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Abstract

These are lecture notes for two talks given at a seminar of the SFB-TR 12 "Sym-

metries and Universality in Mesoscopic Systems" in April 2006.

We study equivariant differential forms on (symplectic) manifolds endowed with

an action of a compact Lie group K. We prove localisation results under certain

assumptions on the fixed point set of the action, give references for the proofs in the

general cases, and indicate some applications.

1 Introduction

In physical disciplines such as geometric optics, statistical mechanics and the study of

classically chaotic systems via random matrix theory or via σ-models, it is often necessary

to evaluate oscillatory integrals of the form
∫

M
eitH(x)β(x),

where (M2l, ω) is a symplectic manifold, H is a Hamiltonian function on M and β is the

Liouville form ωl

l!(2π)l (see for example [GS90], [Zir99], [AM04]).

In this note, we investigate certain situations in which the exact evaluation of these integrals

is possible as a consequence of general results in equivariant cohomology.

As an application, the last chapter discusses the measure H∗(dβ), for which we give explicit

formulas in terms of geometric data associated to M , ω and H.

2 Equivariant differential forms and their cohomology

The exposition follows [BGV92]. Let M be an n-dimensional real manifold, G a connected

real Lie group with Lie algebra g and G × M → M an action of G on M .

The action of G on M induces actions on C∞(M), on Γ(M,TM) =: X (M) and on

Γ(M,
∧k(T ∗M)) := Ak(M) for all k ∈ N. Let A(M) = ⊕n

k=0A
k(M) ⊗ C be the alge-

bra of complex-valued differential forms on M .
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Furthermore, every ξ ∈ g induces a vector field on M via

ξM(f)(x) =
d

dt

∣

∣

∣

∣

t=0

f(exp(−tξ) • x).

The mapping from g to X (M) given by ξ 7→ ξM is a Lie algebra homomorphism.

Let C[g] denote the algebra of complex-valued polynomial functions on g. We may view

the tensor product C[g]⊗A(M) as the algebra of polynomial maps from g to A(M). Note

that C[g] ∼= S(g∗)⊗ C and therefore C[g]⊗A(M) ∼= S(g∗)⊗A(M) is an object similar to

a Clifford-Weyl algebra.

Example 2.1. Let ω be any k-form (k ≥ 1) on M . Then the assignment ξ 7→ iξM
ω defines

an element of C[g] ⊗A(M), in fact, in g∗ ⊗A(M).

There is a natural G-action on C[g] ⊗A(M) given by

(g • α)(ξ) = g • (α(Ad(g)ξ)) ∀g ∈ G,∀ξ ∈ g.

Let AG(M) := (C[g] ⊗A(M))G. This is a subalgebra of C[g] ⊗ A(M). An element

α ∈ AG(M) satisfies

α(Ad(g)ξ) = g • (α(ξ))

and will be called an equivariant differential form. The algebra C[g]⊗A(M) has a Z-grading

that is given by

deg(P ⊗ β) = 2deg(P ) + deg(α).

We will see the reason for the choice of this particular grading later. This Z-grading induces

a Z/2Z-grading, which makes C[g]⊗A(M) into an infinite-dimensional super-space. This

in turn implies that End(C[g] ⊗A(M)) is a Lie-superalgebra.

The element of End(C[g] ⊗A(M)) that is given by

(dgα)(ξ) = d(α(ξ)) − iξM
(α(ξ))

is called the equivariant exterior differential. It increases the degree by one: consider

α ∈ Sk(g∗) ⊗ Al(M). Then ξ 7→ iξM
(α(ξ)) is an element of Sk+1 ⊗ Al−1(M). This

gives the reason for the choice of the grading and shows that dg is an on odd element of

End(C[g] ⊗A(M)).

Furthermore, the subalgebra of equivariant differential forms is invariant under dg, i.e.

dg(AG(M)) ⊂ AG(M).

For the proof write out the definitions and use the relation g∗(ξM )x = (Ad(g)ξ)(g • x).

Recalling Cartan’s „magic formula“, LX = iX ◦ d + d ◦ iX for any X ∈ X (M), we see that

for all α ∈ C[g] ⊗A(M), we have

(d2
g(α))(ξ) = −LξM

(α(ξ)).

Since α(ξ) = α(Ad(exp(tξ))ξ) = exp(tξ) • α(ξ) holds for all t ∈ R, the restriction of dg

to AG(M) satisfies d2
g = 0. This implies that (AG(M), dg) is a complex, i.e. we have a

sequence

0
dg
−→ AG(M)(0)

dg
−→ AG(M)(1)

dg
−→ · · ·
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and dg ◦ dg = 0. Here, A
(k)
G (M) denotes the set of equivariant differential forms of degree

k.

Elements α ∈ AG(M) with dg(α) = 0 are called equivariantly closed and elements α such

that there exists a β ∈ AG(M) with dg(β) = α are called equivariantly exact. We make

the following

Definition 2.2. The equivariant cohomology H∗
G(M) of M is the cohomology of the com-

plex (AG(M), dg).

Next, we discuss some properties of equivariant cohomology:

First, we notice that a homomorphism of Lie groups induces a pullback map on equivariant

forms AG(M) → AH(M) that is defined using the restriction map C[g] → C[h]. This in

turn induces a map H∗
G(M) → H∗

H(M).

Second, if we apply the results of the previous paragraph to the inclusion H = {e} ↪→ G,

we obtain a map AG(M) → A{e}(M). However, A{e}(M) is just the algebra of ordinary

differential forms on M . This map is explicitly given by

AG(M) → A(M)

α 7→ α(0).

If β = α(0) ∈ A(M), we call α an equivariant extension of β.

Next, if M is a compact and oriented manifold, then we can define the integration map:
∫

M
: AG(M) → C[g]G

which is given by
(∫

M α
)

(ξ) =
∫

M α(ξ)top. Here, α(ξ)top denotes the top degree part of

α(ξ). If α is equivariantly exact, i.e. α = dgβ for some β ∈ AG(M) and dim M = n, then

α(ξ)[n] = d
(

β(ξ)[n−1]

)

. Thus, Stokes’ theorem implies that
∫

M α ∈ C[g]G just depends on

the equivariant cohomology class of α.

Example 2.3. Let p a point and G any Lie group. Consider the trivial G-action on p.

Then, we have

H∗
G(p) ∼= C[g]G.

The following example discusses the opposite extreme case:

Example 2.4. Let M = C∗ and let G = S1 act on C∗ by multiplication. Then, we have

H0
S1(C

∗) = C

Hq
S1(C

∗) = 0 ∀q ≥ 1.

In fact, this second example is a special case of the following

Proposition 2.5. Let G × M → M be a free and proper action. In other words, M/G

exists as a manifold and M → M/G is a principal fibre bundle. Then, we have

H∗
G(M) ∼= H∗(M/G).
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A proof of the proposition can be found in [GS99].

Let us now consider an intermediate situation:

Example 2.6. Let G = S1 act on M = C by multiplication. Then, we have

H∗
S1(C) ∼= C[x],

where x is a formal variable. Note that as a special case of example 2.3, we have H∗
S1({0}) ∼=

C[x]. Hence, H∗
S1(C) ∼= H∗

S1({0}).

Let us now come to the main example for equivariant differential forms considered in this

note and thus make the connection to the integrals we finally want to evaluate.

Example 2.7. Let (M,ω) be a symplectic manifold. Recall that for a function H ∈

C∞(M), we define the Hamiltonian vector field generated by H by the equation dH = iXH
ω.

Let G be a Lie group that has a Hamiltonian action G × M → M on M , i.e. there exists

an equivariant momentum map µ : M → g∗ that fulfills the defining equation dµξ = iξM
ω.

Let us define an element of C[g] ⊗A(M) by

ωg(ξ) = µξ + ω =< µ(·), ξ > +ω.

We calculate:

ωg(Ad(g)ξ)x = µ(x)(Ad(g)ξ) + ω

= µ(g−1
• x)(ξ) + ω

= µξ(g−1
• x) + ω

= (g • (ωg(ξ)))x.

Hence, ωg is equivariant. Obviously, ωg(0) = ω. Hence, ωg is an equivariant extension of

ω. The fact that ω is closed and the defining equation for the momentum map immediatly

imply that ωg is equivariantly closed:

dg(ωg)(ξ) = d(µξ + ω) − iξM
(µξ + ω) = dµξ − iξM

ω = 0.

A closely related setup is the following: as above, let (M,ω) be a symplectic manifold, let

H ∈ C∞(M) and let XH be its Hamiltonian vector field. It generates a one-parameter

subgroup φt of the symplectic diffeomorphism group of M . This gives a symplectic R-

action on M by t • x = φt(x). In fact, this action is Hamiltonian with momentum map

mu : M → R∗ that is defined by its 1-component (1 ∈ R = Lie(R)):

µ1(x) = H(x).

Hence, the construction introduced above works and we have

ωR(ξ) = ξ · H + ω ∈ A(M) ∀ξ ∈ R.

Hence, we see that it is good idea to discuss integration of equivariantly closed forms. This

will be done in the next section.
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3 Localisation formula

Let M be an n-dimensional manifold that is acted upon by a compact group K. Then we

can find a Riemannian metric (·, ·) on M that is K-invariant. In this section, we will see

how such a metric may be used to study equivariant differential forms.

The crucial result which will later on imply the localisation formula is the following

Proposition 3.1. Let K be a compact Lie group and α ∈ AK(M) be an equivariantly

closed form on M . For ξ ∈ k = Lie(K), let M ξ be the set of zeroes of ξM . Then, for each

ξ ∈ k, the differential form α(ξ)[n] is d-exact outside M ξ.

Proof. Let ξ ∈ k and define dξ := d − iξ ∈ End(A(M)) (a „hidden supersymmetry“). It

fulfills dξ(α(ξ)) = 0, since α is equivariantly closed. We construct a differential form θ on

M with the following two properties:

• LξM
θ = 0,

• dξθ is invertible as an element of A(M \ M ξ).

Let (·, ·) denote a K-invariant Riemannian metric on M . Define

θ(X) = (ξM ,X) ∀X ∈ X (M).

Then θ is invariant under the action of the compact torus Tξ := < exp(Rξ) > ⊂ K thus

fulfills the first condition. For the second condition notice that dξ(θ) = (ξM , ξM ) + dθ,

which is invertible (by a geometric series) in A(M \ M ξ).

We claim that for every α ∈ AK(M) that is equivariantly closed, we have

α(ξ) = dξ

(

(dξθ)−1 ∧ θ ∧ α(ξ)
)

. (1)

Indeed, we have the following three equalities, which together with the fact that dξ is a

derivation imply the claim.

1. d2
ξθ = 0

2. dξ(α(ξ)) = 0, since α ∈ AG(M).

3. dξ(dξθ
−1) = 0.

By taking the highest degree part on each side of (1), we obtain the result.

Remark 3.2. Inspecting the proof we gave above, we see that in fact the following slightly

more general result is true:

Proposition 3.3. Let G be a (not necessarily compact) Lie group acting on a manifold M .

Let ξ ∈ g be an elliptic element, i.e. an element such that < exp(Rξ) > =: Tξ is a compact

torus in G. Let α be an element of AT (M) which is T -equivariantly closed. Let M ξ be

the set of zeroes of the vector field ξM (this is equal to the fixed point set of the Tξ-action

on M). Then, for each η ∈ t = Lie(T ) ⊂ g, the differential form α(η)[n] is d-exact on

M \ M ξ.
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The set of elliptic elements of a real Lie group can be explicitly described by methods

developed in [HS05]. It has the structure of a homogeneous fibre bundle over the non-

compact symmetric space G/K, where K is a maximally compact subgroup of G.

This shows that the ambient group K or G does not play a role in our considerations and

hence, the theory is actually concerned with actions of compact abelian groups, the tori

Tξ.

Another point view which is often adopted is the following: let X ∈ X (M) be a vector

field on a compact manifold M . Assume that it preserves some Riemannian metric g on

M , i.e. LXg = 0. Since the isometry group of the compact Riemannian manifold (M,g) is

a compact (real) Lie group, the closure of the one-parameter subgroup in Iso(M,g) that

is generated by X is a compact torus. This shows that the „localisation“ results obtained

above are valid.

Proposition 3.1 shows that contributions to an integral
∫

M α(ξ) of an equivariantly closed

form α are concentrated on arbitrary small neighbourhoods of the set M ξ. So, as a next

step, we investigate the action of the compect tori Tξ on neighbourhoods of M ξ. To keep

the discussion elementary, we make the following:

Assumption: the zeroes of ξM are isolated.

Let p ∈ M ξ be an isolated zero of ξM . The torus Tξ fixes p and hence, we consider the

isotropy representation of Tξ on TpM . This action gives rise to an action of the Lie algebra

Lie(Tξ) of Tξ by differentiation. Hence, ξ ∈ Lie(Tξ) acts on TpM . Let Lp(ξ) be the

endomorphism of TpM that is induced by ξ.

Since p is an isolated fixed point, Lp(ξ) is invertible. Indeed, suppose that vp ∈ TpM

is annihilated by Lp(ξ). Then all points expp(svp), s ∈ (−ε,+ε) are fixed by Tξ. Here,

expp : TpM → M denotes the Riemannian exponential map. This implies vp = 0.

Since Tξ ⊂ K preserves the Riemannian metric (·, ·), the isotropy representation pre-

serves the inner product (·, ·)p and therefore, its infinitesimal action Lp(ξ) is contained in

o(TpM, (·, ·)p). Recalling that p is an isolated fixed point, we see that all eigenvalues of

Lp(ξ) are purely imaginary. Hence, dimM is even and there exists a basis e1, . . . , en of

TpM and real numbers λ1, . . . , λj such that for 1 ≤ j ≤ l := n
2 , we have

Lp(ξ)(e2j−1) = λje2j

Lp(ξ)(e2j) = −λje2j−1.

In other words, the matrix of Lp(ξ) with respect to the ordered basis {e1, . . . , en} is given

by


















(

0 −λ1

λ1 0

)

. . .
(

0 −λl

λl 0

)



















.
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The λj are uniquely determined and det(Lp(ξ)) =
∏l

j=1 λ2
j . We set

det
1

2 (Lp(ξ)) =

l
∏

j=1

λj .

With these notations we can state the first localisation result as follows:

Theorem 3.4. Let K be a compact Lie group with Lie algebra k acting on a compact

oriented manifold. Let α ∈ AK(M) be dk-closed. Let ξ ∈ k be such that ξM has only

isolated zeroes. Then
∫

M
α(ξ) = (−2π)l

∑

p∈Mξ

α(ξ)(p)

det
1

2 (Lp(ξ))
.

Here, α(ξ)(p) = α(ξ)[0](p) is the zero degree part of α(ξ).

Proof. Let ξ ∈ M ξ. The action of Tξ can be linearised in a neighbourhood U(p) of p, i.e.

it is equivalent to the linear action of Tξ on TpM . This implies that there are coordinates

{x1, . . . , xn} near p, such that ξM is given in this new coordinates as

ξM = λ1

(

x2
∂

∂x1
− x1

∂

∂x2

)

+ . . . λl

(

xn
∂

∂xn−1
− xn−1

∂

∂xn

)

As in the proof of Proposition 3.1, we are going to use a special 1-form on M :

Let θp be the 1-form in U(p) that is given by

θp = λ−1
1 (x2dx1 − x1dx2) + · · · + λ−1

l (xndxn−1 − xn−1dxn)

Then, θp is invariant under the action of Tξ on U(p) and θp(ξM )x = ‖ξM‖2.

We now use a Tξ-invariant partition of unity subordinate to the covering of M given by

the Tξ-invariant sets U(p) and M \M ξ to construct a one form θ on M with the following

properties:

1. LξM
θ = 0

2. dξθ is invertible in A(M \ M ξ)

3. θ = θp in a neighbourhood of p

As we have seen in the proof of Proposition 3.1, this implies that α(ξ)[n] = d
(

θ∧α(ξ)
dξθ

)

[n−1]
.

Consider the neighbourhood Bε(p) of p in M that is given by

Bε(p) = {x ∈ U(p); ‖x‖2 < ε}.

Furthermore, let Sε(p) = ∂(Bε(p)) = {x ∈ U(p); ‖x‖2 = ε}. Then, we calculate:
∫

M
α(ξ) = lim

ε→0

∫

M\
⋃

p Bε(p)
α(ξ)

= lim
ε→0

∫

M\
⋃

p Bε(p)
d

(

θ ∧ α(ξ)

dξθ

)

= −
∑

p∈Mξ

lim
ε→0

∫

Sε(p)

θ ∧ α(ξ)

dξθ
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The sign exchange comes from the change of orientation of Sε(p). Let p be one of the

points in M ξ. Near p, we have θ = θp. If we rescale the coordinates by a factor of ε
1

2 , the

sphere Sε(p) becomes the unit sphere S1(p), while θ(dξθ)−1 is invariant under this change

of coordinates. Hence, we get
∫

Sε(p)

θ ∧ α(ξ)

dξθ
=

∫

S1(p)

θ ∧ αε(ξ)

dξθ
.

Here, αε(ξ) denotes the pull-back of α(ξ) under the coordinate change, which is given by

rescaling. As ε → 0, αε(ξ) tends to the constant α(ξ)(p).

It remains to compute

−

∫

S1(p)
θ(dξθ)−1 =

∫

S1(p)
θ(1 − dθ)−1 =

∫

S1(p)
θ(dθ)l−1 =

∫

B1(p)
(dθ)l

But

(dθ)l = (−2)ll!(
∏

j

λj)
−1dx1 ∧ · · · ∧ dxn.

Since the volume of the 2l-dimensional unit ball is πl

l! , the proof is completed.

If the zero set of ξM contains non-isolated points, essentially the same result is true. Due to

positive-dimensional connected components of M ξ one has to take into account curvature

properties of the normal bundle N of M ξ in M :

Theorem 3.5. Let K be a compact Lie group acting on a compact manifold M . Let α be

an equivariantly closed form on M . For ξ ∈ k, let M ξ be the zero set of ξM . Let N be the

normal bundle of M ξ in M . Choose an orientation on N and impose the corresponding

orientation on M ξ. Then,
∫

M
α(ξ) =

∫

Mξ

(−2π)rk(N )/2 α(ξ)

det
1

2 (LN (ξ) + RN )
,

where RN is the curvature of any metric connection in N .

Proof. See [BGV92].

4 The Duistermaat-Heckman Theorem and its relation to

stationary-phase approximation

As we have seen earlier, a Hamiltonian action of a Lie group G on a symplectic manifold

(M,ω) gives rise to an equivariant differential form ωg(ξ) =< µ, ξ > + ω. Applying the

results of the previous section gives

Theorem 4.1 (Duistermaat-Heckman, [DH82]). Let (M2l, ω) be a compact symplectic

manifold. Let the compact Lie group K act on M in a Hamiltonian fashion. Let β = ωl

l!(2π)l

be the Liouville form. If ξ ∈ k is such that M ξ consists of isolated points, then we have
∫

M
eitµξ(x)β(x) =

(

i

t

)l
∑

p∈Mξ

eitµξ(p)

det
1

2Lp(ξ)
.
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Proof. The form ωg ∈ AG(M) is equivarantly closed. This implies that

eitωg = eit<µ,·>eitω

is equivariantly closed as well. The theorem now follows by applying the Localisation

Theorem 3.4 to the integral
∫

M
eitµξ(x)β(x) = (2πit)−l

∫

M
eitωg(ξ).

Remark 4.2. As we have a version of the localisation theorem in the case of non-isolated

zeroes, there is also a version of the Duistermaat-Heckman Theorem in this case (see

[DH83]).

We now consider relations to the „method of stationary phase “. If we look at integrals of

the form ∫

M
eitf(x)dvol (2)

for some function f ∈ C∞(M), intuitively, the rapid oscillation of eitf(x) should lead to

cancellations in the integral (2) for large t. This is indeed the case and leads to asymptotic

expansions in terms of the Taylor series of f at the critical points. One precise formulation

of this phenomenon is

Theorem 4.3. Let M be an n-dimensional compact manifold with volume form dvol,

f : M → R a Morse function, i.e. a function such that all critical points are isolated and

non-degenerate. Then, for large t, we have

∫

M
eitf(x)dvol(x) =

∑

p∈Crit(f)

(

2π

t

)l e
iπ
4

sign(Hessf (p))

√

|detHessf (p)|
eitf(p) + O(t−l−1).

Proof. See for example [GS77].

As we have seen, we are able to rather explicitly evaluate oscillatory integrals involving

components µξ of the momentum map or (as a special case) Hamiltonian functions H on

a symplectic manifold (M,ω). Furthermore, recalling that

dµξ = iξM
ω

and that ω is non-degenerate, we see that

Crit(µξ) = M ξ = MTξ .

In addition, the Hessian of the function µξ at the point p ∈ M ξ is given by the formula

Hessµξ(p)(vp, wp) = −ω(Lp(ξ)vp, wp) ∀vp, wp ∈ TpM.

This relates the Hessian of µξ to the action of ξ on TpM . Putting all this together, one

can show the following
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Corollary 4.4. Let (M,ω) be a compact symplectic manifold, H ∈ C∞(M) a Hamiltonian

such that the associated Hamiltonian vector field XH is periodic and has discrete zeroes.

Then, the error term in the stationary phase approximation of the integral
∫

M eitHβ van-

ishes:
∫

M
eitfβ =

∑

p∈Crit(H)

(

2π

t

)l e
iπ
4

sign(HessH(p))

√

|det HessH(p)|
eitH(p).

Note that the formula holds for all t ∈ R, and the proof does not depend on the lemma of

stationary phase, so the formula should not be regarded as an exact approximation, but

as a result of localisation in equivariant cohomology.

5 The Duistermaat-Heckman measure

We will now describe an important application of the localisation formulae that we obtained

in the previous sections.

Let (M,ω) be a 2l-dimensional compact symplectic manifold. Then the Liouville form

β := ωl

l!(2π)l defines a measure ν on M : for all closed subsets A ⊂ M , we set

ν(A) =

∫

A
β.

Let T be a compact torus acting in a Hamiltonian fashion on M . Let µ : M → t∗ be a

momentum map for this action. Since M is assumed to be compact, we can consider the

push-forward measure µ∗(ν) that is defined by

µ∗(ν)(A) = ν(µ−1(A))

for all closed subsets A of t∗.

Definition 5.1. The measure µ∗(ν) is called the Duistermaat-Heckman measure on t∗

induced by the action of T on M .

In their original paper [DH82], Duistermaat and Heckman prove the following: the measure

µ∗(ν) has got a density f = d(µ∗(ν))
dλt∗

with respect to the Lebesgue measure λt∗ on t∗. Let

R ⊂ P a connected component of the set of regular values of µ. Then the restriction of f

to R is a polynomial.

Here, we are going to give an explicit global describtion of the Duistermaat-Heckman

measure in the cases that our localisation formulae apply to.

So assume that the action of T on M has only isolated fixed points. For p ∈ MT , let

αp
1, . . . , α

p
l ∈ t∗ be the weights of the torus action on TpM . Recall that for a postitive Borel

measure η of finite total volume on a vector space V , the Fourier transform is defined to

be

η̂(γ) =

∫

V
eiγ(v)dη(v) ∀γ ∈ V ∗.
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Hence, we see that Theorem 4.1 implies that for each regular ξ ∈ t, i.e. for each ξ ∈ t such

that αp
j (ξ) 6= 0 ∀p ∈ MT and ∀j = 1, . . . , l, the following formula holds:

µ̂∗(ν)(ξ) =

∫

M
e<µ(x),ξ>β(x) = il

∑

p∈Mξ

eitµξ(p)

det
1

2Lp(ξ)
= il

∑

p∈Mξ

eitµξ(p)

∏l
j=1 αp

j (ξ)
.

Next, we present a special class of measures on a vector space V . Later on, we will show

that the Duistermaat-Heckman measure on t is built from measures of this simple type.

Let V be vector space and let v = {v1, . . . , vm} (m ≥ dimV ) be a spanning set of vectors

in V that generates a proper polyhedral cone Cv in V , i.e.

Cv = R
+ · v1 + · · · + R

+ · vm.

Let Lv be the map from
(

R≥0
)m

⊂ Rm to V defined by

Lv(s1, . . . , sm) =
m
∑

j=1

sjvj, where sj ≥ 0.

Since the cone Cv is proper, this map is proper and we can define

Hv := (Lv)∗(λRm),

the push-forward of the Lebesgue measure on Rm (restricted to the positive quadrant) to

V . Note that the support of this measure is Cv.

Using Fourier analysis, one can show that the Duistermaat-Heckman measure is a sum of

measures of this type.

First, we have to introduce some renormalisation: consider

N := {ξ ∈ t |αp
j (ξ) = 0 for some p ∈ MT and some j = 1, . . . , l}.

This is a union of hyperplanes. Each connected component of the complement t \ N is

called a Weyl chamber. Each regular element ξ ∈ t is contained in the interior of such

a chamber. Fix a ξ0 and call the cooresponding chamber t+, the positive Weyl chamber.

Define for all p ∈ MT and for all j = 1, . . . , l:

βp
j := sign(αp

j (ξ0)) · α
p
j .

The set {βp
j }p∈MT ,j=1,...,l is called a renormalisation of the set of weights. It does not de-

pend on the choice of ξ0 inside a fixed chamber t+. For p ∈ MT , let ε(p) =
∏l

j=1 sign(αp
j (ξ0)).

Furthermore, let δη be the delta distribution supported at η ∈ t.

With these notations, the precise result is the following (see [GP90], [PW94]):

Theorem 5.2. Let T be a compact torus acting in a Hamiltonian fashion on a compact

symplectic manifold M . Let µ : M → t∗ be a momentum map for this action. Assume that

the action of T has only isolated fixed points. Let, ν be the Liouville measure. Then, we

have

µ∗(ν) =
∑

p∈MT

ε(p) · δµ(p) ∗ H(βp
1
,...,βp

l
).

Here, ∗ denotes the convolution of measures.
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Remark 5.3. Note that δµ(p) ∗H(βp
1
,...,βp

l
) is just the push-forward of the Lebesgue measure

on
(

R≥0
)m

⊂ Rm to t∗ via the map µ(p) + L(βp
1
,...,βp

l
). That means it is supported on the

cone with vertex µ(p) and generators βp
1 , . . . , βp

l .

Let us now look at two examples:

Example 5.4. Let M = S2 be the unit sphere in R3 equipped with the symplectic form that

is defined by the canonical volume element β. The height function H : (x1, x2, x3) 7→ x3

generates an S1-action with momentum map H : M → R. Applying Theorem 5.2, we get

H∗(β) = H1 ∗ δ−1 − H1 ∗ δ1 = I[−1,1] · λR.

Here, IA denotes the characteristic function of a set A ⊂ R.

Example 5.5. Let M = SU(3) • ξ be an adjoint orbit of SU(3) through an element ξ in

a chosen positive Weyl-Chamber tpos in su(3). The momentum map for the action of the

maximal torus T of SU(3) on M is just the orthogonal projection M → t. In general, the

image µ(M) ⊂ t is the convex hull of µ(MT ). However, in our particular example, MT is

equal to the Weyl group orbit through ξ. Hence, the picture1 looks as follows:

t tpos

α1

α2

ξ

It is now easy to read off the measure from this picture. Consider for example the contri-

bution of ξ ∈ µ(MT ): the weights of the action on TξM can in our case be read of from

the momentum polytope: we have αξ
1 = −α1, αξ

2 = −α2 and αξ
3 = −(α1 + α2). Simi-

larly, one can analyse the situation at the other vertices. The measure is then obtained by

renormalising and adding up the contributions of the different vertices.

1picture by Patrick Schützdeller; see [Sch06] for more details
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