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Introduction

In this rather long introduction, we will give a broad overview over some typical topics in
manifold theory. Some details will be treated later in the course.

Basic Definitions

0.1. Definition. A topological manifold is a paracompact Hausdorff space that is locall ho-
meomorphic to Rn+ = [0,∞)× Rn−1.

0.2. Remark. “Paracompact” means that every open covering U of a space X has a locally
finite subcovering U0 ⊂ U , that is, each x ∈ X has a neoghbourhood V such that V ∩U = ∅ for all
but finitely many U ∈ U0.

An alternative definition of manifolds replaces “paracompact” by “second countable”.

(1) Second countable implies paracompact.
(2) Paracompact and Hausdorff imply normal (T1 and T4 hold) and metrisable.
(3) Paracompact and Hausdorff also imply the existence of partitions of unity subordinate to

any open covering.
(4) A manifold embeds into RN for some large N if and only if it is second countable.
(5) A manifold is second countable if and only if it consists of countably many connected

components.

In particular, the so-called “long line” is not considered to be a manifold.

0.3. Remark. Manifolds are always allowed to have a nonempty boundary in this course. A
point x ∈M is a boundary point, x ∈ ∂M , if and only if there exists a neighbourhood U ⊂M of x
and a local homeomorphism ϕ : U → V ⊂ Rn+ with ϕ(x) ∈ {0} × Rn−1.

By invariance of domain, “there exists U and ϕ” can equivalently be replaced by “for all U
and ϕ.” Moreover, the dimension n of M is uniquely determined by the topology.

0.a. Structures on Manifolds

A class of homeomorphisms F : U → V with U , V ⊂ Rn+ open will be called a “pseuodgroup” if
and only if it is suitable to define a notion of an atlas on a topological manifolds. This is sufficient
to deduce a more formal definition of the term pseudogroup (see exercise class).

We will mainly consider the pseudogroups

• Top of all homeos as above,
• PL of all piecewise linear homeomorphisms, and
• Diff of all C∞ diffeomorphisms.

In the following, let CAT denote one of the three pseudogroups above. Other examples one could
conisder include Hol , Aff, and also orientable variants of the above, that is, STop, SPL and SDiff .

0.4. Definition. A CAT -structure on a topological manifold M is an atlas Γ on M such that
all coordinate changes belong to CAT .

A CAT -manifold is a topological manifold with a CAT -structure.
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0.5. Remark. Here some ways to construct new CAT -manifolds from old.

(1) In case of the pseudogroups CAT = Top, PL or Diff (and some others, but not Hol), each
CAT homeomorphism

ϕ : U → V

induces a CAT homeomorphism

∂ϕ : ∂U → ∂V .

Hence, the boundary of a CAT -manifold (M,Γ) is again equipped with a CAT -structure ∂Γ.
(2) If M1, M2 are CAT -manifolds, there is a natural CAT -structure on M1 ×M2.
(3) There is a standard CAT -structure on the unit interval I = [0, 1].

If we include orientations, we would need some conventions to pick a preferred orientation for the
first two constructions above.

This would be the right place to turn CAT -manifolds into a category. However, the type of mor-
phisms we want to allow will vary. Moreover, unless we are interested in local CAT -homeomorphisms,
we would have to give an extra definition of a CAT -map (which is natural in most cases). By the
remark above, our category would necessarily be a bordism category, because there is a well defined
functor ∂ with the property that ∂ ◦ ∂ = ∅.

To get an overview over our three types of structures, we introduces a fourth one called PD
(“piecewise differentiable”). Then we have forgetful functors

PL

��
Diff // PD // Top .

If we choose our definition of piecewise differentiablity cleverly, for example by demanding that a
PD-homeo f : U → V be smooth between closed simplices of some triangulations of U and V , then
the functor PL → PD has a left inverse, and our diagram above becomes a chain

Diff −→ PL −→ Top .

The functor Diff → PL is sometimes called “Whitehead triangulation.”
We would like to classify CAT -manifolds up to CAT -isomorphisms, but that turns out to be

too coarse. Instead, we will introduce two different notions, which require us to consider manifolds
with corners as well. This is unproblematic in CAT = PL and Top because there are natural
CAT -homeomorphisms

[0,∞)k
∼=−→ [0,∞)× Rk−1 .

In particular, for two CAT -manifolds with boundary M1 and M2, one has

∂(M1 ×M2) = ∂M1 ×M2 ∪∂M1×∂M2 M1 × ∂M2 .

In Diff , we will simply ignore this problem for the moment, and work with smooth manifolds with
corners, which are outside our category.

0.6. Definition. Let CAT = PL or Diff . Two CAT -structures Γ0, Γ1 on a topological mani-
fold M are called

(1) (CAT -) concordant if ∂Γ0 = ∂Γ1 and there exists a CAT -structure Γ on M × I such that
for i = 0, 1,

∂Γ|M×{i} = Γi for i = 0, 1 and ∂Γ|∂M×I = ∂Γ0 × ΓI = ∂Γ1 × ΓI .

We call (M × I,Γ) a concordance.
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(2) (CAT -) isotopic if there exists a CAT -concordance (M × I,Γ) as above and a (CAT -)
isotopy h : MΓ0 × I → M × I, that is, a CAT -isomorphism where h(x, t) ∈ M × {t} for
all x ∈M and all t ∈ I, such that h0 = idM and h1 : MΓ0 →MΓ1 are CAT -isomorphisms.

Note that an isotopy is entirely determined by the maps ht : M →M with h(x, t) = (ht(x), t).
We write the full map h to have a meaningful notion of CAT -isomorphism.

0.7. Remark. Obviously, we have implications

concordant ⇐= isotopic =⇒ isomorphic.

• If dimM ≥ 5 concordance implies isotopy for CAT = PL or Diff .
• Any two smooth structures on R4 are concordant, but not isotopic.
• Let Σ7 be an exotic smooth 7-sphere. The smooth structure pulls back by an orientation

reversing map to a smooth structure that we denote by −Σ7, in fact, the connecetd sum
of Σ7 and −Σ7 is diffeomorphic to the standard sphere. However, among the 28 smooth
structures on S7 (up to isotopy), there are only two of order 2 or less. For the remaining 26,
we see that Σ7 and −Σ7 are isomorphic, but not isotopic.

0.b. Microbundles

To straighten a topological manifold (put a PL-structure on it), or to smoothen a Top- or PL-
manifold (put a Diff -structure on it), it turns out to be helpful to consider tangent bundles, even
for non-smooth manifolds.

0.8. Definition. A (Top-) microbundle e = (E, ι, p) of rank k on a topological space X consists
of a total space E, a zero section ι : X → E and a projection p : E → X, such that p ◦ ι = idX , and
such that for each x ∈ X there exist neighbourhood U ⊂ X of x and V ⊂ E of ι(x) together with
a homeomorphism V ∼= U × Rk, such that the following diagram commutes.

V

∼=

��

p

## ##
U
, �

ι

;;

q�

×{0} ##

U

U × Rk
pr1

;; ;;

Two microbundles are called equivalent if there exists a homeomorphism between neighbourhoods
of their zero sections that are compatible with the structure maps ι and p.

0.9. Example. Here are some easy examples.

(1) The trivial microbundle Rk = (X × Rk, · × {0},pr1) of rank k is given by

X
×{0}−−→ X × Rk pr1−−→ X .

(2) Any locally trivial fibrebundle with fibre Rk and structure group Homeo(Rn, 0) becomes
a microbundle. This includes of course topological vector bundles.

(3) Each topological manifold M has a tangent microbundle tM = (M ×M,∆,pr1),

M
∆−→M ×M pr1−−→M .

where ∆: M →M ×M denotes the diagonal map.

0.10. Remark. (1) A microbundle is something like the germ of a fibre bundle with fib-
re Rk and a distinguished section.
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(2) There are analogous definitions of CAT -microbundles over CAT -manifolds, where CAT =
PL or Diff . From the commutative diagram in Definition 0.8, we can deduce some desirable
properties of the maps ι and p.

0.11. Remark. Many well-known constructions with vector bundles work just as well with
microbundles.

(1) Pullback of CAT -microbundles along (suitably defined) CAT -maps is possible, and if f ,
g : M → N are CAT -homotopic and e is a microbundle on N , then f∗e and g∗e are
equivalent.

(2) There is a notion of a Whitney sum e⊕ f of microbundles.
(3) Any microbundle e over a compact CW complex has a complement f in the sense that e⊕ f

is equivalent to a trivial microbundle.

The properties above allow one to set up a “microbundle K-theory” called kCAT , see [Mi].

0.12. Theorem (Kister-Mazur, see [Ki]). Every CAT -microbundle of rank k contains a neigh-
bourhood of the zero section that is isomorphic to a CAT -fibre bundle with fibre Rk and structure
group consisting of the CAT -isomorphisms of Rk fixing 0. This fibre bundle is unique up to isomor-
phism.

0.13. Remark. If e is a Diff -microbundle, we can consider the “vertical tangent bundle” V =
ι∗ ker(dp). It is isomorphic to the fibre bundle of Kister’s theorem.

If M is a smooth manifold, then the tangent vector bundle TM is equivalent to the microbund-
le tM of example 0.9 (3).

We will see in the course of the lecture that fibre-bundles, and hence also microbundles, can be
classified in a way similar to vector bundles. There are classifying spaces BCAT for CAT = Top,
PL and Diff such that K-theory classes of CAT -microbundles over a sufficiently nice space X
are in one-to-one correspondence with homotopy classes of maps X → BCAT . The spaces BCAT
are infinite loop spaces by a result of Boardman and Vogt [BV], so microbundle K-theory kCAT
can be upgraded to a cohomology theory. The spaces BDiff and the classifying space BO for real
vector bundles are homotopy equivalent, so kDiff is a “connective version” of the classical real K-
theory KO that satisfies Bott periodicity. Because we are in a category of spaces with base points,
we write X+ for the disjoint union of X with an additional base point.

0.14. Theorem (Hirsch-Cairns, Kirby-Siebenmann [KS, IV, Thm 4.1]). Let (CAT 0, CAT 1)
be either (Top,PL) or (Top,Diff ) or (PL,Diff ), and let π : BCAT 1 → BCAT 0 the natural map.
Let M be a CAT 0-manifold of dimension n ≥ 5 with a fixed compatible CAT 1-structure on the
boundary ∂M . Then the set of CAT 1-structures on M that reduce to the given CAT 0-structure are
in one-to-one correspondence with the vertical homotopy classes of lifts τ̄ in the diagram

∂M+
_�

��

σ // BCAT 1

π

��
M+

τ̄
::

τ // BCAT 0

up to vertical homotopy, where σ and τ classify the tangent microbundles of ∂M and M .

0.15. Remark. The statement of this theorem is surprisingly simple. The map π is compatible
with the infinite loop space structures on BCAT 0 and BCAT 1. In particular, π is a map in an
infinite fibre sequence

· · · −→ CAT 0/CAT 1 −→ BCAT 1
π−→ BCAT 0 −→ B(CAT 0/CAT 1) −→ · · ·
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This turns the existence and classification of compatible CAT 1-structures on a CAT 0-manifold into
a simple homotopy theoretic problem, see [ACKKNPRR, Thm 16.16].

(1) A compatible CAT 1-structure exists if and only if the map M/∂M → B(CAT 0/CAT 1)
induced by σ and τ is homotopic to the trivial map.

(2) If one such structure exists, then the abelian group [M/∂M,CAT 0/CAT 1] acts simply
transitively on the set of all compatible CAT 1-structures.

So in a way, the existence and classification problem in Theorem 0.14 is similar to the existence
and classification of orientations on manifolds, or of spin structures on oriented manifolds.

Kirby and Siebenmann have shown that Top/PL has the homotopy type of a K(3,Z/2).
Hence, the only obstruction for the existence of a PL-structure extending σ is a class ks(M,σ) ∈
H4(M,∂M ;Z/2), the so-called Kirby-Siebenmann class, and H3(M,∂M ;Z/2) acts simply transi-
tively on all such PL-structures.

From the above, it is not hard to see that πk(PL/Diff ) ∼= πk(PL/O) is exactly the group
of exotic k-spheres. These groups are nonzero for many k ≥ 7, which makes it more difficult to
find obstructions against smoothing and to classify different smooth structures on a given Top- or
PL-manifold.

Finally note that not all similar problems have such easy answers. For example, it is not that
easy to put a holomorphic structure on a smooth manifolds. And of course, the theorem fails
drastically in dimension 4.

0.16. Remark. Note that the Hirsch-Cairns theorem, which concerns the special case (PL,Diff ),
actually holds in all dimensions. Because PL/Diff is 6-connected, this means that every PL-
manifold M of dimension n ≤ 7 carries a smooth structure, which is unique if n ≤ 6.

Here are two important intermediate steps in the proof of Theorem 0.14. The first one explains
why it suffices to consider CAT 1-structures on the stable tangent microbundle. Note that two
CAT -microbundles on M define the same class in the reduced K-group k̃CAT (M) if and only if they
become CAT -equivalent after taking Whitney sums with trivial microbundles.

0.17. Theorem (Stable Smoothing Theorem [Mi, Thm 5.13]). Let ξ be a CAT 1-bundle with
fibre Rk over a connected CAT 0-manifold M . Then M × Rq can be given a CAT 1-structure for
some q ≥ 0 with a tangent microbundle that is stably isomorphic to ξ if and only if [ξ] ∈ kCAT 1

maps to the class of the tangent microbundle of M in k̃CAT 0.

0.18. Theorem (Product Structure Theorem [HM, I, Thm 4.1], [KS, I, Thm 5.1]). Let M be a
CAT 0-manifold and let Σ be a CAT 1-structure on M×Rk for some k ≥ 1. Let ρ be a CAT 1-structure
on an open subset U ⊂M such that Σ|U×Rk equals the product CAT 1-structure ρ× Rk.

Assume that m = dimM ≥ 6 or m = 5 and ∂M ⊂ U . Then there exists a CAT 1-structure σ
on M extending ρ and a concordance relative U × Rk from Σ to σ × Rk.

It is an easy consequence that σ is unique up to concordance relative to U . Theorem 0.14 follows
by first considering CAT 1-structures on M × Rk for k ≥ 1 sufficiently large, then reduce them to
CAT 1-structures on M .

0.c. Fourdimensional Manifolds

Smooting theory works best in dimensions ≥ 5. There are two explanations for this. First, the so-
called “Whitney-trick” for smooth manifolds is only available in dimension 5 or larger (astonishingly
enough, some theorems based on the Whitney trick hold in the topological category already in
dimension 4 and larger). Second, there are strikingly different results for smooth 4-manifolds. Here,
we will mention a few of them. Note that by Remark 0.16, there is no difference between smooth
and PL-manifolds, so we will only talk about topological and smooth manifolds for simplicity.
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Recall that on an oriented 2k-manifold, there is a non-degenerate pairing

Hk(M)×Hk(M,∂M)→ Z with (α, β) 7→ α · β = (α ^ β)[M,∂M ] ,

where [M,∂M ] denotes the fundamental class of M specified by the orientation. Here, a pairing of
two free Z-modules A and B is called non-degenerate if it induces isomorphisms A∗ ∼= B and B∗ ∼=
A. If M is closed, this induces a non-degenerate bilinear form on Hk(M) called the intersection
form of M . It can equivalently be described by considering intersections of k-cycles in M , hence
the name.

0.19. Definition. A symmetric bilinear form on a Z-module A is called even if a · a ∈ 2Z for
all a ∈ A. It is called unimodular if it induces an isomorphism A ∼= A∗. It has signature n+ − n−
if n+ (n−) denotes the maximal dimension of a subspace of A ⊗ R on which the form is positive
(negative) definite.

The signature of the intersection form of a 4k-dimensional manifold M is also called the signa-
ture sign(M) of M .

0.20. Remark. On a smooth closed oriented 4-manifold, the intersection form is even if and
only if the manifold is spin. This is because for α ∈ H2(M ;Z2) = H2(M,∂M ;Z2), we have

α ^ α = Sq2 α = α ^ v2(M) = α ^ w2(TM) .

The first equation is the definition of the Steenrod square. The second is the definition of the Wu
class v2(M). The last holds because w(TM) = Sq(v(M)). More precisely, w2(TM) = v2(M) +
v1(M) ^ v1(M) and v1(M) = w1(TM) = 0 because M is orientable. Because the intersection
form is nondegenerate, w2(TM) 6= 0 implies that we find α such that α ^ w2(TM) 6= 0, hence the
claimed equivalence.

0.21. Theorem (Rokhlin, Ochanine). Let M be a smooth closed oriented spin 8`+ 4-manifold.
Then 16 | sign(M).

0.22. Example. There are two most basic unimodular even pairing on Z-modules called the
hyperbolic form and the E8-form, given in a suitable basis by the matrices

H =

(
0 1
1 0

)
and E8 =



−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2
1 −2


Note that the first one is indefinite, whereas the second one is negative definite. Indeed, there
is no negative definite unimodular even bilinear form on a free Z-module of smaller dimension.
The intersection form of the (two-dimensional complex, hence really fourdimensional) K3-surface
is given by E⊕2

8 ⊕ H⊕3. It has signature −16 and hence shows that the divisibility in Rokhlin’s
theorem is sharp.

0.23. Example. One can construct a smooth oriented spin 4k-manifold M with nonempty
boundary and with intersection E8 by a procedure called plumbing. The building block is the disk
bundle of an oriented vector bundle over S2k of rank 2k and Euler class −2. The zero-section of
this bundles generates H2k and has self-intersection number −2 by construction.

Next, one glues eight such blocks in a way described by the matrix E8, such that the blocks
correspond to the standard basis elements of Z8. Over each D2 ⊂ S2, the bundle above is trivial
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and hence homeomorphic to D2×D2. For each “1” in the matrix, one glues two blocks along copies
of D2 ×D2 as above, but swapping the factors, so that the fibre in one of the blocks is identified
with the base of the other and vice versa. Then the corresponding generators of H2 intersect once
with intersection number 1 if we have chosen the orientations correctly.

After smoothing the corners, we obtain a (2k − 1)-connected smooth 4k-manifold P4k with
boundary. If k = 1, one can show that ∂P4

∼= S3/Γ, where Γ ⊂ SU(2) ∼= S3 is the so-called
binary icosahedral group. Because it is perfect, ∂P4 is a Z-homology sphere. If k > 1, one can
show that ∂P4k is homeomorphic to S4k−1. If k > 1 is odd, ∂P4k cannot be diffeomorphic to S4k−1

because then one could glue D4k smoothly to P4k along the boundary, obtaining a closed manifold
with intersection form E8 and hence a counterexample to Ochanine’s theorem.

Also let Q4k = P4k\P4k denote the boundary connected sum of two copies of P4k, then ∂Q4k =
∂P4k#∂P4k has fundamental group Γ ∗ Γ, which is still perfect.

0.24. Theorem (Freedman [F, Theorem 1.4′]). The 3-manifolds ∂P4 and ∂Q4 bound contrac-
tible 4-manifolds.

Gluing P4 or Q4 to such a contractible manifold along the boundary produces closed topolo-
gical manifolds with intersection forms E8 and E8 ⊕ E8, respectively. These manifolds are usually
denoted |E8| and |E8 ⊕ E8|.

0.25. Definition. A topological manifold M is called almost smoothable if there exists a smooth
structure on M \ {pt}.

Recall the Kirby-Siebenmann invariant ks(M) ∈ H4(M ;Z/2) from Remark 0.15. For a closed
4-manifold M , we have H4(M ;Z/2) ∼= Z/2, hence ks(M) takes values in Z/2.

0.26. Theorem (Freedman [F, Thm 1.5]). For every unimodular symmetric bilinear form ω on
a free Z-module A there exists an oriented closed almost smoothable 4-manifold M with intersection
form isomorphic to ω.

If ω is even, it is unique up to oriented homeomorphism. Otherwise, there exist exactly two
oriented homeomorphism classes [M ] and [M ′] of almost smoothable 4-manifolds with ks(M) = 0
and ks(M ′) 6= 0.

Freedman proves that |E8| and |E8 ⊕ E8| are almost smoothable, hence they constitute examples
of the theorem above. However, they are not smoothable.

0.27. Theorem (Donaldon). If M is a closed orientable 4-manifold with definite intersection
form, then the intersection form can be diagonalised over Z.

Note that K3-surfaces have a non-diagonalisable intersection form. But are no counterexample
because their intersection form is indefinite.

0.28. Remark. If the intersection form is even, then one can prove that 8 | sign(M). Freedman
proves that |E8| and |E8 ⊕ E8| are almost smoothable, hence they constitute examples of the
theorem above. By a result of Siebenmann,

ks(M) = sign(M)/8 mod 2 ,

which of course fits with Rokhlin’s theorem 0.21.
Hence ks(|E8|) 6= 0 and ks(|E8 ⊕ E8|) = 0. Since neither |E8| nor |E8 ⊕ E8| can be smoothed

and the Hirsch-Cairns theorem (Theorem 0.14 for (PL,Diff )) holds in all dimensions, neither |E8|
nor |E8 ⊕ E8| can be straightened. So the Kirby-Siebenmann theorem (Theorem 0.14 for (Top,PL))
fails in dimension 4.

But it holds in dimensions ≥ 5. In particular, |E8 ⊕ E8| ×R can be straightened and smoothed
(but |E8| × R). This shows that the Product Structure Theorem 0.18 also fails for (Top,PL) in
dimension 4.
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0.29. Example. If the intersection form is odd, the manifolds M and M ′ from Theorem 0.26 are
homotopy equivalent. The manifoldM×R can be straightened, butM ′×R cannot. For example CP 2

has intersection form (1) Hence, there exists a “fake” CP 2 called “Chern manifold” Ch that is
homotopy equivalent to CP 2, but Ch× Rk cannot be straightened (or smoothed) for any k ≥ 0.

To construct exotic smooth structures on R4, we need one more ingredient from 4-dimensional
topology. Freedman also proves that there exists a smooth structure A on R4, compact subsets K ⊂
V , K ′ ⊂ R′ = (R4,A), and a diffeomorphism

ϕ : V \K → R′ \K ′ .
For a suitable r0 > 0, we have Br0(0) ⊃ K ′, where we take the standard metric on R4 for reference
(which is probably badly behaved with respect to A′). For all s ≥ r0, we consider

Rs =
(
Bs(0),A|Bs(0)

)
⊂ R′ ,

then Rs is homeomorphic to R4, so we get an uncountable family of smooth structures As on R4.

0.30. Theorem (Taubes [T, Theorem 1.1]). The smooth manifolds (R4,As) are pairwise not
diffeomorphic.

Taubes argues by contradiction. Assume there exists a diffeomorphism (R4,Ar) → (R4,As)
for s > r > r0. It corresponds to a diffeomorphism

ψ :
(
Br(0),A|Br(0)

) ∼=−→
(
Bs(0),A|Bs(0)

)
.

Then there exists s′ ∈ (r, s) such that

K ′ ⊂ ψ−1
(
Bs′(0)

)
,

and we obtain a diffeomorphism

ψ0 = ψ|
Br(0)\ψ−1(Bs′ (0))

: Br(0) \ ψ−1(Bs′(0))
∼=−→ Bs(0) \Bs′(0)

with respect to the smooth structure A.
We can use ψ0 and a suitable restriction ϕ0 of Freedman’s diffeomorphism ϕ to construct a

smooth, non-compact manifold

M = V ′ ∪ϕ0 W ∪ψ0 W ∪ψ0 · · ·

where K ⊂ V ′ ⊂ V and W = Bs(0) \ ψ−1(Bs′(0)).
Taubes’ argument works for more general smooth manifolds with periodic ends as above, whe-

re W and the domain N ⊂W on which ψ0 is defined satisfy

(1) π1(W ) has no nontrivial representation in SU(2).
(2) H1(N ;R) = H2(N ;R) = 0.
(3) If one glues W to itself along N , the resulting closed manifold has definite intersection

form of the same sign as the intersection form of V ′.

Here, these conditions are are met because π1(W ) = 0, H1(N) = H2(N) = 0, and because the
closed manifold in (3) is homotopy equivalent to S1 × S3, which has trivial intersection form.

0.31. Theorem (Taubes [T, Theorem 1.4]). Assume that M is end-periodic and satisfies the
conditions above. Then the intersection pairing on M is diagonalisable in the sense that there exists
abelian groups

Λ−1 ⊂ Λ0 ⊂ · · · ⊂ H2(M) with H2(M) =
⋃
i

Λi

such that the intersection form is unimodular and diagonalisable on each Λi for i ≥ 1 and Λ−1⊗R =
H2(V ′;R).
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In our example, H2(M) = H2(V ′) = E8⊕E8, which is of finite rank, and the intersection is not
diagonalisable. Hence, the existence of a diffeomorphism ψ contradicts Theorem 0.31. This finishes
the proof of Theorem 0.30.

Exotic Spheres

Spheres are not only the most accessible examples of smooth manifolds with more than one
smooth structure up to concordance. By the Smoothing Theorem 0.14 and Remark 0.15, the group
of exotic spheres in dimension k is isomorphic to the group πk(PL/O), where PL/O is the homotopy
fibre of the map of classifying spaces BDiff ∼= BO → BPL that is “responsible” for the existence
and classification of smooth structures. So, exotic spheres can help to understand the structure of
this space. We write PL rather than Top simply to avoid π3(Top/O) ∼= π3(Top/PL) ∼= Z/2, but as
we are interested in k ≥ 7, we may as well work in Top/O.

Let us begin with the generalised Poincaré conjecture, as far as it is known today. By a CAT -
homotopy sphere we denote a CAT -manifold M (necessarily without boundary) that is homotopy
equivalent to SdimM .

0.32. Theorem (Poincaré-conjecture). Assume that M is an n-dimensional CAT -homotopy
sphere.

(1) Then M is homeomorphic to Sn.
(2) If CAT = PL and n 6= 4 then M is PL-isomorphic to Sn.
(3) If CAT = Diff and n ∈ {1, 2, 3, 5, 6, 12, 61}, then M is diffeomorphic to Sn.

The cases n ≤ 2 follow from long known classification results for n-dimensional manifolds. Of
course n = 3 follows in all three categories from Perelman’s work on the Ricci flow. Freedman
proved in 1982 the four-dimensional Top-version. The PL- and Diff -version for n = 4 remain open.
Smale proved in 1960 that any PL- or Diff -homotopy sphere is homeomorphic to Sn, so there is
a “loss in category.” We will prove this later in this course using Smale’s h-cobordism theorem.
In 1962, Smale solved the PL-version for n ≥ 5. In 1966, Newman finally solved the Top-version
for n ≥ 5.

On the other hand, the first counterexamples to the Diff -Poincaré conjecture for n = 7 were
already constructed by Milnor in 1956. In [KM] and the “inofficial sequel” [L], the classification
of smooth structures is done to a very large extend, see below. In particular, the dimensions listed
in (3) come from their classification together with some later work by other authors.

0.33. Definition. Let Θn denote the set of smooth structures on Sn up to isotopy.

Note that [KM] use h-cobordism instead of concordance. By the h-cobordism theorem, this
amounts to the same as isotopy.

0.34. Lemma. The set Θn is a group under connected sum. The standard sphere is the neutral
element, and orientation reversal is the inverse.

One can check that this group structure is compatible with the one on πn(PL/O).
In order to understand exotic spheres, Kervaire and Milnor choose the following path. First,

they show that the tangent bundle (and hence the normal bundle) of any exotic sphere is stably

trivial. Any trivialisation (“framing”) defines a class in framed bordism. So if Θ̃n denote the group
of exotic spheres with stable normal framing, we have homomorphisms

Θn ←− Θ̃n −→ Ωn
fr(pt)

∼=−→ πsn .

Hence, one can try to study Θn using techniques from framed bordism.
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The difference of two framings on Σn is described by a map g : Σn → O. The image of g in πsn is
given by the so-called J-homomorphism, which can be described as follows. Let Sn ∗ Sq−1 ∼= Sn+q

denote the (reduced) join of Sn and Sq−1. A pointed map α : Sn → O(q) defines a pointed map

Sn ∗ Sq−1 −→ SSq−1 with (x, y, t) 7−→
(
α(x)︸︷︷︸
∈O(q)

(y), t
)
,

where S on the right denotes reduced suspension. To see that this is well-defined, it suffices to check
that when x0 ∈ Sn and y0 ∈ Sq−1 denote the base points, then (x0, y0, t) is mapped to the base
point of Sq−1 for all t. But this holds because α(x0) = id as α was assumed to be pointed.

0.35. Definition. The map Jn : πn(O)→ πsn induced as q →∞ is called the J-homomorphism.

From the above, one obtains a homomorphism

Θn −→ coker(Jn) .

In general, it is neither injective nor surjective.

0.36. Definition. Let bPn+1 ⊂ Θn denote the subgroup of exotic spheres that bound paralle-
lisable manifolds.

This group is exactly the kernel of the map above. Geometrically, one can visualise the group
structure on bPn+1 using boundary connected sums of the bounding parallelisable manifolds. Note
that the cokernel of the J-homomorphism is the “hard” part of the stable stem, and similarly, the
quotient Θn/bPn+1 is the “hard” part of Θn. On the other hand, the group bPn+1 vanishes for
even n, and it is cyclic for odd n of an order that one can compute. For small n, here is a table of
the various groups.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

πsn Z2 Z2 Z24 0 0 Z2 Z240 Z2
2 Z3

2 Z6 Z540 0 Z3 Z2
2 Z480 × Z2 Z2

2

coker(Jn) 0 Z2 0 0 0 Z2 0 Z2 Z2
2 Z6 0 0 Z3 Z2

2 Z2 Z2

Θn/bPn+1 0 0 0 0 0 0 0 Z2 Z2
2 Z6 0 0 Z3 Z2 Z2 Z2

bPn+1 0 0 0 0 0 0 Z28 0 Z2 0 Z992 0 0 0 Z8128 0

Let us now start with the programme laid out above.

0.37. Lemma. Let Σ be a smooth n-sphere. Then Σ is stably parallelisable, that is, its tangent
bundle is stably trivial.

Note that the only parallelisable spheres are Sn for n ∈ {0, 1, 3, 7}. Note also that the lifts τ̄ in
Theorem 0.14 are homotopic to the constant map by the Lemma above for all smooth structures
on Sn. This does not prevent the maps τ̄ for different smooth structures to be different as lifts of τ .

The tangent bundle of a n-manifold M can be trivialised if and only if its (stable) normal
bundle ν can be trivialised. A trivialisation of the normal bundle is also known as a framing of M .
A framing on M defines an element of the n-th stable homotopy group πsn of spheres by the
Pontryagin construction. Concretely, there exists a smooth map F : Sq+n → Sq for q sufficiently
large (q > n suffices) such that the south pole s ∈ Sq is a regular value, F−1(s) ∼= M , and the
trivialisation of the normal bundle is induced by dF |F−1(s) : ν → TsS

q ∼= Rq. Moreover, Pontryagin
construction gives a group homomorphism, where the group structure on framed manifold is disjoint
union, which is framed cobordant to the connected sum.
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0.38. Lemma. Let Σ be a smooth n-sphere. Then two stable trivialisations of TΣ differ by an
element α ∈ πn(O), and the corresponding elements in πsn differ by Jn(α).

It is well known that πsn is finite for n > 0, hence the same holds for coker(Jn) and so also
for Θn/bPn+1. The map Θn/bPn+1 → coker(Jn) is either an isomorphism or injective withe index 2.
The latter happens if and only if there exists a n-dimensional closed framed manifold M with
Kervaire invariant 1, see Definition 0.45 and Remark 0.47 below.

Let Bi denote the Bernoulli numbers, which satisfy

t

2
coth

t

2
=

m∑
i=0

B2i

(2i)!
t2i .

0.39. Theorem. Assume n ≥ 5. Then

(1) If n is even, then bPn+1 = 0.
(2) If n ≡ 1 mod 4, then #bPn+1 ≤ 2.
(3) If n = 4`− 1 then

#bP4` = 22`−2 (22`−1 − 1) num
4B2`

`
.

The proof uses surgery. In the first step, one removes all lower homotopy groups of the bounding
manifold W .

0.40. Proposition. Let Σ ∈ bPn+1 and n ≥ 4. Then there exists a (i − 1)-connected compact
stably parallelisable manifold W with ∂W ∼= Σ if 2i ≤ n+ 1.

If n = 2j is even, with some care one can also eliminate Hj(W ). By Poincaré-Lefschetz duality,
it follows that W is contractible, and we have proved (1) of the theorem.

0.41. Proposition. Let W be a 2k-dimensional smooth compact stably parallelisable manifold
with ∂W = ∅ or ∂W a homotopy sphere.

(1) If k is odd, . . .
(2) If k is even, then W is framed cobordant modulo ∂W to a manifold with even unimodular

and definite intersection form.

Note that the intersection form on W behaves as on a closed manifold because ∂W has no (co-)
homology in the middle dimensions. In particular, it is still unimodular. It is also even because W
is stably parallelisable, and hence all Stiefel Whitney classes and all Wu classes vanish. Again, this
proposition can be proved using surgery techniques.

If n ≡ 0 mod 4, we know that 8 | sign(M). Examples of such manifolds W can be constructed
using plumbing exactly as in Example 0.23. Next, one shows that framed surgery (relative to ∂W )
can transform W into a contractible manifold if and only if sign(M) = 0. Hence, we obtain a
surjective map

Z −→ bP4` .

In particular, bP4` is cyclic.

0.42. Definition. An almost framed manifold is a manifold M with a stable trivialisation
of TM |M\{∗}.

We take the non-framed point as the basepoint of M . There is also a natural notion of almost
framed cobordism. However, if dimM 6= 0 mod 4, then an almost framing can always be extended
to a framing.

0.43. Proposition. We have a ∈ ker(Z→ bP4`) if and only if there exists an almost framable
4`-manifold N with sign(N) = 8a.
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One can construct a degree 1 map ξ : N → S4` which collapses all but a neighbourhood of the
basepoint. Then there exists a stable real oriented vector bundle E → S4` such that ν ∼= ξ∗E. By
the Hirzebruch signature theorem, sign(N) can be computed using Pontryagin numbers. The only
nonzero Pontryagin number is p`(TN)[N ] = −p`(ν)[N ] = −p`(E)[S4`], so Hirzebruch’s theorem
gives

sign(N)

8
= ±22`−3(22`−1 − 1)B2`

(2`)!
p`(E)[S4`] .

On the other hand, stable vector bundles on S4` correspond to π4`−1(SO) ∼= Z, and there is a
generator E1 with

p`(E1)[S4`] = ±a`(2`− 1)! , where a` =

{
1 if ` is even, and

2 if ` is odd.

Finally, an element α ∈ π4`−1(SO) can only appear as an obstruction against framing N is the
induced framing of S4`−1 is zero-bordant, that is, if α ∈ ker(J4`−1). By a result of Adams, the
kernel of J4`−1 is generated by an element of order

j4`−1 = denom

(
B2`

4`

)
.

Combing the three equations above, we can compute

#bP4` = a` 22`−2(22`−1 − 1) num
B2`

4`
.

Note that the constant a` can be subsumed into the numerator expression, giving the expression
in Theorem 0.39 (3).

Let us now consider bP2k for odd k. Let Σ = ∂W be a homotopy sphere and let W be framed.
As before, we may assume that W is (k − 1)-connected. Then the intersection form on Hk(W )
is symplectic, with respect to a basis represented by embedded k-spheres. There are exactly two
possible framings on Sk if k is odd. For each basis element α ∈ Hk(W ), the framing of W induces
a framing ϕ(α) ∈ Z2, independent of the embedding.

0.44. Proposition. If k 6= 3, 7, then ϕ(α) = 0 if and only if the embedded sphere has trivial
normal bundle in W . For k = 3, 7, the normal bundle is trivial and ϕ(α) = 0 if any only if surgey
at the respective sphere can be framed.

The map ϕ factors over a quadratic refinement

ϕ2 : Hk(W )→ Z2

of the intersection form modulo 2, that is,

ϕ2(α+ β)− ϕ2(α)− ϕ2(β) = 〈α, β〉 ,
which is symplectic.

0.45. Definition. A quadratic refinement ψ of a symplectic form modulo 2 has Arf invariant

A(ψ) =
∑
i

ψ(αi)ψ(βi) ∈ Z2 ,

where α1, . . . , αr, β1, . . . , βr is a symplectic basis of the underlying symplectic form.
If W is a 2k-dimensional (k − 1)-connected framed manifold with k odd and ∂W = ∅ or ∂W a

homotopy sphere, then the Kervaire invariant c(W ) ∈ Z2 of W with the given framing is the Arf
invariant of the quadratic function ϕ2 constructed above.

Note that the Kervaire invariant does not depend on the framing of W except if k = 3 or k = 7.
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0.46. Proposition. A 2k-dimensional (k − 1)-connected framed manifold W with k odd and
either ∂W = ∅ or ∂W a homotopy sphere is framed cobordant relative to its boundary to a homotopy
sphere or a contractible manifold respectively if and only if its Kervaire invariant vanishes.

One can construct a W with Kervaire invariant c(W ) = 1 by plumbing. Hence, we have a
surjective map Z2 → bP2k very similar to the map Z→ bP4` considered above. The map Z2 → bP2k

is trivial for k 6= 3, 7 if and only if the standard sphere S2k−1 with the nontrivial framing is the
framed boundary of a manifold W . If this happens, attaching a disk to ∂W produces an almost
framed compact manifold N . In dimensions not congruent 0 mod 4, the framing can be extended.
Thus we see that bP2k = 0 if and only if there exists a compact framed manifold N with Kervaire
invariant 1.

0.47. Remark. A closed framed manifold with Kervaire invariant 1 has dimension n = 2j − 2
for 1 < j < 8. Examples are known for j = 1, . . . , 6, that is, for n = 2, 6, 14, 30 and 62. The
case j = 7 with n = 126 is still open.

Finally, let us summarise the considerations above in the “Kervaire-Milnor braid” of four inter-
woven long exact sequences. At most places, exactness of these sequences follows from the arguments
above.

πsn+1 Pn+1 Θn πn−1(O) πsn−1

An+1 Θ̃n An Θ̃n−1

Θn+1 πn(O) πsn Pn Θn−1 .

p b 0 Jn−1

0 Jn p b

o ι p

πn+1 b ι fp o ι

ι f πn b

The fat black exact sequence gives us the decomposition of exotic spheres into bP -spheres and
non-bP -spheres. It consists of the forgetful map ι from exotic spheres to almost framed bordism
classes A•. This is well-defined because there is essentially only one possible framing on Σ \ {∗}.
By “punching out a disk”, one gets the map p from A• to framed bordism classes P• of framed
manifolds with boundary a homotopy sphere. We have

Pn ∼=


Z if n ≡ 0 mod 4,

Z2 if n ≡ 2 mod 4, and

0 if n is odd,

where the isomorphisms are given by sign /8 and the Kervaire invariant, respectively. The map b
denotes taking the boundary (and forgetting the framing).

The thin black sequence decomposes into many short exact sequences. The map f changes the
framing on the standard sphere. It is followed by a surjective map that just forgets the framing.
The fat gray sequence describes the obstruction o to frame an almost framed manifold. The map J•
is the J-homomorphism. Here π denotes the inverse Pontryagin construction, followed by forgetting
the frame at one point. Note that πn is surjective and o vanishes except if n ≡ 0 mod 4. Finally,
the thin gray sequence consists of a boundary map ∂ similar to b above, but which remembers the
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framing. The map ι includes framed exotic spheres into the framed bordism group Ωfr
•
∼= πs•, and p

again means “punching out a disk”.
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