EXERCISE SHEET 1 Algebraic Topology II

Please write your name on your solution sheet. The submission deadline is thursday, 25th of April, 14h (post box "Jonas Schnitzer", 3rd floor, Ernst-Zermelo-Straße)

Exercise 1 (10 points) Prove or disprove:

- (i) Homology functors are cocontinuous.
- (ii) $\mathbb{C}P^{n-1} \leftarrow \mathbb{C}P^n \leftarrow S^{2n+1}$ is a cofiber sequence.
- (iii) Let X be a topological space, such that all continuous maps $X \to \mathbb{Z}$ are constant, then $\pi_0(X) = 0$.
- (iv) For every pair (X, A) in \mathcal{T}_+ and every (reduced, generalised) homology functor \tilde{h} , the sequence

$$\tilde{h}_k(X/A) \longleftarrow \tilde{h}_k(X) \longleftarrow \tilde{h}_k(A)$$

is exact.

(v) A map between CW spectra $f: \mathbb{E} \to \mathbb{F}$ is invertible if it induces isomorphisms $\pi_k(\mathbb{E}) \to \pi_k(\mathbb{F})$ for all $k \in \mathbb{Z}$

Exercise 2 (10 points) Let $f: X \to Y$ be a weak equivalence of cofibrant spaces and E be cofibrant (both in Quillen's model structure), then

$$f \wedge \mathrm{id}_E \colon X \wedge E \to Y \wedge E$$

is a weak equivalence of cofibrant spaces as well.

Exercise 3 (10 points) Let R be a unital commutative ring. Check that the tensor product and the internal hom-functor fulfill the properties from Definition 4.26 and Bemerkung 4.28. This turns $(\mathcal{M}od_R, \otimes_R, R)$ into a closed monoidal category. What is its exponential law?

Exercise 4 (10 points = 5+5 Points) Let X, Y, Z be pointed topological spaces and let $p: X \times Y \to X \wedge Y$, $q: (X \wedge Y) \times Z \to (X \wedge Y) \wedge Z$ and $r: X \times Y \times Z \to X \wedge Y \wedge Z$ be quotient maps. Prove the following:

- (i) The identity map $X \wedge Y \wedge Z \to (X \wedge Y) \wedge Z$ is continuous in $\mathcal{T}op$.
- (ii) The inverse is continuous in kTop or $kw\mathcal{H}$.

Hint: Use Proposition 4.32.