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Overview

1 Hyperkähler manifolds: Beauville’s question

2 Fibrations on non–projective hyperkähler manifolds

3 Transporting fibrations along deformations

Joint work with Christian Lehn and Sönke Rollenske.
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Hyperkähler manifolds

Definition

A compact Kähler manifold X is called hyperkähler if

1 π1(X ) = {e},
2 H0(X ,Ω2

X ) = C · σ, where σ is holomorphic symplectic.

Remarks:

also called irreducible holomorphic symplectic,

differential–geometric characterisation: Holonomy = Sp(n),

σ induces a trivialisation ωX
∼= OX ,

together with tori and CY-manifolds: basic building blocks of
compact Kähler manifolds with c1(X ) = 0.
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Examples of hyperkähler manifolds

1 dimension 2: K3 – surfaces

2 Douady spaces of points: If X is a K3 – surface, consider

X × X

��

Bl∆(X × X )oo

��
Sym2(X ) X [2]oo

Then, X [2] is a 4–dim. hyperkähler manifold.

3 generalised Kummer manifolds: similar construction

4 O’Grady: special moduli spaces of sheaves on K3 – surfaces
(dimension 6 and 10)

Up to deformation: All known examples !
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Lagrangian fibrations

Study maps defined on hyperkähler manifolds:

Theorem (Matsushita) and Definition

Let X be a hyperkähler manifold and f : X → B a fibration. Then,

1 f is purely equidimensional, dim X = 2 dim B,

2 every fibre of f is Lagrangian: the restriction of σ to
f −1(b)red,reg is zero,

3 every smooth fibre of f is an abelian variety.

We call such an f a Lagrangian fibration.

Hyperkähler SYZ–conjecture:
Every hyperkähler manifold has a deformation that admits a
Lagrangian fibration.
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Examples of Lagrangian fibrations

On K3 – surfaces:
X K3 – surface, C ⊂ X smooth elliptic curve. Then, C 2 = 0, and
ϕ := ϕ|C | : X → P1 is a Lagrangian fibration; call such X elliptic.

Note: the elliptic curve C is one of the fibres of ϕ.

On X [2]’s:
Let ϕ : X → P1 be an elliptic K3 – surface. Then, ϕ induces a map

Φ: X [2] → Sym2(P1) = P2

which is a Lagrangian fibration.

Note: general fibre = ϕ−1(p)× ϕ−1(q) is projective.
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Beauville’s Question

Question (Beauville 2010)

Let X be a hyperkähler manifold which contains a Lagrangian
submanifold L that is isomorphic to a complex torus. Is L a fibre of
a (meromorphic) Lagrangian fibration on X ?

We call such an L a Lagrangian subtorus of X .
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Main Results

Theorem (GLR 2011)

Let X be a hyperkähler manifold, L ⊂ X a Lagrangian subtorus.
Assume the pair (X , L) admits a small deformation (X ′, L′)
such that X ′ is non–projective.

Then, X admits an almost holomorphic meromorphic Lagrangian
fibration with (strong) fibre L.

Remarks:

if X itself is non–projective, then fibration is holomorphic,

if X is projective and (X , L) deforms as required above,
then the fibration has a ”smooth hyperkähler model”.

deformability of (X , L) is a topological condition

in dim. 4: every pair (X , L) deforms
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Main ingredients of the proof

1 reformulate Beauville’s question in terms of Barlet spaces

2 study algebraic reductions of non–projective hyperkähler
manifolds: [Campana – Oguiso – Peternell 2010]

3 analyse the following ”short exact sequence”:

Def(L ⊂ X ) � � // Def(X , L) // // Def(X )
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1) Deforming L in X

Question

Does L really look like a fibre ?

fibres of fibrations are Lagrangian tori:

X

fibres have other fibres close–by, these cover X :

Fundamental fact (Kawamata, Ran, Voisin)

Any infinitesimal deformation of L in X is effective.

Consider

H0
(
L, NL/X

) ∼= H0
(
L, Ω1

L

) ∼= H0
(
L, O⊕n

L

) ∼= Cn.

In particular, X is covered by deformations of L.
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Reformulation in terms of Barlet spaces

Let B be the component of the Barlet space of X that contains
[L]. We obtain the following diagram:

U

π

��

ε // X

B

(1)

This leads to

Lemma

The evaluation map ε is generically finite. Furthermore, X admits
an almost holomorphic Lagrangian fibration with fibre L if and only
if ε is bimeromorphic.

(2)

Daniel Greb Lagrangian fibrations on hyperkähler manifolds



Reformulation in terms of Barlet spaces

Let B be the component of the Barlet space of X that contains
[L]. We obtain the following diagram:

U

π

��

ε // X

B

(1)

This leads to

Lemma

The evaluation map ε is generically finite. Furthermore, X admits
an almost holomorphic Lagrangian fibration with fibre L if and only
if ε is bimeromorphic.

(2)

Daniel Greb Lagrangian fibrations on hyperkähler manifolds



2) Non–projective hyperkähler manifolds

First case: X non–projective (⇔ tr.degC(M(X )) = a(X ) < 2n ).

Analysis of the algebraic reduction: [COP]

1 If a(X ) = 0, then X is isotypically semisimple:
∃ simple Kähler manifold S such that

Y
gen. finite //

gen. finite
��

X

S × · · · × S .

2 If a(X ) ≥ 1, then either
a) a(X ) = n, and the algebraic reduction f : X → B is a

Lagrangian fibration, or
b) 1 ≤ a(X ) < n, and the very general fibre F of the algebraic

reduction f : X 99K B is isotypically semisimple with a(F ) = 0.
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Claim: If ∃ L ⊂ X Lagrangian subtorus, we are in case 2a).

Idea to exclude 1) and 2b): use deformations of L to produce a
non–trivial covering family of S ; contradiction !

Claim: L is a fibre of f .

Proof:

L is projective, hence ”curve–connected”,

f contracts every curve in X ([COP]).

Hence, we have shown:

Proposition

Let X be a non–projective hyperkähler manifold with a Lagrangian
subtorus L ⊂ X . Then, the algebraic reduction f : X → B is a
Lagrangian fibration with fibre L.
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3) The universal deformation space

The deformation theory of X is well–understood:

the universal deformation space Def(X) is smooth,

there is a locally biholomorphic period mapping Def(X)→ D
into an open subset D of a quadric in P

(
H2(X ,C)

)
,

the locus parametrising projective deformations of X is a
countable union of hypersurfaces in Def(X).

In particular, we have the following

Fact

Non–projective deformations of X are dense in Def(X).
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Transporting fibrations along deformations

General case: X is projective, and there exists a smooth
deformation of the pair (X , L) = (X0,L0) over a small disc T ,

L

��@
@@

@@
@@

� � // X

��~~
~~

~~
~

T ,

such that at least one fibre Xt0 is not projective.

After shrinking T we have:

Xt hyperkähler ∀t ∈ T ,

∃ a dense subset Tnp ⊂ T such that Xt is not projective
∀t ∈ Tnp,

Lt ⊂ Xt Lagrangian ∀t ∈ T .
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Let B(X/T ) be the component of the relative Barlet space of X

over T containing all the [Lt ].

UT

ε̄

��@
@@

@@
@@

@
π̄

zzuuuuuuuuu

��

B(X/T )

$$III
III

III
I X

~~~~
~~

~~
~~

T

(2)

(1)

We know:

ε̄t : (UT )t → Xt is an isomorphism ∀t ∈ Tnp (non–proj. result)

ε̄0 : (UT )0 → X0 = X is generically finite (Lemma; small lie)

⇒ ε0 is bimeromorphic.
⇒ X has an almost hol. Lagrangian fibration with fibre L.
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Goodbye

Thank you for your attention !
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