ÜBUNGSBLATT 4 Algebraische Topologie II

Bitte schreiben Sie ihren Namen auf ihre Lösung. Abgabe ist am 16.5. (im Briefkasten von Jonas Schnitzer, 3. Stock, Ernst-Zermelo-Straße)

Aufgabe 1 (10 Punkte) Beweisen oder widerlegen Sie:

- (i) Es sei MA_k ein Mooreraum zur abelschen Gruppe A mit $k \geq 2$, dann gilt $\pi_k(MA_k) = A$ und $\pi_n(MA_k) = 0$ für $n \neq k$.
- (ii) Es sei A eine abelsche Gruppe, dann ist $\operatorname{Ext}_{\mathbb{Z}}(A,\cdot)\colon \mathcal{A}b\to \mathcal{A}b$ stetig.
- (iii) Es sei \mathbb{k} ein Körper, dann gilt $\operatorname{Ext}_{\mathbb{k}}(A,B)=0$ und $\operatorname{Tor}_{\mathbb{k}}(A,B)=0$ für alle \mathbb{k} -Moduln A,B.
- (iv) Es sei $f: (C_{\bullet}, d_{\bullet}) \to (C'_{\bullet}, d'_{\bullet})$ eine Abbildung zwischen Kettenkomplexen so, dass $f_*: H(C_{\bullet}, d_{\bullet}) \to H(C'_{\bullet}, d'_{\bullet})$ ein Isomorphismus ist, dann ist f eine Kettenhomotopieäquivalenz.
- (v) Es sei $(C_{\bullet}, d_{\bullet})$ ein Kettenkomplex über einem Körper \mathbb{k} , dann existiert eine Kettenhomotopieäquivalenz $f: (C_{\bullet}, d_{\bullet}) \to (H(C_{\bullet}, d_{\bullet}), 0)$.

Aufgabe 2 (10 Punkte = 5+5 Punkte) Berechnen Sie $\tilde{H}^{CW}_{\bullet}(X;\mathbb{Z})$ und $\tilde{H}^{CW}_{\bullet}(X;\mathbb{Z}/2\mathbb{Z})$ für die folgenden Räume:

- (i) Fassen Sie den Torus $T^2 = S^1 \times S^1$ als CW-Komplex auf, indem Sie in der linken Skizze gegen" uberliegende Seiten identifizieren.
- (ii) Betrachten Sie die Kleinsche Flasche X, die aus einem Quadrat durch Identifikation gegenüberliegender Seiten gemäß der rechten Skizze entsteht. Fassen Sie X für die Berechnung der Homologie als CW-Komplex mit Basispunkt, zwei 1-Zellen und einer 2-Zelle auf.

Aufgabe 3 (10 Punkte) Präzisieren Sie die Aussage, dass der in konstruierte Isomorphismus

$$\left(\tilde{C}^{\mathrm{CW}}_{\bullet}(X \wedge Y; R), d^{\mathrm{CW}}_{\bullet}\right) \stackrel{\cong}{\longrightarrow} \left(\tilde{C}^{\mathrm{CW}}_{\bullet}(X; R), d^{\mathrm{CW}}_{\bullet}\right) \otimes \left(\tilde{C}^{\mathrm{CW}}_{\bullet}(Y; R), d^{\mathrm{CW}}_{\bullet}\right)$$

natürlich ist, und beweisen Sie sie.

Aufgabe 4 (10 Punkte = 5+5 Punkte) Wir wollen I^n als CW-Komplex mit $\binom{n}{k} 2^{n-k}$ Zellen der Dimension k darstellen. Wir orientieren $I^n \subset \mathbb{R}^n$ mit der Standardbasis, und wir orientieren die Rand-Hyperflächen von I^n durch solche Basen des tangentialen (n-1)-dimensionalen Vektorraums, dass Voranstellen des äußeren Normalenvektors wieder eine positiv orientierte Basis des \mathbb{R}^n liefert.

- (i) Beschreiben Sie den zellulären Rand der n-Zelle von I^n .
- (ii) Betrachten Sie jetzt $I^m \times I^n = I^{m+n}$ und überprüfen Sie, dass sich der Rand der (m+n)-Zelle wie in Proposition 5.65 verhält.