3. ÜBUNGSBLATT

Differentialgeometrie I

IM WS 2017/18 BEI PROF. DR. S. GOETTE

Abgabe Donnerstag, den 9.11.17 10 Uhr (also vor der Vorlesung) in den Briefkasten (Nr. 3.1)

Bitte schreiben Sie Ihren Namen auf Ihre Abgabe

Aufgabe 1

- (a) Sei $M \subset \mathbb{R}^n$ eine glatte Untermannigfaltigkeit und X ein Vektorfeld auf M. Zeigen Sie, dass es für jede Untermannigfaltigkeitskarte $\varphi \colon U \to V$ eine Fortsetzung von X auf U gibt.
- (b) Benutzen Sie die eine Partition der Eins, um in der Situation aus a) für kompakte M das Vektorfeld X auf \mathbb{R}^n fortzusetzen.
- (c) Geht das auch für Mannigfaltigkeiten, d.h., kann man für eine kompakte Untermannigfaltigkeit $M \subset N$ ein Vektorfeld auf M zu einem Vektorfeld auf N fortsetzen?

Aufgabe 2

Sei $\mathbb{C}P^n = \{[v] \mid v \in \mathbb{C}^{n+1} \setminus \{0\}\}, \text{ wobei } v \sim w \Leftrightarrow \exists \lambda \in \mathbb{C} \setminus \{0\} \text{ mit } v = \lambda \cdot w.$

(a) Wir definieren auf $\mathbb{C}P^n$ eine Topologie durch

$$U \in \mathbb{C}\mathrm{P}^n$$
 offen $\Leftrightarrow \{v \in \mathbb{C}^{n+1} \setminus \{0\} \mid [v] \in U\} \subset \mathbb{C}^{n+1}$ offen,

d.h., die Quotiententopologie der Projektion $\mathbb{C}^{n+1} \to \mathbb{C}P^n$ mit $v \mapsto [v]$. Zeigen Sie, dass $\mathbb{C}P^n$ mit dieser Topologie Hausdorff ist und eine abzählbare Basis besitzt.

- (b) Finden Sie n+1 Karten analog zu denen für $\mathbb{R}P^n$ aus Aufgabe 2 von Blatt 1.
- (c) Zeigen Sie, dass die Karten aus b) einen $C^{\infty}\text{-}\mathrm{Atlas}$ von $\mathbb{C}\mathrm{P}^n$ bilden.

Aufgabe 3

Betrachten Sie $G = \mathrm{GL}(n,\mathbb{R}) \subset M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ als Untermannigfaltigkeit der Kodimension 0. Zu $A \in M_n(\mathbb{R})$ definiere das Vektorfeld $V_A \in \mathfrak{X}(G)$ durch

$$V_A(g) = (g, g \cdot A) \in TG \cong G \times M_n(\mathbb{R}),$$

wobei "·" Matrizenmultiplikation bezeichne.

- (a) Für $h \in G$ definiere $\ell_h : G \to G$ durch $\ell_h(g) = hg$. Zeigen Sie, dass V_A für jedes A zu sich selbst ℓ_h -verwandt ist für alle $h \in G$.
- (b) Zeigen Sie $[V_A, V_B] = V_{[A,B]}$ für alle $A, B \in M_n(\mathbb{R})$.

Aufgabe 4

Es sei $\varphi(g)=g^Tg$ eine Abbildung der invertierbaren $(n\times n)$ -Matrizen in die symmetrischen Matrizen. Zeigen Sie, dass

- (a) φ eine Submersion ist, also $d_x\varphi$ an jeder Stelle surjektiv ist.
- (b) SO(n) eine $\frac{n(n-1)}{2}$ -dimensionale Untermannigfaltigkeit von M_n ist. (Hinweis: Benutzen Sie den Satz vom regulären Wert.)
- (c) der Tangentialraum $T_gSO(n) = \{A \in M_n \mid g^TA + A^Tg = 0\}$ ist.