Prof. Dr. Sebastian Goette
Dr. Severin Barmeier
Dr. Jonas Schnitzer

http://home.mathematik.uni-freiburg.de/geometrie/lehre/ws19/AT/

Übungsblatt 8

Abgabetermin 19.12.2019

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt. Jede Aufgabe wird mit 4 Punkten bewertet. Sofern nicht anders angegeben werden die Punkte gleichmäßig auf die Teilaufgaben verteilt.

Aufgabe 1. Es sei X ein topologischer Raum. Wir interpretieren eine Äquivalenzrelation \sim als Teilmenge $R_{\sim} = \{(x, y) \in X^2 \mid x \sim y\} \subseteq X^2$. Zeigen Sie

- (i) Der Durchschnitt beliebig vieler Äquivalenzrelationen ist wieder eine Äquivalenzrelation, insbesondere gibt es eine minimale abgeschlossene Äquivalenzrelation \approx auf X.
- (ii) Sei $q: X \to Y := X/\approx$, dann ist $\Delta_Y := \{(y,y) \mid y \in Y\}$ abgeschlossen, insbesondere ist Y Hausdorff.
- (iii) Sei Z ein Hausdorff-Raum, dann existiert zu jeder stetigen Abbildung $f: X \to Z$ eine eindeutige Abbildung $\bar{f}: Y \to Z$, so dass $f = \bar{f} \circ q$.

Aufgabe 2. Es sei X ein topologischer Raum. Dann bezeichne kX den topologischen Raum mit der gleichen zugrundeliegenden Menge und der Topologie

$$\mathcal{O}_{kX} = \{U \mid f^{-1}(U) \subseteq K \text{ für alle kompakten Räume } K \text{ und für alle } f \colon K \to X\}$$

Kompakt impliziere hier stets Hausdorff. Zeigen Sie:

- (i) id: $kX \to X$ is stetig.
- (ii) Sei K kompakt, dann ist $f: K \to X$ genau dann stetig, wenn $f: K \to kX$ stetig ist.
- (iii) $kkX \cong kX$.

Aufgabe 3. Es sei $k: \mathcal{T}op \to \mathcal{T}op$ definiert wie in Aufgabe 2. Zeigen Sie:

- (i) Sei $g\colon X\to Y$ stetig, dann ist auch $g\colon kX\to kY$ stetig. Insbesondere ist k ein Funktor.
- (ii) Es gilt

$$C(kX, Y) = C(kX, kY).$$

Aufgabe 4. Es sei $O(n+1) = \{A \in GL_{n+1}(\mathbb{R}) \mid A^{\top}A = Id\}$ die orthogonale Gruppe. Wir interpretieren $O(n) \subset O(n+1)$ als Untergruppe, die trivial auf $e_{n+1} \in \mathbb{R}^{n+1}$ wirkt. Zeigen Sie:

- (i) $O(n+1)/O(n) \cong \mathbb{S}^n$.
- (ii) Die Quotientenabbildung $\mathrm{O}(n+1)\to\mathbb{S}^n$ ist ein Faserbündel mit typischer Faser $\mathrm{O}(n).$
- (iii) $\pi_k(O(n+1)) \cong \pi_k(O(n))$ und $\pi_k(SO(n+1)) \cong \pi_k(SO(n))$ für alle k < n-1.