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Introduction by the Organisers

The workshop Complex Algebraic Geometry, organized by Fabrizio Catanese (Bay-
reuth), Yujiro Kawamata (Tokyo), Bernd Siebert (Hamburg) and Gang Tian
(Princeton), drew together 56 participants from all continents (...). There were
several young PhD students and other PostDocs in their 20s and early 30s, to-
gether with established leaders of the fields related to the thematic title of the
workshop. There were 23 50-minutes talks, each followed by a lively discussion.

As usual at an Oberwolfach Meeting, the mathematical discussions continued
outside the lecture room throughout the day and the night. The Conference fully
realized its purported aim, of setting in contact mathematicians with different
specializations and non uniform background, of presenting new fashionable topics
alongside with new insights on long standing classical open problems, and also
cross-fertilizations with other research topics.

Many talks were devoted to classification theory, especially to the birational
geometry of 3-folds, but also to surfaces and higher dimensional varieties, Fano
manifolds, relations with mirror symmetry.
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Another important direction was moduli spaces: their rationality properties,
moduli spaces of curves and Gromov-Witten invariants, automorphisms.

There were also new interesting results on the classical topics of Hyperkähler
manifolds, Prym varieties and maps, Hodge modules.

Tian gave a survey talk on curvature flows and on the open problem of V II+0
surfaces, and there were also talks on derived categories, McKay correspondences,
Hurwitz type spaces.

The variety of striking results and the very interesting and challenging proposals
presented in the workshop made the participation highly rewarding. We hope that
these abstracts will give a clear and attractive picture, they will certainly be useful
to the mathematical community.



Complex Algebraic Geometry 2671

Workshop: Complex Algebraic Geometry

Table of Contents
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Abstracts

Rationality properties of linear group quotients

Christian Böhning

(joint work with Fedor Bogomolov, Hans-Christian Graf v. Bothmer, Gianfranco
Casnati, Jakob Kröker)

This was a survey talk on recent work on the rationality problem in invariant
theory. The basic set-up is the following (everything is defined over C): let G
be a linear algebraic group, V a finite-dimensional linear G-representation. One
asks whether the (obviously unirational) quotient V/G is stably rational, rational,
retract rational, a direct factor of a rational variety etc. It is known through
examples of Saltman, Bogomolov, Peyre and others ([Sa], [Bogo2], [Pey]), all using
unramified group cohomology as obstructions, that such quotients need not be
stably rational if G is finite, but no examples of nonrational V/G are known for G
connected. Stable rationality of V/G, where V is supposed to be generically free
for the G-action, is a property of G alone by the no-name lemma. For the simply
connected simple groups one knows that generically free linear quotients are stably
rational except for the groups of the Spin-series and E8 where the question remains
open. Let us say that a variety X is stably rational of level l if X × Pl is rational.

A general theorem of Bogomolov and Katsylo ([Bogo1], [Kat83], [Kat84]) says
that linear SL2(C)-quotients are rational. For SL3(C) we have the following the-
orem which summarizes joint work with von Bothmer and Kröker in [B-B10-1],
[B-B10-2], [B-B-Kr09].

Theorem 1. The moduli spaces of plane curves P(Symd(C3)∨)/SL3(C) are all ra-
tional except for 15 values of d for which this remains unknown. These exceptional
d satisfy 6 ≤ d ≤ 48.

It turns out that, besides reductive groups, it is advantageous to consider also
groups with a nontrivial unipotent radical. Their generically free representations
come equipped with Jordan-Hölder filtrations which often allow one to introduce
some fibration structure in V/G over a stably rational base. This gives some a
priori evidence that such quotients may be amenable to more detailed study. In
this direction we obtained in joint work with Bogomolov and von Bothmer [BBB10]

Theorem 2. Let V be a linear, indecomposable, generically free representation of
the affine group ASLn(C) = SLn(C) ⋉ Cn, and suppose that the dimension of V
is sufficiently large. Then V/(SLn(C)⋉Cn) is rational.

This can probably be substantially improved. In fact, it seems that the only
very difficult point is to obtain rationality forW/ASLn(C) whereW is an extension
0→ Sym3Cn → W → Sym2Cn → 0. The techniques used to prove the preceding
theorem have been used to improve the bounds for levels of stable rationality of
generically free linear quotients by simple groups in [BBB11]. In particular, they
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are linear as functions of the rank of the group (when this belongs to an infinite
series) whereas previously only quadratic bounds were known.

Theorem 3. Let G be one of the simple linear algebraic groups in the left hand
column of the table below, and let C be the class of G-representations V of the form
V = W ⊕ Sǫ, where: W is an irreducible representation of G whose ineffectivity
kernel (a finite central subgroup) coincides with the stabilizer in general position. S
is a standard representation for each of the groups involved, namely Cn for SLn(C),
C2n for Sp2n(C), C

m for SOm(C) and Om(C), C7 for G2. Here ǫ ∈ {0, 1}, and
ǫ = 0 if and only if W is already G-generically free. Thus V will always be G-
generically free. Then the following table summarizes the results from [BBB11]:

Group G Level of stable rationality N
for V/G for V ∈ C

SLn(C), n ≥ 1 n
SO2n+1(C), n ≥ 2 2n+ 1
O2n+1(C), n ≥ 2 2n+ 1
Sp2n(C), n ≥ 4 2n
SO2n(C), n ≥ 2 2n except for W with highest weight

cωn−1 or cωn, c ∈ N,
where we know only 4n.

O2n(C), n ≥ 2 2n
G2 7

In a more visibly geometric direction, the study of groups with nontrivial unipo-
tent radical has proven fruitful in [BBC11] to obtain

Theorem 4. The locus of tetragonal curves M1
7;4 ⊂M7 is rational.

Rationality ofM7 itself is unknown. The proof uses the realization of the moduli
space of tetragonal curves as the space of pencils of cubic surfaces in P3 containing
a given line L modulo the subgroup of projectivities of P3 fixing L.

At the end we mentioned very briefly group cohomological obstructions to stable
rationality of quotients V/G and results in [BB11] on the stable cohomology of
alternating groups.
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Birational maps of threefolds

Jungkai Alfred Chen

(joint work with Christopher Hacon, partly)

Birational maps in minimal model program consist of the following elementary
ones: divisorial contractions, flips and flops. Divisorial contractions are the higher
dimensional analog of the inverse of blowing up a smooth point on a surface. A
flips (resp. flop) is an operation which consists of a “surgery” in codimension ≥ 2
which replaces certainKX-negative (resp. KX-trivial) curves by someKX -positive
(resp. KX -trivial) curves.

Starting with a non-minimal projective variety, then one expects to obtain a
minimal model of X by a finite sequence of flips and divisorial contractions. It is
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shown in (cf. [1]) that minimal models exist for varieties of general type. Minimal
models are not unique in general. Any two minimal models are connected by a
finite sequence of flops (cf. [8]).

In dimension three, many of these birational maps admit explicit description.
We survey some recent advances in explicit studies of birational maps in minimal
model program in dimension three. Divisorial contractions to points has been
studied by Mori (cf. [15]), Cutkosky (cf. [4]), Kawamata, Kawakita, Hayakawa,
and others intensively. In [7], Kawamata shows that a divisorial contraction whose
image contains a terminal quotient singularity P must be a weighted blowup over
P , which is called a Kawamata blowup. Hayakawa (cf. [5], [6]) shows that a
divisorial contraction to a point of index r > 1 with minimal discrepancy 1/r can
be realized as a weighted blowup. It is shown recently by Kawakita (cf. [13]) that
a divisorial contraction to a point of index r > 1 can be realized as a weighted
blowup. Indeed, in his series of works on divisorial contractions to points (cf. [9],
[10], [11], [12]), Kawakita classified divisorial contractions to points in the sense
that singularities and baskets are described explicitly. Moreover, almost all of
the cases are known to admit embeddings so that the divisorial contractions are
realized by weighted blowups. It is thus expected that a divisorial contraction to
a point can always be realized as a weighted blowup.

Typical examples of divisorial contraction to curves are blowups along smooth
curves or LCI curves in a smooth threefold. There are also several partial results
on divisorial contractions to a curve (cf. [4], [16], [17], [18], [19] and [20]).

In the paper [3], we can factor threefold flips and divisorial contractions to
curves via the simpler operations given by flops, blow-downs to LCI curves (i.e.
C ⊂ Y a local complete intersection curve in a smooth variety) and divisorial
contractions to points. More precisely we prove the following:

Let X be a threefold with terminal singularity. Let X → W be a divisorial
contraction to a curve (resp. a flipping contraction). There is a sequence of
birational maps

X = X0 99K . . . 99K Xn,

such that Xn =W (resp. Xn = X+) and each Xi 99K Xi+1 is one of the following:

(1) a divisorial contraction to a point;
(2) a divisorial extraction over a point with minimal discrepancies, which is

always a weighted blowup;
(3) a blowup along a LCI curve;
(4) a flop.

The key observation is that by taking an extremal extraction g : Y → X over
a point P ∈ X with maximal index, one can have the so-called ”2-ray game” for
Y over W . We also need a discrete invariant call depth, defined as the minimal
length of Gorenstein partial resolution of a point of higher index, in order to run
the inductive argument.

In fact, in [2], the similar trick also applicable for divisorial contraction to a
point P ∈ X of index r with discrepancy a/r > 1/r. In particular, we show that
such divisorial contractions to points of index r > 1 can be factored into a sequence
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of birational maps

X = X0 99K . . . 99K Xn,

such that Xn =W (resp. Xn = X+) and each Xi 99K Xi+1 is one of the following:

(1) a divisorial contraction to a point with minimal discrepancies, which is
always a weighted blowup;

(2) a divisorial extraction over a point with minimal discrepancies, which is
always a weighted blowup;

(3) a flip;
(4) a flop.

Moreover, in our recent work in progress, we show that for a given three dimen-
sional terminal singularity P ∈ X , there is a sequence of weighted blowups

Xn → . . .→ X0 = X ∋ P,

such that Xn is smooth and each Xi+1 → Xi is a divisorial contraction, which is
a weighted blowup, over a singular point Pi ∈ Xi of index ri ≥ 1 with discrepancy
1/ri.

The mainly ingredient is resolving terminal singularises in a good hierarchy.
The hierarchy of resolution we consider is: 1. terminal quotient singularities; 2.
cA points; 3. cA/r points; 4. cD and cAx/2 points; 5. cAx/4, cD/2, and cD/3
points; 6. cE6 points; 7. cE7 points; 8. cE8 points; 9. cE/2 points.

Problem. An optimistic guess is to expect that for any two birational three-
folds X 99K X ′. There is a sequence of birational maps

X = X0 99K . . . 99K Xn = X ′,

such that each fi : Xi 99K Xi+1 or f−1
i is one of the following:

(1) a divisorial contraction to a point with minimal discrepancy, which is
always a weighted blowup;

(2) a blowup along a smooth curve C such that the threefold is smooth near
C;

(3) a flop.

By a divisorial contraction to a point with minimal discrepancies, we mean a
divisorial contraction f : Y → X ∈ P to a point of index r with discrepancy
1/r if P is singular. We remark that the blowup over a smooth point which is a
divisorial contraction with discrepancy 2 is considered to be a divisorial contraction
with minimal discrepancy. This is because that any divisorial contraction over a
smooth point is a weighted blowup with weights (1, a, b) with discrepancy a+b ≥ 2
(cf. [9]).
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On 3-folds of general type with small fractional genus: g = 1

2

Meng Chen

(joint work with Jungkai A. Chen)

The motivation of this research work is the following classical problem:

Find two optimal constants v3 and b3 such that, for all nonsingular
projective 3-fold V of general type, Vol(V ) ≥ v3 and that ϕm is
birational onto its image for all m ≥ b3.

Due to Chen-Chen [1, 2], one knows v3 ≥
1

2660 and b3 ≤ 73. The purpose of
this talk is to report on some new advances on this topic.

Set V∗
3 := {X |X is a minimal non-Gorenstein 3-fold of general type with

pg(X) ≤ 1, h1(OX) = 0}. ∀ X ∈ V∗
3, let n0(X) be the minimal positive inte-

ger with Pn0(X) ≥ 2. Due to Chen-Chen [1, 2] again, one has 2 ≤ n0(X) ≤ 18. We
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define the fractional genus of X , written as g(X) := 1
n0

. Thus the target set V∗
3 is

roughly divided into more than a dozen of cases, which will be studied explicitly.
The main results are as follows.

Theorem 1. For all X ∈ V∗
3, the following holds:

• g(X) = 1
18 if and only if the weighted basket B(X) = {B2a, 0, 2};

• g(X) 6= 1
16 ,

1
17 ;

• if g(X) = 1
15 , then #{B(X)} = 8;

• if g(X) = 1
14 , then #{B(X)} = 78;

• g(X) = 1
13 if and only if B(X) = {B41, 0, 2};

• if pg(X) = 1, then K3
X ≥

1
80 and ϕm is birational for all m ≥ 24.

where B2a and B41 are specified in the main table of Chen-Chen [2].

Theorem 2. For all X ∈ V∗
3 with g(X) = 1

2 , the following holds:

• K3
X ≥

1
12 ;

• ϕm is birational for all m ≥ 12;
• either ϕ11 is birational or ϕ11 is generically finite of degree 2 and ϕ10 is
birational. In the later case, B(X) is classified up to 19 cases in explicit.

The following examples assert the optimum of Theorem 2.

Example 3. Consider general hypersurfaces:

X22 ⊂ P(1, 2, 3, 4, 11)

X6,18 ⊂ P(2, 2, 3, 3, 4, 9)

X10,14 ⊂ P(2, 2, 3, 4, 5, 7),

they all have the fractional genus 1
2 and the volume is 1

12 . For the first two 3-folds,
ϕm is birational for all m ≥ 11, but ϕ10 is non-birational.
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k–gonal nodal curves on K3 surfaces

Ciro Ciliberto

(joint work with Andreas Knutsen)

This is a short report on work in progress in collaboration with A. Knutsen (Uni-
versity of Bergen Norway).

Let (S,H) be a (general) polarizedK3 surface with Pic(S) ∼= Z[H ]. We consider
the Severi variety V|H|,δ of δ–nodal curves in |H |. For any integer k ≥ 2, we define

the subscheme V k
|H|,δ ⊆ V|H|,δ as

V k
|H|,δ :=

{
C ∈ V|H|,δ | the normalization of C possesses a g1k

}
.

We are interested in studying the non–emptiness and the dimension of the loci
V k
|H|,δ.

Our first result is as follows: let (S,H) be a polarised K3 surface with Pic(S) ∼=
Z[H ] and let p = pa(H). Assume that C ∈ |H | is a curve whose normalization
possesses a g1k. Let g be the geometric genus of C and let δ = p− g; then

(1) δ ≥ α
(
g − (k − 1)(α+ 1)

)
,

where α :=
⌊

g
2(k−1)

⌋
.

This is proved with usual techniques à la Lazarsfeld [6], and extends previous
results in [1].

After this, using a degeneration of S embedded in Pp via the linear system |H |,
to the union of two rational normal scrolls meeting along a linearly normal elliptic
curve, we prove that, if (S,H) is general, then for all δ, g verifying (1) for k = 2,
V 2
|H|,δ is not empty, with a component of the expected dimension 2.

We have a similar result in the case k > 2, but at the moment it is not as
strong as in the hyperelliptic case. Namely we prove that for infinitely many pairs
p, k and for δ verifying (1), V k

|H|,δ is not empty, with a component of the expected

dimension 2k − 2. However there are also infinitely many pairs p, k for which we
are only able, at the moment, to prove the same result for δ in a slightly smaller
range. We are confident we will soon be able to prove the full result also in these
cases.

The existence of curves for which δ reaches the minimal value in (1) is intimately
related to interesting conjectures by Hassett and Tschinkel [3, 4, 5] on the Mori

cone of Hilbk(S) (see [1, 2]). The rational curves in Hilbk(S) naturally arising from
curves in V k

|H|,δ with the lowest δ predicted by (1), are the most unexpected ones

form the Brill–Noether theory viewpoint. They are the closest to the boundary of
the Mori cone of Hilbk(S) and, according to Hassett–Tschinkel’s conjecture, they
are candidates to be extremal rays.
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Extremal Laurent Polynomials and Fano manifolds

Alessio Corti

(joint work with T. Coates, S. Galkin, V. Golyshev, A. Kasprzyk)

I report on Fanosearch, experimental work in progress with several collaborators.
Our motivation is to get an idea of what the classification of smooth Fano 4-folds
might look like by classifying their mirror period sequences.

Our results are published on our collaborative research blog:
http://coates.ma.ic.ac.uk/fanosearch/

1. Local systems in algebraic geometry I explain how to attach a ratio-
nal local system V and a differential equation to one of the following geometric
situations:

B: Let f : X → T be an algebraic morphism. Then the homology groups of
regular fibers form a local system on the set of regular values:

T reg ∋ t→ Hn(Xt,Q) .

This is the Picard–Fuchs local system and the associated ODE is called
the Picard–Fuchs equation. (By a well-known theorem of Deligne, the
Picard–Fuchs equation has regular singularities on a compactification of
T reg.) The special case when f : C×n → C is a Laurent polynomial is of
special interest to us. In this case the principal period

πf (t) =
( 1

2π i

)n
∫

1

1− tf(x1, . . . , xn)

d x1
x1

. . .
d xn
xn

satisfies a polynomial differential operator, which we denote by Lf , corre-
sponding to a direct summand of grWn−1R

n−1f!Q.
A: LetX be a Fano manifold. Denote byMm the moduli space of Kontsevich-

stable morphisms f : Γ → X of genus 0 and degree −KX · f = m, by
π : Cm → Mm the universal curve, and by em : Cm → X the evaluation
morphism. Let ψ = c1(ωπ) where ωπ is the relative dualising sheaf. The
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quantum period is the function

JX(t) =
∑

m≥0

pm tm where pm =

∫

Cm

ψm−2e⋆m(pt) .

It is a nontrivial fact, resting on the theory of quantum cohomology and
the assumption that X is Fano, that J(t) satisfies a polynomial differen-
tial operator QX . We prefer to work with the Fourier–Laplace transform

ĴX(t) =
∑

(m!)pm tm and the transformed operator Q̂X (it is a fact that

Q̂X has regular singularities everywhere on P1 but QX does not because
it has an order 2 pole at infinity.)

2. Mirror duality We say that f and X are mirror dual if Lf = Q̂X or,

equivalently, if πf (t) = ĴX(t). This is a very weak notion of mirror duality: if X
at all has a mirror, then it has infinitely many. Nevertheless, the notion is good
enough for our purposes here. Everything that follows is based on the hope that
every Fano manifold X has a mirror dual Laurent polynomial. Based on this hope,
we would like to classify Fano manifolds by classifying their mirror-dual Laurent
polynomials. What are some necessary conditions that f must satisfy to be mirror
to a Fano manifold?

Definition (Golyshev) (1) Let V be a local system on P1 \S; the ramification
of V is the quantity

rf (V) =
∑

s∈S

dim (Vt0/V
Ts

t0 )

where t0 ∈ P1 is a general point and Ts the monodromy operator at s ∈ S.
(2) We say that V is extremal if V is irreducible, nonconstant, and rf (V) = 2rkV.
(It is easy to see that this is the smallest possible value that the ramification can
take on a local system that is irreducible and nontrivial.)
(3) A Laurent polynomial f is extremal if the local system SolLf is extremal.

The following conjectures a new general global property of quantum cohomol-
ogy.

Conjecture If X is a Fano manifold then Sol Q̂X has small ramification. More
precisely

rf
(
Sol Q̂X

)
≤ 2rk

(
Sol Q̂X

)
+ dimP

n
2
,n
2

X

where P
n
2
,n
2

X is the primitive cohomology of Hodge type n/2, n/2. In particular,

Sol Q̂X is extremal in odd dimensions.
3. Examples of Extremal Laurent polynomials In this section, P is a

reflexive polytope in 3 dimensions and we always assume that 0 is the only lattice
point strictly in the interior of P . We consider Laurent polynomials

f =
∑

m∈P

cmx
m

with Newton polytope P and, for F ⊂ P a face, we write fF =
∑

m∈F cmx
m the

face term. We expect that, perhaps under mild additional conditions, for fixed
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P , there are at most finitely many extremal Laurent polynomials f with Newton
polytope P , and that their coefficients lie in a “small” number field.

In what follows, for simplicity, we make the following additional assumptions:

(1) c0 = 0;
(2) if v ∈ P is a vertex then cv = 1;
(3) if E ⊂ P is an edge then fE = xµ(1 + xν)e where e is the lattice length of

E.

Definition (1) We say that f is Hodge–Tate at infinity if for all facets F ⊂ P ,
the curve (fF = 0) has geometric genus 0.
(2) We say that f is Minkowski if for every facet F of P : F admits a lattice
Minkowski decomposition F =

∑
Fi into admissible An-triangles and there is a

corresponding factorization fF =
∏
fFi

.
It is clear that a Minkowski polynomial is Hodge–Tate at infinity. In 3 vari-

ables, we have classified all Minkowski polynomials and we are in the process of
classifying all that are Hodge–Tate at infinity. We have verified that all Minkowski
polynomials are extremal and we conjecture that the same is true for Hodge–Tate
at infinity.

4. Classification of Fano manifolds
In 3 dimensions we have verified that all Minkowski polynomials are mirror to a

Fano 3-fold. In this way, we recover 98 of the 105 deformation families of Fano 3-
folds of Fano, Iskovskikh and Mori–Mukai. (The remaining 7 families have mirror
Laurent polynomials whose Newton polytope is nonreflexive. For simplicity I do
not discuss the issues with these.)

By contrast there exist Laurent polynomials that are Hodge–Tate at infinity
and are not mirror to any Fano manifold.

We are in the process of re-building Maximilian Kreuzer’s database of reflexive
polytopes in 4 dimensions. We plan to classify Minkowski polynomials in 4 vari-
ables and draw a corresponding table of Picard–Fuchs operators and Fano 4-folds.

Holomorphic Morse inequalities and the Green-Griffiths-Lang
conjecture

Jean-Pierre Demailly

I. In the first part of our work, we consider asymptotic cohomology functionals :
for every holomorphic line bundle L → X on a compact complex manifold of
dimension n = dimCX , define

ĥq(X,L) := lim sup
m→+∞

n!

mn
hq(X,L⊗m),

ĥ≤q(X,L) := lim sup
m→+∞

n!

mn

∑

0≤j≤q

(−1)q−jhj(X,L⊗m).

In case X is projective algebraic, the functional hq(X,L) has been introduced in
[8] and further studied in [6]. It is then known that ĥq(X,L) and ĥ≤q(X,L) only
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depend on c1(L), extend continuously to the real Neron-Severi space NSR(X) and
are birational invariants.

Theorem (1985, [2], “Holomorphic Morse inequalities”). Take h to be an arbi-
trary smooth hermitian metric on L. One has the following inequalities:

ĥq(X,L) ≤ inf
h

∫

X(L,h,q)

(−1)qΘn
L,h (weak form),(1)

ĥ≤q(X,L) ≤ inf
h

∫

X(L,h,≤q)

(−1)qΘn
L,h (strong form),(2)

where ΘL,h = − i
2π∂∂ log h the curvature form of (L, h), X(L, h, q) its q-index set

(an open subset of X), and X(L, h,≤ q) =
⋃

0≤j≤q X(L, h, j):

X(L, h, q) =
{
x ∈ X ; signature(ΘL,h(x)) = (n− q, q)

}
.

The proof of the above inequalities is based on the spectral theory of complex
Laplace-Beltrami operators. For the converse equalities we can prove

Theorem (2010, [3], [4]). Equality holds in (1) and (2) whenever X is projective
algebraic and q = 0 or q = n or n = dimCX ≤ 2.

When dealing with the volume (q = 0), one can assume that L is big, i.e.
Vol(X) = ĥ0(X,L) > 0. The main argument is then to use an approximate
Zariski decomposition µ∗L ∼ E + A where µ : X̂ → X is a modification, E a
Q-effective divisor and A a Q-ample divisor. A minimizing sequence of metrics
on µ∗L is then obtained by taking a metric with positive curvature ω = ΘA,hA

on A and a metric with very small trace ΘE,hE
∧ ωn−1

A , thanks to the orthogality
estimate of [1] which tells us that E · An−1 → 0. The case q = n follows by Serre
duality. When n = 2, the picture can be completed just by considering the Euler
characteristic. It should be noticed that the holomorphic Morse inequalities are
transcendental in nature. However, there exist algebraic counterparts, e.g. for the
strong Morse inequalities, in the form of the following inequalities:

ĥ≤q(X,L) ≤ inf
h

∫

X(L,h,≤q)

(−1)qΘn
L,h ≤ inf

µ∗L≡A−B

∑

0≤j≤q

(−1)q−j

(
n

j

)
An−j · Bj ,

where the infimum is taken over all modifications µ : X̂ → X and all decomposi-

tions of c1(µ
∗L) as a difference A−B of nef Q-divisors A, B on X̂. We know that

the right hand inequality is not always an equality, but nevertheless hope that
such an algebraic formula exists.

II. The second part consists of applying the machinery of holomorphic Morse
inequalities to study entire curves f : C → X drawn in a complex irreducible
n-dimensional variety X . One of the main open problems is the following

Green-Griffiths-Lang conjecture. Let X be a projective variety of general
type. Then there should exist an algebraic subvariety Y ⊂ X such that every non
constant entire curve f : C→ X is contained in Y .



Complex Algebraic Geometry 2685

Arithmetic complement. Assume moreover that X is defined over some number
field K. Then the set X(K) should be contained in Y ∪ F where F is a finite set.

These statements would give a lot of information on the geometry of X , e.g. by
constraining the locus of rational of elliptic curves, or more generally of all abelian
subvarieties, as all “special” subvarieties of X should be contained in Y . On the
other hand, the arithmetic statement would be a vast generalization of Falting’s
theorem on the Mordell conjecture.

It turns out that holomorphic Morse inequalities give a partial answer in an
even more general situation. Consider the category of directed varieties, i.e. pairs
(X,V ) where V is a holomorphic linear subspace of the tangent space TX . This
includes of course relative situations X → S by taking V = TX/S , as well as
the case of foliations (but here we do not require integrability of V ). One says
that (X,V ) is of general type if the canonical sheaf KV is big. In the presence
of singularities, KV has to be defined appropriately, namely, if X is smooth, one
takes KV to be the image of Ωr

X → (iX\Sing(V ))∗O(det V
∗) where r = rankV .

Generalized Green-Griffiths-Lang conjecture. Let (X,V ) be a projective
directed manifold such that the canonical sheaf KV is big. Then there should
exist an algebraic subvariety Y ⊂ X such that every non constant entire curve
f : C→ X tangent to V is contained in Y .

Let JkV be the space of k-jets of curves f : (C, 0)→ X tangent to V . One defines
the sheaf O(EGG

k,mV
∗) of jet differentials of order k and degree m to be the sheaf of

holomorphic functions P (z; ξ1, . . . , ξk) on JkV which are homogeneous polynomials
of degreem on the fibers of JkV → X with respect to derivatives ξs = f

(s)
∇ (0) ∈ V ,

1 ≤ s ≤ k and any local holomorphic connection ∇. The degree m considered here
is the weighted degree with respect to the natural C∗ action on JkV defined by
λ · f(t) := f(λt), i.e. by reparametrizing the curve with a homothetic change of
variable. One of the major tool of the theory is the following result due to [7].

Fundamental vanishing theorem. Let (X,V ) be a directed projective variety,
f : (C, TC) → (X,V ) an entire curve tangent to V and A an ample divisor. For
every section P ∈ H0(X,EGG

k,mV
∗ ⊗O(−A)), one has P (f ; f ′, f ′′, . . . , f (k)) = 0.

Let Xk := (JkV \ {0})/C∗ be the projectivized k-jet bundle and OXk
(1) the

associated tautological sheaf. By construction O(EGG
k,mV

∗) = (πk)∗OXk
(m) where

πk : Xk → X and higher direct images vanish, hence

Hq(X,EGG
k,mV

∗ ⊗O(−A)) ≃ Hq(Xk,OXk
(m)⊗ π∗

kO(−A))

The above vanishing theorem says that the k-jet locus f[k](C) of an entire curve

sits in the base locus Z ⊂ Xk of H0(Xk,OXk
(m) ⊗ π∗

kO(−A)). The expectation
is that the base locus Z projects onto a proper algebraic variety Y = πk(Z) ⊂ X ,
whereby proving the generalized GGL conjecture. Therefore, the problem is to
understand the asymptotic behavior of h0(Xk,OXk

(m)⊗π∗
kO(−A)) in a situation

where intermediate cohomology groups Hq always appear.
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Main Theorem (2010, [5]). Let (X,V ) be a directed manifold, F → X a Q-line
bundle, (V, h) and (F, hF ) smooth hermitian structures on V and F . Define

Lk = OXk
(1)⊗ π∗

kO
( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
, η = ΘdetV ∗,deth∗ +ΘF,hF

.

Then for all q ≥ 0 and all m≫ k ≫ 1 with m sufficiently divisible, we have

hq(Xk,O(L
⊗m
k )) ≤

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,q)

(−1)qηn +O((log k)−1)

)
,

h0(Xk,O(L
⊗m
k )) ≥

mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,≤1)

ηn −O((log k)−1)

)
.

When KV is big, we can take ΘdetV ∗,deth∗ to be positive, at least in the sense of
currents, and the we can choose F = −εA to be slightly negative (given by some
ample divisor A on X). This shows in particular that there are many sections in

H0
(
Xk,OXk

(m)⊗ π∗
kO

(
−
mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,

hence that all entire curves f : C→ X tangent to V must satisfy the corresponding
algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0. In fact, the error terms
O(...) can be estimated accurately. This leads e.g. to an effective lower bound

k ≥ kn = exp

(
7.38nn+1/2

( ∑
dj + 1∑

dj − n− s− 1

)n
)

ifX is a complete intersection of multi-degree (d1, . . . , ds) in Pn+s,
∑
dj > n+s+1.

The proof of the Main Theorem consists of computing the Morse integrals as-
sociated with the line bundle Lk. For this, we equip Lk with the metric induced
on k-jets by the Finsler metric

‖f[k]‖
2
hk

:= |f ′‖2h + ε2‖f
(2)
∇ ‖

2/2
h + · · ·+ εs‖f

(s)
∇ ‖

2/s
h + · · ·+ εk‖f

(k)
∇ ‖

2/k
h ,

where ∇ is an arbitrary C∞ connection on V and εk ≪ εk−1 ≪ . . .≪ ε2 ≪ 1 are
small rescaling factors. Modulo error terms = O(εs), an explicit calculation yields

ΘOXk
(1),hk

(z, [ξ1, . . . , ξk]) = ωFS(ξ) +
i

2π

( ∑

1≤s≤k

xs
s

∑

i,j,α,β

cijαβusαusβ

)
dzi ∧ dzj

where ωFS(ξ) = i
2π∂∂ log

∑
1≤s≤k ‖ξs‖

2/s
h is the generalized Fubini-Study metric

on the fibers of Xk → X (weighted projective spaces), and (cijαβ) is the curvature

tensor of (V ∗, h∗); here we use polar coordinates ξs = (xs)
s/2us with xs = ‖ξs‖

2/s
h

and us ∈ S(V ), the unit sphere bundle of (V, h). The projectivization leads to

take
∑
xs =

∑
‖ξs‖

2/s
h = 1. This shows that the curvature form of ΘOXk

(1),hk
is

in fact an average of the curvature tensor of ΘV,h∗ evaluated at the sequence of
derivatives us = f

(s)
∇ /‖f

(s)
∇ ‖h ∈ S(V ). The sum

∑
1≤s≤k can be considered as a

Monte-Carlo evaluation of the curvature tensor when the unit derivatives us are
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considered as random variables. Almost surely with respect to (us) ∈ S(V )k and
(xs) in the (k − 1)-simplex ∆k−1, the average is equivalent as k → +∞ to

1

k

(
1 +

1

2
+ . . .+

1

k

) ∫

S(V )

∑

i,j,α,β

cijαβ
(
usαusβ dσ(u)

)
dzi ∧ dzj.

However the mean value of a hermitian form on S(Cr) is 1
r times its trace,

hence the integral is equal to 1
r

∑
i,j,α cijαα dzi ∧ dzj = 1

rΘdetV ∗,deth∗(z). A
more precise analysis of the standard deviation implies that the Morse integrals
of ΘOXk

(1),hk
over Xk (where dimXk = n + kr − 1) behave asymptotically as

k → +∞ as the product of the ωFS-volume of the fibers with the Morse integrals
of η = ΘdetV ∗,deth∗ +ΘF,hF

on X , when we take the tensor product with π∗
kF

into account. The Main Theorem follows.
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Prym map and Gaussian maps

Paola Frediani

(joint work with Elisabetta Colombo)

Consider the moduli space Rg parametrizing isomorphism classes of pairs [(C,A)],
where C is a smooth curve of genus g and A ∈ Pic0(C)[2] is a torsion point of order

2, or equivalently isomorphism classes of unramified double coverings π : C̃ → C.
Denote by

Prg : Rg → Ag−1
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the Prym map which associates to a point [(C,A)] ∈ Rg the isomorphism class of

the component of the origin P (C,A) of the kernel of the norm map Nmπ : JC̃ →
JC, with its principle polarization.

We recall that the Prym map is generically an embedding for g ≥ 7 ([9], [11]),
hence there exists an open set R0

g ⊂ Rg where Prg is an embedding and such that

there exists the universal family f : X → R0
g. If b ∈ R

0
g, we have f

−1(b) = (Cb, Ab)

where Cb is a smooth irreducible curve of genus g and Ab ∈ Pic0(Cb)[2] is a line
bundle of order 2 on Cb. Denote by P ∈ Pic(X ) the corresponding Prym bundle
and by FPr := f∗(ωX/R0

g
⊗ P).

On Ag−1 there is a metric which is induced by the unique (up to scalar) Sp(2g−
2,R)-invariant metric on the Siegel space Hg−1 of which Ag−1 is a quotient by the
action of Sp(2g − 2,Z). We will call this metric the Siegel metric.

We focus on the study of the second fundamental form of the Prym map with
respect to the Siegel metric.

Consider the tangent bundle exact sequence of the Prym map

(1) 0→ TR0
g
→ TAg−1|R0

g

→ NR0
g/Ag−1

→ 0

Its dual becomes

(2) 0→ I2
i
→ S2f∗(ωX/R0

g
⊗ P)

m
→ f∗(ω

⊗2
X/R0

g
)→ 0

where m is the multiplication map and we denote by I2 the conormal bundle
N ∗

R0
g/Ag−1

. Recall that the second fundamental form of the exact sequence (2) is

defined as follows

II : I2 → f∗(ω
⊗2
X/R0

g
)⊗ Ω1

R0
g
, II(s) = m(∇(i(s))),

where ∇ is the metric connection on S2f∗(ωX/R0
g
⊗ P) = Ω1

Ag−1 |R0
g

. At the point

[(C,A)] ∈ R0
g the exact sequence (2) becomes

0→ I2(KC ⊗A)→ S2H0(KC ⊗A)
m
→ H0(K⊗2

C )→ 0.

Hence, the second fundamental form II at [(C,A)] can be seen as a map

II : I2(KC ⊗A)→ H0(2KC)⊗H
0(2KC).

We recall now the definition in local coordinates of the second Gaussian map
γ2KC⊗A of the Prym-canonical line bundle KC ⊗A, with A ∈ Pic

0(C)[2],

γ2KC⊗A : I2(KC ⊗A)→ H0(K⊗4
C ).

Fix a basis {ωi} of H0(KC ⊗ A) and write it in a local coordinate z as ωi =
fi(z)dz ⊗ l, where l is a local generator of the line bundle A. For a quadric
Q ∈ I2(KC⊗A) we haveQ =

∑
i,j aijωi⊗ωj, where aij = aji and

∑
i,j aijfifj ≡ 0,

so we have
∑

i,j aijf
′
ifj ≡ 0. The local expression of γ2KC⊗A is

γ2KC⊗A(Q) =
∑

i,j

aijf
′′
i fj(dz)

4 = −
∑

i,j

aijf
′
if

′
j(dz)

4.
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The maps γ2KC⊗A glue together to give a map of vector bundles on R0
g,

(3) γ2 : I2 → f∗((ωX/R0
g
⊗ P)⊗2 ⊗ ωX/R0

g

⊗2) ∼= f∗(ω
⊗4
X/R0

g
),

where I2 is as in (2). We have the following

Theorem 1. ([5]) The diagram

(4) I2(KC ⊗A)

γ2

KC⊗A

��

II
// H0(K⊗2

C )⊗H0(K⊗2
C )

m
uu❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

H0(K⊗4
C )

is commutative up to a constant.

This theorem is a generalization of an analogous result of [7] on the second
fundamental form of the period map Pg : Mg → Ag. In fact in [7] it is shown
that the second fundamental form of the period map lifts the second gaussian
map of the canonical line bundle, as stated in an unpublished paper by Green
and Griffiths (cf. [10]). With this geometrical motivation, in [3] we investigated
curvature properties ofMg endowed with the Siegel metric. In fact, we computed
the holomorphic sectional curvature ofMg along the tangent directions given by
the Schiffer variations in terms of the second Gaussian map. The previous result
also allows us to generalize the results of [3] on the holomorphic sectional curvature
of Rg with the Siegel metric induced by Ag−1 via the Prym map.

More precisely, assume that {Qi} is an orthonormal basis of I2(KC ⊗A), {ωi}
an orthonormal basis of of H0(KC ⊗A) and choose a local coordinate z at P and
a local generator l of A such that locally ωi = fi(z)dz ⊗ l. We have the following
formula for the holomorphic sectional curvature of R0

g along the tangent direction
given by a Schiffer variation ξP at the point P ∈ C.

Theorem 2. ([5]) The holomorphic sectional curvature H of TR0
g
at [(C,A)] ∈ R0

g

computed at the tangent vector ξP given by a Schiffer variation in P is given by:

H(ξP ) = −1−
1

16α4
Pπ

2

∑

i

|µA(Qi)(P )|
2

where αP =
∑

i |fi(P )|
2.

The preceding discussion also suggested that the second Gaussian map itself of
the canonical and Prym-canonical line bundles could give interesting information
on the geometry of the curves, hence its rank properties have been investigated in
a series of papers (see [1], [2], [4], [6]).

For the canonical line bundle the surjectivity of the second Gaussian map for
general curves of high genus was proved in [4] using curves on K3 surfaces, then
the sharp result for genus ≥ 18 has been shown in [1] using degeneration to binary
curves, i.e. stable curves which are the union of two rational curves meeting
transversally at g+1 points. These degeneration techniques can be generalized to
prove the surjectivity of second gaussian maps γ2KC⊗A and we have the following
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Theorem 3. ([5]) For the general point [(C,A)] ∈ Rg, with g ≥ 20, the Prym-
canonical Gaussian map γ2KC⊗A is surjective.

In particular, this shows that the locus of curves [C,A] ∈ Rg (g ≥ 20) for which
the map γ2KC⊗A is not surjective is a proper subscheme of Rg and one observes
that for g = 20 it is an effective divisor in R20 of which in [5] we computed

the cohomology class both in R20 and in a partial compactification R̃20 following
computations developed in [8].

As concerns degeneracy loci for the second Gaussian map γ2KC
of the canonical

line bundle, in [2] we have shown that for any hyperelliptic curve of genus g ≥ 3,
the rank of γ2KC

is 2g− 5 and for any trigonal curve of genus g ≥ 8, rank(γ2KC
) =

4g − 18. Finally in [6] we proved that if a curve is a hyperplane section of an
abelian surface, the map γ2KC

has corank at least 2.
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Varieties of minimal rational tangents of codimension 1

Jun-Muk Hwang

Let X be a projective manifold of dimension n. For a component K of the space
of rational curves on X and a point x ∈ X , denote by Kx the subscheme of
K consisting of members of K passing through x. We say that K is a minimal
dominating component if Kx is non-empty and complete for a general x ∈ X . By
bend-and-break, the dimension of Kx is at most n− 1. The following result of [2]
gives a complete description of the case when dimKx is maximal.
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Cho-Miyaoka-Shepherd-Barron Theorem Let K be a minimal dominating
family with dimKx = n− 1 for a general point x ∈ X . Then X is biregular to Pn

and K is the family of lines on Pn.

Our aim is to describe the case when Kx has next-to-maximal dimension:
dimKx = n−2. In this case, a simple biregular classification as the above theorem
is hopelss. In fact, we have the following examples.

Example Let Z ⊂ Pn−1 be a smooth hypersurface and regard Pn−1 as a hy-
perplane in Pn. Let XZ be the blow-up of Pn along Z and KZ be the minimal
dominating family on XZ containing the proper transforms of lines on Pn inter-
secting Z. Then dimKZ,x = n − 2. Furthermore, let G be a finite group acting
on Pn preserving Z ⊂ Pn−1. Then G acts on XZ . Let X be a desingularization
of XZ/G and Ψ : XZ → XZ/G 99K X be the natural rational map. For suitable
choices of G and X , the images of members of KZ under Ψ gives rise to a minimal
dominating family K on X with Kx = n− 2 for a general x ∈ X .

What we can hope for is a birational classification of X with a description of
K.

To state our result, we need to recall the notion of variety of minimal rational
tangents (VMRT) Cx ⊂ PTx(X). This is the set of tangent vectors to members
of Kx. [4] proved that the normalization of Cx is smooth and biregular to Kx. A
central conjecture is

Normality Conjecture The VMRT Cx at a general point x ∈ X is normal.

When dimKx = n − 2, Normality Conjecture implies that the VMRT Cx ⊂
PTx(X) is a smooth hypersurface. Our main result is the following.

Main Theorem Let K be a minimal dominating family with dimKx = n− 2
for a general point x ∈ X . Assume Normality Conjecture, i.e., that the VMRT is
a smooth hypersurface of degree d. If d ≥ 3, there exist Z and G as in Example
and a birational map XZ/G 99K X such that the members of K correspond to the
images of the members of KZ under the rational map Ψ : XZ → XZ/G 99K X .

If the degree d of the VMRT is 1, then [1] showed that X is biratonal to a
Pn−1-bundle over a curve. If d = 2, an analogue of Main Theorem follows from
[5]. Thus Main Theorem gives a satisfactory birational classification under the
assumption of Normality Conjecture.

To explain the key idea of the proof of Main Theorem, we need to recall the
following notion.

Definition Let M be the germ of (Cn, 0). A hypersurface H ⊂ PT (M) is said
to be locally flat if there exists a coordinate system (z1, . . . , zn) on M such that H
is given by ∑

i1+···+in=d

ai1,...,in(dz1)
i1 · · · (dzn)

in = 0

with constants ai1,...,in ∈ C.
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The key step in the proof of Main Theorem is to show that when M is the
germ of (X, x) for a general point x ∈ X , the hypersurface H ⊂ PT (M) given by
the union of VMRT’s at points of M is locally flat. For this we need to derive a
general criterion of locally flat hypersurfaces and verify that the VMRT satisfies
that criterion.

The general criterion for local flatness can be stated as follows. Assume that
the natural projection π : H →M is a smooth morphism. For a point α ∈ H and
x = π(α), we can associate the 1-dimensional cone α̂ ⊂ Tx(M) and the hyperplane

T̂α ⊂ Tx(M) given by the affine tangent space of Hx at α. Using the differential
dπα : Tα(H)→ Tx(M), define

Vα := dπ−1
α (0), Jα := dπ−1

α (α̂), Pα := dπ−1
α (T̂α).

This gives distributions V ⊂ J ⊂ P on H with natural short exact sequences

0→ V → J → J/V → 0

0→ V → P → P/V → 0.

Definition A line subbundle F ⊂ J on H is a P -splitting connection if F splits
the first exact sequence and there exists a vector subbundle W ⊂ P splitting the
second exact sequence with W ∩ J = F .

Our criterion for local flatness is the following.

Local Flatness Test Let H ⊂ PT (M) be a hypersurface such that π : H →M
is a smooth morphism of relative degree d ≥ 3. If there exists a P -splitting
connection F ⊂ J with [F, P ] ⊂ P , then H is locally flat.

The proof of the above test uses a mixture of Kodaira-Spencer theory and E.
Cartan’s method of equivalence, as developed in [3].
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Special McKay correspondence and exceptional collections

Akira Ishii

(joint work with Kazushi Ueda)

1. McKay correspondence

Let G be a finite subgroup of SL(2,C) and X = C2/G the quotient singularity.
As classified by Klein, G is either a cyclic group, a binary dihedral group, or a
binary polyhedral group. Let τ : Y → X be the minimal resolution. Then the
dual graph of the exceptional locus of τ is a Dynkin graph of type A, D or E.
The McKay correspondence is a bijective correspondence between the vertices of
the Dynkin graph and the non-trivial irreducible representations of G.

The observation by McKay was a mysterious coincidence of two graphs con-
structed independently. Gonzalez-Sprinberg and Verdier gave a geometric expla-
nation of the correspondence by constructing a vector bundle Eρ on Y for each
representaion ρ of G such that

{c1(Eρ) | ρ : non-trivial irreducible representations of G}

is dual to the set of irreducible exceptional curves. The correspondence is extended
by Kapranov and Vasserot to the equivalence

Db(cohY ) ∼= Db(cohG(C2))

of the derived category of coherent sheaves on Y and the derived category of G-
equivariant coherent sheaves on C2. In this form, the correspondence is generalized
to the case ofG ⊂ SL(3,C) by Bridgeland, King and Reid and to the case of abelian
G ⊂ SL(n,C) (assuming the existence of a crepant resolution) by Kawamata.

2. Special McKay correspondence

Consider the quotient X = C2/G by a finite small subgroup G ⊂ GL(2,C).
Here a finite subgroup of GL(n,C) is said to be small if its action on Cn is free
in codimension one. If G is not in SL(2,C), then it turns out that the number of
irreducible exceptional curves is less than the number of non-trivial representations
ofG. So we have to choose special representations ofG corresponding to irreducible
exceptional curves.

Definition 1 (Wunram-Riemenschneider). A representation ρ of G is special if
H1(E∨

ρ ) vanishes.

Note that this condition holds for any ρ if G ⊂ SL(2,C).

Theorem 1 (Wunram). The set

{c1(Eρ) | ρ : non-trivial special irreducible representations of G}

is dual to the set of irreducible exceptional curves.

The relation between the derived categories is described as follows.
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Theorem 2. There is a fully faithful embedding

Db(cohY ) →֒ Db(cohG(C2))

whose essential image is generated by {ρ⊗OC2 | ρ: special}.

This follows from the argument of [2]. Note that we have negative discrepancies
in the resolution τ , which should imply such an embedding as conjectured by
Kawamata.

3. Semiorthogonal decompositions

PutA = Db(cohY ) and B = Db(cohG(C2)) in the above theorem. Note that the
embedding A →֒ B has a right adjoint. In such a situation, B has a semiortogonal
decomposition B = 〈A⊥,A〉 where

A⊥ := {b ∈ B | ∀a ∈ A, Hom(a, b) = 0}

is the right orthogonal complement of A. This means that for every object b ∈ B,
there are a ∈ A⊥ and a′ ∈ A⊥ (unique up to isomorphism) such that b is an
extension of the form

a→ b→ a′ → a[1].

It is known that the right semiorthogonal complement A⊥ is generated by skyscr-
paer sheaves with non-special irreducible representations:

A = 〈O0 ⊗ ρ | ρ: non-special irreducible representations〉

where O0 is the structure sheaf of {0} ⊂ C2.

4. Exceptional collections

An object E in a triangulated category T is exceptional if it satisfies Exti(E,E) =
0 for i 6= 0 and Hom(E,E) ∼= C. A sequence E1, . . . , En of exceptional objects is
an exceptional collection if Exti(Ea, Eb) = 0 for a > b and for all i. If an excep-
tional collection E1, . . . , En generate the triangulated category T , then we say it
is full and write T = 〈E1, . . . , En〉.

An example of an exceptional object is a line bundle on a (−1)-curve on a

surface. Actually, if S̃ is a one point blow up of a smooth surface S, then we
have a semiorthogonal decomposition Db(coh S̃) = 〈OE(−1), D

b(cohS)〉, where E
is the exceptional curve and OE(−1) is the line bundle of degree −1 on E ∼= P1.

Now we go back to the special McKay correspondence.

Theorem 3 ([3]). Let G be a finite small subgroup. Then the right orthogonal

complement of Db(cohY ) →֒ Db(cohG C2) has a full exceptional collection. In

other words, there is an exceptional collection E1, . . . , En ∈ Db(cohG C2) such

that Db(cohG C2) = 〈E1, . . . , En, D
b(cohY )〉.

The cyclic group case follows from the arguments of Kawamata [5, 6]. In [3],
we gave an explicit description of an exceptional collection in terms of continued
fraction expansions. The general case is reduced to the cyclic case since if we
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consider G0 := G ∩ SL(2,C), then we have an equivalence for G0 and G/G0 is
cyclic. See [3] for details.

5. Invertible polynomials

Let A = (aij) be an n × n integer matrix with aij ≥ 0 and detA 6= 0. A
determines a polynomial

W :=

n∑

i=1

xa1

1 x
a2

2 . . . xan
n ∈ C[x1, . . . , xn].

W is called an invertible polynomial if it has an isolated critical point at the origin
[1]. The group

K = {(α1, . . . , αn) ∈ (C∗)n | αa11

1 . . . αa1n
n = · · · = αan1

1 . . . αann
n }

acts on W−1(0) and we consider the quotient stack X := [W−1(0) \ {0}/K]. It is
conjectured that Db(cohX ) has a full exceptional collection.

Corollary 1 ([3]). It dimX = 2, then Db(cohX ) has a full exceptional collection.

This follows from Theorem 3 and the rationality of the coarse moduli space of
X .

We say X is of Fermat type if A is a diagonal matrix.

Theorem 4 ([4]). If X is of Fermat type, then Db(cohX ) has a full strong excep-
tional collection consistning of line bundles.

Note that X is a finite quotient of a Fermat hypersurface in a weighted pro-
jective space. Although the derived category of the Fermat hypersurface is not
generated by an exceptional collection, we can show that it is recovered from a
dg-enhancement of Db(cohX ) together with the action of the character group of
the finite group [4].
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Du Bois singularities for the working mathematician

Sándor J. Kovács

LetX be a smooth proper variety. Then the Hodge-to-de-Rham (a.k.a. Frölicher)
spectral sequence degenerates at E1 and hence the singular cohomology group
Hi(X,C) admits a Hodge filtration

(1) Hi(X,C) = F 0Hi(X,C) ⊇ F 1Hi(X,C) ⊇ . . .

and in particular there exists a natural surjective map

(2) Hi(X,C)→ Gr0FH
i(X,C)

where

(3) Gr0FH
i(X,C) ≃ Hi(X,OX).

Deligne’s theory of (mixed) Hodge stuctures implies that even if X is singular,
there still exists a Hodge filtration and (2) remains true, but in general (3) fails.

Du Bois singularities were introduced by Steenbrink to identify the class of
singularities for which (3) remains true as well. However, naturally, one does not
define a class of singularities by properties of proper varieties. Singularities should
be defined by local properties and Du Bois singularities are indeed defined locally.

It is known that rational singularities are Du Bois (conjectured by Steenbrink
and proved in [Kov99]) and so are log canonical singularities (conjectured by Kollár
and proved in [KK10]). These properties make Du Bois singularities very impor-
tant in higher dimensional geometry, especially in moduli theory (see [Kol11] for
more details on applications).

Unfortunately the definition of Du Bois singularities is rather technical. The
most important and useful fact about them is the consequence of (2) and (3) that
if X is a proper variety over C with Du Bois singularities, then the natural map

(4) Hi(X,C)→ Hi(X,OX)

is surjective. One could try to take this as a definition, but it would not lead to
a good notion; singularities should be defined by local conditions. The reasonable
approach is to keep Steenbrink’s original defition, after all it has been proven to
define a useful class. It does satisfy the first requirement above: it is defined locally.
Once that is accepted, one might still wonder if proper varieties with Du Bois
singularities could be characterized with a property that is close to requiring that
(4) holds.

As we have already observed, simply requiring that (4) holds is likely to lead
to a class of singularities that is too large. A more natural requirement is to ask
that (3) holds. Clearly, (3) implies (4) by (2), so our goal requirement is indeed
satisfied.

The definition [Ste83, (3.5)] of Du Bois singularities easily implies that if X has
Du Bois singularities and H ⊂ X is a general member of a basepoint-free linear
system, then H has Du Bois singularities as well. Therefore it is reasonable that
in trying to give an intuitive definition of Du Bois singularities, one may assume
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that the defining condition holds for the intersection of general members of a fixed
basepoint-free linear system.

It turns out that this is actually enough to characterize Du Bois singularities.
This result is not geared for applications, it is mainly interesting from a philosoph-
ical point of view. It says that the local definition not only achieves the desired
property for proper varieties, but does it in an economical way: it does not allow
more than it has to.

At the same time, a side-effect of this characterization is the fact that for the
uninitiated reader this provides a relatively simple criterion without the use of
derived categories or resolutions directly. In fact, one can make the condition
numerical. This is a trivial translation of the “real” statement, but further em-
phasizes the simplicity of the criterion.

In order to do this we need to define some notation: Let X be a proper algebraic
variety over C and consider Deligne’s Hodge filtration F · on Hi(X,C) as in (1).
Let

GrpFH
i(X,C) = F pHi(X,C)

/
F p+1Hi(X,C)

and

f
p,i(X) = dimCGr

p
FH

i(X,C).

We will also use the notation

h
i(X,OX) = dimCH

i(X,OX).

Recall that by the construction of the Hodge filtration and the degeneration of
the Hodge-to-de-Rham spectral sequence at E1, the natural surjective map from
Hi(X,C) factors through Hi(X,OX):

Hi(X,C)→ Hi(X,OX)→ Gr0FH
i(X,C).

In particular, the natural morphism

(5) Hi(X,OX)→ Gr0FH
i(X,C)

is also surjective and hence

(6) h
i(X,OX) ≥ f

0,i(X).

The main result is the following.

Theorem 1. Let X be a proper variety over C with a fixed basepoint-free linear
system ∆. (For instance, X is projective with a fixed projective embedding). Then
X has only Du Bois singularities if and only if hi(L,OL) ≤ f

0,i(L) for i > 0 for
any L ⊆ X which is the intersection of general members of ∆.

Corollary 1. Let X ⊆ PN be a projective variety over C with only isolated singu-
larities. Then X has only Du Bois singularities if and only if hi(X,OX) ≤ f

0,i(X)
for i > 0.

Observe that (5) combined with the condition h
i(L,OL) ≤ f

0,i(L) implies that
Hi(L,OL) → Gr0FH

i(L,C) is an isomorphism and hence (1) follows from the
following.
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Theorem 2. Let X be a proper variety over C with a fixed basepoint-free linear
system ∆. Then X has only Du Bois singularities if and only if for all i > 0 and
for any L ⊆ X, which is the intersection of general members of ∆, the natural
map,

νi = νi(L) : H
i(L,OL)→ Gr0FH

i(L,C)

given by Deligne’s theory [Del71, Del74, Ste83, GNPP88] is an isomorphism for
all i.

Remark 1. It is clear that if X has only Du Bois singularities then νi(L) is an
isomorphism for all L. Therefore the interesting statement of the theorem is that
the condition above implies that X has only Du Bois singularities.
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Simply connected surfaces of general type in arbitrary characteristic
via deformation theory

Yongnam Lee

(joint work with Noboru Nakayama)

One of the interesting problems in the classification of algebraic surfaces is to
find a new family of simply connected surfaces of general type with the geometric
genus pg = 0. Surfaces with pg = 0 are interesting in view of Castelnuovo’s
criterion: An irrational surface with irregularity q = 0 must have bigenus P2 ≥ 1.
Simply connected surfaces of general type with pg = 0 are little known and the
classification is still open.

When a surface is defined over the field of complex numbers, the only known
simply connected minimal surfaces of general type with pg = 0 were Barlow sur-
faces [1] until 2006. The canonical divisor of Barlow surfaces satisfies K2 = 1.
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Recently, the first named author and J. Park [3] have constructed a simply con-
nected minimal surface of general type with pg = 0 and K2 = 2 by using a
Q-Gorenstein smoothing and Milnor fiber of a smoothing (or rational blow-down
surgery). When a surface is defined over a field of positive characteristic, the
existence of algebraically simply connected minimal surface of general type with
pg = 0 is known only for some special characteristics.

In this talk, we shall construct such a surface of general type defined over an
algebraically closed field of any characteristic applying the construction given in
[3]. The following is our main result [2]:

Theorem. For any algebraically closed field k and for any integer 1 ≤ K2 ≤
4, there exists an algebraically simply connected minimal surface S of general
type over k with pg(S) = q(S) = dimH2(S,ΘS/k) = 0 and K2

S = K2 except

(char(k),K2) = (2, 4), where ΘS/k denotes the tangent sheaf.

The construction in [3] is as follows in the case of K2 = 2: First, we consider
a special pencil of cubics in P2 and blow up many times to get a projective sur-
face M (Z̃ in [3]) which contains a disjoint union of five linear chains of smooth
rational curves representing the resolution graphs of special quotient singularities
called of class T. Then, we contract these linear chains of rational curves from
the surface M to produce a projective surface X with five special quotient sin-
gularities of class T and with K2

X = 2. One can prove the existence of a global
Q-Gorenstein smoothing of the singular surface X , in which a general fiber Xt of
the Q-Gorenstein smoothing is a simply connected minimal surface of general type
with pg = 0 and K2 = 2. This method works to other types of rational elliptic
surfaces which are used to construct a simply connected minimal surface of general
type with pg = 0 and with K2 = 1, 3, or 4. We shall show that this construction
of singular surface X also works in positive characteristic, but several key parts
in the proof to show the existence of a global Q-Gorenstein smoothing should be
modified.

Over the field of complex numbers, the existence of a localQ-Gorenstein smooth-
ing of a singularity of class T is given by the index-one cover. The key idea in [3] to
show the vanishing of the obstruction space for a global Q-Gorenstein smoothing
is to use the lifting property of derivations of normal surface to its minimal res-
olutions, the tautness of the quotient singularities, and the special configurations
of resolution graphs of singular points.

In characteristic 0, the tautness holds for the quotient singularities, i.e, the min-
imal resolution graph of a quotient singularity determines the type of singularity.
It is known in characteristic 0 that the tautness is equivalent to H1(ΘD) = 0 for
any “sufficiently large” effective divisorD supported on the exceptional divisors on
its minimal resolution. However, the tautness do not hold in characteristic p > 0
in general. Indeed, we have some examples of rational double points when p = 2,
3, and 5, by Artin’s classification. The lifting property of derivations of normal
surface to its minimal resolution exists in characteristic 0, but this is not true in
characteristic p > 0.
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However, in our constructions, we have only two-dimensional toric singulari-
ties by contracting linear chains of smooth rational curves. We prove that the
singularity obtained by contracting a linear chain of smooth rational curves is a
two-dimensional toric singularity and it satisfies the tautness. Moreover, it turns
out that the lifting property of derivations mentioned above is not so important for
proving the vanishing of the obstruction space. We introduce the notion of toric
surface singularity of class T, and construct a so-called Q-Gorenstein smoothing
explicitly by using toric description. The vanishing condition H2(X,ΘX/k) = 0
for an algebraic k-variety X with only isolated singularities implies the morphism

DefX → Def
(loc)
X between the global and local the deformation functors of X is

smooth in the sense of Schlessinger. An algebraization result is added which plays
an important role when we construct an algebraic deformation. The proof uses
Artin’s theory of algebraization.

We shall construct a deformation of a normal projective surface X with toric
singularities of class T assuming some extra conditions. As a consequence, we
have a so-called Q-Gorenstein smoothing not only over the base field k but also
over a complete discrete valuation ring with the residue field k. By the smoothing
over the discrete valuation ring and the Grothendieck specialization theorem, the
algebraic simply connectedness of the smooth fiber is reduced to that of a smooth
fiber of a Q-Gorenstein smoothing of a reduction of X of our construction to
the complex number field. Note that the simply connectedness in case k = C
has been proved by using Milnor fiber (or rational blow-down) and by applying
van-Kampen’s theorem on the minimal resolution of X .
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On the K-stability and log-K-stability in the Kähler-Einstein problem

Chi Li

Let X be a Fano manifold, i.e. K−1
X is ample. A basic problem in Kähler geometry

is to determine whether there exists a Kähler-Einstein metric on X , i.e. whether
there exists a Kähler metric ωKE in the Kähler class c1(X) satisfying the equation:

Ric(ωKE) = ωKE

This is a variational problem. Futaki [4] found an important invariant (now
known as Futaki invariant) as the obstruction to this problem. Then Mabuchi [9]
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defined K-energy functional by integrating this invariant:

νω(ωφ) = −

∫ 1

0

dt

∫

X

(S(ωφt
)− S)φ̇tω

n
φ

The minimizer of K-energy is the Kähler-Einstein metric. Tian [12] proved that
there is a Kähler-Einstein metric if and only if the K-energy is proper on the space
of all Kähler metrics in c1(X). So the problem is how to test the properness of
K-energy.

Tian developed a program to reduce this infinite dimensional problem to finite
dimensional problems. More precisely, he proved in [11] that the space of Kähler
metrics ( denoted by H) in a fixed Kähler class can be approximated by a sequence
of spaces (denoted by Hk) consisting of Bergman metrics.

The latter spaces are finite dimensional symmetric spaces. Tian ([12]) in-
troduced K-stability condition using generalized Futaki invariant for testing the
properness of K-energy on these finite dimensional spaces. Later Donaldson [2]
reformulated it using algebraically defined Futaki invariant. We have the following
folklore conjecture.

Conjecture 1 (Yau-Tian-Donaldson conjecture). Let (X,L) be a polarized mani-
fold. Then there is a constant scalar curvature Kähler metric in c1(L) if and only
if (X,L) is K-stable.

In the Kähler-Einstein case, this conjecture can be explained by the following
diagram:

Existence of Kähler-Einstein metric ⇐==⇒ K-stable
⇑ ⇑
⇓ ⇓

Properness of K-energy on H ⇐==⇒ properness of K-energy on Hk

For the left vertical equivalence, see [12]. For the right equivalence, see [12] and
[10].

For the horizontal equivalence, the direction of ’existence ⇒ K-stable’ is easier
and was proved by Tian in [12]. The other direction is much more difficult and is
still open. To prove it, one needs the uniform approximation of Kähler metrics in
a minimizing sequence.

One of minimizing methods is the continuity method. That is, we fix a reference
metric ω0 and consider a family of equations with parameter t:

(1) Ric(ω) = tω + (1− t)ω0

We can define

R(X) = sup{t : ∃ a Kähler metric ω ∈ c1(X) such that Ric(ω) > tω}

= sup{s : (1) is solvable for t ∈ [0, s]}

We get much information about continuity method for toric Fano manifolds. A
toric Fano manifold X△ is determined by a reflexive lattice polytope △.
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Such polytope △ contains the origin O ∈ Rn. We denote the barycenter of △

by Pc. If Pc 6= O, the ray Pc +R≥0 ·
−−→
PcO intersects the boundary ∂△ at point Q.

Theorem 1. ([6]) If Pc 6= O,

R(X△) =

∣∣OQ
∣∣

∣∣PcQ
∣∣

Here
∣∣OQ

∣∣,
∣∣PcQ

∣∣ are lengths of line segments OQ and PcQ. In other words,

Q = −
R(X△)

1−R(X△)
Pc ∈ ∂△

If Pc = O, then there is Kähler-Einstein metric on X△ and R(X△) = 1.

We can also study the limit behavior of the minimizing sequence along the con-
tinuity method on toric Fano manifolds. The result is compatible with Cheeger-
Colding-Tian’s theory [1] on compactness of Kähler-Einstein manifolds. In partic-
ular, the limit metric has conic type singulary whose information can be read out
from the geometry of the polytope. For details, see [7].

There is another continuity method, which is via Kähler-Einstein metrics with
conic singularities. This is equivalent to solving the following family of equations
with parameter β:

(2) Ric(ω) = βω + (1− β){D}

where D ∈ | −KX | is a smooth divisor.
One can extend the theory in smooth case to the conic case. We can define the

logarithmic Futaki invariant after Donaldson (cf. [3], [8]). Then we can integrate
the log-Futaki invariant to get log-K-energy [8]. If we assume the log-K-energy
is proper, then there exists conic Kähler-Einstein metric. (cf. [5]). We can also
define log-K-stability and get the Yau-Tian-Donaldson conjecture in conic setting.
See the discussion in [8].

Conjecture 2 (Logarithmic version of Tian-Yau-Donaldson conjecture). There
is a constant scalar curvature conic Kähler metric on (X,Y ) if and only if (X,Y )
is log-K-stable.

Donaldson made a conjecture relating the two continuity methods.
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Conjecture 3. [3] There is a cone-singularity solution ωβ to (2) for any parameter
β ∈ (0, R(X)). If R(X) < 1, there is no solution for parameter β ∈ (R(X), 1).

The case of conic Riemann surface was known by the work of Troyanov, McOwen,
Thurston, Luo-Tian, etc. Some evidence is provided by toric Fano manifold:

Theorem 2. [8] Let X△ be a toric Fano variety with a (C∗)n action. Let Y be
a general hyperplane section of X△. When β < R(X△), (X△, βY ) is log-K-stable
along any 1 parameter subgroup in (C∗)n. When β = R(X△), (X△, βY ) is semi-
log-K-stable along any 1 parameter subgroup in (C∗)n and there is a 1 parameter
subgroup in (C∗)n which has vanishing log-Futaki invariant. When β > R(X△),
(X△, βY ) is not log-K-stable.
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Rational Curves on K3 surfaces

Jun Li

(joint work with Christian Liedtke)

This talk addresses the function field version of Lang’s conjectrue.
Conjectrue. Every projective K3 surface over an algebraically closed field con-

tains infinitely many integral rational curves.

Bogomolov and Mumford showed that every complex projective K3 surface
contains at least one rational curve. Next, Chen established existence of infinitely
many rational curves on very general complex projective K3 surfaces. Since then,
infinitely many rational curves have been established for elliptic K3 surfaces, and
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K3 surfaces with infinite automorphism groups. In particular, this includes all K3
surfaces with ρ ≥ 5, as well as “most” K3 surfaces with ρ ≥ 3.

The recent breakthrough took place by the work [1].

Theorem.(Bogomolov-Tschinkel-Hassett)A degree two projective K3 surface over

a char. zero algebraic closed field and of Picard rank one contains infinitely many

integral rational curves.

Furthering their technique, Liedtke and myself proved

Theorem.([2]) A projective K3 surface over an algebraic closed field k of char.

zero with odd Picard rank contains infinitely many integral rational curves.

Our techniques also yield the following result in positive characteristic:

Theorem.([2]) A non-supersingular K3 surface with odd Picard rank over an

algebraically closed field of char. p ≥ 5 contains infinitely many integral rational

curves.

Here is a sketch of our proof. The initial part of the proof follows that of [1].
First, by a standard technique in algebraic geometry, we only need to prove the
theorem for a K3 surface X defined over a number field L. For such an X/L,
we pick a finite place p and form its reduction to finite characteristic Xp. Then
by a known result, the Picard rank of (Xp)F̄p

is always even. Thus assume XL̄

has odd Picard rank, we can find a rational curve Cp ⊂ (Xp)F̄p
that can not be

lifted to XQ̄. In [1], Bogomolov-Tschinkel-Hassett used the special geometry of
degree two K3 surface and a lifting theorem of genus zero stable maps to show
that there is another rational curve C′

p in (Xp)F̄p
such that the union Cp+C′

p lies
in a multiple of the polarization of X and can be represented by an isolated genus
zero stable map, thus can be lifted to XQ̄. A further argument shows that such
lifts has unbounded degrees, when p runs through an infinitely many places of L.
This proves that XQ̄ contains infinitely many integral rational curves.

For a K3 defined over a number field L with odd Picard rank ρ(XL̄), the same
argument works except the existence of an irreducible C′

p so that Cp+C′
p lies in a

multiple of the polarization of X . Instead, we can find a union of rational curves
Dp so that Cp +Dp lies in a multiple of the polarization of X .

Our new input is to use “rigidifier” to achieve the lifting of Cp +Dp. Suppose
we can a nodal rational curve Rp in a multiple of the polarization, an elementary
argument shows that

Cp +Dp +mRp

can be represented by a rigid genus zero stable map. Because the stable map is
rigid, it can be lifted fo XQ̄; and if this can be done for infinitely many places p,
we can find arbitrary high degree rational curves in XQ̄. This would prove the
main theorem.

In general, applying Chen’s existence of nodal rational curve result, we know
that there is a Zariski open subset in the moduli space of K3’s so that every K3
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in this open subset contains rational nodal curves in its multiple of polarization.
Suppose the K3 surface X does not lie in this open subset, we deform Xp and
Cp+Dp to where such Rp exists. A routine argument guarantees that we find the
desired lift of stable maps to XQ̄, proving the existence theorem.

References

[1] F. Bogomolov, B. Hassett, Y. Tschinkel, Constructing rational curves on K3 surfaces,
arXiv:0907.3527v1 (2009).

[2] J. Li and C. Liedtke, Rational Curves on K3 Surfaces, arXiv:1012.3777, to appear in Invent.
Math.

Moduli spaces of curves with a fixed group of automorphism

Michael Lönne

(joint work with Fabrizio Catanese, Fabio Perroni)

Given a finite group G we consider smooth complex projective curves C of genus
g together with an effective G-action. Such a curve can be given by a injective
map ρ from G to the mapping class group Mapg and a point in the Teichmüller
space Tg which is stabilised by the image.

Thus such curves come in natural families:

Theorem 1 ([1]). Given ρ : G→Mapg injective the following Teichmüller space
is a connected complex manifold homeomorphic to a ball

Tg,G,ρ =
{
[C] | ρ(G) stabilizes [C]

}
.

In particular the irreducible componentsMg,G.ρ = Tg,G,ρ

/
Mapg are in bijection

with the orbit space of pairs (G, ρ) for the combined action of Aut(G) on G and
the conjugation on Mapg.

The aim of our project is to detect irreducible components by suitable geometric
invariants. Such are obtained considering the quotient C′ = C/G with branch
locus B = {p1, . . . , pk} and the factorization

C −→ C/H
↓

C/G = C′

where H is the normal subgroup of G generated by all stabilizers and the vertical
map is an etale G′ = G/H Galois cover.

The mapping class group Mapg′,k :=Map(C′ −B) acts naturally on

π1(C
′ −B) = πg′,k = 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γk | γ1 · · · γk

∏
[αi, βi] 〉

The quotient map C → C′ restricts to a regular topological G-cover over C′ − B
and thus determines a surjection of πg′,k onto G.
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Conversely (G, ρ) is determined by such a surjection µ, via the diagram

πg,k
↓ ց

1 → πg → πorb
g,k →→ G

where the kernel of the vertical map is normally generated by γ
ord(µ(γi))
i .

In fact lifts of g ∈ G define unambiguously ρ : G → Out(πg) with image in
Mapg ⊂ Out(πg). We thus get a bijection

{(G, ρ)}
/
Aut(G)×Mapg

1:1
←→ {G,µ : πg,k →→ G}

/
Aut(G)×Mapg′,k

Definition. Consider the following datum

(1) the multiset ν of conjugacy classes of G

ν(C) = # {i | µ(γi) ∈ C }

(2) µ′ : πg′ →→ G′ yields a homotopy class of classifying maps
C′ → K(G, 1) = BG inducing

H2(C
′,Z)→ H2(G

′,Z), [µ] := µ′[C′].

Both parts areMapg-invariant and we call the Aut(G)-orbits the numerical types.

These invariants are sufficient to detect the connected components in the case of
abelian G by a result of Edmonds [5, 6]. Most intriguingly there is an asymptotic
result in this direction independent of the group G:

Theorem 2 ([4]). If G acts freely and g′ is sufficiently large, then the irreducible
components of moduli spaces of G-curves are in bijection with all possible numerical
types i.e. with

H2(G;Z)
/
Aut(G).

Question: Are there asymptotic results for G-actions which are not free?

To get some clue on what to expect we studied the case of G = Dn more closely.
Our result is the following with the genus g = 0 case already published [2].

Theorem 3 ([2, 3]). The irreducible components of moduli spaces of Dn-curves
are detected by the numerical type if

(1) g′ = 0,
(2) C → C

/
Dn is etale,

(3) n is odd,
(4) the stabiliser of at least one point is generated by an involution.

In the remaining cases H is a non-trivial subgroup of rotations of Dn, n even, and
the rotation by π does not generate the stabliser of some point.
Then there are two Mapg′,k-orbits and the numerical type detects the irreducible
component if and only if there is an automorphism of Dn which interchanges the
two orbits.
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Birational automorphism groups and the movable cone theorem for
Calabi-Yau manifolds of Wehler type

Keiji Oguiso

In his paper [We], Wehler observed the following pretty:

Theorem A. Let S be a generic surface of multi-degree (2, 2, 2) in P1
1×P1

2×P1
3.

Let ιk (k = 1, 2, 3) be the covering involution of the natural projection S → P1
i×P

1
j

with {i, j, k} = 1, 2, 3. Then, S is a K3 surface with

Aut (S) = 〈ι1, ι2, ι3〉 ≃ Z2 ∗ Z2 ∗ Z2 ,

the universal Coxeter group of rank 3.

Wehler’s K3 surfaces and their variants sometimes appear in the study of complex
dynamics and arithmetic dynamics as handy, concrete examples.

In my talk, I presented two generalizations of Wehler’s K3 surfaces to higher
dimensional Calabi-Yau manifolds ([Og]).

1st generalizatin. Let n ≥ 3 and let X be a generic hypersurface of multi-degree
(2, . . . , 2) in the product P1

1 × P1
2 × . . . × P1

n+1 of n + 1 P1
k ≃ P1. Then X is

an n-dimensional Calabi-Yau manifold. As in Wehler’s K3 surface, we have n+ 1
natural projections

πk : S → P1
1 × . . .×P1

k−1 ×P1
k+1 × . . .×P1

n+1 .

Then πk is of degree 2. We denote the corresponding covering involution by ιk.
Then, unlike to Wehler’s case, X has no non-trivial automorphism but very rich
birational automorphisms:

Theorem I.
(1)Aut (X) = {1}, while Bir (X) = 〈ι1 , ι2 , . . . , ιn+1〉 ≃ Z2 ∗ Z2 ∗ . . . ∗ Z2, the

universal Coxeter group of rank n+ 1.
(2) The abstract version of the Morrison-Kawamata movable cone conjecture

([Ka1]) is true for X, i.e., the natural action of Bir (X) on the movable effective
coneMe(X) has a finite rational polyhedral cone as its fundamental domain.
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Here M (X) is the closure of the convex cone generated by the movable divisor
classes in NS (X)⊗R and Be (X) is the convex cone generated by effective divisor
classes in NS (X)⊗R.

Our proof of (1) is based on the result of Kawamata that any birational map
between minimal models can be decomposed into flops ([Ka2]) and geometric rep-
resentations of Coxeter groups ([Hum]). In our proof of (2), we uses a result of
Birkar, Cascini, Hacon and McKernan ([BCHM]) for big divisors, and some special
geometry of X for non-big divisors.

2nd generalization. It is also interesting to find examples with rich biregular
automorphisms. In our previous work, Schröer and I ([OS]) found the following
new series of Calabi-Yau manifolds of any even dimension:

Theorem B. Let S be an Enriques surface and Hilbn(S) be the Hilbert scheme

of n points on S, where n ≥ 2. Let π : ˜Hilbn(S) → Hilbn(S) be the universal

cover of Hilbn(S). Then π is of degree 2 and ˜Hilbn(S) is a Calabi-Yau manifold
of dimension 2n.

Theorem II. Let S be a generic Enriques surface. Then, for each n ≥ 2, the

biregular automorphism group of ˜Hilbn(S) contains the universal Coxeter group of

rank 3 as its subgroup, i.e., Z2 ∗ Z2 ∗ Z2 < Aut ( ˜Hilbn(S)).

There are many ways to see Z2 ∗Z2 ∗Z2 < Aut (S) for a generic Enriques surface
S. Then we have Z2 ∗Z2 ∗Z2 < Aut (Hilbn(S)). Essential point of the proof is the

faithful lifting of the automorphism subgroup Z2 ∗Z2 ∗Z2 of Hilbn(S) to ˜Hilbn(S).
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Prym varieties of triple coverings

Angela Ortega

(joint work with Herbert Lange)

Let f : Y → X be a covering of smooth projective curves. The Prym variety P (f)
associated to this covering is, by definition, the connected component containing
zero, of the kernel of the norm map Nmf of the Jacobian JY onto the Jacobian
JX . We say that P (f) is a principally polarized Prym variety if the canonical
principal polarization of JY restricts to a multiple of a principal polarization on
P (f). In [3, Proposition 12.3.3] it is claimed that P (f) is a principally polar-
ized Prym variety of dimension at least 2 if and only if f is a double covering
ramified at most at 2 points and X is of genus ≥ 3. In this classification one
case is missing, namely the Prym variety P (f) associated to a non-cyclic étale
triple covering f of a curve X of genus 2, is principally polarized of dimension 2.
We carry out the study of these Prym varieties and their associated moduli spaces.

Given a non-cyclic, étale triple covering f : Y → X over a smooth projective
genus 2 curve X , one can consider the Galois closure of f , h : Z → X . The curve
Z is of genus 7 admitting, not only the action of the symmetric group S3 but also
the action of the dihedral group D6. One can prove that the composition of h
with the hyperelliptic covering X → P1 is a Galois covering Z → P1 with Galois
group D6. The key ingredient in the description of the Prym variety P (f) is the
following

Theorem 1. Any non-cyclic étale 3-fold covering Y of a curve of genus 2 is
hyperelliptic.

The proof of the above theorem is done by looking at the full tower of curves
corresponding to the subgroups of D6. The genera of all the curves in the tower
can be computed and one finds an explicit degree two map Y → P1. This allow
us to show that P (f) is the Jacobian of the smooth irreducible genus 2 curve Ξ,
where Ξ gives a principal polarization in P (f).
Let Rnc

2,3 denote the moduli space of étale non-cyclic triple coverings f : Y → X
over a curve X of genus 2. Let A2 be the moduli space of principal polarized
abelian surfaces and J2 the locus of Jacobians in A2. Consider the Prym map
Pr : Rnc

2,3 −→ A2, [f : Y → X ] 7→ P (f). One of the main results in [4] is the
following

Theorem 2. The Prym map Pr : Rnc
2,3 → J2 is finite of degree 10 onto its image.

The proof gives a constructive way of recovering the fiber of the Prym map
over a general curve Ξ of genus 2, in terms of the choice of a partition (in two
sets of three elements) of the Weiestrass points of Ξ. As a consequence of this
construction we obtain

Proposition 1. The moduli space Rnc
2,3 is rational.
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The Prym map can be extended to a some family of coverings over nodal curves,
in such a way that the extended map is proper onto A2. For this it turns out to
be convenient to shift the point of view slightly. Taking the Galois closure gives a
bijection between the set of connected non-cyclic étale f covers of above, and the
set of étale Galois covers h : Z → X , with Galois group the symmetric group S3.
Hence, if we denote by S3

M2 the moduli space of étale Galois covers of smooth
curves of genus 2 with Galois group S3 as constructed for example in [2, Theorem
17.2.11], we obtain a morphism Pr : S3

M2 → J2, also call Prym map. Then we
use the compactification S3

M2 of S3
M2 by admissible S3-covers as constructed in

[1] to define the extended Prym map. We define the following subset of S3
M2:

S3
M̃2 :=

{
[h : Z → X ] ∈ S3

M2

∣∣∣∣
pa(Z) = 7 and for any node z ∈ Z
the stabilizer Stab(z) is of order 3

}
.

Then S3
M̃2 is a non-empty open set of a component of S3

M2 containing the

smooth S3-covers S3
M2. For any [h : Z → X ] ∈ S3

M̃2 let Y denote the quotient
of Z by a subgroup of order 2 of S3. We show that the kernel P = P (f) of the map
Nmf : JY → JX is a principally polarized abelian surface. The main Theorem in
[5] is

Theorem 3. The Prym map Pr extends to a proper surjective morphism P̃ r :

S3
M̃2 → A2 of degree 10.

As a consequence of this result, we have that every principally polarized abelian
surface occurs as the Prym variety of a non-cyclic degree-3 admissible cover f :
Y → X of a stable curve X of genus 2. Actually, we can be more precise. Consider

the stratification of S3
M̃2,

S3
M̃2 = S3

M2 ⊔R ⊔ S,

where R denotes the set of covers of S3
M̃2 with X singular but irreducible, and S

denotes the complement of S3
M2 ⊔R in S3

M̃2. On the other hand, let E2 denote
the closed subset of A2 consisting of products of elliptic curves with canonical
principal polarization. For any smooth curve C of genus 2 and any 3 Weierstrass
points w1, w2, w3 of C, let ϕ2(w1+w2+w3) denote the map C → P1 defined by the
pencil (λ(2(w1 + w2 + w3)) + µ(2(w4 + w5 + w6))(λ,µ)∈P1 , where w4, w5, w6 are
the complementary Weierstrass points. The map ϕ2(w1+w2+w3) factorizes via the

hyperelliptic cover and a 3 : 1 map f̄ : P1 → P1. With this notation we define the
following subsets of J2:

J u
2 := {JC ∈ J2 | ∃ w1, w2, w3 in C such that f̄ is simply ramified},

J r
2 := {JC ∈ J2 | ∃ w1, w2, w3 in C such that f̄ is not simply ramified}.

So we have the decomposition

A2 = J u
2 ∪ J

r
2 ⊔ E2.

In [5, Theorem 7.4] is proved that

Pr(S3
M2) = J

u
2 , P r(R) ⊂ J r

2 , P r(S) = E2.
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Hodge modules, vanishing, and linearity

Mihnea Popa

(joint work with C. Schnell)

We apply M. Saito’s theory of mixed Hodge modules in the case of an abelian
variety A in order to produce natural classes of perverse coherent sheaves with

linear support on the dual abelian variety Â, and on the parameter space for

Higgs line bundles Â×H0(A,Ω1
A). This can be seen as a generalization of Generic

Vanishing theory, including and extending the main results of [2], [3], [4] and [6].
We first show that every mixed Hodge module on A gives rise to a collection of

perverse coherent sheaves on Â, namely the graded pieces of the filtration on the
underlying D-module. This uses the approach introduced in [4] for the study of
generic vanishing, and the correspondence established in [7] (cf. also [6]) between
GV -objects and perverse coherent sheaves. The tool which facilitates the applica-
tion of these results is a vanishing theorem for the graded pieces of the de Rham
complex associated to a D-module of the type above, established in [9]. We show:

Theorem. Let A be a complex abelian variety, and M a mixed Hodge module
on A with underlying filtered D-module (M, F ). Then for each integer k, the

Fourier-Mukai transform of GrFkM) is a perverse coherent sheaf on Â.

It is most interesting to apply this result to push-forwards of Hodge modules
on irregular smooth projective varieties via the Albanese map. Key tools are the
Decomposition Theorem of Saito, extending the well-known result of Beilinson-
Bernstein-Deligne, and results of Laumon and Saito on the behavior of associated
graded objects under direct images. Most concrete applications, including the
extension of Generic Vanishing theory mentioned above, follow already by looking
at the Hodge module associated to the trivial variation of Hodge structures QH

X [n],
where X is a smooth projective of dimension n.

For instance, the decomposition of the push-forward a∗QH
X [n] in the derived cat-

egory of mixed Hodge modules leads to a Nakano-type generic vanishing theorem
for all bundles of holomorphic forms Ωp

X . This is quite fundamental information
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that has eluded previous efforts towards obtaining a complete answer, even though
partial results can be found in [2] and [6]. Using standard notation, we write

V q(Ωp
X) = {α ∈ Pic0(X) | Hi(X,Ωp

X ⊗ Pα) 6= 0} ⊂ Pic0(X),

the q-th cohomological support locus of the bundle of holomorphic forms Ωp
X . If

a : X → A = Alb(X) is the Albanese map of X , for ℓ ∈ N, let Aℓ = {y ∈
A | dim f−1(y) ≥ ℓ}, and define the defect of a to be

δ(a) = max
ℓ∈N

(
2ℓ− dimX + dimAℓ

)
.

Theorem. Let X be a smooth complex projective variety of dimension n. Then
for each p, q ∈ N with p+ q > n, we have

codim V q(Ωp
X) ≥ q + p− n− δ(a).

For instance, if the Albanese map is semi-small then δ(a) = 0, and one obtains
generic Nakano-vanishing (known to not necessarily hold when the Albanese map
is only assumed to be generically finite). The Theorem above, or its proof, imply
the previously known generic vanishing statements for bundles of holomorphic
forms, including the result of [2] for ωX , and a result of [6] for arbitrary Ωp

X .
Analogously, let Char(X) = Hom(π1(X),C∗) be the algebraic group of charac-

ters of X . We are interested in bounding the codimension of the support loci

Σi(X) = {ρ ∈ Char(X) | Hi(X,Cρ) 6= 0},

where Cρ denotes the rank 1 local system associated to a character ρ. The structure
of these loci has been studied by Arapura [1] and Simpson [10], who showed that
they are finite unions of torsion translates of subtori of Char(X). Methods similar
to those described above lead us to the following quantitative result:

Theorem. Let X be a smooth projective variety of dimension n, with Albanese
map a : X → A of defect δ(a). Then, for each k ∈ N,

codimChar(X)Σ
k(X) ≥ 2|n− k| − 2δ(a).

A strong version of the standard linearity results on cohomological support loci
was given in [3]. Roughly speaking, it states that the standard Fourier-Mukai

transform RΦPOX := Rp2∗P in Db
coh(Â), where P is a Poincaré line bundle, is

represented by a linear complex in the neighborhood of the origin of Â. We extend
this to the setting of the trivial D-module OX . Let A be an abelian variety of
dimension g, and let A♯ be the moduli space of holomorphic line bundles with flat
connection on A. The projection

π : A♯ −→ Â, (L,∇) 7→ L

is a torsor for the trivial bundle OÂ ⊗ V , where V = H0(A,Ω1
A). As complex

manifolds, we have

A♯ ≃ H1(A,C)
/
H1(A,Z) and Â ≃ H1(A,OA)

/
H1(A,Z),
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and this is compatible with the exact sequence

0→ H0(A,Ω1
A)→ H1(A,C)→ H1(A,OA)→ 0.

In particular, the universal covering space of A♯ is isomorphic to H1(A,C). Recall
now that Laumon [5] and Rothstein [8] have extended the Fourier-Mukai trans-
form to D-modules. Their generalized Fourier-Mukai transform takes bounded
complexes of coherent D-modules on A to bounded complexes of coherent sheaves
on A♯; here is a brief description following the presentation in [5]. On A × A♯,
the pullback P ♯ of the Poincaré bundle P is endowed with a universal integrable
connection ∇♯, relative to A♯. Given any left D-module F on A, interpreted as a
quasi-coherent sheaf with integrable connection, we consider p∗1F ⊗P

♯ on A×A♯,
endowed with the natural tensor product integrable connection ∇ relative to A♯.
We then define

(1) RΦP ♯(F) := Rp2∗DR(p∗1F ⊗ P
♯,∇),

where DR(p∗1F ⊗ P
♯,∇) is the usual (relative) de Rham complex

(2)
[
p∗1F ⊗ P

♯ ∇
−→ p∗1F ⊗ P

♯ ⊗ Ω1
A×A♯/A♯

∇
−→ · · ·

∇
−→ p∗1F ⊗ P

♯ ⊗ Ωg
A×A♯/A♯

]

supported in degrees −g, . . . , 0. As all of the entries in this complex are relative
to A♯, RΦP ♯(F) is represented by a complex of quasi-coherent sheaves on A♯.
Restricted to coherent D-modules, this induces an equivalence of categories

RΦP ♯ : Db
coh(DA) −→ Db

coh(A
♯).

Now let X be a smooth projective variety with Albanese map a : X → A. By
first pushing forward to A (or equivalently by working with the pullback of (P ♯,∇♯)
to X ×A♯) one can similarly define

RΦP ♯ : Db
coh(DX) −→ Db

coh(A
♯).

We prove the following linearity theorem for the Fourier-Mukai transform of the
trivial D-module OX .

Theorem. Let X be a smooth projective variety of dimension n, and let E =
RΦP ♯(OX) ∈ Db

coh(A
♯) be the Fourier-Mukai transform of the trivial D-module on

X. Then the stalk E ⊗OA♯,0 is quasi-isomorphic to a linear complex.

This can be shown to recover both the results of Green-Lazarsfeld [3] and those
of Arapura [1] and Simpson [10] mentioned above. In combination with the previ-
ous result, it shows that the Fourier-Mukai transform of the trivial D-module is a
perverse coherent sheaf in Db

coh(A
♯), with linear support, and whose dual satisfies

the same properties. The class of such perverse sheaves should be very important
in the further investigation of D-modules coming from Hodge theory.
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Lagrangian fibrations on hyperkähler manifolds

Sönke Rollenske

(joint work with Daniel Greb, Christian Lehn)

Let X be a hyperkähler manifold, that is, a compact, simply-connected Kähler
manifold X such that H0(X,Ω2

X) is spanned by a holomorphic symplectic form σ.
From a differential geometric point of view hyperkähler manifolds are Riemannian
manifolds with holonomy the full unitary-symplectic group Sp(n).

An important step in the structural understanding of a manifold is to decide
whether there is a fibration f : X → B over a complex space of smaller dimension.
For hyperkähler manifolds it is known that in case such f exists, it is a Lagrangian
fibration: dimX = 2dimB, and the holomorphic symplectic form σ restricts to
zero on the general fibre. Additionally, by the Arnold-Liouville theorem the general
fibre is a smooth Lagrangian torus.

In accordance with the case of K3-surfaces (and also motivated by mirror sym-
metry) a simple version of the so-called Hyperkähler SYZ-conjecture asks if every
hyperkähler manifold can be deformed to a hyperkähler manifold admitting a La-
grangian fibration. We studied the question of existence of a Lagrangian fibration
on a given hyperkähler manifold X under a geometric assumption proposed by
Beauville [Bea11, Sect. 1.6]:

Question 1 (Beauville). Let X be a hyperkähler manifold and L ⊂ X a La-
grangian submanifold biholomorphic to a complex torus. Is L a fibre of a (mero-
morphic) Lagrangian fibration f : X → B?

We call a submanifold L as above a Lagrangian subtorus of X . To formulate
our main results we call a pair (X,L) of a hyperkähler manifold and a Lagrangian
subtorus stably projective if every deformation of X that preserves L is projective.
It can be shown that (X,L) being stably projective is a topological property of
the pair (see [GLR11a, Sect. 3]).

Theorem 1 (summarising [GLR11a]). Let X be a hyperkähler manifold containing
a smooth Lagrangian subtorus L.
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(1) If X is not projective, then X admits a holomorphic Lagrangian fibration
with fibre L.

(2) If X is projective but (X,L) is not stably projective, then X admits an
almost holomorphic Lagrangian fibration f : X 99K B with fibre L. More-
over, there exists a holomorphic model for f on a birational hyperkähler
manifold X ′, that is, there exists a commutative diagram

X

f

��
✤

✤

✤

//❴❴❴ X ′

f ′

��

B //❴❴❴ B′

where f ′ is a Lagrangian fibration on X ′ and the horizontal maps are
birational.

The proof starts from the observation that L infinitesimally behaves like the
fibre of a fibration; the first item is then deduced from results of Campana, Peter-
nell and Oguiso on non-algebraic hyperkähler manifolds. The second follows by
a deformation argument while for the third we have to invoke recent advances in
higher-dimensional birational geometry.

To answer Beauville’s question exhaustively it remains to exclude the case of
a projective hyperkähler manifold X containing a Lagrangian subtorus L such
that (X,L) is stably projective. In this case some deformations of L intersect L
in unexpected ways. This suggests a more geometric approach to the problem
which leads to a positive answer to the strongest version of Beauville’s question in
dimension four.

Theorem 2 ([GLR11b]). Let X be a 4–dimensional hyperkähler manifold con-
taining a Lagrangian torus L. Then X admits a holomorphic Lagrangian fibration
with fibre L.

Unfortunately, our approach in dimension 4 does not generalise to higher dimen-
sions at the moment. On the other hand we do not know of an explicit example of
a stably projective pair (X,L) or of an almost holomorphic Lagrangian fibration
which is not holomorphic.

References

[Bea11] Arnaud Beauville. Holomorphic symplectic geometry: a problem list. In Complex and
Differential Geometry, Conference held at Leibniz Universität Hannover, September
14 – 18, 2009, volume 8 of Springer Proceedings in Mathematics. Springer, 2011,

[GLR11a] Daniel Greb, Christian Lehn, and Sönke Rollenske. Lagrangian fibrations on hy-
perkähler manifolds — On a question of Beauville, 2011, arXiv:1105.3410.

[GLR11b] Daniel Greb, Christian Lehn, and Sönke Rollenske. Lagrangian fibrations on hy-
perkähler fourfolds, preprint in preparation.



2716 Oberwolfach Report 47/2011

Mirror Symmetry in Higher Kodaira Dimensions

Helge Ruddat

(joint work with Mark Gross, Ludmil Katzarkov)

1. Homological Mirror Symmetry

In his ICM talk [Ko94], Maxim Kontsevich proposed a categorical version of
mirror symmetry. He conjectured that mirror symmetry of a pair of Calabi-Yau
manifolds X, X̌ should be understood as equivalences of triangulated categories

Db(X) ∼= DFuk(X̌)

DFuk(X) ∼= Db(X̌)

where Db(V ) denotes the bounded derived category of coherent sheaves of a variety
V and DFuk(W ) denotes the derived Fukaya category on a symplectic manifoldW .
Hori-Vafa, Givental and Auroux extended mirror symmetry to Fano varieties where
the mirror of a projective Fano manifold X with a choice of effective anti-canonical
divisor D and holomorphic volume form Ωd is given by a complex manifold M
together with a holomorphic function w. In this setup, the homological mirror
symmetry conjecture takes the form

Db(X) ∼= DFS(M,w)

DFuk(X) ∼= Db(M,w)

where

• DFS(M,w) denotes the derived Fukaya-Seidel category, a conjectural con-
cept for which a rigorous definition was given in [Se07] in the case where
the critical points of w are A1-singularities,
• Db(M,w) denotes the category

Db(M,w) =
∏

t∈C

Db
sing (w

−1(t))

defined in [Or11] where in turn Db
sing (w

−1(t)) is the Verdier quotient of

Db(w−1(t)) by Perf(w−1(t)), the full subcategory of perfect complexes (i.e.
complexes of locally free sheaves). For a non-critical value t of w, we have

Db
sing (w

−1(t)) = 0

so the product above is finite.

A Landau-Ginzburg model (LG model) is a pair (X ,w) where X is a variety (resp.
complex manifold) with a flat regular (resp. holomorphic) map w to A1 (resp. C).
Given a LG model (X,w), we denote the critical locus of w by crit(w) and the
critical values by critval(w).

We propose a mirror construction for varieties of general type following along
the following steps:

Program 1. Let S be a smooth projective variety over C.
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(1) Construct a Landau Ginzburg model (X,w) such that S = crit(w).
(2) Use a mirror duality of Landau-Ginzburg models to obtain another LG

model (X̌, w̌), the mirror of (X,w).
(3) Take the pair (Š,FŠ) as the mirror of S, where Š = crit(w̌) and FŠ is a

complex of sheaves on Š. For a critical value t of w̌, on Š ∩ w̌−1(t), the
sheaf FŠ is given as (φw̌,tC)[1] where φ denotes Deligne’s vanishing cycle
functor.

There are a couple of remarks to be made here.
First, in the construction that I will discuss later on, instead of taking all critical

values into consideration as above, we will take Š to be only the part of the critical
locus mapping to a certain subset of critical values. If the Kodaira dimension of
S is non-negative, we will take Š as the singular locus of the critical fibre over 0.
There are typically additional singular fibres of w̌ which might or might not be
considered as contributing to Š. The criterion for whether or not a critical value
gives a contribution to Š is whether the critical value remains in a bounded region
when degenerating the potential w̌ in a certain way. E.g. for the mirror of P1

there will be two critical values all part of Š whereas for the mirror of a genus two
curve, there will be three critical values in our construction only the central one
of which contributes to Š, for a more detailed discussion see [GKR11].

Second, defining the mirror to be (Š,FŠ) appears to be sufficient in order to

associate a Hodge structure to (Š,FŠ), but possibly for further invariants, e.g.
the derived Fukaya-Seidel category or Gromov-Witten invariants, one might need
a tubular neighbourhood of crit(w̌) in X̌.

Let us discuss the homological mirror symmetry conjecture for our setup. We
expect the following equivalences

Db(S)
1)
∼= Db(X,w)

2)
∼= DFS(X̌, w̌)

DFuk(S)
3)
∼= DFS(X,w)

2)
∼= Db(X̌, w̌)

where the ones marked by 2) form the generalized homological mirror symmetry
conjecture for a pair of Landau-Ginzburg models. The equivalence 1) has been
proved in [HW09] for the situation we will be considering. As pointed out to us
by Denis Auroux, the equivalence 3) is standard to symplectic geometers using a
gradient flow argument. Also the definition of DFS(X,w) works well for a smooth

critical locus. Progress towards the equivalence DFuk(S) ∼= Db(X̌, w̌) has been
made in [Se08] and [Ef09].

2. The Mirror Construction

The mirror dual of an algebraic torus is an algebraic torus. The mirror dual
operation to compactification is adding a Landau-Ginzburg superpotential. The
new feature of our construction is that we partially compactify (C∗)n as well as its
mirror dual and thus will have potentials on both sides. This builds on the most
basic form of mirror symmetry: The duality of cones. We claim to have a mirror
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pair
(X̃σ, w)↔ (X̃σ̌, w̌)

whenever σ ⊆ M ⊗Z R is a full-dimensional rational polyhedral cone for M ∼= Zn

and σ̌ = {n ∈ N ⊗Z R|〈n,m〉 ≥ 0} is its dual in N ⊗Z R, N = Hom(M,Z), Xσ

and Xσ̌ are the associated affine toric varieties and X̃σ, X̃σ̌ crepant toric orbifold
resolutions of the blow-up of the origin respectively (which always exist). The
potentials w : Xσ → C and w̌ : Xσ̌ → C are given as

w =
∑

ρ̌

cρ̌z
nρ̌ and w̌ =

∑

ρ

cρz
mρ

where the sums are over the rays of the resolution of σ̌ and σ respectively, cρ̌, cρ ∈
C\{0} and znρ̌ denotes the monomial function associated to the primitive inte-

gral generator of ρ̌, similarly for zmρ . We pull back these potentials to X̃σ, X̃σ̌

respectively.
The strength of this construction is its simplicity. However, it looks naive from

several points of view, e.g. the coefficients of the potentials on either side should
be defined by counting holomorphic disks on the respective dual side and then
possibly there are more terms to these potentials. However, we will see that for
our purposes of supporting the existence of a mirror duality for varieties of any
Kodaira dimension, this construction suffices. In particular we claim that

Conjecture 1. If X̃σ and X̃σ̌ are smooth, then

hp,q(X̃σ, w) = hn−p,q(X̃σ̌, w̌).

More generally, if X̃σ or X̃σ̌ is an orbifold, one needs to replace the ordinary
Hodge numbers by a version of the orbifold Hodge numbers. However, we haven’t
discussed yet, how to define hp,q(X,w). This will be done shortly, but let us first
see how to apply our mirror construction in order to obtain the mirror of say a
genus two curve:

Note that our construction naturally generalizes the Batyrev-Borisov construc-
tion. This already indicates how one might use it in order to put into practice
Program 1. Indeed, we can construct a mirror for a smooth variety S if S embeds
as a complete intersection in a toric variety. For simplicity we will only sketch the
case where S is a bidegree (2, 3)-hypersurface in P1 × P1 and thus S is a genus

two curve: We define X̃σ as the total space of the line bundle OP1×P1(−2,−3). It
is an exercise to show that an element of Γ(P1 × P1,OP1×P1(2, 3)) determines a

map w : X̃σ → C such that crit(w) = S where S is the zero locus of the chosen
section of OP1×P1(2, 3). Thus we have a Landau-Ginzburg model fulfilling 1) of

Program 1. For the second step, we first need to observe that X̃σ is a toric variety
given as the blow-up of the origin in an affine toric variety Xσ. Indeed, Xσ is
obtained by contracting the zero-section in the total space of OP1×P1(−2,−3). To
obtain the mirror, we start by dualizing the cone σ to obtain a cone σ̌. We find
this to be the cone over a rectangle ∆ with edge lengths 2 and 3 and identify Xσ̌

for a fixed t 6= 0 as the subvariety

V (xy − t2z2, uv − t3z3)
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of A5. We have w̌ = x+ y + z + u+ v. We obtain X̃σ̌ by triangulating ∆, e.g. as
follows:

Under the pullback to X̃σ̌, w̌
−1(0) picks up two exceptional divisors given by the

interior points of ∆, so 0 will be a critical value and in fact the only one we
consider. We find that w̌−1(0) is a normal crossing divisor with three irreducible
components meeting as follows:

Š

We obtain (Š,FŠ) where Š is a union of three projective lines all identified in
0 and ∞. The complex of sheaves FŠ is just the constant sheaf C at a general

point of Š and at the two special points its cohomology is C2 in degree 0 and C
in degree 1. A computation of the hypercohomology of FŠ exhibits the expected
Hodge numbers of a mirror of S, namely:

2
1 1

2

More generally, we enhance FŠ to a cohomological mixed Hodge complex and
obtain a mixed Hodge structure on its hypercohomology. We then define Hodge
numbers by forgetting the weights as

hp,q(Š,FŠ) :=
∑

k

hp,q+kHp+q(Š,FŠ)

and prove in [GKR11] the following:

Theorem 1. Let S be a smooth d-dimensional ample hypersurface in a smooth
toric variety P∆ and let (Š,FŠ) be its mirror by the construction above then

hp,q(S) = hd−p,q(Š,FŠ).
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3. Hochschild (co-)homology

Coming back to the discussion of the first section, we would like to link the
hypercohomology of a mirror (Š,FŠ) of a complete intersection S in a toric va-
riety to the cohomology of the attached category. Recall that by a theorem of
Hochschild-Kostant-Rosenberg, we have for a smooth projective manifold S that
the degree k Hochschild cohomology Db(S) is given by

HHk(S) =
⊕

p+q=k

Hq(S,

p∧
TS)

while the degree k Hochschild homology is

HHk(S) =
⊕

p−q=k

Hq(S,Ωp
S).

More generally, i.e. for the mirror LG model (X̃σ̌, w̌) with w̌ quasi-projective, we
have by Orlov [Or11] and Lin-Pomerleano [LP11] an equivalence

Db(X̃σ̌, w̌) ∼=MF (X̃σ̌, w̌)

where the latter is the category of matrix factorisations. It is then shown that

HH(kmod2)(MF (X̃σ̌, w̌)) ∼= H(kmod2)(X̃σ̌, (Ω
•
X̃σ̌
,∧dw̌)).

Now using a theorem by Barannikov-Kontsevich, Sabbah, Ogus-Vologodsky, we
have an isomorphism

Hk(X̃σ̌, (Ω
•
X̃σ̌
,∧dw̌)) ∼=

⊕

p∈critval(w̌)

Hk−1(w̌−1(p), φw̌,pC)

whenever w̌ is projective. We may use this by compactifying X̃σ̌ and eventually
find that we have furnished HHk(D

b(X̃σ̌, w̌)) with a mixed Hodge structure (with
the caveat however that the last isomorphism given above is non-canonical).

From this perspective, Theorem 1 only considers one half of the (co-)homology
groups, namely the Hochschild homology. By analyzing the sheaves of poly-vector
fields, we came up with the following conjecture:

Conjecture 2. Given a mirror pair S, (Š,FŠ) of our construction, we have

HHk(S) ∼= Hk(Š,C).

We prove this conjecture when S is a curve and exemplary for the quintic
surface.
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Counting curves in surfaces and the Göttsche conjecture

Richard P. Thomas

(joint work with Martijn Kool)

Fix a nonsingular projective surface S and a homology class β ∈ H2(S,Z). There
are various ways of counting holomorphic curves in S in class β; we focus on
Gromov-Witten invariants and stable pairs. Since these are deformation invariant
they must vanish in class β if there exists a deformation of S for which the Hodge
type of β is not (1, 1). We can see the origin of this vanishing without deforming
S as follows.

For simplicity work in the simplest case of an embedded curve C ⊂ S with
normal bundle NC = OC(C). As a Cartier divisor, C is the zero locus of a section
sC of a line bundle L := OS(C), giving the exact sequence

0→ OS
sC−→ L→ NC → 0.

The resulting long exact sequence describes the relationship between first order
deformations and obstructions H0(NC), H

1(NC) of C ⊂ S, and the deformations
and obstructions H1(OS), H

2(OS) of the line bundle L→ S:

0→ H0(L)
/
〈sC〉 → H0(NC)→ H1(OS)→ H1(L)

→ H1(NC)→ H2(OS)→ H2(L)→ 0.(1)

The resulting “semi-regularity map” [1] H1(NC) → H2(OS) = H0,2(S) takes
obstructions to deforming C to the “cohomological part” of these obstructions.
Roughly speaking, if we deform S, we get an associated obstruction in H1(NC)
to deforming C with it; its image in H0,2(S) is the (0, 2)-part of the cohomology
class β ∈ H2(S) in the deformed complex structure. Thus it gives the obvious
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cohomological obstruction to deforming C: that β must remain of type (1, 1) in
the deformed complex structure on S.

In particular, when S is fixed, obstructions lie in the kernel of H1(NC) →
H2(OS). More generally, if we only consider deformations of S for which β remains
(1, 1) then the same is true. And when h0,2(S) > 0, the existence of this trivial
H0,2(S) piece of the obstruction sheaf guarantees that the virtual class vanishes.

So it would be nice to restrict attention to surfaces and classes (S, β) such
that β ∈ H2(S) has type (1, 1), defining a new obstruction theory using only the
kernel of the semi-regularity map. (Put differently, if we restrict to the Noether-
Lefschetz locus, we know that the space of line bundles is smooth, so we can
remove its obstruction space H2(OS). When the curve is an embedded divisor
the result is that we consider only the obstructions H1(L) to deforming sections of
L.) Checking that this kernel really defines an obstruction theory in the generality
needed to define a virtual cycle – i.e. for deformations to all orders over an arbitrary
base – has proved difficult; there is a hotchpotch of results in different cases due
to many authors. Our general construction uses a mixture of their methods.

For stable pairs we get optimal results; this part is joint work also with Dmitri
Panov. We show that the kernel of the semi-regularity map defines a reduced
perfect obstruction theory whenever

(2) H2(L) = 0 for effective line bundles L with c1(L) = β.

Equivalently the condition is that no line bundle in Picβ(S) is special. (Special line
bundles L are those for which both L and KS −L are effective.) This condition is
necessary to ensure the semi-regularity map (1) is surjective.

For Gromov-Witten theory, multiple covers complicate the situation, but we
are able to prove the same result for the moduli space of stable maps when

(3) H1(TS)
∪β
−→ H2(OS) is surjective.

Here β ∈ H1(ΩS) and we use the pairing Ω1
S ⊗ TS → OS . Condition (3) implies

(2): for any L = O(C) in class β, the map ∪β factors as H1(TS)→ H1(OC(C))→
H2(OS), so surjectivity implies that H2(L) = 0 by the exact sequence (1).

Our method is to consider the moduli space of curves on the fibres of a certain
algebraic twistor family of S. This unforgivable abuse of notation is an h0,2(S)-
dimensional family SB of surfaces with totally nondegenerate Kodaira-Spencer
map over a first order Artinian base B. This relative moduli space of curves on
the fibres of SB → B is equal to the moduli space of curves on the central fibre, and
the natural perfect obstruction theory of the family is isomorphic to the kernel of
the semi-regularity map on the standard obstruction theory. This gives a reduced
obstruction theory from which we define invariants of S. These can be thought of
in many ways:

(1) Reduced Gromov-Witten invariants of S, counting curves satisfying inci-
dence conditions. These coincide with usual Gromov-Witten invariants
when h2,0(S) = 0.
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(2) Reduced residue Gromov-Witten invariants of S defined via C∗-localisation
on the canonical bundle of S. These include the reduced Gromov-Witten
invariants above, but can also involve extra classes. When KS is trivial
on β these are λ-classes pulled back from the moduli space of curves.

(3) Reduced (residue) stable pairs invariants of S. These count, in a vir-
tual sense, pairs (C,Z) where C ⊂ S is a divisor and Z ⊂ C is any
0-dimensional subscheme. The curves satisfy incidence conditions, and in
the residue theory the virtual counting can be replaced by a virtual Euler
characteristic.

(4) If (3) holds also for β′ < β (i.e. β is the sum of effective classes β′, β′′) then
the absolute moduli space of curves in SB also coincides with the moduli
space for S, and the reduced Gromov-Witten invariants of S become the
ordinary Gromov-Witten invariants of the family SB.

(5) Using insertions to cut down to a δ-dimensional linear system of curves
in |L| for some L ∈ Picβ(S), an appropriate reduced Gromov-Witten in-
variant of S can be shown to coincide with Göttsche’s invariants counting
δ-nodal curves in very ample δ-dimensional linear systems.

(6) The residue invariants are 3-fold invariants of the canonical bundle of
S (a Calabi-Yau 3-fold), to which an appropriate strengthening of the
MNOP conjecture of Maulik-Nekrasov-Okounkov-Pandharipande applies.
In particular reduced residue Gromov-Witten and stable pair invariants
are conjecturally equivalent. In the special case of the Göttsche invariants
mentioned above we are able to prove this conjecture.

The MNOP conjecture is especially useful because we can really make computa-
tions on the stable pairs side. We show that the “good component” of moduli space
is the zero locus of a section of a vector bundle over a bigger smooth space, and
that this description induces the correct obstruction theory. This allows us to com-
pute many invariants in terms of topological numbers: β2, c1(S).β, c1(S)

2, c2(S)
and more unusual topological invariants of β when b1(S) 6= 0. (As an example of
the latter consider β ∈ H2(S) to be a skew map H1(S) → H1(S)∗ by wedging
and integration on S. Now take its Pfaffian.)

In earlier work with Vivek Shende [2] we carried out the stable pairs computa-
tion in the special case related to Göttsche’s invariants, giving a simple algebraic
proof that they depend only on β2, c1(S).β, c1(S)

2, c2(S). This recovers a result
of Tzeng [3].
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Curvature flows on complex manifolds

Gang Tian

In this talk, I first described an on-going program on Kähler-Ricci flow on Kähler
manifolds. I discussed how finite-time singularity this Kähler-Ricci flow forms
and how it is related to the minimal model program in algebraic geometry. Next
I explained how to construct a global solution with surgery. Then I discussed
generalized Kähler-Einstein metrics and what is the limiting behavior of the global
solution with surgery. The second flow discussed is the pluri-closed flow due to
J. Streets and myself. I first discussed two formulations of this pluri-closed flow
and show how it is related the renormalization group flow coupled with B-fields.
I also propose a conjecture on sharp local existence of this flow and show how
the resolution of this conjecture can be used to attack the problem of classifying
mysterious class V II+ surfaces.

Boundedness of log pairs

Chenyang Xu

(joint work with Christopher Hacon, James McKernan)

In this joint work, we establish a general theory of boundedness of singular pairs
of log general type. More precisely, fix a positive integer n and a set I ⊂ [0, 1]
satisfying the descending chain condition (DCC). Now we consider the class of
pairs

D = {(X,∆)|(X,∆) is log canonical, dimX = n,KX +∆ is big

and the coefficients of ∆ are in I.}

Then we show that the set {vol(KX +∆)|(X,∆) ∈ D} ⊂ R>0 also satisfies DCC.
Furthermore, there exists a constant N which only depends on I and n such
that the linear system |r(KX + ∆)| induces a birational map for any r ≥ N and
(X,∆) ∈ D.

Historically, this is first conjectured by Kollár ([5]). When n = 2, this is solved
by Alexeev (cf. [1]). For the subclass Dsm, which consists of smooth general
type varieties of no boundaries, this is proved by Tsuji, Hacon-McKernan and
Takayama (cf.[2, 6]).

To prove this, a crucial concept is the log birational boundedness which we obtain
by refining the original idea due to Tsuji. A class of pairs {(Xt,∆t)} is called log
birationally bounded if there is a scheme S of finite type with a family of pairs
(Y,D) over S such that for any (Xt,∆t) there exists a point s ∈ S and a birational
map ft : Xt 99K Ys with Ds = ft∗(∆t) + Ex(f−1

t ). Then it is easy to see that
if we choose a common resolution p : W → X and q : W → Y and we choose
∆W = p−1

∗ (∆) + Ex(p), then

vol(KX +∆) = vol(KW +∆W ).

Therefore, we can replace (X,∆) by (W,∆W ) (by possibly enlarging I to I ∪ {1})
and always also assume that ft is a morphism.
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Then the proof of the theorem is divided into two steps: first we show that if a
subclass C in D is log birationally bounded, then the volumes of pairs in C satisfy
DCC; then we show that for any fixed constant C, if we consider the subclass
DC ⊂ D which consists of pairs of volume at most C, then DC is log birationally
bounded.

To proof the first step, we first generalize Siu’s invariance of plurigenera to the
case for pairs, under the assumption that its a family of log smooth pairs with
one of them is of log general type. With this result, we reduce to the case that
S is a point, i.e., all (Xt,∆t) is log birational to a fixed log smooth pair (Y,D).
Then we show that after blowing up (Y,∆) along the strata finitely many times,
we indeed get a model Y with morphisms ft : Xt → Y , such that vol(KXt

+∆t) =
vol(KY + ft∗(∆t)). The conclusion now easily follows from our assumption that
the coefficients satisfy DCC condition. For more details, see [3].

Then, to show the statement for the second step, we follow the strategy by Tsuji.
First, we show that there exists a constant C1, which depends on I, n and C, such
that for any r, if vol(r(KX + ∆)) ≥ C1, then the linear system |⌈r(KX + ∆)⌉|
induces a birational map. This is obtained by restricting the linear system to the
log canonical centers and extending sections from the log canonical centers. Thus
we need to show the restricting volumes are larger than a uniform constant by
applying induction. The key point is that we can construct a boundary on the log
canonical center, such that it is log big, the pluri-sections can be extended and
the coefficients are contained in a DCC set. Such a boundary is obtained by using
the ACC conjecture of log canonical thresholds of lower dimensions, which is also
part of our induction.

The remaining subtlety is that, we need to show |⌊r(KX + ∆)⌋| induces a
birational map rather than the rounding up. This is more delicate than it first
appears, since we essentially need to show that there exists a uniform constant
ǫ > 0, such that if (X,∆) ∈ D, then KX + (1− ǫ)∆ is also big. If this is not true,
let us assume that there exists a sequence of ǫi > 0, such that lim ǫi = 0, which are
the pseudo-effective thresholds of a sequence of pairs (Xi,∆i) ∈ D. Using MMP
and the induction assumption, we can easily reduce to the case that (Xi,∆i) are
klt, the underlying spaces Xi are all Fano varieties and KXi

+(1−ǫi)∆i are trivial.
If the pairs (Xi,∆i) are log birationally bounded, then the result is easy to get
by the conclusion of the first step. So we assume (Xi,∆i) are not log birational
bounded, in which case, it just says vol(−KXi

) are unbounded. To rule out this
case, we indeed show the following fact that there exists a uniform δ, such that for
any Θi ≥ (1− δ)∆i, and KXi

+Θi is trivial, then (Xi,Θi) is klt. For more details
see the incoming paper [4].

This general result has a number of consequences. It can be applied to show
that there exists a uniform Cn depending only on n, such that the order of the
birational automorphism group of a n-dimensional general type variety X is less
than Cn ·vol(KX) (see [3]). As part of our induction chain, we also verify the global
ACC conjecture for numerical trivial pairs as well as Shokurov’s ACC conjecture
on log canonical thresholds. As an immediate consequence of the last step, we
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prove Batyrev’s conjecture on Q-Fano varieties with bounded index. Finally, we
prove the boundedness of the moduli functors of the stable schemes. Here we
use the DCC property of the volumes to reduce the question to normal pairs, and
then use a special type of MMP to achieve the boundedness from the log birational
boundedness which we have shown.
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Compact Kähler manifolds with automorphism groups of maximal
rank

De-Qi Zhang

We work over the field C of complex numbers. For a linear transformation L on
a finite-dimensional vector space V over C or its subfields, its spectral radius is
defined as ρ(L) := max{|λ| ; λ ∈ C is an eigenvalue of L}. Let X be a compact
complex Kähler manifold and Y a normal projective variety, and let g ∈ Aut(X)
and f ∈ Aut(Y ). Define the (topological) entropy h(∗) and first dynamical de-
grees d1(∗) as: h(g) := log ρ(g∗ | ⊕i≥0 Hi(X,C)), d1(g) := ρ(g∗ |H2(X,C)) (=
ρ(g∗ |H1,1(X))), d1(f) := ρ(f∗ | NSC(Y )), where NSC(Y ) := NS(Y ) ⊗Z C is
the complexified Neron-Severi group. By the fundamental work of Gromov and
Yomdin, the above definition of entropy is equivalent to its original definition (cf.
[1, §2.2] and the references therein). Further, when Y is smooth, the above two

definitions of d1(∗) coincide; for Q-factorial Y , we have d1(f) = d1(f̃) where f̃
is the lifting of f to the one on an Aut(Y )-equivariant resolution of Y . We call
τ := g or f , of positive entropy (resp. null entropy) if d1(τ) > 1 (resp. d1(τ) = 1),
or equivalently h(τ) > 0 (resp. h(τ) = 0) in the case of compact Kähler manifold.
We say that the induced action G |H1,1(X) is Z-connected if its Zariski-closure in
GL(H1,1(X)) is connected with respect to the Zariski topology; in this case, the
null set N(G) := {g ∈ G | g is of null entropy} is a (necessarily normal) subgroup
of G (cf. [2, Theorem 1.2]). In [2], we have proved:

Theorem 1. Let X be an n-dimensional (n ≥ 2) compact complex Kähler mani-
fold and G a subgroup of Aut(X). Then one of the following two assertions holds:
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(1) G contains a subgroup isomorphic to the non-abelian free group Z∗Z, and
hence G contains subgroups isomorphic to non-abelian free groups of all
countable ranks.

(2) There is a finite-index subgroup G1 of G such that the induced action
G1 |H1,1(X) is solvable and Z-connected. Further, the subset N(G1) :=
{g ∈ G1 | g is of null entropy } of G1 is a normal subgroup of G1 and the
quotient group G1/N(G1) is a free abelian group of rank r ≤ n − 1. We
call this r the rank of G1 and denote it as r = r(G1).

Therefore, we are interested in the group G ≤ Aut(X) where G |H1,1(X) is
solvable and Z-connected and that the rank r(G) = dimX − 1 (maximal value).
In the following, denote by Aut0(X) the identity connected component of Aut(X).
A group virtually has a property (P) if a finite-index subgroup of it has the property
(P).

A complex torus has lots of symmetries. Conversely, our main result Theorem
2 says that the maximality r(G) = dimX − 1 occurs only when X is a quotient of
a complex torus T and G is mostly descended from the symmetries on the torus
T .

Theorem 2. Let X be an n-dimensional (n ≥ 3) normal projective variety and
G ≤ Aut(X) a subgroup such that the induced action G | NSC(X) is solvable and
Z-connected and that the rank r(G) = n − 1 (i.e., G/N(G) = Z⊕n−1). Assume
the three conditions:

(i) X has at worst canonical, quotient singularities.
(ii) X is a minimal variety, i.e., the canonical divisor KX is nef.
(iii) The pair (X,G) is minimal, i.e., for every finite-index subgroup G1 of G,

every G1-equivariant birational contraction from X onto some variety with
only isolated canonical singularities, is an isomorphism.

Then the following four assertions hold.

(1) The induced action N(G) | NSC(X) is a finite group.
(2) G | NSC(X) is a virtually free abelian group of rank n− 1.
(3) Either N(G) is a finite subgroup of G and hence G is a virtually free

abelian group of rank n − 1, or X is an abelian variety and the group
N(G)∩Aut0(X) has finite-index in N(G) and is Zariski-dense in Aut0(X)
(∼= X).

(4) We have X ∼= T/F for a finite group F acting freely outside a finite set
of an abelian variety T . Further, for some finite-index subgroup G1 of G,
the action of G1 on X lifts to an action of G1 on T .

When dimX = 3, the (i) in Theorem 2 can be replaced by: (i)’ X has at worst
canonical singularities (using a result of Shepherd-Barren and Wilson).

For non-algebraic manifolds, we have a result parallel to Theorem 2.
Theorem 2 answers [2, Question 2.17], assuming the conditions here. When G

is abelian, the finiteness of N(G) is proved in the inspiring paper of Dinh-Sibony
[1, Theorem 1] (cf. also [3]), assuming only r(G) = n− 1. For non-abelian G, the
finiteness of N(G) is not true and we can at best expect that N(G) is virtually
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included in Aut0(X) (as done in Theorem 2), since a larger group G̃ := Aut0(X)G
satisfies

G̃ | NSC(X) = G | NSC(X), N(G̃) = Aut0(X).N(G) ≥ Aut0(X), G̃/N(G̃) ∼= G/N(G).

There are examples (X,G) with rank r(G) = dimX − 1 and X complex tori or
their quotients (cf. [1, Example 4.5], [3, Example 1.7]).

The conditions (i) - (iii) in Theorem 2 are quite necessary in deducing X ∼= T/F
as in Theorem 2(4). Indeed, if X ∼= T/F as in Theorem 2(4), then X has only
quotient singularities and dKX ∼ 0 (linear equivalence) with d = |F |, and we may
even assume that X has only canonical singularities if we replace X by its global
index-1 cover; thus X is a minimal variety. If the pair (X,G) is not minimal so
that there is a non-isomorphic G1-equivariant birational morphism X → Y , then
the exceptional locus of this morphism is G1- and hence G-periodic, contradicting
the fact that the rank r(G) = n− 1.

Theorem 3. Let X be a projective minimal (terminal) variety of dimension n,
with n = 3, and G ≤ Aut(X) a subgroup such that G | NSC(X) is not virtually
solvable. Then the radical R(G) | NSC(X) (the intersection of G | NSC(X) with the
solvable radical of its Zariski-closure in GL(NSC(X))) is virtually unipotent and
hence of null entropy; replacing G by a suitable finite-index subgroup, G/R(G)
is embedded as a Zariski-dense subgroup in an almost simple real linear algebraic
group H(R) which is either of real rank 1 or locally isomorphic to SL3(R) or
SL3(C).

Question 1. In Theorem 3, if H is of real rank n− 1 (with n not assumed to be
3) is X birational to a quotient of an abelian variety of dimension n? (A positive
answer is given by Cantat-Zeghib when G is a lattice in an almost simple Lie group
of rank n− 1).
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