Lagrangian fibrations on hyperkähler manifolds

On a question of Beauville

Daniel Greb

Albert-Ludwigs-Universität Freiburg

Journées Complexes Lorraines - May 4th, 2011

- U Hyperkähler manifolds: Beauville's question
- 2 Fibrations on non-projective hyperkähler manifolds
- **③** Transporting fibrations along deformations

Joint work with Christian Lehn and Sönke Rollenske.

伺 とう きょう とう とう

э

Definition

A compact Kähler manifold X is called hyperkähler if

1
$$\pi_1(X) = \{e\},\$$

2 $H^0(X, \Omega_X^2) = \mathbb{C} \cdot \sigma$, where σ is holomorphic symplectic.

(4回) (注) (注) (注) (注)

Definition

A compact Kähler manifold X is called hyperkähler if

1
$$\pi_1(X) = \{e\},\$$

2 $H^0(X, \Omega^2_X) = \mathbb{C} \cdot \sigma$, where σ is holomorphic symplectic.

Remarks:

- also called irreducible holomorphic symplectic,
- differential-geometric characterisation: Holonomy = Sp(n),
- σ induces a trivialisation $\omega_X \cong \mathscr{O}_X$,
- together with tori and CY-manifolds: basic building blocks of compact Kähler manifolds with c₁(X) = 0.

Examples of hyperkähler manifolds

1 dimension **2**: K3 – surfaces

(本部) (本語) (本語) (語)

Examples of hyperkähler manifolds

- **1** dimension 2: K3 surfaces
- **Ouady spaces of points:** If X is a K3 surface, consider

Then, $X^{[2]}$ is a 4-dim. hyperkähler manifold.

向下 イヨト イヨト

3

Examples of hyperkähler manifolds

- dimension 2: K3 surfaces
- **Ouady spaces of points:** If X is a K3 surface, consider

Then, $X^{[2]}$ is a 4-dim. hyperkähler manifold.

- **generalised Kummer manifolds:** similar construction
- O'Grady: special moduli spaces of sheaves on K3 surfaces (dimension 6 and 10)

Up to deformation: All known examples !

(4月) (3日) (3日) 日

Study maps defined on hyperkähler manifolds:

Theorem (Matsushita) and Definition

Let X be a hyperkähler manifold and $f: X \rightarrow B$ a fibration. Then,

- f is purely equidimensional, dim $X = 2 \dim B$,
- every fibre of f is Lagrangian: the restriction of σ to f⁻¹(b)_{red,reg} is zero,
- \bigcirc every smooth fibre of f is an abelian variety.

We call such an f a Lagrangian fibration.

向下 イヨト イヨト

Study maps defined on hyperkähler manifolds:

Theorem (Matsushita) and Definition

Let X be a hyperkähler manifold and $f: X \rightarrow B$ a fibration. Then,

- f is purely equidimensional, dim $X = 2 \dim B$,
- every fibre of f is Lagrangian: the restriction of σ to f⁻¹(b)_{red,reg} is zero,
- \bigcirc every smooth fibre of f is an abelian variety.

We call such an f a Lagrangian fibration.

Hyperkähler SYZ-conjecture:

Every hyperkähler manifold has a deformation that admits a Lagrangian fibration.

・ 同 ト ・ ヨ ト ・ ヨ ト

On K3 – surfaces:

X K3 – surface, $C \subset X$ smooth elliptic curve. Then, $C^2 = 0$, and $\varphi := \varphi_{|C|} \colon X \to \mathbb{P}_1$ is a Lagrangian fibration; call such X elliptic.

Note: the elliptic curve *C* is one of the fibres of φ .

直 とう きょう うちょう

On K3 – surfaces:

X K3 – surface, $C \subset X$ smooth elliptic curve. Then, $C^2 = 0$, and $\varphi := \varphi_{|C|} \colon X \to \mathbb{P}_1$ is a Lagrangian fibration; call such X elliptic.

Note: the elliptic curve *C* is one of the fibres of φ .

On $X^{[2]}$'s: Let $\varphi \colon X \to \mathbb{P}_1$ be an elliptic K3 – surface. Then, φ induces a map $\Phi \colon X^{[2]} \to \operatorname{Sym}^2(\mathbb{P}_1) = \mathbb{P}_2$

which is a Lagrangian fibration.

Note: general fibre $= \varphi^{-1}(p) \times \varphi^{-1}(q)$ is projective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Question (Beauville 2010)

Let X be a hyperkähler manifold which contains a Lagrangian submanifold L that is isomorphic to a complex torus. Is L a fibre of a (meromorphic) Lagrangian fibration on X?

高 とう モン・ く ヨ と

Question (Beauville 2010)

Let X be a hyperkähler manifold which contains a Lagrangian submanifold L that is isomorphic to a complex torus. Is L a fibre of a (meromorphic) Lagrangian fibration on X?

We call such an L a Lagrangian subtorus of X.

ヨット イヨット イヨッ

Theorem (GLR 2011)

Let X be a hyperkähler manifold, $L \subset X$ a Lagrangian subtorus. Assume the pair (X, L) admits a small deformation (X', L') such that X' is non-projective.

向下 イヨト イヨト

Theorem (GLR 2011)

Let X be a hyperkähler manifold, $L \subset X$ a Lagrangian subtorus. Assume the pair (X, L) admits a small deformation (X', L') such that X' is non-projective.

Then, X admits an almost holomorphic meromorphic Lagrangian fibration with (strong) fibre L.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (GLR 2011)

Let X be a hyperkähler manifold, $L \subset X$ a Lagrangian subtorus. Assume the pair (X, L) admits a small deformation (X', L') such that X' is non-projective.

Then, X admits an almost holomorphic meromorphic Lagrangian fibration with (strong) fibre L.

Remarks:

- if X itself is **non-projective**, then fibration is holomorphic,
- if X is **projective and** (X, L) **deforms** as required above, then the fibration has a "smooth hyperkähler model".
- deformability of (X, L) is a **topological condition**
- in **dim.** 4: every pair (X, L) deforms

イロト イポト イヨト イヨト

- I reformulate Beauville's question in terms of Barlet spaces
- study algebraic reductions of non-projective hyperkähler manifolds: [Campana – Oguiso – Peternell 2010]
- In analyse the following "short exact sequence":

$$\operatorname{Def}(L \subset X) \longrightarrow \operatorname{Def}(X, L) \longrightarrow \operatorname{Def}(X)$$

ヨット イヨット イヨッ

Question

Does *L* really look like a fibre ?

• fibres of fibrations are Lagrangian tori:

(1日) (日) (日)

æ

Question

Does *L* really look like a fibre ?

 $\bullet\,$ fibres of fibrations are Lagrangian tori: $\checkmark\,$

▲□→ ▲ □→ ▲ □→

æ

Question

Does L really look like a fibre ?

- $\bullet\,$ fibres of fibrations are Lagrangian tori: $\checkmark\,$
- fibres have other fibres close-by, these cover X:

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

Question

Does *L* really look like a fibre ?

- $\bullet\,$ fibres of fibrations are Lagrangian tori: $\checkmark\,$
- fibres have other fibres close-by, these cover X:

Fundamental fact (Kawamata, Ran, Voisin)

Any infinitesimal deformation of L in X is effective.

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

Does *L* really look like a fibre ?

- $\bullet\,$ fibres of fibrations are Lagrangian tori: $\checkmark\,$
- fibres have other fibres close-by, these cover X:

Fundamental fact (Kawamata, Ran, Voisin)

Any infinitesimal deformation of L in X is effective.

Consider

$$H^0(L, N_{L/X}) \cong H^0(L, \Omega^1_L) \cong H^0(L, \mathscr{O}_L^{\oplus n}) \cong \mathbb{C}^n.$$

In particular, X is covered by deformations of L.

B K K B K

Question

Does *L* really look like a fibre ?

- $\bullet\,$ fibres of fibrations are Lagrangian tori: $\checkmark\,$
- fibres have other fibres close–by, these cover X: \checkmark

Fundamental fact (Kawamata, Ran, Voisin)

Any infinitesimal deformation of L in X is effective.

Consider

$$H^0(L, N_{L/X}) \cong H^0(L, \Omega^1_L) \cong H^0(L, \mathscr{O}_L^{\oplus n}) \cong \mathbb{C}^n.$$

In particular, X is covered by deformations of L.

3

E + 4 E + 1

Reformulation in terms of Barlet spaces

Let \mathfrak{B} be the component of the Barlet space of X that contains [L]. We obtain the following diagram:

$$\begin{array}{ccc}
\mathfrak{U} & \stackrel{\varepsilon}{\longrightarrow} X \\
\downarrow^{\pi} \\
\mathfrak{B}
\end{array}$$
(1)

ヨット イヨット イヨッ

Reformulation in terms of Barlet spaces

Let \mathfrak{B} be the component of the Barlet space of X that contains [L]. We obtain the following diagram:

$$\begin{array}{cccc}
\mathfrak{U} & \xrightarrow{\varepsilon} X \\
& & & \\
& & \\
& & \\
\mathfrak{B} \end{array}$$
(1)

This leads to

Lemma

The evaluation map ε is generically finite. Furthermore, X admits an almost holomorphic Lagrangian fibration with fibre L if and only if ε is bimeromorphic.

(2)

向下 イヨト イヨト

2) Non-projective hyperkähler manifolds

First case: X non-projective ($\Leftrightarrow \operatorname{tr.deg}_{\mathbb{C}}(\mathcal{M}(X)) = a(X) < 2n$).

· < @ > < 글 > < 글 > · · 글

2) Non-projective hyperkähler manifolds

First case: X non-projective ($\Leftrightarrow \operatorname{tr.deg}_{\mathbb{C}}(\mathcal{M}(X)) = a(X) < 2n$).

Analysis of the algebraic reduction: [COP]

If a(X) = 0, then X is isotypically semisimple:
 ∃ simple Kähler manifold S such that

・ 同 ト ・ ヨ ト ・ ヨ ト …

2) Non-projective hyperkähler manifolds

First case: X non-projective ($\Leftrightarrow \operatorname{tr.deg}_{\mathbb{C}}(\mathcal{M}(X)) = a(X) < 2n$).

Analysis of the algebraic reduction: [COP]

If a(X) = 0, then X is isotypically semisimple:
 ∃ simple Kähler manifold S such that

2 If $a(X) \ge 1$, then either

- a) a(X) = n, and the algebraic reduction $f: X \to B$ is a Lagrangian fibration, **or**
- b) 1 ≤ a(X) < n, and the very general fibre F of the algebraic reduction f: X --→ B is isotypically semisimple with a(F) = 0.

- 4 周 ト 4 日 ト 4 日 ト - 日

- (日) (三) (三) (三) (三)

Idea to exclude 1) and 2b): use deformations of L to produce a non-trivial covering family of S; contradiction !

向下 イヨト イヨト

3

Idea to exclude 1) and 2b): use deformations of L to produce a non-trivial covering family of S; contradiction !

Claim: *L* is a fibre of *f*.

Proof:

- L is projective, hence "curve-connected",
- f contracts every curve in X ([COP]).

高 とう モン・ く ヨ と

Idea to exclude 1) and 2b): use deformations of L to produce a non-trivial covering family of S; contradiction !

Claim: L is a fibre of f.

Proof:

- L is projective, hence "curve-connected",
- f contracts every curve in X ([COP]).

Hence, we have shown:

Proposition

Let X be a non-projective hyperkähler manifold with a Lagrangian subtorus $L \subset X$. Then, the algebraic reduction $f: X \to B$ is a Lagrangian fibration with fibre L.

マロト イヨト イヨト

The deformation theory of X is well–understood:

- the universal deformation space Def(X) is smooth,
- there is a locally biholomorphic period mapping $Def(X) \to \mathscr{D}$ into an open subset \mathscr{D} of a quadric in $\mathbb{P}(H^2(X, \mathbb{C}))$,
- the locus parametrising projective deformations of X is a countable union of hypersurfaces in Def(X).

高 とう モン・ く ヨ と

The deformation theory of X is well–understood:

- the universal deformation space Def(X) is smooth,
- there is a locally biholomorphic period mapping $Def(X) \to \mathscr{D}$ into an open subset \mathscr{D} of a quadric in $\mathbb{P}(H^2(X, \mathbb{C}))$,
- the locus parametrising projective deformations of X is a countable union of hypersurfaces in Def(X).

In particular, we have the following

FactNon-projective deformations of X are dense in Def(X).

・ 同 ト ・ ヨ ト ・ ヨ ト

Transporting fibrations along deformations

General case: X is projective, and there exists a smooth deformation of the pair $(X, L) = (\mathfrak{X}_0, \mathfrak{L}_0)$ over a small disc T,

such that at least one fibre \mathfrak{X}_{t_0} is not projective.

Transporting fibrations along deformations

General case: X is projective, and there exists a smooth deformation of the pair $(X, L) = (\mathfrak{X}_0, \mathfrak{L}_0)$ over a small disc T,

such that at least one fibre \mathfrak{X}_{t_0} is not projective.

After shrinking T we have:

- \mathfrak{X}_t hyperkähler $\forall t \in T$,
- \exists a dense subset $T_{np} \subset T$ such that \mathfrak{X}_t is not projective $\forall t \in T_{np}$,
- $\mathfrak{L}_t \subset \mathfrak{X}_t$ Lagrangian $\forall t \in T$.

Let $\mathfrak{B}(\mathfrak{X}/T)$ be the component of the relative Barlet space of \mathfrak{X} over T containing all the $[\mathfrak{L}_t]$.

(1)

æ

(2)

3 × 4 3 ×

Let $\mathfrak{B}(\mathfrak{X}/T)$ be the component of the relative Barlet space of \mathfrak{X} over T containing all the $[\mathfrak{L}_t]$.

(1)

(2)

We know:

- $\bar{\varepsilon}_t : (\mathfrak{U}_T)_t \to \mathfrak{X}_t$ is an isomorphism $\forall t \in T_{np}$ (non-proj. result)
- $\bar{\varepsilon}_0 \colon (\mathfrak{U}_{\mathcal{T}})_0 \to \mathfrak{X}_0 = X$ is generically finite (Lemma; small lie)

伺下 イヨト イヨト

Let $\mathfrak{B}(\mathfrak{X}/T)$ be the component of the relative Barlet space of \mathfrak{X} over T containing all the $[\mathfrak{L}_t]$.

(1)

(2)

We know:

- $\bar{\varepsilon}_t \colon (\mathfrak{U}_T)_t \to \mathfrak{X}_t$ is an isomorphism $\forall t \in T_{np} \text{ (non-proj. result)}$
- $\bar{\varepsilon}_0 \colon (\mathfrak{U}_{\mathcal{T}})_0 \to \mathfrak{X}_0 = X$ is generically finite (Lemma; small lie)
- $\Rightarrow \varepsilon_0$ is bimeromorphic.
- \Rightarrow X has an almost hol. Lagrangian fibration with fibre L.

Thank you for your attention !

回 と く ヨ と く ヨ と

Э