5. ÜBUNGSBLATT

DIFFERENTIALGEOMETRIE I

IM WS 2024/25 BEI PROF. DR. S. GOETTE

Abgabe Montag, den 18.11.24 14 Uhr (also vor der Vorlesung) in den Briefkasten 3.19

Bitte schreiben Sie Ihren Namen auf Ihre Abgabe

Aufgabe 1

Es sei G = SU(2) die Lie-Gruppe der speziell-unitären 2×2 -Matrizen und $\mathfrak{su}(2) = T_eG = \{A \in M_2(\mathbb{C}) \mid A + A^* = 0 \text{ und } \operatorname{tr}(A) = 0\}$, dabei bezeichne $\operatorname{tr}(X)$ die Spur der Matrix X. Für alle $A \in \mathfrak{su}(2)$ sei V_A das Vektorfeld aus Aufgabe 2 von Blatt 3. Zeigen Sie:

- (a) Jedes Element $g \in SU(2)$ wird durch seine erste Spalte eindeutig bestimmt. Insbesondere gibt es einen Diffeomorphismus $F: G \to S^3 \subset \mathbb{C}^2 \cong \mathbb{R}^4$ mit $F(g) = g \cdot e_1$, wobei $e_1 \in \mathbb{C}^2$ den ersten Einheitsvektor bezeichne;
- (b) Es gibt ein Skalarprodukt $\langle \cdot, \cdot \rangle$ auf G, so dass $\langle V_A, V_B \rangle_g = \frac{1}{2} \operatorname{tr}(A^*B)$ für alle $g \in G$;
- (c) Der obige Diffeomorphismus F ist eine Riemannsche Isometrie;
- (d) Stellen Sie den Riemannschen Krümmungstensor $R_{V_A,V_B}V_C$ mit Hilfe von Aufgabe 4(b) von Blatt 4 dar.

Aufgabe 2

Es sei (M,g) eine Riemannsche Mannigfaltigkeit, $p \in M$ und für alle Ebenen $E \subset T_pM$ sei die Schnittkrümmung $K_p(E)$ bekannt. Bestimmen Sie den Krümmungstensor $g\left(R_{v,w}x,y\right)$ für alle $v,w,x,y\in T_pM$. Hinweis: Bestimmen Sie $g\left(R_{e_i,e_j}e_k,e_l\right)$ für eine gegebene Orthonormalbasis $(e_i)_{i=1}^{\dim M}$ zunächst für den Fall i=l,j=k, dann für den Fall j=k und dann allgemein.

Aufgabe 3

- (a) Sei (M, g) eine Riemannsche Mannigfaltigkeit. Zeigen Sie, dass es eine Orthonormalbasis $(e_i)_{i=1}^{\dim M}$ von T_pM gibt, so dass der Riccitensor bezüglich der Basis (e_i) Diagonalgestalt besitzt, also ric $(e_i, e_j) = \rho_i \delta_{ij}$.
- (b) Bestimmen Sie für eine dreidimensionale Riemannsche Mannigfaltigkeit die Koeffizienten $g\left(R_{e_i,e_j}e_k,e_l\right)$ des Riemannschen Krümmungstensors aus den Koeffizienten der Ricci-krümmung ric (e_i,e_j) in der Basis aus a).

Aufgabe 4

Seien M, N zwei glatte Mannigfaltigkeiten mit Atlanten \mathcal{A} und \mathcal{B} . Zeigen Sie:

- (a) Das kartesische Produkt $M \times N$ trägt eine Topologie, so dass $\{\varphi \times \psi : U^{\varphi} \times U^{\psi} \to V^{\varphi} \times V^{\psi} \mid \varphi \in \mathcal{A}, \psi \in \mathcal{B}\}$ einen Atlas bildet.
- (b) $T(M \times N)$ und $TM \times TN$ in natürlicher Weise diffeomorph.

5. Präsenzaufgaben

Differentialgeometrie I

IM WS 2024/25 BEI PROF. DR. S. GOETTE

Aufgabe 1

Beweisen oder widerlegen Sie:

- (a) Die Lie-Klammer ist ein (2,0)-Tensor auf jeder Mannigfaltigkeit.
- (b) Auf Matrixgruppen gibt es einen (2,0)-Tensor T, so dass $T(V_A, V_B) = [V_A, V_B]$ für alle Vektorfelder V_A , V_B wie in Aufgabe 2 von Blatt 3 gilt.
- (c) Sei M eine zweidimensionale Mannigfaltigkeit. Dann wird der Krümmungstensor bereits durch die Skalarkrümmung bestimmt.
- (d) Es gibt eine C^{∞} -Kurve $\gamma \colon [0,1] \to \mathbb{R}^2$, deren Bild genau der Rand des Einheitsquadrates $[0,1]^2 \subset \mathbb{R}^2$ ist.

Aufgabe 2

Wir definieren auf $\mathbb{C}^{n+1}\setminus\{0\}$ für $Z\in\mathbb{C}^{n+1}$ und Vektoren $V,W\in T_Z\left(\mathbb{C}^{n+1}\setminus\{0\}\right)$ die Abbildung

 $g_Z(V, W) := \frac{\operatorname{Re}\langle \widetilde{V}, \widetilde{W} \rangle}{\|Z\|^2}$

wobei $\langle \cdot, \cdot \rangle$ das komplexe Standardskalarprodukt ist und $\widetilde{V}, \widetilde{W}$ die Projektionen von V bzw. W auf den Unterraum, der zu Z und iZ orthogonal ist.

- (a) Zeigen Sie, dass dies eine Riemannsche Metrik $g^{\mathbb{CP}^n}$ auf \mathbb{CP}^n induziert.
- (b) Bestimmen Sie die Matrix $g_Z^{\varphi_1}$ in der Karte φ_1 aus Aufgabe 1 von Blatt 3.