existential formula. Thus, there is also an

existential formula equivalent to ∃zτ̃(x, y, z); which works as τ δa,b(x, y) as we shall now

see. Indeed, one can simply note that A |= τ̃(a, b, c), and, if A |= τ̃(a′, b′, c′) then

δ(a′/b′) = δ(c′/b′) ≤ 0,

(the equality holds because, since A |= ψ(a′, c′), we have span(a′) = span(c′); the

inequality follows directly from the definitions of τ , φ, θ, etc).

Theorem 4.3.6. The theory T is near model complete.

Proof. Immediate from Lemma 4.3.5 and Proposition 2.3.11.
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4.3.3 Forking and ranks

We now calculate U -ranks and Morley ranks of 1-types in the theory T . Below the

symbol |̂ denotes non-forking independence for the theory T .

Definition 4.3.7. Let A,B,C be cl0-closed subsets of Ā with B ⊂ A,C.

We say that A and C are in free amalgam over B if A and C are aclA-independent

over B and G ∩ (A+ C) = (G ∩ A) + (G ∩ C).

We say that A and C are in self-sufficient free amalgam over B if A and C are in

free amalgam over B and A+ C is self-sufficient in Ā.

Proposition 4.3.8. Let a ⊂ Ā and B,C be self-sufficient cl0-closed subsets of Ā with

B ⊂ C. Then, a |̂
B

C if and only if A := sscl(aB) and C are in self-sufficient free

amalgam over B.

Proof. Let a,B,C be as in the statement of the lemma. Let A := sscl(aB). Through-

out the following, we use Lemma 4.3.2 without explicit mention.

Let us first remark that if A and C are in self-sufficient free amalgam over B, then

this determines tp(a/C) uniquely among the extensions of tp(a/B) over C. To see

this, assume A and C are in self-sufficient free amalgam over B. Let a′ ⊂ Ā be such

that tp(a′/B) = tp(a/B) and A′ := tp(a′B) and C are in self-sufficient free amalgam

over B. Since tp(a′/B) = tp(a/B), the map a 7→ a′ extends to an isomorphism from

A to A′ over B. Since A and C are in free amalgam over B and so are A′ and C, then

the above isomorphism can be extended to an isomorphism from A+C to A′+C over

C. By the self-sufficiency of A+C and A′ +C, this shows that tp(a/C) = tp(a′/C).

In order to prove the proposition, it is sufficient to show the following:

Claim: Suppose A and C are in self-sufficient free amalgam over B. Then tp(a/C)

does not split over B.

Indeed, by the stability of T , it follows from the claim that if a and C are in

free amalgam over B, then tp(a/C) is the unique non-spliting, and thus non-forking,

extension of tp(a/B) over C. 3.

Proof of claim: Suppose A and C are in self-sufficient free amalgam over B. Let

p = tp(a/C). Let σ be an automorphism of (the induced structure on) C over B. We

want to see that σ(p) = p.

3For the uniqueness see Corollary 12.6 in [32]. There, son means extension, special means non-
splitting, heir means non-forking extension
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Since C is self-sufficient, σ is an elementary map. Therefore we can find an

automorphism σ̄ of Ā extending σ. Since σ(p) = tp(σ̄(a)/C), what we want to see is

that tp(σ̄(a)/C) = tp(a/C).

Let A′ := σ̄(A). It is easy to see that A′ = sscl(σ̄(a)B). Note that the elementary

maps σ̄|A and idC coincide on B. Since A and C are in free amalgam, the union of

σ̄|A and idC extends to an isomorphism from A+C to A′+C. By assumption, A+C

is self-sufficient, and so is A′+C, for it is the image of A+C under the automorphism

σ̄ of Ā. We have thus found an elementary map over C sending a to σ̄(a). Hence

tp(σ̄(a)/C) = tp(a/C), as required.

Remark 4.3.9. The above proof shows that types over acl-closed sets (in the (real)

base sort) are stationary.

Before calculating Morley ranks for the theory T , we calculate the U-rank of 1-

types over finitely generated sets of parameters. Since T is superstable, for every type

there is a finite set over which it does not fork; it follows that the U-rank of any type

equals that of a restriction to a finitely generated set of parameters.

Lemma 4.3.10. Let a ∈ Ā and let B ⊂ Ā be a self-sufficient finitely generated

cl0-closed set.

1. If d(a/B) = 0, then RU(a/B) < ω.

2. If d(a/B) = 1, then RU(a/B) = ω +m for some m ∈ ω.

3. If d(a/B) = 2, then RU(a/B) = ω · 2.

Proof. Let A := sscl(Ba). Note that δ(A/B) = d(a/B).

Proof of 1. Suppose d(a/B) = 0.

If a ∈ acl(B), then RU(a/B) = 0. Thus, assume a 6∈ acl(B).

Let us assume first that the extension B ≤ A is minimal. We shall see that in

this case RU(a/B) = 1.

Let C be a finitely generated self-sufficient cl0-closed set containing B. We want

to see that if tp(a/C) forks over B, then tp(a/C) is algebraic.

Suppose tp(a/C) is not algebraic, i.e. a 6∈ acl(C). Then, by the minimality

assumption, A ∩ acl(C) = B.

It follows that A and C are aclA-independent over B: To see this, let D :=

aclA(A) ∩ aclA(C). We want to show D = aclA(B). Note that acl(B) ⊂ acl(D) ⊂
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acl(A) = acl(Ba), therefore either acl(D) = acl(B) = aclA(B) or acl(D) = acl(Ba) =

acl(A). But the latter is impossible, because then A ⊂ acl(D) and hence

A = A ∩ acl(D) ⊂ A ∩ acl(acl(C)) = A ∩ acl(C) = B,

a contradiction. Therefore the former holds and hence D ⊂ aclA(B). Since the

inclusion from right to left is obvious, we get D = aclA(B).

Moreover, A and C are in free amalgam over B: Indeed, using the modularity of

cl0 and the aclA-independence of A and C over B, one sees that:

δ(A/C) = δ(A/B)− lin. d.((A+ C) ∩G/A ∩G+ C ∩G).

Since δ(A/B) = 0 and δ(A/C) ≥ 0 (because C is self-sufficient), we get that

lin. d.((A + C) ∩ G/A ∩ G + C ∩ G) = 0, which means that A and C are in free

amalgam over B.

Also, we see that δ(A+ C/C) = 0, hence A+ C is self-sufficient.

Therefore, A and C are in self-sufficient free amalgam over B, which means that

tp(a/C) does not fork over B.

We have thus seen that RU(a/B) = 1.

Without the minimality assumption, the extension B ≤ A decomposes into a

tower of prealgebraic minimal extensions B = B0 ≤ B1 ≤ . . . ≤ Bn = A. Using

the additivity of finite U-ranks, one sees that RU(a/B) = n (for each i, take an

element bi in Bi \ Bi−1; note that Bi is contained in acl(Bi−1bi); then RU(a/B) =∑
iRU(bi/Bi−1) = n.)

Proof of 2. Suppose d(a/B) = 1.

Assume the extension B ≤ A is minimal. We want to see that then RU(a/B) = ω.

Let C be a finitely generated self-sufficient cl0-closed set containing B. We claim

that if tp(a/C) forks over B, then d(a/C) = 0.

Suppose d(a/C) 6= 0. Then d(a/C) = 1, for d(a/C) ≤ d(a/B) = 1. Clearly,

a 6∈ acl(C). As in the proof of part 1., it follows that A and C are aclA-independent

over B. Also, since

δ(A/C) = δ(A/B)− lin. d.((A+ C) ∩G/A ∩G+ C ∩G),
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we have:

lin. d.((A+ C) ∩G/A ∩G+ C ∩G) = δ(A/B)− δ(A/C)

= d(a/B)− δ(a/C)

≤ d(a/B)− d(a/C)

= 1− 1

= 0.

Therefore A and C are in free amalgam over B. From this we also get,

δ(A+ C/C) = δ(A/B) = 1 = d(a/C),

which implies that A + C is self-sufficient. Thus, A and C are in self-sufficient free

amalgam over B, which means that tp(a/C) does not fork over B

Applying the result of the previous part, we obtain that all forking extensions of

tp(a/B) have finite U-rank. Therefore RU(a/B) ≤ ω.

By considering towers of minimal prealgebraic extensions, one sees that there are

elements in G of arbitrarily large U-rank over B and, in fact, RU(a/B) = ω.

Without the minimality assumption, the extension B ≤ A decomposes into a

tower of minimal extensions, of which one is a minimal green generic extension and

all the other are prealgebraic. From the previous arguments and Lascar’s inequalities,

we conclude that RU(a/B) = ω +m for some natural number m.

Proof of 3. Suppose d(a/B) = 2.

Note that in this case A = B + span(a) and the extension B ≤ A is therefore

minimal.

Let C be a finitely generated self-sufficient cl0-closed set containing B. Let us see

that if tp(a/C) forks over B, then d(a/C) ≤ 1.

Suppose d(a/C) > 1, i.e. d(a/C) = 2. Clearly, a 6∈ acl(C). As before, it follows

that A and C are TA-independent over B.

As in the previous parts, we see that

lin. d.((A+ C) ∩G/A ∩G+ C ∩G) ≤ d(a/B)− d(a/C) = 2− 2 = 0.

Therefore A and C are in free amalgam over B. Then also δ(A+C/C) = δ(A/B) =

2 = d(a/C), and hence A and C are in self-sufficient free amalgam over B.

Thus, all forking extensions of tp(a/B) have U-rank smaller than ω · 2. Therefore

RU(a/B) ≤ ω · 2.
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Looking at towers of minimal extensions, this time adding a green generic ex-

tension at the top of the towers of prealgebraic extensions, one sees that, in fact,

RU(a/B) = ω · 2.

Lemma 4.3.11. For T , Morley rank and U-rank coincide on all 1-types.

Proof. It is sufficient to prove this for global types, i.e. types over Ā.

It is well-known and easy to show that for any totally transcendental complete

theory, for any (global) type p, RU(p) ≤ RM(p). In order to show that also RM(p) ≤
RU(p) for all p, it is sufficient to prove the following: for every p ∈ S1(Ā), there is a

formula ψ ∈ p such that for all q ∈ S1(Ā), if ψ ∈ q and RU(q) ≥ RU(p) then q = p

(i.e. ψ isolates p among the types in S1(Ā) with U-rank ≥ RU(p)). 4

Let p ∈ S1(Ā). We shall find ψ ∈ p that isolates p among the global types of

greater or equal U-rank. Let B ⊂ Ā be the self-sufficient closure of a finite set over

which p does not fork. Let a ∈ Ā be a realisation of p|acl(B). Let A := sscl(Ba). Note

that it is sufficient to find a formula ψ(x) over acl(B) that isolates p|acl(B) among

the types over acl(B) of greater or equal U-rank. This is what we do in each of the

following cases.

Case 1: RU(a/B) is finite, i.e. d(a/B) = 0.

Assume a 6∈ acl(B), otherwise the type of a over acl(B) is obviously isolated.

Let us assume first that the extension B ≤ A is minimal. Since d(a/b) = 0, we

can find a cl0-basis a′ of A over B with all coordinates in G. Then a is algebraic

over a′ in the language LA and δ(a′/B) = 0. Let V (y, d) be the algebraic locus of

a′ over acl(B). The variety V (y, d) is a minimal prealgebraic rotund variety and

therefore we can find a formula φ(y, d) for V (y, d) as in Lemma 4.3.4. We claim that

the formula φ(y, d) ∧
∧
iG(yi) isolates the type of a′ over acl(B) among the types

of greater or equal U-rank. Indeed, by the choice of φ(y, d) and the self-sufficiency

of acl(B), the following holds: for every a′′ satisfying the formula φ(y, d), either

a′′ ⊂ acl(B) or a′′ is a generic of V (y, d) over acl(B). By the Thumbtack Lemma,

we may assume that our a′ is Kummer generic over acl(B), which implies that every

green generic of V (y, d) over acl(B) has the same type as a′ over acl(B). Thus, we

4 Explanation for the sufficiency: Assume that for every p ∈ S1(Ā), there is ψ ∈ p such that
ψ isolates p among the types in S1(Ā) with U-rank ≥ RU(p). One can then show, by induction,
that for every ordinal α, if RM(p) ≥ α then RU(α) ≥ α: The cases where α = 0 or α is a limit
ordinal are easy and do not need the extra assumption. Suppose now that the implication holds for
α and RM(p) ≥ α + 1. Since Morley rank coincides with the Cantor rank on S1(Ā) (Proposition
17.17 in [32]), p is an accumulation point of types pi ∈ S1(Ā) with RM(pi) ≥ α. By the induction
hypothesis, RU(pi) ≥ α and RU(p) ≥ α. If RU(p) = α, the assumption yields that there is a formula
that isolates p from the pi, hence a contradiction. Thus, RU(p) ≥ α+ 1.
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have: for every a′′ satisfying φ(y, d), either a′′ ⊂ acl(B) or a′′ has the same type a′

over acl(B). This directly implies that φ(y, d) ∧
∧
iG(yi) isolates the type of a′ over

acl(B) among the types of greater or equal U-rank, as we claimed. Since a is algebraic

over acl(B)∪ a′, we can find an formula θ(x, y) over acl(B) such that θ(x, a′) isolates

the type of a over a′ ∪ acl(B). Then, using the additivity of finite U-ranks, the type

of a over acl(B) is isolated among the types of greater of equal U-rank by the formula

ψ(x) := ∃y(θ(x, y) ∧ φ(y, d)).

Without the minimality assumption, the extensionB ≤ A decomposes into a tower

of minimal prealgebraic extensions B = A0 ≤ . . . ≤ An = A with a ∈ An \ An−1. For

each i = 1, . . . , n, let ai be a green basis of Ai over Ai−1. Let θ(x, y1, . . . , yn) be a

formula over acl(B) such that θ(x, a1, . . . , an) isolates the type of a over acl(B)∪a1∪
· · · ∪ an, which is algebraic. Also, for each i = 1, . . . , n, let φ(yi, di−1) be a formula

with di−1 ∈ acl(An−1) that isolates the type of yi over acl(Ai−1) among the types

of greater or equal U-rank, which we have seen above is possible to find. Finally,

for each i = 1, . . . , n − 1, let θi(z
i, y1, . . . , yn−1) be a formula over acl(B) such that

θi(z
i, a1, . . . , an−1) isolates the type of di over acl(B)∪a1, . . . , an−1, which is algebraic.

Then take ψ(x) to be the following formula over acl(B):

∃y1 . . . ∃yn
(
θ(x, y1, . . . , yn)∧

∃z1 . . . ∃zn−1(
n∧
i=1

φ(yi, di−1) ∧
n−1∧
i=1

θi(z
i, y1, . . . , yn−1))

)
. (4.4)

Again, using the additivity of finite U-ranks, one sees that the formula ψ(x) isolates

the type of a over acl(B) among the types of greater or equal U-rank.

Case 2: RU(a/B) = ω +m for some m ∈ ω, i.e. d(a/B) = 1.

Note that if a ∈ G, then δ(a/B) = 1 = d(a/B), and hence B + span(a) is self-

sufficient and RU(a/B) = ω. Therefore, if a ∈ G, then ψ(x) can be taken to be

G(x).

More generally, whenever the extension B ≤ A is minimal, B + span(a) is self-

sufficient and (although a need not be in G) there is a′ in G with RU(a′/B) = ω such

that a′ is a multiple of a. In particular, a is algebraic over a′ and, a fortiori, over

acl(B) ∪ a′. Let θ(x, y) be a formula over acl(B) such that θ(x, a′) isolates the type

of a over acl(B) ∪ a′. Then, the formula ψ(x) can be taken to be ∃y(θ(x, y) ∧G(y)).

For arbitrary a with d(a/B) = 1, the extension B ≤ A decomposes into a tower

of minimal extensions B = A0 ≤ . . . ≤ An = B, where one is a green generic minimal

extension and all others are prealgebraic. By the arguments up to this point, each
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of these minimal extensions can be dealt with and it is easy to see that the different

formulas can be combined as in Case 1 to obtain an appropriate ψ(x).

Case 3: RU(a/B) = ω · 2, i.e. d(a/B) = 2

Since there is only one global type of U-rank ω · 2, the formula ψ(x) can be taken

to be x = x.

Theorem 4.3.12. For T , the Morley rank of the universe is ω · 2 and the Morley

rank of G is ω.

Proof. From the definitions we know that the Morley rank of a definable set is the

maximum of the Morley ranks of the types containing a defining formula for the set.

Also, Morley rank and U-rank coincide on all 1-types, by Lemma 4.3.11, and their

values are as in Lemma 4.3.10. Thus, we have:

RM(x = x) = max{RM(p) : p ∈ S1(Ā), x = x ∈ p} = ω · 2,

RM(G(x)) = max{RM(p) : p ∈ S1(Ā), G(x) ∈ p} = ω.
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Chapter 5

Related structures on the complex
numbers

Here starts the second part of the thesis, in which we are interested in explicitly

finding models for the theories constructed in Chapter 4 on the complex points of the

algebraic group A. This is done, under additional assumptions, in Chapter 6, in the

case where A is the multiplicative group, and in Chapter 7, in the case where A is an

elliptic curve without complex multiplication defined over the reals.

This chapter contains preliminaries for the subsequent ones. We consider first-

order structures encompassing the complex exponential function and the analogous

exponential functions of elliptic curves, as well as the associated structures of raising

to powers. In each case, we define a corresponding submodular predimension function

and show how the properness of the predimension function, in the sense of Chapter

2, relates to a version of the Schanuel conjecture or the Elliptic Schanuel Conjecture.

We also see that in all of these instances the associated pregeometry has the countable

closure property. Towards the end of the chapter we also include some basic results

from the theory of o-minimality and facts on the o-minimality of structures on the

real numbers related to the exponential functions.

5.1 Exponentiation and raising to powers

5.1.1 Exponentiation

Let Cexp = (C,+, ·, exp) be the expansion of the complex field by the exponential

function.

The Schanuel Conjecture from transcendental number theory, which we state be-

low, can be regarded as a statement about Cexp.
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Conjecture 5.1.1 (The Schanuel Conjecture (SC)). For every n and every Q-linearly

independent tuple x ∈ Cn,

tr. d.(x expx) ≥ n.

The predimension function δexp is defined on any tuple x ⊂ C by

δexp(x) := tr. d.(x expx)− lin. d.(x).

Note that δexp is submodular with respect to the modular pregeometry given by the

Q-linear span. Moreover, the Schanuel conjecture is equivalent to the statement that

for every x ⊂ C, δexp(x) ≥ 0. Therefore, if the SC holds, then δexp is a proper

predimension function on Cexp.

In [51], a model-theoretic study of the structure Cexp is carried out by means of a

predimension construction with respect to the function δexp, as in Chapter 2, and a

subsequent (non-elementary) axiomatization is found in a way similar to our Chapter

4. Here we shall only need one aspect of that work, namely Zilber’s proof that the

pregeometry associated to δexp has the countable closure property ([51, Lemma 5.12]).

Versions of this fact will be essential in our arguments in chapters 6 and 7. We include

the proof, in slightly greater detail than in [51].

Let us assume the Schanuel Conjecture for the rest of this subsection. We thus

have a dimension function dexp on Cexp defined from δexp as in Definition 2.2.22 and

a corresponding pregeometry clexp, as in Remark 2.2.23.

Consider the following definitions:

Definition 5.1.2. A pregeometry cl on a set A is said to have the Countable Closure

Property (CCP) if for every finite subset X of A, the set cl(X) is countable.

Equivalently, cl has the CCP if for every countable subset X of A, the set cl(X)

is countable.

Also, let us note the trivial fact that if a pregeometry cl has the CCP, then every

localisation clD of cl over a countable set D also has the CCP.

Definition 5.1.3. Let n ≥ 1. A subvariety W of Cn × (C∗)n is said to be ex-rotund

if for every k×n-matrix M with entries in Z of rank k, dimW ′ ≥ k, where W ′ is the

image of W under the map from Cn×(C∗)n to Ck×(C∗)k given by (x, y) 7→ (M ·x, yM)

Definition 5.1.4. Let W ⊂ Cn × (C∗)n be an ex-rotund variety and let B ⊂ C be

such that W is defined over B∪exp(B). Let us say that a ∈ Cn is a generic realisation

of W over B, if (a, exp(a)) is a generic point of W over B ∪ exp(B).
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We can now give the statement and proof of Lemma 5.12 from [51].

Lemma 5.1.5. Assume SC holds. Then the pregeometry clexp has the CCP.

Proof. Let B be a finite subset of C. We shall prove that clexp(B) is countable.

By passing to its self-sufficient closure, we may assume that B is self-sufficient with

respect to δexp. Note that for any element x0 ∈ C, x0 is in clexp(B) if and only if

x0 ∈ spanQ(B) or there exists x ⊃ x0, Q-linearly independent over B, such that

δexp(x/B) = 0.

It is clear that spanQ(B) is countable, it therefore suffices to show that the set

{x ⊂ C : xis Q-linearly independent over B and δexp(x/B) = 0}

is also countable.

Suppose x is Q-linearly independent over B and let W be the algebraic locus of

(x, exp(x)) over B ∪ exp(B). Since B is self-sufficient, the variety W is ex-rotund

and, clearly, x is a generic realisation of W over B. Also, note that δexp(x/B) = 0 if

and only if dimW = n. Thus, it is sufficient to prove that for every n and for every

ex-rotund variety W ⊂ C2n defined over B∪exp(B) of dimension n, the set of generic

realisations of W over B is countable (clearly, there are only countably many such

varieties W .) This is done below.

Let W ⊂ C2n be an ex-rotund variety defined over B ∪ exp(B) of dimension n.

The proof of the following claim completes the proof of the lemma.

Claim: Consider the (analytic) set

S = {x ∈ Cn : (x, expx) ∈ W}.

There is an analytic set S0 of dimension zero contained in S such that every generic

realisation of W over B either is in S0 or is an isolated point of S.1

Indeed, the claim implies that the set of generic realisations of W over B is

countable: Since S0 is an analytic set of dimension zero, it consists of isolated points,

it is therefore discrete and hence countable (for every discrete subset of Euclidean

space is countable). Also, the set of isolated points of S is clearly discrete and hence

countable.

Proof of Claim: Being analytic, the set S can be written as a union
⋃

0≤i≤d Si
where, for each i, the set Si is a complex manifold of dimension d (possibly empty)

1An analytic subset of a domain U in Cn is a set that locally, around every point in U , is defined
as the zero set of some complex analytic functions. We call analytic subsets of Cn simply analytic
sets. For precise definitions see [10, Section 2.1])
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and the union
⋃

0≤j≤i Sj is an analytic set ([10, Section 5.5]). In particular, the set

S0 is an analytic set of dimension 0.

Let us now show that any generic realisation of W over B in S \ S0 is an isolated

point of S.

Suppose not. Then there exists a generic realisation a of W over B in S \ S0 that

is not an isolated point of the analytic set S.

Since a is in some Si with i > 0, there exists an analytic isomorphism x : t 7→ x(t)

from an open disc D around 0 in C onto a subset of S mapping 0 to a.

Set y(t) := exp(x(t)). Then for every t ∈ D, (x(t), y(t)) is in W .

We can consider (the germ of) each coordinate function of x and y as an element

of the differential ring R of germs near 0 of functions which are analytic on a neigh-

bourhood of 0. 2 Note that the ring of constants of R is (isomorphic to) C. Using

the fact that the zero set of an analytic function in one variable consists of isolated

points, it is easy to see that R is an integral domain. Thus, R embeds into its field

of fractions, F . The derivation on R extends to a derivation on F (by the usual

differentiation rule) with field of constants C ⊃ C.

Since (x, y) ∈ W (F), we get that

tr. d.(x, y/B ∪ exp(B)) ≤ n.

In fact, since x(0) = a is a generic realisation over B, tr. d.(x(0), y(0)/B∪exp(B)) = n,

and hence

tr. d.(x, y/B ∪ exp(B)) = n.

Let k ∈ {0, . . . , n} be the number of independent Q-linear dependences among

Dx1, . . . , Dxn. After a Q-linear change of coordinates we can assume thatDx1, . . . , Dxk

are all identically zero andDxk+1, . . . , Dxn are Q-linearly independent. Thus, x1, . . . , xk

are all constant, with values a1, . . . , ak respectively. Since W is ex-rotund, we have

tr. d.(a1, . . . , ak, exp(a1), . . . , exp(ak)/B ∪ exp(B)) ≥ k.

2The equivalence relation defining the germs being given by f ∼ g, if f and g coincide on a
punctured neighbourhood of 0.
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Hence

tr. d.(xk+1, . . . , xn, yk+1, . . . , yn/C)

≤ tr. d.(xk+1, . . . , xn, yk+1, . . . , yn/C)

≤ tr. d.(xk+1, . . . , xn, yk+1, . . . , yn/B ∪ {a1, . . . , ak} ∪ exp(B ∪ {a1, . . . , ak}))

= tr. d.(xk+1, . . . , xn, y1, . . . , yn/B ∪ exp(B))

− tr. d.(x1, . . . , xk, y1, . . . , yk/B ∪ exp(B))

≤n− k.

Ax’s Theorem then implies that Dxk+1, . . . , Dxn must be Q-linearly dependent.

This gives a contradiction.

Remark 5.1.6. The only use of the Schanuel Conjecture in Lemma 5.1.5 is in the as-

sertion that clexp is a pregeometry. By results of Kirby (Theorem 1.1 and Theorem 1.2

in [20]), without assuming the Schanuel conjecture, there is a countable self-sufficient

subset D of C with respect to the predimension function δexp. Thus, unconditionally,

for such D, the localisation (clexp)D of clexp is a pregeometry and, by precisely the

same argument as in the proof of Lemma 5.1.5, has the CCP.

5.1.2 Raising to powers

Let K be a subfield of C. The structure CK of raising to powers in K is the following

two-sorted structure:

(C,+, (λ·)λ∈K)
exp−−→ (C,+, ·),

where the structure on the first-sort is the natural K-vector space structure, the struc-

ture on the second sort is the usual field structure and exp is the complex exponential

function.

A model-theoretic study of the above structures, in analogy with the case of Cexp,

has been done by Zilber in [45], with additions in [53] and [44]. As in the previous

section, we are interested in a CCP result and give only a brief account of the necessary

material.

Consider the predimension function δK defined on tuples x ⊂ C by

δK(x) := lin. d.K(x) + tr. d.(exp(x))− lin. d.(x).

Note that δK is a submodular predimension function with respect to the pregeometry

given by the Q-linear span.
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Assume K has finite transcendence degree. Then, the Schanuel Conjecture implies

that δK(x) ≥ − tr. d.(K) for all x. Indeed, lin. d.K(x) ≥ tr. d.(x/K) ≥ tr. d.(x) −
tr. d.(K), therefore:

δK(x) = lin. d.K(x) + tr. d.(exp(x))− lin. d.(x)

≥ tr. d.(x)− tr. d.(K) + tr. d.(exp(x))− lin. d.(x)

≥ − tr. d.(K)

where the last inequality follows from the Schanuel conjecture.

Thus, SC implies the following conjecture:

Conjecture 5.1.7 (Schanuel Conjecture for raising to powers in K (SCK)). Let K

be a subfield of C of finite transcendence degree. Then,

(SCK) For all x ⊂ C,

δK(x) ≥ − tr. d.(K).

The following theorem shows that a stronger version of the Schanuel Conjecture

for raising to powers in K is satisfied in the case where K is generated by powers

that are exponentially algebraically independent. This result is due to Bays, Kirby

and Wilkie; in the form below, it follows easily from their Theorem 1.3 in [5].

Theorem 5.1.8 (Strong Schanuel Condition for K (SC∗K)). Suppose K = Q(λ) where

λ is an exponentially algebraically independent tuple of complex numbers. Then the

following holds:

(SC∗K) For all x ⊂ C,

δK(x) ≥ 0.

For the definition of exponential algebraic independence we refer to [5]; for our

purposes it suffices to know the following: exponential algebraic independence implies

algebraic independence, and, if β is a real number that is generic in the o-minimal

structure Rexp (this is defined in Section 5.3 below) then β is exponentially tran-

scendental (i.e. the singleton {β} is exponentially algebraically independent). In

particular, these two facts imply that if β ∈ R is generic in Rexp, then the complex

number βi is exponentially transcendental.

Assume SCK . Then the values of the submodular predimension function δK are

bounded from below in Z. Therefore there exists a smallest self-sufficient set for δK ,

namely the self-sufficient closure of the empty set (cf. Section 2.2.3). By localising

δK over the self-sufficient closure of the empty set, we obtain a proper predimension

function. Let us denote by dK the associated dimension function and by clK the

corresponding pregeometry (without explicit mention of the localisation).
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Definition 5.1.9. A subset L of Cn defined by an equation of the form

M · x = c,

where M is a k × n-matrix with entries in K and c ∈ Cn, is said to be a K-affine

subspace of Cn. If C ⊂ C contains all the coordinates of c, then we say that L is

defined over C. Note that if the matrix M has rank r over K, then the dimension of

L, denoted dimL, is n− r.

In analogy with Definition 4.2.4, in the case of green points, and Definition 5.1.3,

in the case of exponentiation, we have the following definition, which will be essential

in our arguments in Chapter 6, Section 6.3.

Definition 5.1.10. A pair (L,W ) of a K-affine subspace L of Cn and a subvariety

W of (C∗)n is said to be K-rotund if for any k×n-matrix m with entries in Z of rank

k we have

dimm · L+ dimWm ≥ k.

Minor modifications of the proof of the CCP for Cexp yield a proof of the CCP in

the powers case under the assumption that the SCK holds. Thus, we have:

Lemma 5.1.11. Assume SCK. Then the pregeometry clK on C has the CCP.

Remark 5.1.12. Notice that if D is a self-sufficient subset of C with respect to δexp

containing K, then D is also self-sufficient with respect to δK . This is due to the fact

that for every set D ⊂ C containing K, the inequality δK(x/D) ≥ δexp(x/D) holds

for all x ⊂ C. Indeed, this can be seen as follows:

δK(x/D) = lin. d.K(x/D) + tr. d.(exp(x)/ exp(D))− lin. d.(x/D)

≥ tr. d.(x/D) + tr. d.(exp(x)/ exp(D))− lin. d.(x/D)

≥ tr. d.(x exp(x)/D exp(D))− lin. d.(x/D)

= δexp(x/D)

Thus, the result of Kirby mentioned in Remark 5.1.6, which provides a countable

self-sufficient set D with respect to δexp, also gives a countable self-sufficient subset

of C with respect to δK for any countable K, namely the self-sufficient closure of K

with respect to (δexp)D.

Also, the proof of the CCP works to prove that for any countable self-sufficient

set D with respect to δK , the localisation (clK)D is a pregeometry with the CCP.
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5.2 Exponentiation and raising to powers on an

elliptic curve

5.2.1 Basic setting and exponentiation

Let E be an elliptic curve defined over a subfield k0 of C. Put E := E(C) ⊂ P2(C).

As noted in Section 3.1, E has an algebraic group structure with identity element

[0, 1, 0] and is defined by a homogeneous equation of the form:

zy2 = 4(x− e1)(x− e2)(x− e3),

where e1, e2 and e3 are distinct complex numbers.

Associated to E there is a lattice Λ = ω1Z + ω2Z in C and a corresponding

Weierstrass function ℘, defined for x in C \ Λ by

℘(x) :=
1

x2
+

∑
ω∈Λ\{0}

(
1

(x− ω)2
− 1

ω2
). (5.1)

For all x ∈ C \ Λ, ℘ satisfies the differential relation

(℘′(x))2 = 4(℘(x)− e1)(℘(x)− e2)(℘(x)− e3), (5.2)

and

e1 = ℘(
ω1

2
), e2 = ℘(

ω2

2
), e3 = ℘(

ω1 + ω2

2
). (5.3)

As in Section 3.1, we denote by End(E) the ring of regular endomorphisms of E
and by kE its field of fractions. Also, E is an End(E)-module and we denote by lin. d.

the corresponding linear dimension. Here we identify End(E) with the subring of C
consisting of all α ∈ C such that αΛ ⊂ Λ. With this convention in place, for all

x ⊂ C we have lin. d.End(E)(x/Λ) = lin. d.(expE(x)).

The map expE : C→ E given by

z 7→

{
[℘(z) : ℘′(z) : 1], if z 6∈ Λ,

O, if z ∈ Λ,

is a group homomorphism from the additive group of C onto E. It is called the

exponential map of E.

Finally, the j-invariant of E will be denoted by j(E).

Let us also consider the action of complex conjugation on the above setting.

Throughout, we denote by zc the complex conjugate of a complex number z. The

lattice Λc obtained from Λ by applying complex conjugation has an associated Weier-

strass function ℘c satisfying the relation ℘c(zc) = (℘(z))c for all z 6∈ Λ. Let us denote
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by Ec the corresponding elliptic curve. By 5.3, the affine part of Ec is defined by the

equation

y2 = 4(x− ec1)(x− ec2)(x− ec3). (5.4)

Also, since j is the value of a rational function on e1, e2, e3 (see the proof of [37, I.4.5]),

j(Ec) = j(E)c.

5.2.2 The Elliptic Schanuel Conjecture

The following is the Elliptic Conjecture from [7]. There it is shown to be an instance

of more general conjectures of Grothendieck and André. We will refer to it as the

Elliptic Schanuel Conjecture (ESC).

Let us start by introducing some conventions related to the theory of elliptic

integrals. Given an element y ∈ E, an integral of the first kind is a preimage of y

under the exponential map expE. A period of E is an integral of the first kind of

the point O, i.e. an element of Λ. Integrals of the second kind are more difficult to

describe and, although they appear in the statement of the ESC below, we will not

need to use their definition. Quasiperiods are integrals of the second kind of the point

O. For complete definitions we refer to Section I.5 in [37].

We assume that the generators ω1 and ω2 of the lattice Λ of periods satisfy

=(ω2/ω1) > 0, and let η1 and η2 be corresponding quasiperiods, so that the Leg-

endre relation ω2η1 − ω1η2 = 2πi holds ([37, I.5.2]).

In the rest of this section, given a tuple y = (y1, . . . , yr) of points on the curve E,

let us denote by x = (x1, . . . , xr) and z = (z1, . . . , zr) corresponding integrals of the

first and the second kind, respectively.

Conjecture 5.2.1 (Elliptic Schanuel Conjecture (ESC)). Let E1, . . . ,En be pairwise

non-isogenous elliptic curves. For any tuples yν = (yν1 , . . . , y
ν
rν ) of points of Eν,

ν = 1, . . . , n, we have:

tr. d.(j(Eν), ων1 , ων2 , ην1 , ην2 , yν , xν , zν)ν
≥ 2

∑
ν

lin. d.kEν (xν/Λν) + 4
∑
ν

(lin. d.Q kEν )
−1 − n+ 1 (5.5)

In fact, we do not need to deal directly with the quasiperiods or the integrals of

the second kind for our purposes, for we can use a consequence of the conjecture that

ignores the precise contribution of these points to the transcendence degree on the

left hand side of inequality (5.5) by using obvious upper bounds. Let us therefore

show that the above conjecture implies the following simpler statement:
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Conjecture 5.2.2 (Weak Elliptic Schanuel Conjecture (wESC)). Let E1, . . . ,En be

pairwise non-isogenous elliptic curves. For any tuples xν ∈ Crν , kEν -linearly indepen-

dent over Λν, ν = 1, . . . , n, we have:

tr. d.(j(Eν), xν , expνE(xν))ν ≥
∑
ν

rν . (5.6)

Proof of ESC (5.2.1) ⇒ wESC (5.2.2). Let E1, . . . ,En be pairwise non-isogenous el-

liptic curves. For ν = 1, . . . , n, let xν ∈ Crν be kEν -linearly independent over Λν . Set

yν = expνE(xν). Then, by 5.2.1,

tr. d.(j(Eν), ων1 , ων2 , ην1 , ην2 , yν , xν , zν)ν
≥ 2

∑
ν

rν + 4
∑
ν

(lin. d.Q kEν )
−1 − n+ 1. (5.7)

Without loss of generality let us assume that E1, . . . ,El have no CM and El+1, . . . ,En

have CM, 0 ≤ l ≤ n. Then
∑

ν(lin. d.Q kEν )
−1 = l + 1

2
(n− l).

Thus,

tr. d.(j(Eν), ων1 , ων2 , ην1 , ην2 , yν , xν , zν)ν ≥ 2
∑
ν

rν + 4l + 2(n− l)− n+ 1. (5.8)

For each ν, the Legendre relation ων2η
ν
1 −ων1ην2 = 2πi holds. In particular, restrict-

ing our attention to E1, . . . ,El, this gives

tr. d.(ων1 , ω
ν
2 , η

ν
1 , η

ν
2/2πi)ν=1,...,l ≤ 3l.

In the CM case, hence for ν = l+1, . . . , n, there are further algebraic dependences.

Indeed, it is clear that in this case ων1 and ων2 are Qalg-linearly dependent and, in fact,

by a theorem of Masser ([24][3.1 Theorem III]), 1, ων1 , η
ν
1 , 2πi form a Qalg-linear basis

of the Qalg-linear span of 1, ων1 , ω
ν
2 , η

ν
1 , η

ν
2 , 2πi. Therefore

tr. d.(ων1 , ω
ν
2 , η

ν
1 , η

ν
2/2πi)ν=l+1,...,n ≤ n− l.

Combining the last two inequalities we get

tr. d.(ων1 , ω
ν
2 , η

ν
1 , η

ν
2 )ν=1,...,n ≤ 3l + (n− l) + 1.

Thus, inequality 5.8 implies the following:

tr. d.(j(Eν), yν , xν , zν)ν ≥
(
2
∑
ν

rν + 4l + 2(n− l)− n+ 1
)
−
(
3l + (n− l) + 1

)
.

Therefore

tr. d.(j(Eν), yν , xν)ν ≥
∑
ν

rν .
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Consider the case of a single elliptic curve E defined over k0 ⊂ C. Let E = E(C).

Let us define a predimension function δexpE on C as follows: for all x ⊂ C, let

δexpE(x) := tr. d.(j(E), x, expE(x))− lin. d.kE(x/Λ).

This predimension function is submodular with respect to the pregeometry given

by the kE-linear span. Also, the wESC is clearly equivalent to the statement that for

all x ⊂ C, δexpE(x) ≥ 0; which means that if the wESC holds, then the predimension

function δexpE is also proper. Thus, assuming the wESC, one obtains an associated

dimension function dexpE and corresponding pregeometry clexpE . Using the same ar-

gument as in Zilber’s proof of the CCP (5.1.5), this time applying the version of Ax’s

theorem for the Weierstrass ℘-functions from [18], one can see that the pregeometry

clexpE has the CCP.

It may be worth noting that a comprehensive study of the model theory of the

exponential functions of elliptic curves or more general abelian varieties, in analogy

with Zilber’s program for the exponential function, is not yet available.

5.2.3 Raising to powers on E

Fix a subfield K of C extending kE.

The two-sorted structure EK of raising to powers in K on E is given by:

(C,+, (λ·)λ∈K)
expE−−→ (E, (W (C))W∈LE).

where the first sort has the natural K-vector field structure, the second sort has the

algebraic structure on E, and the map expE is the exponential map of E.

Consider the predimension function δE,K defined on tuples x ⊂ C by

δE,K(x) = lin. d.K(x) + tr. d.(j(E), ℘(x))− lin. d.kE(x/Λ).

If K has finite transcendence degree, then the Weak Elliptic Schanuel Conjecture

(5.2.2) implies that the inequality δE,K(x) ≥ − tr. d.(K) holds for all x ⊂ C.

Let us state this consequence of the wESC for a single elliptic curve E as an

independent conjecture.

Conjecture 5.2.3 (Weak ESC for raising to powers in K on E (wESCK)). Let E be

an elliptic curve. Let K is a subfield of C extending kE of finite transcendence degree.

Then the following holds:

(wESCK) For all x ⊂ C,

δE,K(x) ≥ − tr. d.(K).
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Assume wESCK holds. Then we can obtain a proper predimension function from

δE,K by localising over the self-sufficient closure of the empty set, for which we have an

associated dimension function, which we shall denote dE,K , and pregeometry, which

will be denoted by clE,K . The same argument as in the proof of 5.1.5, using the

version of Ax’s theorem for Weierstrass ℘-functions from [18], shows that for any

countable K, clE,K has the CCP.

Let us extend Definition 5.1.10 from the multiplicative case to include the elliptic

curve case. Since there is no space for confusion, we keep the same terminology.

Definition 5.2.4. A pair (L,W ) of a K-affine subspace L of Cn and an algebraic

subvariety W of En is said to be K-rotund if for any k × n-matrix m with entries in

End(E) of rank k we have we have

dimm · L+ dimm ·W ≥ k.

5.3 o-minimality

We now review some basic facts of the theory of o-minimality, of which we shall

make use in Chapter 6 and 7. Of particular interest to us is the property of definable

choice of o-minimal expansions of groups and some facts about the dimension theory

in o-minimal expansions of the real ordered field. We formulate the statements on

dimension for locally definable sets (see definition below), instead of definable sets,

because this allows us to apply them directly in situations involving real analytic

sets. Since dimension is a local property, the reduction to the analogous results for

definable sets is straightforward.

The standard reference for the basics of o-minimality is [39]. For a very brief

introduction, we also suggest Section 3 of [34].

Definition 5.3.1. A first-order structure R = (R,<, . . . ) where < is a linear order

on R is said to be o-minimal if every subset of R definable in R is a finite union of

intervals of the form (a, b) with a, b ∈ R ∪ {−∞,+∞} and singletons.

The most fundamental example of an o-minimal structure is the real ordered field,

that is the structure R = (R, <,+,−, 0, ·, 1). That the structure R is o-minimal

follows easily from the Tarski-Seidenberg theorem, which states that the structure R
has quantifier elimination. Later in this section we give examples of expansions of this

structure that are also o-minimal, and which will be later be used in our arguments.

But first we review some basic results about o-minimal structures.

We start with the following fact about algebraic closure and definable closure.
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Fact 5.3.2. Let R be an o-minimal structure. Then the following hold:

1. aclR = dclR,

2. dclR is a pregeometry.

The first statement in the above fact is rather easy to prove. For the second

statement, the non-trivial part is proving that dclR satisfies the exchange principle.

This follows from the Monotonicity Theorem ([39, 3.1.2]), which states that, for any o-

minimal structure R, for any definable function f : (a, b)→ R defined on the interval

(a, b) ⊂ R, there exist points a = a0 < a1 < · · · < ak = b such that on each interval

(ai, ai+1) the function f is either constant, or strictly monotone and continuous.

Let dimR denote the dimension function associated to the pregeometry aclR. We

shall now state some facts about the the dimension theory in o-minimal structures

developed around the dimension function dimR, for a more detailed treatment see

[28, Section 1].

Definition 5.3.3. Let R be an expansion of the real ordered field. We say that

X ⊂ Rn is locally definable over A in R if for any box U with rational end-points,

the intersection X ∩ U is definable over A in R. A function f : Rn → Rm is said to

be locally definable over A in R if its graph is.

Fact 5.3.4. Suppose R is an expansion of the real ordered field in a countable lan-

guage. Then for any X ⊂ Rn that is locally definable in R over a countable set A we

have

max
x∈X

dimR(x/A) = dimRX,

where dimRX is the topological dimension of X, i.e. the maximum k ≤ n such that

for some coordinate projection π from Rn to Rk, the set π(X) has interior.

If X is a real analytic set, then dimRX is also its real analytic dimension, i.e.

the maximum k such that for some x ∈ X and open neighbourhood Vx of x, X ∩ Vx
is a real analytic submanifold of Rn of dimension k.

The first part of the fact above follows easily from the Baire Category Theorem,

it is also explicitly proved in [16, Lemma 2.17]. The second part is a standard fact in

real analytic geometry.

Definition 5.3.5. Let R be an o-minimal structure. Let X ⊂ Rn be a locally

definable set in R over a A ⊂ R. An element b in X is said to be generic in X over

A if

dimR(b/A) = max
x∈X

dimR(x/A).
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As a convention, if x is a tuple in Rn, we say that x is generic in R if it is generic in

Rn over the empty set.

The following fact is a consequence of the C1-Cell Decomposition Theorem ([39,

7.3.2]), together with the fact that the boundary of any subset of Rn has dimension

strictly less than n ([39, 4.1.10]).

Fact 5.3.6. Let R = (R,< .+, 0,−, ·, 1, . . . ) be an o-minimal expansion of an ordered

field. Let U be an open subset of Rn and let f : U → Rm be a definable function.

Then the dimension of the set of points in U at which f is discontinuous is strictly

less than n.

The following is the Definable Choice Property of o-minimal expansions of ordered

abelian groups. For a proof see [39, 6.1.2] or [34, 3.7].

Fact 5.3.7 (Definable choice property). Let R = (R,<,+, 0,−, 1, . . . ) be an o-

minimal expansion of an ordered abelian group with a constant 1 for a non-zero

element. Let S ⊂ Rm+n be a definable set and let π : Rm+n → Rn be the projec-

tion on the first m coordinates. Then there is a definable map f : π(S) → Rn such

that for all a ∈ π(S), (a, f(a)) is in S.

Let us introduce two important examples of o-minimal structures. The expansion

of the real ordered field by all restricted analytic functions, denoted Ran, that is the

expansion having a function symbol for each restriction f |B where B is a bounded

box in Rn and f is an analytic function on an open set containing B, is o-minimal.

This was noted by van den Dries to be a consequence of results of Gabrielov and

 Lowasjewicz ([38]). The expansion of the real ordered field by the real exponential

function, Rexp = (R, < .+, 0,−, ·, 1, ex), is also o-minimal, by a theorem of Wilkie

([42]).

In Chapter 6, we shall consider the expansion of the real ordered field by the

restrictions of the sinx and ex functions to intervals with rational endpoints. This

structure is o-minimal, for it is a reduct of Ran. Note that the complex exponential

function is locally definable in the structure. This follows from the formula

exp(x+ iy) = ex(cos y + i sin y),

together with the fact that the restrictions to bounded intervals with rational end-

points of the exponential and the sine functions are definable, by the very definition

of R, and the restrictions of the cosine function to the same intervals are definable in

R as the derivatives of the restrictions of the sine function.

84



Analogously, in Chapter 7 we shall need an o-minimal expansion of the real ordered

field in a countable language in which the function ℘ is locally definable. The existence

of such a structure R, as a reduct of Ran, follows from the fact that the addition

formula,

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4
(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)
)2,

allows to locally define ℘ in terms of its restriction to a closed parallelogram contained

in the interior of the fundamental parallelogram of vertices 0, 1, τ, 1 + τ (e.g. the one

with vertices 1+τ
8

, 3+τ
8

, 1+3τ
8

, 3+3τ
8

), around which it is analytic ([21]). Indeed, this

corresponds to the fact that expE is a homomorphism and its values can therefore

be calculated from those of any restriction to an open subset of the fundamental

parallelogram.
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Chapter 6

Models on the complex numbers:
the multiplicative group case

In this chapter, we find models for the theories of green points constructed in Chap-

ter 4 in the multiplicative group case, under the assumption that an instance of the

Schanuel Conjecture for raising to powers holds. In generic cases, our assumption is

known to be true, by Theorem 5.1.8, and the result is therefore unconditional.

6.1 The Models

Throughout this Chapter, let A = Gm and A = A(C) = C∗. Since we work in the

multiplicative group, we shall use multiplicative notation. We also use the expressions

multiplicatively (in)dependent instead of End(A)-linearly (in)dependent.

Let ε ∈ C \ (R ∪ iR) and let Q be a non-trivial divisible subgroup of (R,+) of

finite rank. Put

G = exp(εR +Q).

Note that G is a divisible subgroup of C∗.
We assume henceforth that ε is of the form 1 + βi with β a non-zero real number,

for we can always replace any ε ∈ C \ (R ∪ iR) for one of this form giving rise to the

same G.

Consider the L-structure (C∗, G).

As noted in Chapter 4, the predimension function δG on C∗, defined by δG(y) :=

2 tr. d.(y) − mult. d.(cl0(y) ∩ G), is submodular with respect to the pregeometry cl0

on C∗ given by the multiplicative divisible hull.

The following theorem is the main result of this chapter.
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Theorem 6.1.1. Let ε = 1 + βi, with β a non-zero real number, and let Q be a

non-trivial divisible subgroup of (R,+) of finite rank. Let

G = exp(εR +Q).

Assume SCK holds for K = Q(βi). Then:

1. For every tuple c ⊂ C∗, there exists a tuple c′ ⊂ C∗ extending c, such that c′ is

self-sufficient with respect to the predimension function (δG)c′. If c ⊂ G, then

we can find such a c′ also contained in G.

2. The structure (C∗, G) has the EC-property. Therefore, for every tuple c ⊂ G,

self-sufficient with respect to (δG)c, the structure (C∗, G)X0 is a model of the

theory TX0, where X0 = span(c) with the structure induced from (C∗, G).

The above theorem follows immediately from Propositions 6.2.2 and 6.3.1 below.

Sections 6.2 and 6.3 are devoted to the corresponding proofs.

Note that indeed the two parts of the theorem correspond to the two sets of

sentences in T := T 0 ∪ T 1. In the second part of the theorem we restrict to tuples c

with coordinates in G because it is only for those that the theory T 0 has been defined.

6.2 The Predimension Inequality

In this section we prove the first part of Theorem 6.1.1. The proof here improves

upon the corresponding one in [46].

Lemma 6.2.1. Let K = Q(βi) and assume SCK holds.

Then for all y ∈ (C∗)n, we have δG(y) ≥ −3 lin. d. Q− tr. d.(K).

Proof. We may assume y ∈ Gn and is multiplicatively independent. Let x ∈ Cn be

such that exp(x) = y with x = εt + q, t ∈ Rn, q ∈ Qn. Note that x is Q-linearly

independent over the kernel of exp.

Since complex conjugation is a field automorphism of C, we have

2 tr. d.(y) = tr. d.(y) + tr. d.(yc). (6.1)

Also,

tr. d.(y) + tr. d.(yc) ≥ tr. d.(yyc) = tr. d.(exp(x) exp(xc)). (6.2)

By the SCK ,

lin. d.K(xxc) + tr. d.(yyc)− lin. d.(xxc) ≥ − tr. d.(K)
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and therefore

tr. d.(yyc) ≥ lin. d.(xxc)− lin. d.K(xxc)− tr. d.(K) (6.3)

Combining 6.1,6.2 and 6.3, we obtain

2 tr. d.(y) ≥ lin. d.(xxc)− lin. d.K(xxc)− tr. d.(K).

Thus, in order to prove the lemma, it is sufficient to show that the difference lin. d.(xxc)−
lin. d.K(xxc) is always at least n− 3 lin. d. Q.

Since x = εt+ q, we have xc = εct+ q. We also note the following:

εc

ε
=

1− βi
1 + βi

∈ Q(βi) = K.

From this we obtain the following upper bound for lin. d.K(xxc):

lin. d.K(xxc) ≤ lin. d.K(εt, q) ≤ n+ lin. d. Q. (6.4)

We now need to bound lin. d.(xxc) from below. Note that the values lin. d.(xxc)

and lin. d.K(xxc) do not change if we replace x by any x′ with the same Q-linear

span (and xc by x′c accordingly). It follows that we can assume that for every i ∈
{lin. d. Q + 1, . . . , n}, qi = 0. Indeed, one can apply appropriate regular Q-linear

transformations to x (and accordingly to xc) to reduce to this case.

Since x is linearly independent, in particular we have lin. d.(xlin.d. Q+1, . . . , xn) =

n− lin. d. Q, i.e. lin. d.(εtlin.d. Q+1, . . . , εtn) = n− lin. d. Q. Moreover, since ε 6∈ R∪ iR,

ε and εc are R-linearly independent. Therefore

lin. d.(εtlin.d. Q+1, . . . , εtn, ε
ctlin.d. Q+1, . . . , ε

ctn) = 2(n− lin. d. Q).

Thus,

lin. d.(xxc) ≥ lin. d.(xlin.d. Q+1, . . . , xn, x
c
lin.d. Q+1, . . . , x

c
n) ≥ 2n− 2 lin. d. Q. (6.5)

From 6.4 and 6.5 we conclude

lin. d.(xxc)− tr. d.(xxc) ≥ (2n− 2 lin. d. Q)− (n+ lin. d. Q) = n− 3 lin. d. Q.

Proposition 6.2.2. Assume SCK holds for K = Q(βi).

Then for every tuple c ⊂ C∗, there exists a tuple c′ ⊂ C∗, extending c, such that c′

is self-sufficient with respect to the predimension function (δG)c′. If c ⊂ G, then we

can find such a c′ also contained in G.
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Proof. By Lemma 6.2.1, the set of values of δG on (C∗, G) is bounded from below

in Z. We can therefore find a tuple c0 such that δG(c0) is minimal. Since for every

cl0-closed set X, δG(X) ≥ δG(X ∩ G), we can find such c0 with all its coordinates

in G. Clearly, c0 is self-sufficient for δG, hence the localisation (δG)c0 is a proper

predimension function on C∗.
For every c ⊂ C∗, let c′ ⊂ C∗ be a tuple containing both c and c0 that generates

the self-sufficient closure of c with respect to (δG)c0 . The tuple c′ is, by definition,

self-sufficient for (δG)c0 . Since c0 ⊃ c′, it follows that c′ is self-sufficient for (δG)c′ . It

is easy to see, that if c is contained in G, then c′ can be taken to be contained in

G.

6.3 Existential Closedness

This section is devoted to the proof of the following proposition:

Proposition 6.3.1. The structure (C∗, G) has the EC-property. Therefore, for every

tuple c ⊂ G, self-sufficient with respect to (δG)c, the structure (C∗, G)X0 is a model of

the theory TX0, where X0 = span(c) with the structure induced from (C∗, G).

For the rest of Section 6.3, let us fix an even number n ≥ 1 and a rotund variety

V ⊂ (C∗)n of dimension n
2

defined over k0(C) for some finite C ⊂ C. We need to

show that the intersection V ∩Gn is Zariski dense in V .

Let us define the set

X = {(s, t) ∈ R2n : exp(εt+ s) ∈ V }.

Note that if (s, t) is in X ∩ (Qn ×Rn), then the corresponding point y := exp(εt+ s)

is in V ∩Gn. Thus, in order to find points in the intersection V ∩Gn, we shall look

for points (s, t) in X with s ∈ Qn.

Our strategy for this is to find an implicit function for X defined on an open set

S ⊂ Rn, assigning to every s ∈ S a point t(s) ∈ Rn such that (s, t(s)) ∈ X . Since Qn

is dense in Rn, the intersection S ∩Qn is non-empty, and therefore we can find points

(s, t(s)) in X with s ∈ Qn.

Let R be the expansion of the real ordered field by the restrictions of the real

exponential function and the sine function to all bounded intervals with rational end-

points, and by constants for the real and imaginary parts of the elements of Q(C).

Since R is an expansion by constants of a reduct of Ran, R is o-minimal. Note

that the complex exponential function and the set X are locally definable in R.
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Our proof of Proposition 6.3.1 relies on the following lemma, whose proof we

postpone until the next subsection.

Lemma 6.3.2 (Main Lemma). Suppose (s0, t0) is an R-generic point of X , i.e.

dimR(s0, t0) = dimRX = n. Then dimR(s0) = n.

Let us now continue with the proof of the existential closedness, using the Main

Lemma.

Lemma 6.3.3. Suppose (s0, t0) is an R-generic point of X . There is a continuous

R-definable function s 7→ t(s) defined on a neighbourhood S ⊂ Rn of s0 and taking

values in Rn such that for all s ∈ S, the point y(s) := exp(εt(s) + s) is in V .

Proof. Let π : R2n → Rn be the projection onto the first n coordinates.

Let X 0 be the intersection of X and a box with rational end-points containing

(s0, t0). By the Main Lemma (6.3.2), we have dimR(s0) = n. Since π(X 0) is definable

inR, dimR π(X 0) = maxs∈π(X 0) dimR(s) ≥ dimR(s0) = n. Therefore dimR π(X 0) = n;

and hence the set π(X 0) contains an open neighbourhood S of s0.

By the definable choice property of R (Fact 5.3.7), there is an R-definable map

t : π(X 0) → Rn such that for all s ∈ π(X 0), (s, t(s)) is in X 0. In particular, for all

s ∈ S, (s, t(s)) ∈ X , i.e. y(s) := exp(εt(s) + s) is in V .

The o-minimality of R also gives that the set of points where the R-definable

function t is discontinuous is R-definable and of dimension strictly lower than n

(Fact 5.3.6). Thus, by making S smaller if necessary, we may assume t is continuous

on S.

Proof Proposition 6.3.1:

Proof. Let V ′ be a proper subvariety of V . We need to see that the intersection

(V \ V ′) ∩Gn is non-empty.

Extending C if necessary, we may assume that V and V ′ are defined over C.

Take an element y0 of V \ V ′ with dimR(y0) = dimR V = n. Let x0 ∈ Cn be such

that exp(x0) = y0 and let t0, s0 ∈ Rn be such that x0 = εt0 + s0.

Note that dimR(s0, t0) = dimR(x0) = dimR(y0) = n. Hence (s0, t0) is R-generic

in X .

Let S and the map s 7→ t(s) be as provided by Lemma 6.3.3 for R and (s0, t0).

Consider the map s 7→ y(s) := exp(εt(s) + s) defined on S. This map is continuous,

hence y−1(V ′) is a closed subset of S not containing s0. Thus, S ′ = S \ y−1(V ′) is an

open neighbourhood of s0.
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Since Qn is dense in Rn, we can take a point q in S ′ ∩ Qn, and thus obtain a

corresponding point y(q) in (V \ V ′) ∩Gn.

6.3.1 Proof of the Main Lemma

The image of V under complex conjugation, V c, plays an important role in our proof

of the Main Lemma. Since complex conjugation is a field isomorphism, V c is also an

irreducible algebraic variety defined over the set Cc. Extending C if necessary, we

may assume that V c is also defined over C.

Notation 6.3.4. For a tuple x of variables or complex numbers, the expression x̄

will denote another tuple of variables or complex numbers, respectively, of the same

length, bearing no formal relation to the former. This notation is meant to imply

that we are particularly interested in the case where x is a complex number and x̄

equals xc.

Throughout this section, let K = Q(βi).

Definition 6.3.5. For s ∈ Cn, we define the set

Ls = {(x, x̄) ∈ C2n : (x+ x̄) + β−1i(x− x̄) = 2s}.

Remark 6.3.6. Note that β−1i = −(βi)−1 ∈ K, hence Ls is a K-affine subspace.

Remark 6.3.7. Suppose s is in Rn. Then, for all x ∈ Cn, the point (x, xc) belongs

to Ls if and only if x = εt+ s for some t ∈ Rn.

To see this, let x ∈ Cn be given, and let t ∈ Cn be such that x = εt+ s. Then:

(x, xc) ∈ Ls ⇐⇒ (x+ xc) + β−1i(x− xc) = 2s

⇐⇒ 2 Re(x) + β−1i(2i Im(x)) = 2s

⇐⇒ (Re(εt) + s)− β−1 Im(εt) = s

⇐⇒ Re(εt)− β−1 Im(εt) = 0

⇐⇒ (Re(t)− β Im(t))− β−1(Im(t) + β Re(t)) = 0

⇐⇒ (β + β−1) Im(t) = 0

⇐⇒ Im(t) = 0

⇐⇒ t ∈ Rn.

Lemma 6.3.8. Suppose s ∈ Rn. Then for all linearly independent (m1, n1), . . . , (mk, nk) ∈
Z2n (mi, ni ∈ Zn), we have

dim(m,n) · Ls ≥
k

2
.

91



Proof. Suppose (m1, n1), . . . , (mk, nk) ∈ Z2n are linearly independent (mi, ni ∈ Zn).

Let D be any countable set over which Ls is defined and let t ∈ Rn be such that

lin. d.K(t/D) = n. For x = εt + s and x̄ = xc = εct + s, the tuple (x, x̄) is in Ls, as

6.3.7 shows. Then, we have:

dim(m,n) · Ls ≥ lin. d.K((m,n) · (x, x̄)/D)

= lin. d.K((m1, n1) · (x, x̄), . . . , (mk, nk) · (x, x̄)/D)

= lin. d.K((m′1, n′1) · (t, βit), . . . , (m′k, n′k) · (t, βit)/D)

where m′i = mi + ni and n′i = mi − ni, for all i = 1, ..., k. Since mi = 1
2
(m′i + n′i)

and ni = 1
2
(m′i − n′i), the matrix (m′, n′) has the same rank as (m,n), that is k.

Therefore we can take a matrix M ∈ GLk(Z) and t′ = (tj1 , . . . , tjl , βitjl+1
, . . . , βitjk),

with 1 ≤ l ≤ k, such that

lin. d.K((m′1, n′1) · (t, βit), . . . , (m′k, n′k) · (t, βit)/D) = lin. d.K(M · t′/D).

Thus,

dim(m,n) · Ls ≥ lin. d.K(M · t′/D).

But note that lin. d.K(M · t′/D) is at least k
2
, for we have

lin. d.K(M · t′/D) = lin. d.K(t′/D)

≥ max{lin. d.K(tj1 , . . . , tjl/D), lin. d.K(βitjl+1
, . . . , βitjk/D)}

= max{l, k − l} ≥ k

2
.

Therefore, dim(m,n) · Ls ≥ k
2

Lemma 6.3.9. Let s ∈ Rn. Then the pair (Ls, V × V c) is K-rotund.

Proof. Suppose (m1, n1), . . . , (mk, nk) ∈ Z2n are linearly independent (mi, ni ∈ Zn).

The rotundity of V implies that the variety V ×V c is also rotund. Hence dim(V ×
V c)(m,n) ≥ k

2
.

Also, by Lemma 6.3.8, dim(m,n) · Ls ≥ k
2
.

Therefore, we have:

dim(m,n) · Ls + dim(V × V c)(m,n) ≥ k

2
+
k

2
= k.

Thus, the pair (Ls, V × V c) is K-rotund.

Proof of the Main Lemma:

92



Proof. Consider the set

Ls0 ∩ log(V × V c).

It is an analytic subset of C2n containing the point (x0, (x0)c). Since every analytic

set can be written as the union of its irreducible components and this union is locally

finite ([10, Section 5.4]), there exist a neighbourhood B of (x0, (x0)c), a positive integer

l and irreducible analytic subsets S1, . . . , Sl of B containing (x0, (x0)c) such that

Ls0 ∩ log(V × V c) ∩B = S1 ∪ · · · ∪ Sl.

We may assume B is a box with rational end-points.

Claim. Every Si has complex analytic dimension 0.

Before proving the claim, let us show how the lemma follows. The claim implies

that each Si is a closed discrete subset of B; since B is bounded, each Si must then be

finite. Being the union of the Si, the set Ls0 ∩ log(V ×V c)∩B is therefore finite, and

it is clearly R-definable over s0. Thus, the singleton {(x0, (x0)c)} is R-definable over

s0 as the intersection of Ls0 ∩ log(V × V c) ∩ B and a sufficiently small R-definable

open box around (x0, (x0)c). Therefore dimR(s0) = dimR(x0) = n.

Proof of the claim. Suppose towards a contradiction that there exists i such that the

set S := Si is of positive dimension.

Let us show that there are uncountably many points in S whose image under

exponentiation is a generic point of V × V c over C.

To see this, suppose V ′ is a proper subvariety of V × V c over C. Note that

(y0, (y0)c) is a generic point of V × V c over C, for we have

tr. d.(y0, (y0)c/C) = tr. d.(Re(y0), Im(y0)/C) ≥ dimR(Re(y0), Im(y0)) = n = dimV×V c.

Hence (x0, (x0)c) does not belong to log V ′, and therefore S ∩ log V ′ is an analytic

subset of B properly contained in S. Then, by the irreducibility of S, for any such

V ′, S∩ log V ′ is nowhere-dense in S. Since S has positive dimension we can apply the

Baire Category Theorem to conclude that there exist uncountably many (x, x̄) in S

that do not belong to log V ′ for any such V ′, i.e. their images under exponentiation

are generic points of V × V c over C.

Let D be a countable self-sufficient subset of C with respect to δK (provided by

Remark 5.1.12). Let D′ be the self-sufficient closure of logC ∪ s0 with respect to

(δK)D.
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For any tuple z ⊂ C∗, if δK(z/D′) ≤ 0 then all the coordinates of z lie in

clK(D′). But clK(D′) is countable, because D′ is countable and (clK)D has the Count-

able Closure Property, so there can be no more than countably many tuples z with

δK(z/D′) ≤ 0. Thus, we can find (x, x̄) ∈ Ls0 such that (exp(x), exp(x̄)) is a generic

point of V × V c over C and δK(x, x̄/D′) > 0.

Then:

0 < δK(xx̄/D′) ≤ dimLs0 ∩N + dim(V × V c) ∩ expN − dimN, (6.6)

where N is the minimal Q-affine subspace over D′ containing the point (x, x̄).

Since dimLs0 = dim(V × V c) = n, it immediately follows from the inequality

above that N cannot be the whole of C2n, as in that case the right hand side would

be 0. Therefore dimN < 2n.

Thus, there exist k ≥ 1 and linearly independent m1, . . . ,mk ∈ Z2n such that N

is a translate of the subspace of C2n defined by the system of equations mi · (z, z̄) = 0

(i = 1, . . . , k). Note that dimN = 2n− k.

Note that (V × V c) ∩ expN is a generic fibre of the map ( )m on (V × V c), for

it contains the generic point (y, ȳ) of V × V c over C. The addition formula for the

dimension of fibres of algebraic varieties then gives

dim(V × V c)m = dimV × V c − dim(V × V c) ∩ expN.

Also, by the addition formula for the dimension of K-affine subspaces,

dimm · Ls0 = dimLs0 − dimLs0 ∩N.

Adding up the two equations,

dimm · Ls0 + dim(V × V c)m = 2n− (dimLs0 ∩N + dim(V × V c) ∩ expN)

Using (6.6) we get

dimm · Ls0 + dim(V × V c)m < 2n− dimN = k.

This implies that the pair (Ls0 , V × V c) is not K-rotund, contradicting 6.3.9.
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6.4 The question of ω-saturation

A natural question for which we are not able to give an answer is whether the model

(C∗, G) is ω-saturated. Here we present two remarks on the issue.

First we show that, assuming the CIT with parameters (Conjecture 3.2.3), we can

prove an a priori stronger version of Proposition 6.3.1 that is implied by ω-saturation.

In fact, if the CIT with parameters holds, then every model of T satisfies the stronger

EC-property.

Proposition 6.4.1. Assume the CIT with parameters holds. Then every model of T

satisfies the following strong EC-property:

For any rotund variety V ⊂ (K∗)n of dimension n
2

defined over a finite set C,

there exists a generic of V over C in Gn.

Proof. Let (K∗, G) be a model of T . Let V be a rotund variety of dimension n
2

defined

over a finite set C.

It is sufficient to find a proper subvariety V ′ of V such that for any y ∈ V ∩ Gn,

if y does not lie in V ′ then y is a generic point of V over C. Indeed, that (K∗, G)

satisfies the EC-property guarantees that we can find a point y ∈ (V \ V ′) ∩Gn, and

y would then be a generic point of V over C.

Without loss of generality we assume that C is self-sufficient in A. Then for any

y ∈ Gn δG(y/C) ≥ 0. In particular, for any y in V ∩ Gn, if y is not a generic point

of V over C then y has to be multiplicatively dependent over C. Thus, it is enough

to find a proper subvariety V ′ of V over C such that for every y ∈ Gn ∩ V , if y is

multiplicatively dependent over C then y is in V ′.

By the CIT with parameters, there exist cosets H1, . . . , Hl of proper algebraic

subgroups of (K∗)n such that any atypical irreducible component of the intersection

of V and a coset of a proper algebraic subgroup of (K∗)n is contained in some Hi.

Let V ′ = V ∩
⋃
iHi. We shall now show that V ′ has the required property.

Suppose y ∈ Gn ∩ V is multiplicatively dependent over C, and let us see that y then

belongs to V ′. Let H be the smallest coset of a proper tori that is defined over C and

contains y. Let cH denote the codimension of H, then cH ≥ 1.

Let Y be an irreducible component of V ∩H containing y. Since V ∩H is defined

over C, Y is defined over Q(C)alg. Then, by the predimension inequality over C,

2 dimY − dimH ≥ 0. Therefore we have

2 dimY ≥ dimH = n− cH = 2 dimV − cH ,
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and consequently,

dimY ≥ dimV − 1

2
cH > dimV − cH .

Hence dimY > dimV −cH , which means that Y is an atypical irreducible component

of the intersection V ∩H.

Indeed, the CIT with parameters then tells us that y must belong to one of the

Hi, and thus to V ′.

Proposition 6.4.2. Assume the CIT with parameters holds. Suppose (K∗, G) is a

model of T where G has infinite dimension for the dimension function associated to

δ. Then (K∗, G) is ω-saturated.

Proof. In the light of Proposition 4.2.26, it is sufficient to show that (K∗, G) is rich.

By the previous lemma, the CIT assumption implies that (K∗, G) satisfies the the

strong EC-property, which means that the richness property holds for prealgebraic

minimal extensions.

The assumption on the dimension of G implies that that the richness property

also holds for green generic minimal extensions. This amounts to proving that for

any finite self-sufficient subset C of K∗, there exists b ∈ K∗ with dG(b/C) = 1. But

this is clear since dG(G) is infinite and C is finite.

For minimal white generic extensions we need to find, for any C as before, an

element b ∈ K∗ with dG(b/C) = 2. We proceed by taking b1 and b2 with dG(b1/C) =

dG(b2/Cb2) = 1 and setting b = b1 + b2.

It is sufficient to show that δG(b1, b2/C, b1 + b2) = 0. Indeed, we then get

0 ≤ dG(b1, b2/C, b1 + b2) ≤ δG(b1, b2/C, b1 + b2) = 0,

so dG(b1, b2/C, b1 + b2) = 0, and hence dG(b1 + b2/C) = dG(b1, b2/C) = 2.

Now the calculation of δG(b1, b2/C, b1 + b2): By definition,

δG(b1, b2/C, b1 + b2) = 2 tr. d.(b1, b2/C, b1 + b2)−mult. d.(b1, b2/C, b1 + b2).

It is easy to see that

tr. d.(b1, b2/C, b1 + b2) = 1.

Also,

mult. d.(b1, b2/C, b1 + b2) = 2,

because the variety defined by the equation X + Y = b1 + b2 is rotund. Thus,

δG(b1, b2/C, b1 + b2) = 2(1)− 2 = 0.
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Unfortunately, it is not clear that in our model (C∗, G) the dimension dG(G) is

infinite. Note that this would immediately follow if one could show that the corre-

sponding pregeometry on the uncountable set G has the CCP.

6.5 A variant: Emerald points

In this section we present a variation of the theories of green points in the multiplica-

tive group case and exhibit models on the complex numbers for the new theories.

The models of the new theories are expansions of the algebraic structure on the

multiplicative group by a subgroup H that is elementarily equivalent to the additive

group of the integers 1. This contrasts with the case of green points where G is

divisible. In the new structures we call the elements of the subgroupH emerald points ;

as before, we call the elements outside the distinguished subgroup white points. The

theories of emerald points are constructed are obtain by modifying the construction of

the theories of green points presented in Chapter 4. As in Chapter 4, the theories are

shown to be near model complete and superstable, they are not, however, ω-stable.

The motivation for our interest in these structures comes from Zilber’s inves-

tigations on connections between model theory and noncommutative geometry; in

particular, the content of [49] and the survey [50]. In [49], a connection is established

between the construction of noncommutative tori, which are basic examples of non-

commutative spaces, and the model theory of the expansions of the complex field by

a multiplicative subgroup of the form

H = exp(εR + qZ),

where ε = 1 + iβ and β and q are non-zero real numbers such that βq and π are

Q-linearly independent (this guarantees that H is torsion-free).

In the last part of this section we show that, assuming the Schanuel Conjecture

for raising to powers in K = Q(βi) holds, these structures are indeed models of the

theories of emerald points, and are therefore superstable.

Let us now review some basic facts about the model theory of the theory of the

additive group of the integers, whose interpretability in the theories of emerald points

is responsible for the differences with respect to the green case. The theory of the

additive group of the integers eliminates quantifiers after adding to the semigroup

1More generally, one can allow H to have torsion and rather require H/TorH to be elementarily
equivalent to the additive group of the integers. For the sake of simplicity of notation we shall only
work in the case where H is torsion-free, but the more general case should not be any more difficult.
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language {+, 0} a predicate Pm for each subgroup of the form mZ, m ≥ 2, and a

constant for 1. In this expanded language, a structure (H, ·, 1, (Pm), e)2 is elementarily

equivalent to (Z,+, 0, (mZ), 1) if and only if the following conditions are met:

(i) (H, ·, 1) is a torsion-free abelian group,

(ii) for every m ≥ 2, Pm is the set Hm of all m-powers in H,

(iii) for every m ≥ 2, eHm generates the quotient group H/Hm.

If (H, ·, 1, (Pm), e) is elementarily equivalent to (Z,+, 0, (mZ), 1), then it is said to be

a Z-group. We also call this expanded language the language of Z-groups. Note that

every congruence equation in the integers of the form

x ≡ k (mod m),

where x is a variable, m is a positive integer and k ∈ {0, . . . ,m − 1}, has a corre-

sponding congruence equation in any Z-group (H, ·, 1, (Pm), e), that we write multi-

plicatively as

x ≡ ek (mod m),

and is expressed by the quantifier-free formula Pm(xem−k). Also, every congruence

equation in the integers of the form

t ≡ t′ (mod m),

where t and t′ are terms in the language of Z-groups and m is a positive integer, is

equivalent to a Boolean combination of congruence equations of the above simpler

form. Moreover, the complete (quantifier-free) type of an element in a Z-group is

determined by the set of congruence equations, of the simple form above, that it

satisfies. With this, it is easy to see that the theory of Z-groups is λ-stable if and

only if λ ≥ 2ℵ0 . The theory is thus superstable, non-ω-stable.

With the above remarks in mind and in order to obtain the same quantifier elim-

ination results for the theories of emerald points as in the green case, we work in a

language L which in addition to LA ∪ {H} also contains predicates Pm, for m ≥ 2,

and a constant e; and require the expansion (H, ·, 1, (Pm), e) of the subgroup (H, ·, 1)

of A to be a Z-group. The obvious limitation with respect to the green case is that

our theories of emerald points cannot be λ-stable for any λ < 2ℵ0 ; in particular, they

cannot be ω-stable. This is in fact the the only limitation in terms of stability, for

the theories are in fact λ-stable for all λ ≥ 2ℵ0 , and hence superstable.

2Note the multiplicative notation.
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6.5.1 Construction of the theories

Let A be the multiplicative group.

Let L be the language LA ∪ {H, (Pm)m≥2, e}, where H and each Pm are unary

predicates and e is a constant.

Let C be the class of structures A = (A,H, (Pm)m≥2, e) where

• A is a model of TA,

• H is a subgroup of A,

• (H, ·, 1, (Pm)m≥2, e) is a Z-group, i.e. it is elementarily equivalent to (Z,+, 0, (mZ)m≥2, 1),

i.e. is a Z-group.

If A is a structure in C, then we call the elements of H emerald points. The

elements of A \H are called white points.

For each A in C we have:

• a pregeometry clA0 on A induced by the Q-linear span pregeometry on the Q-

vector space A/TorA, and

• a submodular predimension function δAH with respect to clA0 defined by: for all

finite Y ⊂ A,

δAH(Y ) = 2 tr. d.(Y )− lin. d.(cl0(Y ) ∩ cl0(H)).

Moreover, the required compatibility conditions hold and we therefore have a prege-

ometry cl0 and a submodular predimension function δH with respect to cl0 for the

class C.
Let Sub C be the class of substructures of structures in C whose domain is a cl0-

closed set and let Fin C be the class of structures in Sub C whose domain has finite

cl0-dimension.

Remark 6.5.1. It useful to note that ifH is a Z-group andD is a divisible torsion-free

abelian group, then the direct sum of H and D is a Z-group (with the obvious inter-

pretations for the symbols of the expanded language). Also, if H = (H, ·, 1, (Pm)M , e)

is a Z-group and D and D0 are divisible torsion-free abelian groups such that H and

D0 are subgroups of D and e ∈ D0, then the intersection of H and D0 is a Z-group.

It follows from the latter observation that for every X = (X,HX ) in Sub C, HX

is a Z-group.
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Let us fix X0 ∈ Fin C and let C0 be the class of structures in C in which X0 embeds

self-sufficiently. After an identification, every structure in C0 is assumed to have X0

as a self-sufficient substructure.

Also, let Sub C0 be the class of substructures of structures in C0 whose domain is

a cl0-closed set containing X0. Equivalently, Sub C0 is the class of structures in Sub C
in which X0 embeds self-sufficiently, again identifying X0 with its image under one

such embedding. Finally, let Fin C0 be the class of structures in Sub C0 whose domain

has finite cl0-dimension.

As in Chapter 4, we work in the class Sub C0 and to simplify the notation we use

cl0 to denote the localisation (cl0)X0 and similarly δH for (δH)X0 . We also use the

notation span(X) for cl0(X).

Note that the L-structure A0 with domain A0 = aclA(X0), HA0 = HX0 and the

obvious interpretations for the other symbols is in C0 and is prime in C0 with respect

to self-sufficient embeddings.

Remark 6.5.2. Suppose X = (X,H) is a structure in Sub C. Consider the structure

X ′ = (X,G), in the expansion of the language LA by a unary predicate, where G is a

divisible subgroup of X with H ⊂ G ⊂ cl0(H). It is clear that then X ′ is a structure

in Sub C in the sense of the green points construction. Also, if X is in C or Fin C,
then X ′ is in the corresponding class in the sense of the green points construction.

Furthermore, note that for all finite-dimensional cl0-closed subset Y of X, we have

δXH(Y ) = δX
′

G (Y ).

It follows that for all X ,Y ∈ Sub C with X ⊂ Y , if X ′ and Y ′ are such that GX
′ ⊂ GY

′

and TorGX
′

= TorGY
′
, then: X ≤ Y if and only if X ′ ≤ Y ′. In simple words, this

shows that the new predimension function δH is in a strong sense the same as the

predimension function δG, which implies that many results transfer effortlessly to the

new setting.

Remark 6.5.3. Using the previous remark, it is easy to see that the following state-

ments follow from their analogues in the green points construction: the (Asymmetric)

Amalgamation Lemma for the class Sub C0 (Lemma 4.1.7 and Corollary 4.1.8), the

closure of the class C0 under unions of self-sufficient chains (Lemma 4.1.10), and the

extension property from structures in Sub C0 to structures in C0 (Lemma 4.1.11).

By the results of Chapter 2, this implies the existence of rich structures in the

class C0. Also, as shown in Chapter 2, all rich structures are models of the same

complete first order theory and the usual quantifier elimination result holds.
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The following two lemmas are directly implied by the corresponding ones in the

green case.

Lemma 6.5.4. Let A = (A,H) ∈ C. For every complete LA-l-type Θ(y), there exists

a partial LA ∪ {H}-l-type ΦΘ(y) consisting of universal formulas such that for every

realisation c of Θ in A,

A � ΦΘ(c) if and only if span c is self-sufficient in A.

Lemma 6.5.5. There exists an LX0-theory T 0 such that for every LX0-structure A =

(A,H) in C, (A,H) |= T 0 if and only if (A,H) is in C0.

Henceforth let T 0 be a theory as in the above lemma.

The following two definitions and the two subsequent lemmas are identical to their

analogues in the green case.

Definition 6.5.6. An irreducible subvariety W of An is said to be rotund if for every

k× n-matrix M with entries in End(A) of rank k, the dimension of the constructible

set M ·W is at least k
2
.

Definition 6.5.7. A structure (A,H) in C0 is said to have the EC-property if for every

even n ≥ 1, for every rotund subvariety W of An of dimension n
2
, the intersection

W ∩Hn is Zariski dense in W .

Lemma 6.5.8. For every subvariety W (x, y) of An+k defined over k0, there exists a

quantifier-free LA-formula θ(y) such that for all A |= TA and all c ∈ Ak,

A � θ(c) ⇐⇒ W (x, c) is rotund.

Lemma 6.5.9. There exists a set of ∀∃-L-sentences T 1 such that for any structure

(A,H) in C0

(A,H) � T 1 ⇐⇒ (A,H) has the EC-property.

Henceforth, let T 1 denote the theory defined in the above proof. Also, let T :=

T 0 ∪ T 1.

The next step is to show that the theory T axiomatizes richness up to ω-saturation.

Here, the difference with the green case lies in the following: in proving that ω-

saturated models of T are rich, it is necessary to show that the following statement

holds: for any minimal prealgebraic strong extension X ≤ Y of structures in Fin C0,

the type of a coloured cl0-basis of Y over X is finitely satisfiable in models of T . The

difference with the green case is that, unlike there, here said type includes non-trivial
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information about the divisibility of the elements in the basis inside the coloured

group H. Lemmas 6.5.10 and 6.5.11 provide the missing step in the argument by

showing that the EC-property, and hence the axioms in T , are sufficiently strong to

imply the above statement.

Lemma 6.5.10. Let A be a structure in C0. The following are equivalent:

1. A has the EC-property

2. for every even n ≥ 1, for every rotund subvariety W of An of dimension n
2

and

every consistent system of congruence equations in the integers on variables

x1, . . . , xn of the form:

{xi ≡ ki (mod mi) : i ∈ {1, . . . , n}},

with mi ≥ 2 and ki ∈ {0, . . . ,mi}, the set of solutions in Hn of the corresponding

system in H is Zariski dense in W .

3. for every even n ≥ 1, for every rotund subvariety W of An of dimension n
2

and

every consistent system of congruence equations in the integers on variables

x1, . . . , xn of the form:

{xi ≡ kim (mod m) : i ∈ {1, . . . , n},m ∈ {2, . . . , N}},

with N ∈ N and kim ∈ {0, . . . ,m} , the set of solutions in Hn of the correspond-

ing system in H is Zariski dense in W .

Proof. Clearly, (2.) implies (1.) and (3.) implies (2.).

Using the Chinese Remainder Theorem, it is easy to see that (2.) implies (3.).

We now show that (1.) implies (2.): Let W be a rotund subvariety of An of

dimension n
2

and consider the system of congruence equations in the integers

{xi ≡ ki (mod mi) : i ∈ {1, . . . , n}},

where mi ≥ 2 and ki ∈ {0, . . . ,mi − 1}. Let C be an aclA-closed set over which W

is defined and let a ∈ An be a generic point of W over C. Let a′ ∈ An be such that

(a′i)
mieki = ai, for i = 1, . . . , n and let W ′ be the locus of a′ over C. It is easy to

see that W ′ is also a rotund subvariety of An of dimension n
2
. Assuming 1 holds,

the set W ′ ∩ Hn is Zariski dense in W ′, which implies that the set of solutions of

the corresponding system of congruence equations in H is Zariski dense in W . Thus,

indeed, 1 implies 2
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Lemma 6.5.11. Let A be a structure in C0. Assume A has the EC-property and

is ω-saturated. Then for every even n ≥ 1, for every rotund subvariety W of An of

dimension n
2

and every consistent system of congruence equations in the integers on

variables x1, . . . , xn of the form:

{xi ≡ kim (mod m) : i ∈ {1, . . . , n},m ≥ 2},

where kim ∈ {0, . . . ,m}, the set of solutions in Hn of the corresponding system in H

is Zariski dense in W .

Proof. Follows immediately from the previous lemma.

As noted before, with the above lemmas at hand, one can give the same proof as

in Chapter 4 for the following proposition.

Proposition 6.5.12. The theory T is complete and its ω-saturated models are pre-

cisely the rich structures.

The next theorem gathers the main model-theoretic properties of the theory T .

Theorem 6.5.13. 1. T is near model complete

2. T is λ-stable if and only if λ ≥ 2ℵ0. The theory T is therefore superstable,

non-ω-stable.

3. In T , RU(x = x) = ω · 2 and RU(H(x)) = ω.

Proof. For this proof, let Ā = (Ā,H) be a monster model of T .

1. Remark 6.5.2 implies that with the same formulas τa,b as in the green case (see

Lemma 4.3.5), the sufficient condition for near model completeness found in

Proposition 2.3.11 is satisfied.

2. Let λ be an infinite cardinal and let B ⊂ Ā be set of cardinality λ. Let us show

that there are at most 2ℵ0 · λ many 1-types over B. This clearly implies that

T is λ-stable for all λ ≥ 2ℵ0 . Note that T is not λ-stable for any λ < 2ℵ0 , for

there are 2ℵ0 1-types over the empty set, as there are already in the theory of

Z-groups.

By passing to the algebraic closure, we may assume that B is algebraically

closed, hence cl0-closed and self-sufficient. Let a0 be an element of Ā. Let

a ∈ Ān be a cl0-basis of the set A = sscl(Ba0) over B. For each coordinate ai
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of a (i = 1, . . . , n), define a sequence (rmi )m≥1 as follows: rmi := 0 for all m,

if ai 6∈ H, and, rm := the remainder of ai modulo m in H, if ai ∈ H. Also,

for each m ≥ 1, let ami be a choice of mth-root of ai(r
m
i )−1 in H, satisfying the

compatibility condition that for all m,m′ ≥ 1, (amm
′

i )m = am
′

i .

By Proposition 2.3.10, the type of a0 over B is determined by the L-isomorphism

type of the set A over B. The L-isomorphism type of A over B is itself deter-

mined by the following data, collectively: the set of indices i ∈ {1, . . . , n} for

which ai is in H, the sequence (rm)m≥1 and the algebraic type of the sequence

(am)m≥1 over B (where, as usual, rm is the tuple with coordinates rmi and am

the tuple with coordinates ami ). There are finitely many possibilities for the set

of indices, 2ℵ0 possibilities for the sequence (rm)m≥1 and at most λ · 2ℵ0 possi-

bilities for the algebraic type of the sequence (am)m≥1 over B. Thus, there are

at most λ · 2ℵ0 possibilities for the type of a0 over B.

3. This is because the U-rank calculations work in the same way as in the green

case. However, since the theory is not ω-stable, Morley rank is not bounded; in

particular, it does not coincide with U -rank. This is due to the interpretability

of the theory of Z-groups, where the same occurs. Note that the isolation of

types among those of greater or equal U-rank, which we established in the green

case to prove that Morley and U- ranks coincide, does indeed fail for the theory

of Z-groups.

6.5.2 Models on the complex numbers

The following theorem provides models for the theories of emerald points on the

complex numbers.

Theorem 6.5.14. Let β and q non-zero real numbers such that βq and π are Q-

linearly independent. Let ε = 1 + βi and

H = exp(εR + qZ).

Assume SCK holds for K = Q(βi). Then:

1. For every tuple c ⊂ C∗, there exists a tuple c′ ⊂ C∗ extending c, such that c′ is

self-sufficient with respect to the predimension function (δH)c′.
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2. The structure (C∗, H) has the EC-property. Therefore, for every tuple c ⊂ C∗,
self-sufficient with respect to (δH)c, the structure (C∗, H)X0 is a model of the

theory TX0, where X0 = span(c) with the structure induced from (C∗, H).

The first part of the theorem follows directly from the analogous statement in the

green case, by Remark 6.5.2. For the second part of the theorem, the proof of the

analogous statement in the green case applies, simply using the density of qZ + 2π
β
Z

in R, instead of that of the subgroup Q, at the very end of the proof.
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Chapter 7

Models on the complex numbers:
the elliptic curve case

For elliptic curves without complex multiplication and whose lattice of periods is

invariant under complex conjugation, we find models for the theories of green points,

under the assumption that the Weak Schanuel Conjecture for raising to powers on

the elliptic curve holds.

7.1 The Models

Let us fix an elliptic curve E without complex multiplication. Let E = E(C). We use

the conventions introduced in Section 5.2.

Let ε ∈ C∗ be such that εR ∩ Λ = {0}. Put G = expE(εR).

Remark 7.1.1. Note that G is a divisible subgroup of E. From Chapter 4 we know

that the predimension function δ on E, defined by δ(y) := 2 tr. d.k0(y)− lin. d.(cl0(y)∩
G), is submodular with respect to the pregeometry cl0 on E induced by the kA-linear

span on E/TorE. Since E has no CM, kA = Q and, for any y ⊂ E, cl0(y) is the

divisible hull of the subgroup generated by y.

Also, G is dense in E in the Euclidean topology. To see this notice the following:

G = expE(εR) = expE(εR + Λ) = expE(Γ + Z + αZ),

for α = Re(τ) − Re(ε)
Im(ε)

Im(τ) ∈ R. Since Γ ∩ Λ = {0}, α is irrational. It follows that

Z + αZ is dense in R. Therefore the set G = expE(ε + Z + αZ) is dense in E in the

Euclidean topology.

We now state the main theorem of this chapter.
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Theorem 7.1.2. Let E be an elliptic curve without complex multiplication and let

E = E(C). Assume the corresponding lattice Λ has the form Z + τZ and Λ = Λc.

Let ε = 1 + βi, with β a non-zero real, be such that εR ∩ Λ = {0}. Put G =

expE(εR).

Let K = Q(βi) and assume the Weak Elliptic Schanuel Conjecture for raising to

powers in K (wESCK) holds for E.

Then,

1. For every tuple c ⊂ E, there exists a tuple c′ ⊂ E extending c, such that c′ is

self-sufficient with respect to the predimension function (δG)c′. If c ⊂ G, then

we can find such a c′ also contained in G.

2. The structure (E,G) has the EC-property. Therefore, for every tuple c ⊂ G,

self-sufficient with respect to (δG)c, the structure (E,G)X0 is a model of the

theory T , where X0 = span(c) with the structure induced from (E,G).

Let us make some remarks about the hypotheses of the theorem.

Firstly, assuming that the lattice Λ has generators ω1 = 1 and ω2 = τ is not truly

restrictive, for this can always be achieved by passing to an isomorphic elliptic curve.

Secondly, the assumptions of E having no CM and Λ being invariant under complex

conjugation are real restrictions on the generality of the result. The first assumption is

essential, since we do not have an appropriate End(A)-submodule of E that serves as

analogue of the subgroup G defined above in the CM case. The second is necessary

in our arguments for proving both the predimension inequality and the existential

closedness for the structure (E,G). Let us remark that the two conditions hold for

any non-CM elliptic curve defined over R.

Also note that, by the remarks at the end of subsection 5.2.1, the assumption that

Λ = Λc implies that E = Ec and j(E)c = j(E).

Finally, let us recall that our assumption that the wESCK (5.2.3) holds for the

single elliptic curve E means the following:

• For any tuple x of complex numbers,

lin. d.K(x) + tr. d.(j(E), ℘(x))− lin. d.(x/Λ) ≥ − tr. d.(K). (7.1)

For the rest of this chapter, we assume work under the hypothesis of the theorem:

Let E is an elliptic curve for which the hypotheses of the theorem are satisfied.

That is: E has no CM, Λ = Z + τZ, Λ = Λc
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Let ε = 1 + βi, with β a non-zero real, be such that εR ∩ Λ = {0}. Put G =

expE(εR) and K = Q(βi).

Assume the Weak Elliptic Schanuel Conjecture for raising to powers in K holds

for E.

As in the previous chapter, we divide the proof of the theorem into the proofs of

two propositions, Propositions 7.2.2 and 7.3.1.

7.2 The Predimension Inequality

In this section we prove the first part of Theorem 7.1.2.

Lemma 7.2.1. For any tuple y ⊂ E, δG(y) ≥ −4− tr. d.(K)− 2 tr. d.(k0).

Proof. It is sufficient to show that for any n and any y ∈ Gn with lin. d.(y) = n, we

have

2 tr. d.k0(y) ≥ n− 4− tr. d.(K)− 2 tr. d.(k0).

Fix such n and y. Let x ∈ (εR)n be such that expE(x) = y. Notice that x is

Q-linearly independent over Λ.

Note the following

2 tr. d.(j(E), ℘(x)) ≥ tr. d.(j(E), ℘(x), (℘(x))c)

= tr. d.(j(E), ℘(x), ℘c(xc))

= tr. d.(j(E), ℘(xxc)).

By the wESCK ,

lin. d.K(xxc) + tr. d.(j(E), ℘(x), ℘(xc))− lin. d.(xxc/Λ) ≥ − tr. d.(K).

Combining the above inequalities we obtain,

2 tr. d.(j(E), ℘(x)) ≥ lin. d.(xxc/Λ)− lin. d.K(xxc)− tr. d.(K).

Now, on the one hand, since ε is not in R ∪ iR, we know ε and εc are R-linearly

independent and hence lin. d.(xxc) = lin. d.(x) + lin. d.(xc) = 2n. Therefore

lin. d.(xxc/Λ) ≥ lin. d.(xxc)− lin. d.(Λ) = 2n− 2.

On the other hand, since xc = εc

ε
x and εc

ε
∈ K, we have

lin. d.K(xxc) ≤ lin. d.K(x) ≤ n.

108



Thus,

2 tr. d.(j(E), ℘(x)) ≥ (2n− 2)− n− tr. d.(K) = n− 2− tr. d.(K).

Hence, using the additivity properties of the transcendence degree, we see that

2 tr. d.(℘(x)) = 2 tr. d.(j(E), ℘(x))− 2 tr. d.(j(E)/℘(x))

≥ 2 tr. d.(j(E), ℘(x))− 2

≥ n− 4− tr. d.(K)

and, similarly,

2 tr. d.k0(℘(x)) = 2 tr. d.(℘(x))− 2 tr. d.(k0/℘(x))

≥ n− 4− tr. d.(K)− 2 tr. d.(k0).

Because ℘(x) and y = expE(x) are interalgebraic over k0, we obtain the inequality

2 tr. d.k0(y) ≥ n− 4− tr. d.(K)− 2 tr. d.(k0).

By the same argument as in Chapter 6, one derives the following proposition.

Proposition 7.2.2. For every tuple c ⊂ E, there exists a tuple c′ ⊂ E, extending

c, such that c′ is self-sufficient with respect to the predimension function (δG)c′. If

c ⊂ G, then we can find such a c′ also contained in G.

7.3 Existential Closedness

The following proposition completes the proof of Theorem 7.1.2.

Proposition 7.3.1. The structure (A,G) has the EC-property. Therefore, for every

tuple c ⊂ G, self-sufficient with respect to (δG)c, the structure (A,G)X0 is a model of

the theory T , where X0 = span(c) with the structure induced from (A,G).

The proof of the above proposition is the same as in Chapter 6, with only very

small differences. In order to be explicit about the differences, we review the different

steps of the proof.

For the rest of Section 7.3, let us fix an even number n ≥ 1 and a rotund variety

V ⊂ (C∗)n of dimension n
2

defined over k0(C) for some finite subset C of E. We need

to show that the intersection V ∩Gn is Zariski dense in V .

Let us define the set

X = {(s, t) ∈ R2n : expE(εt+ s) ∈ V }.

109



Note that if (s, t) is in X ∩ ((Z + αZ)n × Rn), where α = Re(τ) − Re(ε)
Im(ε)

Im(τ), then

the corresponding point y := expE(εt + s) is in V ∩ Gn (see 7.1.1). Thus, in order

to find points in the intersection V ∩ Gn, we shall look for points (s, t) in X with

s ∈ (Z + αZ)n.

As in the previous chapter, our strategy is to find an implicit function for X
defined on an open set S ⊂ Rn, assigning to every s ∈ S a point t(s) ∈ Rn such

that (s, t(s)) ∈ X . Since (Z + αZ)n is dense in Rn, the intersection S ∩ (Z + αZ)n is

non-empty, and therefore we can find points (s, t(s)) in X with s ∈ (Z + αZ)n.

Let R be an o-minimal expansion of the real ordered field in a countable language

in which the function ℘ is locally definable and having constants for the real and

imaginary parts of each element of k0(C). The existence of such a structure R is

explained in Section 5.3.

Note that the set X is locally definable in R.

The proof of Proposition 7.3.1 relies on the following main lemma:

Lemma 7.3.2 (Main Lemma). Suppose (s0, t0) is an R-generic point of X , i.e.

dimR(s0, t0) = dimRX = n. Then dimR(s0) = n.

To prove the Main Lemma, define the following set:

Definition 7.3.3. For s ∈ Cn we define the set

Ls = {(x, x̄) ∈ C2n : (x+ x̄) + β−1i(x− x̄) = 2s}.

With the same proof as in Chapter 6, we have:

Lemma 7.3.4. Suppose s ∈ Rn. Then for all linearly independent (m1, n1), . . . , (mk, nk) ∈
Z2n (mi, ni ∈ Zn), we have

dim(m,n) · Ls ≥
k

2
.

Lemma 7.3.5. Let s ∈ Rn. Then the pair (Ls, V × V c) is K-rotund.

The proof of the Main Lemma of Chapter 6 from the analogous lemmas (see the

end of Section 6.3.1) also works word by word in the new case.

The next lemma follows from the Main Lemma by the same argument as in Chap-

ter 6.

Lemma 7.3.6. Suppose (s0, t0) is an R-generic point of X . There is a continuous

R-definable function s 7→ t(s) defined on a neighbourhood S ⊂ Rn of s0 and taking

values in Rn such that for all s ∈ S, the point y(s) := expE(εt(s) + s) is in V .
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Finally, also the proof of Proposition 7.3.1 from the lemma above is the same as

the corresponding proof in Chapter 6, this time using the density of Z + αZ in R,

instead of that of the subgroup Q.

The question of whether the model on E is ω-saturated is open. Let us simply

note that the remarks in Section 6.4 can be easily adapted to this case.
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