Prof. Dr. Sebastian Goette Dr. Martin Kalck Mathematisches Institut Universität Freiburg

Übungsblatt 7

Abgabe: Mittwoch, den 19.06.2019 in die Briefkästen der Tutoren.

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt.

Bewertung: Jede Aufgabe wird mit 4 Punkten bewertet. Falls nichts anderes angegeben ist, werden die Punkte gleichmässig auf die Teilaufgaben verteilt.

Auf diesem Zettel gibt es 6 Aufgaben. Das heisst es werden bis zu 24 Punkte vergeben. Die "erreichbaren Punkte" im Sinne der Studien- und Prüfungsleistungen sind wie immer 16 Punkte. Mit anderen Worten, Sie können auf diesem Zettel bis zu 8 "Zusatzpunkte" bekommen.

Aufgabe 1

Es sei $f: \mathbb{C} \to \mathbb{C}$ eine holomorphe Funktion. Zeigen Sie:

(a) (3 Punkte) Falls $k \in \mathbb{Z}$ mit k > 0, und Konstanten c, C > 0, und $R_0 > 0$ existieren, so dass

$$cR^k \le \sup_{z \in S_R(0)} |f(z)| \le CR^k$$
 für alle $R \ge R_0$ gilt,

dann ist f ein Polynom vom Grad k. Hier bezeichnet $S_R(0) = \{z \in \mathbb{C} : |z| = R\}$.

(b) (1 Punkt) In der Situation von Teil (a): Geben Sie eine obere und eine untere Schranke für den führenden Koeffizienten a_k des Polynoms f an und begründen Sie Ihre Antwort.

Aufgabe 2

Sei $\gamma \colon [0, 2\pi] \to \mathbb{C}$ die Kurve gegeben durch $\gamma(t) = \sin(2t) + i\sin(t)\cos(2t)$.

- (a) Skizzieren Sie γ .
- (b) Bestimmen Sie $n_z(\gamma)$ für $z = \pm \frac{1}{2}$ und $z = \frac{i}{2}$.
- (c) Ist γ nullhomolog in $\mathbb{C} \setminus \{\frac{1}{2}, -\frac{1}{2}\}$?
- (d) Ist γ nullhomolog in $\mathbb{C} \setminus \{\frac{i}{2}, -\frac{i}{2}\}$?

Falls die Antwort in (c) oder (d) "Nein" ist, geben Sie einen einfacheren, zu γ in Ω homologen Zykel wie in Folgerung 3.14 an. Falls die Antwort "Ja" ist, stellen Sie die Kette $[\gamma]$ als Linearkombination nullhomotoper Kurven in Ω dar.

Bitte wenden für Aufgabe 3 und 4.

Aufgabe 3

Bestimmen Sie alle injektiven holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$. Sie können dabei wie folgt vorgehen:

- (a) Es gibt ein $a \in \mathbb{C}$, so dass $f'(a) \neq 0$.
- (b) Zeigen Sie, dass es ausreicht Funktionen f zu betrachten, die f(0) = 0 und f'(0) = 1 erfüllen.
- (c) Für Funktionen f wie in Teil (b) definieren wir

$$g(z) = \frac{f(z) - z}{zf(z)}.$$

Zeigen Sie, dass $g: \mathbb{C} \to \mathbb{C}$ eine holomorphe Funktion ist und dass |g| auf ganz \mathbb{C} beschränkt ist. Hinweis: Betrachten Sie g auf $B_1(0)$ (was passiert in $z_0 = 0$?) und g auf $A = \mathbb{C} \setminus B_1(0)$. Um zu zeigen, dass g auf A beschränkt ist, können Sie den Satz 2.24 über die Gebietstreue (angewendet auf f und $B_1(0)$) in Kombination mit der Injektivität von f benutzen.

(d) Benutzen Sie Teil (c) um f zu bestimmen und geben Sie dann alle injektiven holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$ an.

Aufgabe 4

Bestimmen Sie alle holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$ mit f(f(z)) = z.

Aufgabe 5

Für $z_1, z_2, z_3, z_4 \in \hat{\mathbb{C}}$ paarweise verschieden definiert man das *Doppelverhältnis* als

$$[z_1, z_2, z_3, z_4]$$
: $= \frac{z_1 - z_3}{z_2 - z_3} \cdot \frac{z_2 - z_4}{z_1 - z_4} \in \mathbb{C}.$

Falls eine der Zahlen ∞ ist, kann man das Doppelverhältnis als Grenzwert definieren, z.B. $[\infty, z_2, z_3, z_4] = \lim_{z_1 \to \infty} [z_1, z_2, z_2, z_4] = \frac{z_2 - z_4}{z_2 - z_3}$. Zeigen Sie:

- (a) Seien $z_1, z_2, z_3, z_4 \in \hat{\mathbb{C}}$ paarweise verschieden. Finden Sie eine Möbiustransformation M_A , sodass $(M_A(z_1), M_A(z_2), M_A(z_3), M_A(z_4)) = ([z_1, z_2, z_3, z_4], 1, 0, \infty)$ gilt.
- (b) Für alle Möbiustransformationen $M_A \colon \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ und alle $z_1, z_2, z_3, z_4 \in \hat{\mathbb{C}}$ paarweise verschieden gilt

$$[z_1, z_2, z_3, z_4] = [M_A(z_1), M_A(z_2), M_A(z_3), M_A(z_4)].$$

Aufgabe 6

Wir benutzen die Notation aus Aufgabe 5.

- (a) Die paarweise verschiedenen Punkte $z_1, z_2, z_3, z_4 \in \hat{\mathbb{C}}$ liegen genau dann auf einem Kreis, wenn $[z_1, z_2, z_3, z_4] \in \mathbb{R}$ gilt. (Unter einem "Kreis" in $\hat{\mathbb{C}}$ verstehen wir einen Kreis in \mathbb{C} oder $g \cup \{\infty\}$ für eine Gerade g in \mathbb{C} .)
- (b) Möbiustransformationen bilden Kreise in Kreise ab.