2. ÜBUNGSBLATT

Lineare Algebra I

IM WS 2025/26 BEI PROF. DR. S. GOETTE

Abgabe bis Montag 27.10, 10:15 in den Briefkästen oder (als handschriftlich am PC/Tablet generiertes PDF) online auf ILIAS.

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt. Sie dürfen in Zweiergruppen abgeben.

Aufgabe 1 (4+4+2 Punkte)

Es seien $m, n \in \mathbb{N}$ und $\underline{m}, \underline{n}$ die zugehörigen Mengen aus Bemerkung 1.30.

- (a) Zeigen Sie mit vollständiger Induktion, dass $\# \text{Abb}(\underline{m}, \underline{n}) = n^m$.
- (b) Folgern Sie aus (a), dass m genau 2^m Teilmengen hat.
- (c) Wie lauten die analogen Aussagen für endliche Mengen M und N mit #M = m und #N = n?

Hinweis zu (a): Im Fall m=0 oder n=0 überlegen Sie sich, wie viele Teilmengen von $\emptyset = m \times n$ jeweils die in Definition 1.15 geforderte Eigenschaft haben.

Aufgabe 2 (2+2+2+4 Punkte)

Beweisen Sie die Aussagen von Beispiel 1.36 (3), d.h., zeigen Sie, dass die Relation " \leq " aus Definition 1.33 auf \mathbb{N} eine Ordnung definiert. Zeigen Sie dazu für alle $m, n, \ell \in \mathbb{N}$ die folgenden Aussagen:

- (a) $n \leq n$
- (b) $(m \le n \text{ und } n \le m) \Rightarrow m = n$
- (c) $(\ell \le m \text{ und } m \le n) \Rightarrow \ell \le n$
- (d) $m \le n \text{ oder } n \le m$

Aufgabe 3 (5+5 Punkte)

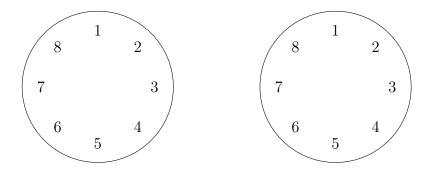
Beweisen Sie die Kürzungsregeln in \mathbb{N} aus Satz 1.40 (5), d. h., zeigen Sie für alle $\ell, m, n \in \mathbb{N}$:

- (a) $\ell + n = \ell + m \Rightarrow n = m$
- (b) $\ell \cdot n = \ell \cdot m \Rightarrow n = m \text{ oder } \ell = 0$

Aufgabe 4 (4+2+4 Punkte)

Eine Zahl $m \in \mathbb{N} \setminus \{0\}$ ist Teiler einer Zahl $n \in \mathbb{N}$, wenn es eine Zahl $l \in \mathbb{N} \setminus \{0\}$ gibt, so dass $n = m \cdot l$.

(a) Verbinden Sie jede Zahl im linken Kreis mit ihren Teilern im rechten Kreis.



- (b) Erhalten Sie auf diese Weise eine Abbildung von der "linken" in die "rechte" Menge, oder umgekehrt?
- (c) Lösen Sie die folgende Aufgabe aus einem Schulbuch für die siebte Klasse.

Lege eine Tabelle für die Zuordnung Natürliche Zahl – Anzahl der Teiler für die Zahlen 1 bis 20 an.

Präsenzaufgaben

Lineare Algebra I

IM WS 2025/26 BEI PROF. DR. S. GOETTE

Aufgabe 1

Seien X, Y, Z Mengen. Zeigen Sie

- (a) $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$
- (b) $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$
- (c) $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$.

Aufgabe 2

Zeigen Sie, dass die in der Vorlesung definierten Menge \underline{n} genau dann gleichmächtig zu \underline{m} ist, wenn m=n gilt.

Aufgabe 3

Seien M und N Mengen und $T\subset N$ eine Teilmenge. Sei $F\colon M\to N$ eine Abbildung. Zeigen Sie:

$$F(F^{-1}(T)) \subset T.$$

Geben Sie ein Beispiel an, in dem keine Gleichheit gilt.

Unter welcher Bedingung gilt Gleichheit?

Aufgabe 4

- (a) Überlegen Sie sich, dass jede nicht leere Teilmenge $M\subset\mathbb{N}$ ein kleinstes Element besitzt. (Dies ist die Wohlordnungseigenschaft.)
- (b) Betrachten Sie die Teilmenge

$$M = \left\{ \left. n \in \mathbb{N} \; \right| \; \begin{array}{c} \text{In der deutschen Sprache ben\"otigt man mehr als 1000} \\ \text{Buchstaben, um } n \; \text{eindeutig zu beschreiben.} \end{array} \right\}$$

Überlegen Sie sich, dass Sie das kleinste Element von M mit weniger als 1000 Buchstaben eindeutig beschreiben können.

Überlegen Sie sich, wie man dieses Paradoxon "beheben" könnte.