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Recall that an operator between Hilbert spaces is called Fredholm if it has
finite dimensional kernel, closed range, and finite dimensional cokernel. To it one
associates the index, which is the dimension of the kernel minus the dimension of
the cokernel.

On a compact Riemannian manifold (X, g), an elliptic operator is always Fred-
holm as an operator acting between the L2-spaces. Moreover, the index is a topo-
logical object, and it is given by the Atiyah-Singer index theorem. For example,
the Dirac operator

(1) D/ +
E : H1(X, S+ ⊗ E) → L2(X, S− ⊗ E)

twisted by some Hermitian bundle E is Fredholm, and its index is

(2) indexD/ +
E =

∫
X

Â(g)ch(E).

When we have a non-compact manifold, ellipticity is not enough to guarantee
Fredholmness, as usually the range of the operator is not closed. However, choos-
ing the right weights for the Sobolev spaces, usually allows to conclude that the
operator is Fredholm. For example, in the case when (X, g) is an asymptotically
conical manifold – a non-compact manifold with the infinite end being asymptot-
ically a cone – one introduces a weight which has to do with the distance ρ on
the infinite end of X, and then the Laplace operator (twisted by some bundle) is
Fredholm as an operator

(3) ∆E : ρδH2(X, E) → ρδ−2L2(X, E)

if and only if δ is not an indicial root of ∆E . For the Dirac operator one has

(4) D/ +
E : ρδH1(X, S+ ⊗ E) → ρδ−1L2(X, S− ⊗ E),

and this is Fredholm if and only if again δ is not an indicial root of D/ +
E . The

Atiyah-Patodi-Singer index theorem gives the index of this operator, as the integral
contribution of the compact version, plus a contribution of the boundary at infinity,
contribution which is given by the eta-invariant,

(5) indexD/ +
E =

∫
X

Â(g)ch(E)− ηE

2
.

In this talk we are concerned with a new class of non-compact manifolds which
we call “quasi-asymptotically conical”, or QAC for short. Our ultimate goal is to
generalize the formulas (2) and (5) to the class of these manifolds. For now, we
are concerned with the more modest goal of figuring out the spaces of functions
for which the Laplace operator (and other geometrical operators) are Fredholm,
thus generalizing (3) to this new class of manifolds.

Before diving into the technical definition of the QAC spaces, let us first present
a bit of motivation, and show why these spaces deserve to be looked at.
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The QAC spaces arise naturally as resolutions of singularities in algebraic geom-
etry. Locally, a complex orbifold is modeled on Cn/G, with G a finite subgroup of
U(n). Note that the origin of Cn always gives a singular point in Cn/G. Depend-
ing on the way G acts on Cn, we might have some other singular points or not.
A resolution of singularities of Cn/G is a pair (X, π), with X a smooth complex
manifold of dimension n, and π : X → Cn/G a proper surjective map that is a bi-
holomorphism between dense open sets. If the origin gives the only singular point
of Cn/G, then X is a non-compact manifold whose geometry is (Cn \BR(0)) /G
outside a compact set. Such a geometry is an example of asymptotically conical
manifold. On the other hand, the action of G on Cn might have more singular
points, and then the singular set is non-compact (it arises from subspaces of Cn

with non-trivial stabilizers under the action of G). By resolving the singularities of
such manifolds, one is lead to consider the notion of “quasi-asymptotically conical
manifolds”, geometries which outside a compact set are composed of pieces which
are either cones over (possibly) singular spaces, or products between such cones
and euclidean spaces.

We introduce three types of spaces which are closely related to each other: (1)
the class I of iterated cone-edge spaces, singular spaces obtained via an iterated
coning procedure; (2) the class D of resolution blowup spaces, a class of smooth
spaces which arise as smoothings of spaces in I; and (3) the class Q of quasi-
asymptotically conical spaces, noncompact spaces which on the infinite end have
as link an element in D. Basically, if (Y0, h0) ∈ I is an iterated-cone edge singular
space, then a smooth compact manifold Y is in D, if there exists a family of metrics
{hε} on Y so that (Y, hε) → (Y0, h0) in Gromov-Hausdorff sense. We call (Y, hε) a
resolution blowup space associated to (Y0, h0). Such a space comes with a radius
function wε which converges to s, the distance to the singular stratum of (Y0, h0),
as ε → 0. On the other hand, a QAC space is a smooth manifold (X, g) with the
metric outside a compact set asymptotic to

dρ2 + ρ2h1/ρ,

meaning that the link at radius ρ is the resolution blowup space (Y, h1/ρ). It comes
with a pair of two radius functions (ρ,w), with ρ : X → [1,+∞) the distance on
the quasi-asymptotically conical end, and with w at radius ρ being the radius
function w1/ρ on the resolution blowup space (Y, h1/ρ).

Note that the construction of resolution blowup and QAC spaces is an inductive
one. Once we constructed a QAC space, we can go on and construct a resolution
blowup space for an iterated cone-edge space with higher depth singularities –
thus a depth induction. As such, to prove a Fredholmness result on a QAC space
(X, g), one first need to show that the restriction of the operators on each slice
behaves well in the limit, meaning one needs to prove a spectral convergence result
for the resolution blowup spaces (Y, hε) which come with the QAC package. This
spectral result is based on the Fredholmness of the corresponding operator on the
lower depth QAC spaces used to construct (Y, hε), and this is the inductive step
for its proof.
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Theorem 1 (Spectral Convergence). Let (Y, hε) ∈ D be a resolution blowup space.
Let Lε be a generalized Laplace operator acting on the sections of a geometric vector
bundle. Assume that each model operator on the lower depth QAC spaces appearing
in the deconstruction of Y is positive, and that 0 is not a L2-eigenvalue. Then
the spectrum of Lε converges to the spectrum of the Friedrichs extension of the
limiting operator L0 on (Y0, h0).

The analogue of (3) in the QAC context is the following:
Theorem 2. Let (X, g) be a QAC manifold with radius functions (ρ,w). Let L
be a generalized Laplace operator on X twisted by some geometrical vector bundle
E. Then

(6) L : ρδwτH2(X, E) → ρδ−2wτ−2L2(X, E)

is a Fredholm operator provided δ is not an indicial root for L, and τ is so that the
lower depth operators on the corresponding QAC spaces are positive and do not
have 0 as a L2-eigenvalue.

The proofs of these two theorems are interlinked, and they go inductively. The
first inductive step in the proof of Theorem 1 – the case of a resolution blowup space
corresponding to a space (Y0, h0) with isolated conical singularities – was proved
in the PhD thesis of Rowlett [6]. Then the general case (assuming Theorem 2) was
presented in [5]. Note that in the context of the scalar Laplacian acting on QALE
manifolds (a special class of QAC manifolds), the proof of Theorem 2 appears
in Joyce [4]. Since it is based on the maximum principle, his proof cannot be
generalized to the case of systems. In the process of proving Theorem 2 we also
prove a similar result for weighted Hölder spaces.
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