Prof. Dr. Sebastian Goette Dr. Severin Barmeier

http://home.mathematik.uni-freiburg.de/geometrie/lehre/ws19/AT/

Übungsblatt 1

Abgabetermin 31.10.2019

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt. Jede Aufgabe wird mit 4 Punkten bewertet. Sofern nicht anders angegeben werden die Punkte gleichmäßig auf die Teilaufgaben verteilt.

Aufgabe 1. Seien X, Y topologische Räume und $X = A \cup B$, wobei A, B abgeschlossen sind. Zeigen Sie, dass $f: X \to Y$ genau dann stetig ist, wenn $f|_A$ und $f|_B$ stetig sind.

Aufgabe 2. Konstruieren Sie Homöomorphismen

- (i) $f: I^k/\partial I^k \to S^k \subset \mathbb{R}^{k+1}$
- (ii) $g: (I^k/\partial' I^k, \partial I^k/\partial' I^k) \to (D^k, S^{k-1}).$

Aufgabe 3. Es seien (X_i, x_i) for $i \in J$ punktierte Räume. Zeigen Sie

(i) Der punktierte Raum

$$(X, x_0) = \left(\prod_{i \in I} X_i, (x_i)_{i \in J}\right)$$

mit den Projektionen $p_i: (X, x_0) \to (X_i, x_i)$ erfüllt die universelle Eigenschaft eines Produktes in der Kategorie Top_+ .

- (ii) Es gilt $\pi_k(X, x_0) \cong \prod_{i \in J} \pi_k(X_i, x_i)$, wobei die Abbildung $p_{i*} = \pi_k p_i$ der Projektion auf den Faktor $\pi_k(X_i, x_i)$ entspricht.
- (iii) Sei $j \in J$ und sei $\iota_{j_*} \colon X_j \to X$ die Inklusion, die $y \in X_j$ auf $(y_i)_{i \in J}$ mit $y_j = y$ und $y_i = x_i$ für $i \neq j$ abbildet. Beschreiben Sie die Abbildung $\iota_{j_*} \colon \pi_k(X_j, x_j) \to \pi_k(X, x_0)$.

Aufgabe 4. Zeigen Sie, dass für $k, \ell \geq 0$ gilt

- $(i) \ \Omega^k(\Omega^\ell(X)) \cong \Omega^{k+\ell}(X)$
- (ii) $\pi_k(\Omega^{\ell}(X)) \cong \pi_{k+\ell}(X).$