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Problem 1: (5 points)
Compute the fundamental units of Q(

√
d) for each d ∈ {2, 3, 5, 6, 7}.

Problem 2: (4 points)
It is also interesting to investigate Pell’s equation x2−Dy2 = 1 for non-squarefree D. Let
p be a prime and d ∈ Z>0 squarefree. Show that x2−p2dy2 = 1 has infinitely many integer
solutions.

Problem 3: (2+3 points)

(1) Show that if a number field K has a real embedding, then ±1 are the only roots of
unity contained in K.

(2) Let K = Q(
√
d), d ∈ Z<0 squarefree. Show that the group of roots of unity contained

in K are given as follows:

{±1, ±
√
−1}, if d = −1

{±1, ±ω, ±ω2}, if d = −3

{±1}, otherwise.

Here, ω := −1+
√
−3

2 .

Problem 4: (1+2+3 points)
Let K be a number field with exactly r real and s pairs of complex conjugate embeddings.
According to Dirichlet’s Unit Theorem, the unit group O∗K is a finitely generated abelian
group, whose free part is isomorph to Zr+s−1. The easiest non-trivial cases are thus the
ones where r + s− 1 = 1, i.e., the following ones:

(i) (r, s) = (2, 0), that is, K is a totally real quadratic number field: here, we know that
finding a generator of the free part of O∗K is related to solving Pell’s equation.

(ii) (r, s) = (1, 1), that is, K is a cubic number field with precisely one real embedding.

(iii) (r, s) = (0, 2), that is, K is a totally imaginary quartic number field.

One may therefore wonder how one is able to find generators of the free part of O∗K in
cases (ii) and (iii). Here, we shall discuss (ii), and you may use Artin’s Inequality without
proof:

Artin’s Inequality: Let K be a cubic number field with exactly one real embedding. We
view K as a subfield of R using that embedding. Let u > 1 be a unit in OK . Then

|dK | < 4u3 + 24.



In the following, let K be a cubic number field with precisely one real embedding, and we
view K as a subfield of R using that embedding.

(1) Show that there exists exactly one generator of the free part of O∗K which is > 1.
We call it the fundamental unit of OK .

(2) Let ε be the fundamental unit of OK . Show that: If u > 1 is a unit of OK satisfying

4u3/m + 24 ≤ |dK |

for an integer m ≥ 2, then u = εk for some 1 ≤ k < m. Conclude that if u satisfies
the above inequality for m = 2, then u = ε.

(3) Show that −α−1 is the fundamental unit of Q(α), where α ∈ R is a root of the
polynomial X3 + 2X + 1 ∈ Q[X]. (You may use a computer to compute expressions
involving α numerically.)
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