EXERCISE SHEET 3 Algebraic Topology II

Please write your name on your solution sheet. The submission deadline is thursday, 10th of May, 14h (post box "Jonas Schnitzer", 3rd floor, Ernst-Zermelo-Straße)

Exercise 1 (10 points) Prove or disprove:

- (i) An abelian group A is called torsion-free, if for all $a \in A \setminus \{0\}$ and all $n \in \mathbb{Z}$ we have $na \neq 0$. Every torsion-free abelian group is free.
- (ii) Let A be an abelian group. The functor $\operatorname{Tor}_{\mathbb{Z}}(\cdot, A) \colon \mathcal{A}b \to \mathcal{A}b$ is cocontinuous.
- (iii) Let X, Y, E be well-pointed, $f: X \to Y$, then $Z(f \wedge id_E) \cong Zf \wedge E$.
- (iv) Let X, Y, E be well-pointed, $f: X \to Y$, then $C(f \land id_E) \cong Cf \land E$.
- (v) Let X, Y, E be well-pointed, $f: X \to Y$, then $C(f \lor id_E) \cong Cf \lor E$.

Exercise 2 (10 points = 4+4+2 points) Let R be a principal ideal domain, $r, s \in \mathbb{R}^{\times}$, and let B be an R-module. prove the following statements:

- (i) $\operatorname{Tor}(R/r, B) \cong \operatorname{hom}(R/r, B) \cong \{ b \in B \mid br = 0 \} \subset B$
- (ii) $\operatorname{Ext}(R/r, B) \cong (R/r) \otimes B \cong B/rB$
- (iii) $\operatorname{Tor}(R/r, R/s) \cong \operatorname{Ext}(R/r, R/s) \cong (R/r) \otimes (R/s) \cong \operatorname{hom}(R/r, R/s) \cong R/(r, s)$

where we denote by (r, s) the ideal in R generated by r und s.

Exercise 3 (10 points = 4+3+3 points) An extension of \mathbb{Z} -modules of A by B is a short exact sequence

$$0 \longrightarrow B \longrightarrow C \longrightarrow A \longrightarrow 0$$

up to isomorphics, where two sequences of this form are called isomorphic, if there is a map of sequences, which is given by the identity on A and B. Prove the following statements:

(i) A free resolution of A induces a unique map of sequences up to chain homotopy

- (ii) The map $f \in \text{hom}(A_1, B)$ is well-defined up to $h \circ a$ with $h \in \text{hom}(A_0, B)$, thus we get a class $[f] \in \text{coker}(\text{hom}(A_0, B) \to \text{hom}(A_1, B)) = \text{Ext}_R(A, B)$.
- (iii) The assignment from *ii*.) from the set of extensions to the set $\text{Ext}_R(A, B)$ is a bijection.

Exercise 4 (10 points = 4+2+4 points) We consider $A = \mathbb{Z}/n$ and construct the Moore space MA_k for $k \geq 2$ by glueing a (k+1)-cell with a map $\varphi \colon S^k \to S^k$ of degree n to S^k . By mapping the k-skeleton S^k to a point, we get the collapsing map $f \colon MA_k \to MA_k/S^k \cong S^{k+1}$. Additionally, let $g \colon MA_k \to S^{k+1}$ be the constant map. Prove the following statements:

- (i) $f_* = g_* = 0 \colon \tilde{H}_{\bullet}(MA_k; \mathbb{Z}) \longrightarrow \tilde{H}_{\bullet}(S^{k+1}; \mathbb{Z}),$
- (ii) $g_* = 0 \colon \tilde{H}_{\bullet}(MA_k; A) \longrightarrow \tilde{H}_{\bullet}(S^{k+1}; A),$
- (iii) $f_{k+1} \colon \tilde{H}_{k+1}(MA_k; A) \xrightarrow{\cong} \tilde{H}_{k+1}(S^{k+1}; A) \cong A.$