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Flexibility of a network J = number of flexible cliques 

Theorem 1.  Stable sets correspond to stable principal submatrices of  -I+W. 

This was previously shown in the case of symmetric matrices in [2], where “stable sets” are called “permitted sets”. 

One might expect that, given a subset of neurons, it is always possible to find some 
constant input b for which this subset is exactly the set of neurons that co-fire at a 
stable fixed point.  It would follow that all possible subsets of neurons are memory 
patterns, irrespective of the network architecture.  Fortunately, this is not true. 

In fact, in this setup the recurrent network acts as a gating device.  Different memory 
patterns are activated by different inputs, but some memory patterns can never be 
activated – even if allowed any possible (constant) feedforward input. 

Flexible networks for memory-encoding 

What kinds of network architectures allow for fast learning 
of new memory patterns? 

Goal:  Look for architectures that allow many memories to be encoded via arbitrarily 
small perturbations of the weights.   

The answer should not depend on the particular learning rule used to update the 
weights. 

� 

Wij = Jij +ε(ΔWij )

New memories in some brain areas, such as hippocampus, can be encoded quickly. 
Irrespective of the plasticity mechanism (or learning rule) used to encode memory 
patterns via changes in synaptic weights, rapid learning is perhaps most easily 
accomplished if new patterns can be learned via only small modifications of the initial 
synaptic weights. It may thus be desirable for fast-learning and flexible neural networks 
to have architectures which enable large numbers of patterns to be encoded by only 
small perturbations of the synaptic efficacies. What kinds of network architectures have 
this property? 

What exactly do we mean by a memory pattern? 
We consider a simple firing rate model:   

An encoded memory pattern of the network W is a subset of neurons that co-fires at a 
fixed point attractor (a stable fixed point) for at least one constant external input b.   

Different external inputs can activate different memory patterns.  The same external 
input can also activate more than one memory pattern, depending on initial condition. 

� 

τ
dxi
dt

= −xi + ϕ( Wij x j
j=1

N
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� 

x =
τ =
W =
b =
ϕ =

vector of firing rates for each neuron 

membrane time constant 

matrix of synaptic weights 

vector of external inputs to each neuron 

nonlinear transfer function 

Stimulus 1 Stimulus 2 

Wait – why isn’t every subset of neurons a memory pattern? 

� 

ϕ(x) = [x]+

Structure of maximally flexible networks 

Theorem 3. An unconstrained threshold-linear network J is maximally 
flexible iff            has rank 1. 

� 

−I + J

A bipartite network has a stereotyped sign pattern for the connection strengths 
between neurons.  Note that in any such network, at least one half of the 
connections must be inhibitory. 
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+ −
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G-constrained networks (sparse networks) 

Theorem 2. Let G be a graph, X(G) its clique complex, and suppose 
that                          .  A G-constrained network J is maximally flexible iff  
            has a rank 1 completion. 

Stable sets in threshold-linear networks 
We refer to our encoded memory patterns as stable sets. 

We also restrict ourselves to the case of threshold-linear networks.  This just 
means choosing the nonlinear transfer function to be: 

Flexible cliques 

A maximally stable clique of a 
network W is a stable clique that 
is not contained in any larger 
stable clique.  A minimally 
unstable clique is an an unstable 
clique that does not contain any 
smaller unstable clique. 

A flexible clique of a network J is 
a subset of neurons that can 
become both a maximally stable 
clique and a minimally unstable 
clique under arbitrarily small 
perturbations of the matrix J.  

Bipartite networks 
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original matrix principal submatrix for 
subset of neurons {1,3} 
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maximally flexible network flexible cliques 

� 

{12}
{23}
{34}
{14}

Not every connection strength in a network is easy to change. A complete lack of 
anatomical connection is different than a silent synapse, although both cases are 
represented by 0 in the connectivity matrix. 

We say that an architecture matrix J is constrained by a simple graph G if 
            for all edges               .  

In exploring network flexibility we only allow perturbations of unconstrained 
entries of the matrix J. 

The clique complex of G is the set X(G) of all cliques in the graph.  These are 
subsets of neurons where all pairwise connections are unconstrained. 

� 

Jij = 0

� 

(ij)∉G

A matrix is stable if all its eigenvalues satisfy  

� 

Re(λ) < 0

Question: For a given constraint graph G, how should we 
choose the weights of the network J such that J has maximal 
flexibility to learn (and unlearn) new memory patterns? 

� 

H1(X(G);Z) = 0

Why do we need a topological condition? 

� 

−I + J

What is a rank 1 completion? 

                      is generically satisfied for large random networks that 
are not overly sparse [3]. 

For             neurons,                         is expected to vanish for 
connection probability between neurons as low as             . 

� 

H1(X(G);Z) = 0

� 

n = 104

� 

H1(X(G);Z) = 0

� 

p ≥ 0.05

Corollary (Thms 2 & 3). All maximally flexible networks are bipartite. 
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A network where (12) edges are  
constrained to be zero. 

A rank 1 completion of –I+J.  Only entries constrained 
to be zero can be filled in with new values. 

. . 

. . 
� 

X(G) = G = {12},{23},{34},{14}

1 2 

4 3 
This network does not have a rank 1 completion! 

Good news: 

Threshold-linear networks that are maximally flexible have low rank completions 
and are bipartite.  Evidence for such features can be seen even in highly under-
sampled connectivity matrices – this gives something new to look for in experiments. 


